3DV
#112

001
002
003

004

005
006
007

008

009
010
011
012
013
014
015
016
017
018
019

020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041

3DV 2025 Submission #112. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

3D-GPT: Procedural 3D Modeling
with Large Language Models

Anonymous 3DV submission

Paper ID 112

We kindly request the reader to consider visiting follow-
ing website to view our high-quality 3D results:
https://anonymous0888.github.io/3DGPT/3dgpt.html.

1. Comparison with Text-to-3D

We offer side-by-side comparisons with a state-of-the-art
Text-to-3D method Dreamfusion [1] for single objects and
scene, as illustrated in Figure 2 and Figure 1, respectively.

2. Implementation Detail

We offer an illustrative example of the prompt used for
Adding Trees (Figure 6) and Sky Modeling (Figure 8), pre-
senting the Document, Code, Information, and a Usage Ex-
ample.

We provide the code that enumerates the functions within
Infinigen used in constructing our 3D scene. While a

similar Python file can be found at https://github.

com/princeton-vl/infinigen/blob/main/
worldgen/generate . py, our script is uniquely tai-
lored to work with a control dictionary generated by three
agents, enabling controllable scene generation.

def compose_scene (terrain, control_dict={}):

wun

Give a base terrain and control dictionary,

build the 3D scene.

terrain: Empty mesh

control_dict: control dictionary generated by
the agents that use to control each function
parameters.

Returns

nun

add_coarse_terrain (terrain, control_dict)
add_trees (control_dict)

add_bushes (control_dict)

add_clouds (control_dict)

add_boulders (control_dict)
add_glowing_rocks (control_dict)

add_kelp (control_dict)

add_cactus (control_dict)

add_rocks (control_dict)
add_ground_leaves (control_dict)

20

21

2

add_ground_twigs (control_dict)
add_chopped_trees (control_dict)
add_grass (control_dict)
add_monocots (control_dict)
add_ferns (control_dict)
add_flowers (control_dict)
add_corals (control_dict)
add_leaf_particles (control_dict)
add_rain_particles (control_dict)
add_dust_particles (control_dict)
add_marine_snow_particles (control_dict)
add_snow_particles (control_dict)

return

Listing 1. Agent Implementation Example

We offer the code to implement the modeling agent as a
demonstration of how to utilize the OpenAl API for imple-
menting our agent.

def modeling_function_call (text_description,
function_description, function,
function_document,
example, max_tokens=2000, temperature=0.3,
history=[1]):
wan
Give a short text, call the given functions
to generation objects/scene to fit the given
text description
Parameters
text_description: short user given text.
function_description:
description.
function:

short function

python code.

function_document: the detail description
of the function.

example: example of how to use the function

max_tokens: max tokens for the detailed
text.

temperature

Returns

response from the agent that contains the
function calls.

nnn

if (len (history)==0) :

3DV
#112

042
043
044
045
046
047
048
049
050
051
052
053
054
055

056
057
058

059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087

https://github.com/princeton-vl/infinigen/blob/main/worldgen/generate.py
https://github.com/princeton-vl/infinigen/blob/main/worldgen/generate.py
https://github.com/princeton-vl/infinigen/blob/main/worldgen/generate.py
https://github.com/princeton-vl/infinigen/blob/main/worldgen/generate.py
https://github.com/princeton-vl/infinigen/blob/main/worldgen/generate.py

3DV
#112

088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

20

21

RS

g

26

29

3DV 2025 Submission #112.

Ours DreamFusion

“A vibrant autumn forest, with trees ablaze in
shades of red, orange, and gold, as a gentle
breeze rustles the fallen leaves.”

“The mountains, majestic and snow-capped,
stood like sentinels guarding the vast expanse of
the valley, their peaks disappearing into the
swirling mist that clung to their rugged slopes.”

Ours DreamFusion

“A misty spring morning, where dew-kissed
Sflowers dot a lush meadow surrounded by
budding trees.”

“The desert, an endless sea of shifting sands,

stretched to the horizon, its rippling dunes catching
the golden rays of the setting sun, creating an ever-

changing landscape of shadows and light.”

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

DreamFusion

gl
“A serene winter landscape, with snow-covered

evergreen trees and a frozen lake reflecting the
pale sunlight.”

“The lake, serene and glassy, mirrored the cloudless
sky above, reflecting the surrounding mountains and
the graceful flight of a heron, as lily pads floated like
emerald jewels upon its tranquil surface."

Figure 1. Comparison with Dreamfusion (Scene).

history = [

{"role":"system", "content":"You are a
good 3D designer who can convert long text
descriptions into parameters, and is good at
understanding Python functions to manipulate
3D content. "},

]

messages = history
text = f£"""We have the following function
codes {function_description} to control

blender by python {function}.

Following are the document for function:
{function_document} .

Below is an example bout how to make
function calls to model the scene to fit the
description: {example}.

Question: Given the text description:
{text_description} analysis the function
parameter and call the function to {
function_description}"""

messages.append({"role": "user", "content":
text})
define modeling agent
modeling_agent = openai.ChatCompletion.
create (
model = "gpt-3.5-turbo",

temperature = temperature,
max_tokens = max_tokens,
messages = messages
)
get the response from modeling agent
function_call = modeling_agent.choices[0].
message["content"]
return function_call,messages

Listing 2. Agent Implementation Example

3. Ablation Study Details

We conduct separate ablation studies for the Conceptualiza-
tion Agent and Task Dispatch Agent, evaluating their perfor-
mance based on CLIP scores, failure rates, and parameter
diversity.

We use the implementation of [2] to calculate CLIP score.
It measures cosine similarity in the CLIP hidden space, in-
dicating the alignment between generated images and text
descriptions. For 3D scene CLIP scores, we placed a camera
at the scene’s center, capturing 50 images by rotating the
camera 360 degrees. In the Conceptualization Agent eval-
uation, we used only the initial instruction. For the Task
Dispatch Agent, both the initial instruction and one subse-
quence instruction were used.

The failure rate reflects the Modeling Agent’s response.
Failures can occur when the method cannot extract the cor-
rect pattern via the parser, generates data with an incorrect
datatype, or omits/adds parameters to the function call. We
evaluated five functions for each scene, recording the failure
rate. We also assessed 500 parameters per scene, employing
the Shannon Diversity Index to measure parameter diversity,
and categorizing float parameters into 100 bins.

4. Agent Responses

Figure 3, Figure 4 and Figure 5 demonstrate how the system
communicates with Task Dispatch Agent, Conceptualization
Agent, and Modeling Agent, respectively. The Task Dispatch
Agent example is deliberately simplified, featuring only four
functions to ensure conciseness. In contrast, the examples
for the Conceptualization Agent and Modeling Agent are
derived from our comprehensive implementation.

3DV
#112

123

124
125
126
127

128
129
130
131
132
133
134
135
136

137
138
139
140
141
142
143
144

145

146
147
148
149
150
151
152

3DV 3DV

#112 #112
3DV 2025 Submission #112. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Ours DreamFusion Ours DreamFusion Ours DreamFusion

b

“Carnation”

“Orange Tulip” “Pink Rose”

“Chamomile” “Dandelion” “Gerbera”

“Red Rose” “Sunflower” “White Camellia”

Figure 2. Comparison with Dreamfusion (Single Object).

153 5. Visual Result

154 Figure 6 and Figure 7 show the prompts for modelling trees
155 and sky. The visual control result for a full scene is illustrated
156 in Figure 8.

3DV
#112

3DV 2025 Submission #112. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

You are a proficient planner for selecting suitable functions based on user instructions. You are provided with the following functions:

1. generate terrain(): model the 3D terrain.

2. generate_tree(): generate trees with parameters that controls the tree appearance and place them on the terrain surface.

3. add_grass(): add grass to the terrain surface()

4. apply snow layer(): add snow to the surface of all objects.

Below are examples of how to choose functions based on user instructions:

User: My instruction is: "Change weather to snowy." Answer: Based on the function provided above and the user instruction, the
apply_snow_layer() function from above function set is suitable to call. It will add snow to all objects covered by snow and make it look like a
snowy scene. Other functions (1,2,3) are not relevant to the user instruction. Given the instructions, we determine the sublist of functions that
need to be used for 3D modeling: [4]

User: My instruction is: “Change tree leaf to yellow."

Based on the user instruction, "Change tree leaf to yellow," you can use the generate tree() function to generate trees with yellow leaves. You
can modify the parameters of the generate tree() function to control the appearance of the trees, including the color of their leaves. Other
functions (1, 3, 4) are not relevant to changing the color of tree leaves. Given the instructions, we determine the sublist of functions that need
to be used for 3D modeling:

(2]

So, the suitable function to call in this case is generate tree() with the appropriate parameters for yellow leaves.

Figure 3. Communication Between System and Task Dispatch Agent.

Given a text description "A peaceful clearing in a dense forest, blanketed in fresh, untouched snow. Tall birch trees, their white bark standing
out starkly against the dark evergreens and the gray, overcast sky, form a natural cathedral.", provide detailed descriptions for the following

information: "possible daytime, sun intensity, air condition, sky appearance, cloud density.”.
For term not mentioned in the description, use your imagination to ensure they fit the text description.

&

In this peaceful clearing, the scene is bathed in the soft glow of early morning light. The sun, just beginning to rise above the horizon, casts a
gentle, golden hue across the landscape. Its intensity is subdued, as if still gathering strength to break through the thick canopy of trees that
surround the clearing.

The air in the clearing is crisp and cool, carrying with it a hint of winter's bite. It is still and calm, devoid of any breeze or gusts that might
disturb the tranquility of the scene. The air feels pure and invigorating, as if it has been untouched by human presence.

Looking up towards the sky, the overcast conditions create a muted, gray backdrop. The clouds hang low, their edges blending seamlessly with
the horizon, creating a sense of enclosure within the clearing. The sky appears vast, yet somehow intimate, as if it is a part of the natural
cathedral formed by the towering birch trees.

The cloud density is moderate, with the clouds spread out across the sky in a gentle, billowing fashion. They are not heavy or oppressive, but
rather wispy and ethereal, adding a touch of mystery to the scene. As the day progresses. the clouds shift and change shape, creating a
dynamic and ever-evolving canvas above the clearing.

Overall, the daytime in this clearing is characterized by a serene ambiance, with the sun's gentle rays filtering through the dense forest and the
sky adorned with a delicate veil of clouds. It is a scene that invites contemplation and reflection, a sanctuary of tranquility amidst the wild

beauty of nature.

Figure 4. Communication Between System and Conceptualization Agent.

3DV
#112

3DV
#112

&

3DV 2025 Submission #112. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

We have the following function codes modelling the sky appearance using nishita method to control blender by python :
“python
import nishita sky modelling
def sky texture node(sun intensity,sun_elevation,sun rotation,air_density,dust density, ozone,cloud density):
texture = nishita_sky modelling(sun_intensity,sun_elevation,sun_rotation,air_density,dust density, ozone,cloud density)

return

Following are the document for function: “

input:

sun_intensity: Multiplier for sun disc lighting. (choose from ‘low’/median’’high’)

sun_elevation: Rotation of the sun from the horizon (in degrees). (0:sunset,sun rising, 90:daytime,-10:night)

sun_rotation: Rotation of the sun around the zenith (in degrees).

air_density: density of air molecules. (0 no air, 1 clear day atmosphere, 2 highly polluted day)

dust_density: density of dust and water droplets. (0 no dust, 1 clear day atmosphere, 5 city like atmosphere, 10 hazy day)

ozone: density of ozone molecules; useful to make the sky appear bluer. (0 no ozone, 1 clear day atmosphere, 2 city like atmosphere).
higher value for bluer sky.

cloud density: density of the cloud, varying from 0 to 0.04. (0.01 very thick cloud, 0.04 very heavy cloud)

output: texture color output.”

Below is an example bout how to make function calls to model the scene to fit the description:

Question: given the text description of the scene: “The river, reflecting the clear blue of the sky, glistened like a silver ribbon as it wound
its way through the lush valley, its tranquil waters whispering secrets to the ancient trees.” analysis the function parameter and call the
function to generate the sky.

Solution: From the description of “clear blue sky”, the sun_intensiy can not be low, let's set it as "median";As the sky is blue, the
sun_elevation cannot be very low (not morning/sunset/evening), we can set it to 50.

The sun rotation does not affect the sky appearance, let's set it to 0. To fit the description of "clear blue". The air_density and
dust_density should be low, we can set air_density to 1, dust density to 0. To make the sky more blue, we can increase the ozone value,
let’s make it as 2.

As the sky is very blue and clear, the cloud density should be low, we can set it as 0.0005. We can model the sky by calling the following
function:

““python sky texture node(sun intensity = ‘median’,sun_elevation=50,sun rotation=0,air density=1,dust density=0
ozone=2,cloud_density=0.0005)"""

Question: Given the text description: “A peaceful clearing in a dense forest, blanketed in fresh, untouched snow. Tall birch trees, their
white bark standing out starkly against the dark evergreens and the gray, overcast sky, form a natural cathedral. In this peaceful clearing, the
scene is bathed in the soft glow of early morning light. The sun, just beginning to rise above the horizon, casts a gentle, golden hue across
the landscape. Its intensity is subdued, as if still gathering strength to break through the thick canopy of trees that surround the clearing.
The air in the clearing is crisp and cool, carrying with it a hint of winter's bite. It is still and calm, devoid of any breeze or gusts that might
disturb the tranquility of the scene. The air feels pure and invigorating, as if it has been untouched by human presence.

Looking up towards the sky, the overcast conditions create a muted, gray backdrop. The clouds hang low, their edges blending seamlessly
with the horizon, creating a sense of enclosure within the clearing. The sky appears vast, yet somehow intimate, as if it is a part of the
natural cathedral formed by the towering birch trees.

The cloud density is moderate, with the clouds spread out across the sky in a gentle, billowing fashion. They are not heavy or oppressive, but
rather wispy and ethereal, adding a touch of mystery to the scene. As the day progresses, the clouds shift and change shape, creating a
dynamic and ever-evolving canvas above the clearing.

Overall, the daytime in this clearing is characterized by a serene ambiance, with the sun’s gentle rays filtering through the dense forest and
the sky adorned with a delicate veil of clouds. It is a scene that invites contemplation and reflection, a sanctuary of tranquility amidst the
wild beauty of nature.” analysis the function parameter and call the function to modelling the sky appearance using nishita method.

Based on the description, we can analyze the function parameters as follows:

- sun_intensity: The description mentions a "soft glow of early morning light" and the sun's intensity is described as "subdued". Let's set the
sun_intensity to 'low".

- sun_elevation: The sun is described as "just beginning to rise above the horizon". Let's set the sun_elevation to -5.

- sun_rotation: The description does not provide any specific information about the sun's rotation, so we can set it to 0.

- air_density: The air is described as "crisp and cool" and "untouched by human presence". Let's set the air_density to 0.

- dust_density: The description does not mention any dust or particles in the air, so we can set the dust_density to 0.

- ozone: The description does not provide any specific information about the ozone density, so we can set it to 1.

- cloud_density: The clouds are described as "moderate" and "spread out across the sky in a gentle, billowing fashion". Let's set the
cloud_density to 0.02.

We can model the sky by calling the following function:

“python

sky_texture_node(sun_intensity='low', sun_elevation=-5, sun_rotation=0, air_density=0, dust_density=0, ozone=1, cloud_density=0.02)

Figure 5. Communication Between System and Modeling Agent.

3DV
#112

3DV
#112

3DV 2025 Submission #112. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Document:
Explanation: The function takes a built natural scene as input and adds base trees to it.
Inputs:
scene: The built natural scene.
density(float): The density of the trees.
distance_min(float): Minimum distance between trees.
leaf type(string): The type of leaf on the tree. Select one from the list [‘leaf’, ‘leaf broadleaf”, ‘leaf ginko’, ‘leaf maple’, ‘flower’, ‘None’].
‘Leaf” allows further custom settings like changing the leaf shape and color. ‘Leaf broadleaf’, ‘leaf ginko’, and ‘leaf maple’ build the leaves with
predefined shapes: broad, ginko, and maple respectively. ‘Flower’ will create flowers on the tree instead of leaves. ‘None’ will not generate leaves on
the tree.
fruit_type(string): The type of fruit on the tree. Select one from the list [‘apple’, ‘blackberry’, ‘coconut green’, ‘durian’, ‘starfruit’, ‘strawberry’,
‘custom_fruit’, ‘None’]. Each of the fruit types will create the corresponding fruit on the tree. ‘Custom_fruit’ can create customizable fruit on the tree
with further adjustments. If the desired fruit is not on the list, ‘custom_fruit’ should be chosen. ‘None’ will not generate any fruit on the tree.

Code:
**python
import TreeFactory
def add_trees(scene, density, distance_min, leaf type, fruit type, leaf density):
trees = TreeFactory.create(density, leaf type, fruit_type, leaf density) # create trees
scene.placement(trees, distance min) # place trees in the scene
return

Information:
"Possible trees in the scene, tree types, leaf density, possible seasons, tree size, appearance of the tree branch, branch type, and leaf color."

Example:

Question: Given the text description of the scene, analyze the function parameters and call the function to add more trees that fit the text
description.

Solution: From the text description, three different types of trees are identified in the scene: birch, dogwood, and Japanese maple. From “a cluster
of,” we infer the tree density is relatively high; let’s set it to 0.2. Birch tree leaves are typically oval or triangular, so let’s set the leaf type to ‘leaf’ to
allow further customization. There are no fruits mentioned for the birch tree in the description. Given the scene likely depicts autumn, the leaf density
should not be too high; let’s set it to 0.02. For the dogwood tree, as the leaves are described as oval or elliptical with smooth edges, the leaf type is set
to ‘leaf’. It is mentioned that “clusters of small, vibrant berries cling to its branches,” so we can choose the fruit type as ‘blackberry’. The
leaf density is set to 0.02. For the Japanese maple tree, the leaf type is set to ‘leaf maple’. No fruits are mentioned for the maple tree. As the scene
likely takes place in autumn, the leaf density for the maple tree should be high; let’s set it to 0.1. The function can be called three times to create three
different trees:

*python

add_trees(scene, density=0.2, distance min=1, leaf type='leaf fruit type='None', leaf density=0.02) # create birch trees
add_trees(scene, density=0.1, distance min=1, leaf type='leaf fruit type='blackberry', leaf density=0.02) # create dogwood trees
add_trees(scene, density=0.1, distance min=1, leaf type='leaf maple', fruit type="None', leaf density=0.1) # create Japanese maple trees

Figure 6. Prompt Example of Adding Trees.

3DV
#112

3DV 3DV

#112 #112
3DV 2025 Submission #112. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Document:
Input:
sun_intensity: Multiplier for sun disc lighting. (Choose from ‘low’, ‘median’, ‘high”)
sun_elevation: Rotation of the sun from the horizon (in degrees). (0: sunset, sun rising, 90: daytime, -10: night)
sun_rotation: Rotation of the sun around the zenith (in degrees).
air_density: Density of air molecules. (0: no air, 1: clear day atmosphere, 2: highly polluted day)
dust_density: Density of dust and water droplets. (0: no dust, 1: clear day atmosphere, 5: city-like atmosphere, 10: hazy day)
ozone: Density of ozone molecules; useful to make the sky appear bluer. (0: no ozone, 1: clear day atmosphere, 2: city-like atmosphere). A
higher value yields a bluer sky.
cloud_density: Density of the clouds, ranging from 0 to 0.04. (0.01: very thick cloud, 0.04: very heavy cloud)
Output:
texture_color output: The output texture color of the sky.

Code:
“python
import nishita_sky modelling
def sky texture node(sun_intensity, sun_elevation, sun_rotation, air_density, dust_density, ozone, cloud density):
texture = nishita_sky modelling.model_sky(sun_intensity, sun_elevation, sun_rotation, air_density, dust_density, ozone, cloud density)
return texture

Information:
The time of day depicted in the scene (morning/noon/evening), the possible season, the condition of the air, the blueness of the sky, and the cloud
density.

Example:
Question:
Given the text description of the scene: “The river, reflecting the clear blue of the sky, glistened like a silver ribbon as it wound its way through
the lush valley, its tranquil waters whispering secrets to the ancient trees,” analyze the function parameters and call the function to generate the sky.

Solution:

From the description of a “clear blue sky,” we infer that sun_intensity cannot be low, let's set it as "median". As the sky is clear and blue, the
sun_elevation must not be very low, indicating it's not morning or evening; we can set it to 50 degrees.

Sun rotation does not impact the appearance of the sky significantly; thus, we will set it to 0 degrees. To align with the description of "clear
blue," we should choose lower values for air_density and dust_density. Hence, we will set air_density to 1 and dust_density to 0. To enhance the
blueness of the sky, we can increase the ozone value to 2.

As the description suggests a clear, blue sky, the cloud density must be low. Therefore, we will set it to 0.0005. The sky can be modeled by
invoking the function as follows:

*python
sky texture node(sun_intensity='median', sun_elevation=50, sun_rotation=0, air_density=1, dust density=0, ozone=2, cloud density=0.0005)

Figure 7. Prompt Example of Sky Modeling Function.

3DV
#112

3DV 2025 Submission #112. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a). “The sun shines brightly in a clear blue sky. (b). “Thick gray clouds cover the entire sky, (c). “The sky appears hazy, with a soft,
Not a cloud in sight.” diffusing the sunlight.” diffuse sunlight filtering through.”

e

(d). “The sky is painted in shades of orange (e). “The sky is a mixture of soft purples (). “A canopy of stars fills the dark night
and pink as the sun sets behind the island.” and pinks as the sun rises.” sky, with the island bathed in moonlight.”

. (a). Solution: From the description of "clear blue sky" and "not a cloud in sight", we can infer that the sun_intensity should be high, the sun_elevation

should be around 90 (daytime), the sun_rotation can be set to 0. The air_density and dust_density should be low, so we can set them to 1 and 0
respectively. Since there are no clouds, the cloud_density should be 0. To make the sky appear bluer, we can increase the ozone value, so let's set it to 2.
We can model the sky by calling the following function:

““python

sky_texture_node(sun_intensity="high', sun_elevation=90, sun_rotation=0, air_density=1, dust_density=0, ozone=2, cloud_density=0)

J

AY4d

(b). Solution: From the description of "Thick gray clouds cover the entire sky", the sun_intensity should be low to account for the diffused sunlight. Let's
set it as "low". The sun_elevation should be high to indicate that it is daytime. Let's set it to 90. The sun_rotation does not affect the sky appearance, so we
can set it to 0. The air_density and dust_density should be high to represent the presence of thick clouds. Let's set air_density to 2 and dust_density to 5.
Since the sky is covered with thick gray clouds, the ozone value can be low. Let's set it to 0. As mentioned, the entire sky is covered with thick gray clouds,
so the cloud_density should be high. Let's set it to 0.04. We can model the sky by calling the following function:

*“python

sky_texture_node(sun_intensity="low', sun_elevation=90, sun_rotation=0, air_density=2, dust_density=5, ozone=0, cloud_density=0.04)

\

J
)

((c). Solution: From the description of "hazy sky" and "soft, diffuse sunlight", we can infer that the sun_intensity should be low. Let's set it as "low". The
sun_elevation should be low as well, indicating a time close to sunrise or sunset. Let's set it to -10. The sun_rotation does not affect the sky appearance, so
we can set it to 0. To fit the description of a hazy sky, the air_density and dust_density should be higher. Let's set air_density to 2 and dust_density to 5.
The ozone value can be set to 1 to maintain a natural sky color. Since the sky is hazy, the cloud_density should be higher as well. Let's set it to 0.02 to
represent a moderately cloudy sky. We can model the sky by calling the following function:

*'python

sky_texture node(sun_intensity="low', sun_elevation=10, sun_rotation=0, air_density=2, dust_density=5, ozone=1, cloud_density=0.02)

. J

((d). Solution: From the description of "shades of orange and pink", the sun_intensity can be set as "low" to create a softer and warmer lighting. As the sun)

is setting, the sun_elevation can be set to 0. The sun_rotation does not affect the sky appearance, so it can be set to 0. To fit the description of "shades of

orange and pink", the air_density and dust_density should be low, so we can set air_density to 1 and dust_density to 0. To create a warmer and more

vibrant sky, we can set the ozone value to 1. As the sun is setting, there might be some clouds in the sky, so we can set the cloud_density to 0.01. We can

model the sky by calling the following function:

o]

sky_texture_node(sun_intensity="low', sun_elevation=0, sun_rotation=0, air_density=1, dust_density=0, ozone=1, cloud_density=0.01)

\ J

((e). Solution: From the description of "soft purples and pinks", the sun_intensity can be set to "low" to create a softer lighting effect. Since the sun is

rising, the sun_elevation can be set to a low value, such as 10. The sun_rotation does not affect the sky appearance, so it can be set to 0. To create a purple

and pink sky, the air_density and dust_density can be set to low values, such as 1 and 0. The ozone value can be set to 0 to avoid making the sky bluer.

Since the sky is described as a mixture of colors, the cloud_density can be set to a low value, such as 0.001. We can model the sky by calling the following

function:

python

sky_texture_node(sun_intensity="low', sun_elevation=10, sun_rotation=0, air_density=1, dust_density=0, 0zone=0, cloud_density=0.001)

\ J
2\

((f). Solution: From the description of "dark night sky" and "canopy of stars", we can assume that the sun is not visible in the sky. Therefore, the
sun_intensity can be set to 'low’. Since it is a night scene, the sun_elevation can be set to -10. The sun_rotation does not affect the sky appearance, so it can
be set to 0. As it is a dark night sky, the air_density and dust_density can be set to 0. The ozone value can also be set to 0 as there is no mention of blueness
in the description. Since there are no clouds mentioned, the cloud_density can be set to 0. We can model the sky by calling the following function:
*python

sky_texture_node(sun_intensity="low', sun_elevation=-10, sun_rotation=0, air_density=0, dust_density=0, ozone=0, cloud_density=0)

& J/

Figure 8. Single Function Control Result. Visual result (top) and modeling agent response example (bottom). Our method demonstrates a
high degree of accuracy in inferring algorithm parameters, even when they do not possess a direct connection to visual appearance.

3DV
#112

3DV 3DV

#112 #112
3DV 2025 Submission #112. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

157 References

158 [1] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall.

159 DreamFusion: Text-to-3D using 2D diffusion. arXiv preprint
160 arXiv:2209.14988, 2022. 1

161 [2] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh,
162 Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell,
163 Pamela Mishkin, Jack Clark, et al. Learning transferable visual
164 models from natural language supervision. In International
165 conference on machine learning, pages 8748-8763. PMLR,
166 2021. 2

	. Comparison with Text-to-3D
	. Implementation Detail
	. Ablation Study Details
	. Agent Responses
	. Visual Result

