
3DV
#112

3DV
#112

3DV 2025 Submission #112. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

3D-GPT: Procedural 3D Modeling
with Large Language Models

Anonymous 3DV submission

Paper ID 112

We kindly request the reader to consider visiting follow-001
ing website to view our high-quality 3D results:002

https://anonymous0888.github.io/3DGPT/3dgpt.html.003

1. Comparison with Text-to-3D004

We offer side-by-side comparisons with a state-of-the-art005
Text-to-3D method Dreamfusion [1] for single objects and006
scene, as illustrated in Figure 2 and Figure 1, respectively.007

2. Implementation Detail008

We offer an illustrative example of the prompt used for009
Adding Trees (Figure 6) and Sky Modeling (Figure 8), pre-010
senting the Document, Code, Information, and a Usage Ex-011
ample.012

We provide the code that enumerates the functions within013
Infinigen used in constructing our 3D scene. While a014
similar Python file can be found at https://github.015
com/princeton- vl/infinigen/blob/main/016
worldgen/generate.py, our script is uniquely tai-017
lored to work with a control dictionary generated by three018
agents, enabling controllable scene generation.019

1 def compose_scene(terrain, control_dict={}):020
2 """021
3 Give a base terrain and control dictionary,022

build the 3D scene.023
4 ----------024
5 terrain: Empty mesh025
6 control_dict: control dictionary generated by026

the agents that use to control each function027
parameters.028

7 Returns029
8 -------030
9 """031

10 add_coarse_terrain(terrain,control_dict)032
11 add_trees(control_dict)033
12 add_bushes(control_dict)034
13 add_clouds(control_dict)035
14 add_boulders(control_dict)036
15 add_glowing_rocks(control_dict)037
16 add_kelp(control_dict)038
17 add_cactus(control_dict)039
18 add_rocks(control_dict)040
19 add_ground_leaves(control_dict)041

20 add_ground_twigs(control_dict) 042
21 add_chopped_trees(control_dict) 043
22 add_grass(control_dict) 044
23 add_monocots(control_dict) 045
24 add_ferns(control_dict) 046
25 add_flowers(control_dict) 047
26 add_corals(control_dict) 048
27 add_leaf_particles(control_dict) 049
28 add_rain_particles(control_dict) 050
29 add_dust_particles(control_dict) 051
30 add_marine_snow_particles(control_dict) 052
31 add_snow_particles(control_dict) 053
32 054
33 return 055

Listing 1. Agent Implementation Example

We offer the code to implement the modeling agent as a 056
demonstration of how to utilize the OpenAI API for imple- 057
menting our agent. 058

1 059
2 def modeling_function_call(text_description, 060

function_description, function, 061
3 function_document, 062

example,max_tokens=2000,temperature=0.3, 063
history=[]): 064

4 """ 065
5 Give a short text, call the given functions 066

to generation objects/scene to fit the given 067
text description 068

6 Parameters 069
7 ---------- 070
8 text_description: short user given text. 071
9 function_description: short function 072

description. 073
10 function: python code. 074
11 function_document: the detail description 075

of the function. 076
12 example: example of how to use the function 077

. 078
13 max_tokens: max tokens for the detailed 079

text. 080
14 temperature 081
15 Returns 082
16 ------- 083
17 response from the agent that contains the 084

function calls. 085
18 """ 086
19 if(len(history)==0): 087

1

https://github.com/princeton-vl/infinigen/blob/main/worldgen/generate.py
https://github.com/princeton-vl/infinigen/blob/main/worldgen/generate.py
https://github.com/princeton-vl/infinigen/blob/main/worldgen/generate.py
https://github.com/princeton-vl/infinigen/blob/main/worldgen/generate.py
https://github.com/princeton-vl/infinigen/blob/main/worldgen/generate.py

3DV

#112
3DV

#112
3DV 2025 Submission #112. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

“The mountains, majestic and snow-capped,
stood like sentinels guarding the vast expanse of
the valley, their peaks disappearing into the
swirling mist that clung to their rugged slopes.”

“The desert, an endless sea of shifting sands,
stretched to the horizon, its rippling dunes catching
the golden rays of the setting sun, creating an ever-
changing landscape of shadows and light.”

“The lake, serene and glassy, mirrored the cloudless
sky above, reflecting the surrounding mountains and
the graceful flight of a heron, as lily pads floated like
emerald jewels upon its tranquil surface."

“A serene winter landscape, with snow-covered
evergreen trees and a frozen lake reflecting the
pale sunlight.”

“A vibrant autumn forest, with trees ablaze in
shades of red, orange, and gold, as a gentle
breeze rustles the fallen leaves.”

“A misty spring morning, where dew-kissed
flowers dot a lush meadow surrounded by
budding trees.”

Ours DreamFusion Ours DreamFusion Ours DreamFusion

Figure 1. Comparison with Dreamfusion (Scene).

20 history = [088
21 {"role":"system", "content":"You are a089

good 3D designer who can convert long text090
descriptions into parameters, and is good at091
understanding Python functions to manipulate092
3D content. "},093

22]094
23 messages = history095
24096
25 text = f"""We have the following function097

codes {function_description} to control098
blender by python : {function}.099

26 Following are the document for function:100
{function_document}.101

27 Below is an example bout how to make102
function calls to model the scene to fit the103
description: {example}.104

28 Question: Given the text description:105
{text_description} analysis the function106
parameter and call the function to {107
function_description}"""108

29 messages.append({"role": "user","content":109
text})110

30 # define modeling agent111
31 modeling_agent = openai.ChatCompletion.112

create(113
32 model = "gpt-3.5-turbo",114
33 temperature = temperature,115
34 max_tokens = max_tokens,116
35 messages = messages117
36)118
37 # get the response from modeling agent119
38 function_call = modeling_agent.choices[0].120

message["content"]121
39 return function_call,messages122

Listing 2. Agent Implementation Example

3. Ablation Study Details 123

We conduct separate ablation studies for the Conceptualiza- 124
tion Agent and Task Dispatch Agent, evaluating their perfor- 125
mance based on CLIP scores, failure rates, and parameter 126
diversity. 127

We use the implementation of [2] to calculate CLIP score. 128
It measures cosine similarity in the CLIP hidden space, in- 129
dicating the alignment between generated images and text 130
descriptions. For 3D scene CLIP scores, we placed a camera 131
at the scene’s center, capturing 50 images by rotating the 132
camera 360 degrees. In the Conceptualization Agent eval- 133
uation, we used only the initial instruction. For the Task 134
Dispatch Agent, both the initial instruction and one subse- 135
quence instruction were used. 136

The failure rate reflects the Modeling Agent’s response. 137
Failures can occur when the method cannot extract the cor- 138
rect pattern via the parser, generates data with an incorrect 139
datatype, or omits/adds parameters to the function call. We 140
evaluated five functions for each scene, recording the failure 141
rate. We also assessed 500 parameters per scene, employing 142
the Shannon Diversity Index to measure parameter diversity, 143
and categorizing float parameters into 100 bins. 144

4. Agent Responses 145

Figure 3, Figure 4 and Figure 5 demonstrate how the system 146
communicates with Task Dispatch Agent, Conceptualization 147
Agent, and Modeling Agent, respectively. The Task Dispatch 148
Agent example is deliberately simplified, featuring only four 149
functions to ensure conciseness. In contrast, the examples 150
for the Conceptualization Agent and Modeling Agent are 151
derived from our comprehensive implementation. 152

2

3DV
#112

3DV
#112

3DV 2025 Submission #112. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

“African Marigold” “Blue Chrysanthemum” “Carnation”

“Chamomile” “Dandelion” “Gerbera”

“Lake Lily” “Orange Tulip” “Pink Rose”

“Red Rose” “Sunflower” “White Camellia”

Ours DreamFusion Ours DreamFusion Ours DreamFusion

Figure 2. Comparison with Dreamfusion (Single Object).

5. Visual Result153

Figure 6 and Figure 7 show the prompts for modelling trees154
and sky. The visual control result for a full scene is illustrated155
in Figure 8.156

3

3DV
#112

3DV
#112

3DV 2025 Submission #112. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

You are a proficient planner for selecting suitable functions based on user instructions. You are provided with the following functions:
1. generate_terrain(): model the 3D terrain.
2. generate_tree(): generate trees with parameters that controls the tree appearance and place them on the terrain surface.
3. add_grass(): add grass to the terrain surface()
4. apply_snow_layer(): add snow to the surface of all objects.
Below are examples of how to choose functions based on user instructions:
User: My instruction is: "Change weather to snowy." Answer: Based on the function provided above and the user instruction, the
apply_snow_layer() function from above function set is suitable to call. It will add snow to all objects covered by snow and make it look like a
snowy scene. Other functions (1,2,3) are not relevant to the user instruction. Given the instructions, we determine the sublist of functions that
need to be used for 3D modeling: [4]
User: My instruction is: “Change tree leaf to yellow."

Based on the user instruction, "Change tree leaf to yellow," you can use the generate_tree() function to generate trees with yellow leaves. You
can modify the parameters of the generate_tree() function to control the appearance of the trees, including the color of their leaves. Other
functions (1, 3, 4) are not relevant to changing the color of tree leaves. Given the instructions, we determine the sublist of functions that need
to be used for 3D modeling:
[2]
So, the suitable function to call in this case is generate_tree() with the appropriate parameters for yellow leaves.

Figure 3. Communication Between System and Task Dispatch Agent.

Given a text description "A peaceful clearing in a dense forest, blanketed in fresh, untouched snow. Tall birch trees, their white bark standing
out starkly against the dark evergreens and the gray, overcast sky, form a natural cathedral.", provide detailed descriptions for the following
information: "possible daytime, sun intensity, air condition, sky appearance, cloud density.”.
For term not mentioned in the description, use your imagination to ensure they fit the text description.

In this peaceful clearing, the scene is bathed in the soft glow of early morning light. The sun, just beginning to rise above the horizon, casts a
gentle, golden hue across the landscape. Its intensity is subdued, as if still gathering strength to break through the thick canopy of trees that
surround the clearing.
The air in the clearing is crisp and cool, carrying with it a hint of winter's bite. It is still and calm, devoid of any breeze or gusts that might
disturb the tranquility of the scene. The air feels pure and invigorating, as if it has been untouched by human presence.
Looking up towards the sky, the overcast conditions create a muted, gray backdrop. The clouds hang low, their edges blending seamlessly with
the horizon, creating a sense of enclosure within the clearing. The sky appears vast, yet somehow intimate, as if it is a part of the natural
cathedral formed by the towering birch trees.
The cloud density is moderate, with the clouds spread out across the sky in a gentle, billowing fashion. They are not heavy or oppressive, but
rather wispy and ethereal, adding a touch of mystery to the scene. As the day progresses, the clouds shift and change shape, creating a
dynamic and ever-evolving canvas above the clearing.
Overall, the daytime in this clearing is characterized by a serene ambiance, with the sun's gentle rays filtering through the dense forest and the
sky adorned with a delicate veil of clouds. It is a scene that invites contemplation and reflection, a sanctuary of tranquility amidst the wild
beauty of nature.

Figure 4. Communication Between System and Conceptualization Agent.

4

3DV
#112

3DV
#112

3DV 2025 Submission #112. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

We have the following function codes modelling the sky appearance using nishita method to control blender by python :
```python 
import nishita_sky_modelling

def sky_texture_node(sun_intensity,sun_elevation,sun_rotation,air_density,dust_density, ozone,cloud_density):
texture = nishita_sky_modelling(sun_intensity,sun_elevation,sun_rotation,air_density,dust_density, ozone,cloud_density)
return 

```
Following are the document for function: “
input:
sun_intensity: Multiplier for sun disc lighting. (choose from ‘low’,’median’,’high’)
sun_elevation: Rotation of the sun from the horizon (in degrees). (0:sunset,sun rising, 90:daytime,-10:night)
sun_rotation: Rotation of the sun around the zenith (in degrees).
air_density: density of air molecules. (0 no air, 1 clear day atmosphere, 2 highly polluted day)
dust_density: density of dust and water droplets. (0 no dust, 1 clear day atmosphere, 5 city like atmosphere, 10 hazy day)
ozone: density of ozone molecules; useful to make the sky appear bluer. (0 no ozone, 1 clear day atmosphere, 2 city like atmosphere).

higher value for bluer sky.
cloud_density: density of the cloud, varying from 0 to 0.04. (0.01 very thick cloud, 0.04 very heavy cloud)
output: texture color output.”

Below is an example bout how to make function calls to model the scene to fit the description:
Question: given the text description of the scene: “The river, reflecting the clear blue of the sky, glistened like a silver ribbon as it wound

its way through the lush valley, its tranquil waters whispering secrets to the ancient trees.” analysis the function parameter and call the
function to generate the sky.

Solution: From the description of “clear blue sky”, the sun_intensiy can not be low, let's set it as "median";As the sky is blue, the
sun_elevation cannot be very low (not morning/sunset/evening), we can set it to 50.

The sun rotation does not affect the sky appearance, let's set it to 0. To fit the description of "clear blue". The air_density and
dust_density should be low, we can set air_density to 1, dust_density to 0. To make the sky more blue, we can increase the ozone value,
let’s make it as 2.

As the sky is very blue and clear, the cloud density should be low, we can set it as 0.0005. We can model the sky by calling the following
function:

```python sky_texture_node(sun_intensity = ‘median’,sun_elevation=50,sun_rotation=0,air_density=1,dust_density=0, 
ozone=2,cloud_density=0.0005)```

.
Question: Given the text description: “A peaceful clearing in a dense forest, blanketed in fresh, untouched snow. Tall birch trees, their 

white bark standing out starkly against the dark evergreens and the gray, overcast sky, form a natural cathedral. In this peaceful clearing, the 
scene is bathed in the soft glow of early morning light. The sun, just beginning to rise above the horizon, casts a gentle, golden hue across 
the landscape. Its intensity is subdued, as if still gathering strength to break through the thick canopy of trees that surround the clearing.
The air in the clearing is crisp and cool, carrying with it a hint of winter's bite. It is still and calm, devoid of any breeze or gusts that might 
disturb the tranquility of the scene. The air feels pure and invigorating, as if it has been untouched by human presence.
Looking up towards the sky, the overcast conditions create a muted, gray backdrop. The clouds hang low, their edges blending seamlessly 
with the horizon, creating a sense of enclosure within the clearing. The sky appears vast, yet somehow intimate, as if it is a part of the 
natural cathedral formed by the towering birch trees.
The cloud density is moderate, with the clouds spread out across the sky in a gentle, billowing fashion. They are not heavy or oppressive, but 
rather wispy and ethereal, adding a touch of mystery to the scene. As the day progresses, the clouds shift and change shape, creating a 
dynamic and ever-evolving canvas above the clearing.
Overall, the daytime in this clearing is characterized by a serene ambiance, with the sun‘s gentle rays filtering through the dense forest and 
the sky adorned with a delicate veil of clouds. It is a scene that invites contemplation and reflection, a sanctuary of tranquility amidst the 
wild beauty of nature.” analysis the function parameter and call the function to modelling the sky appearance using nishita method.

Based on the description, we can analyze the function parameters as follows:
- sun_intensity: The description mentions a "soft glow of early morning light" and the sun's intensity is described as "subdued". Let's set the
sun_intensity to 'low'.
- sun_elevation: The sun is described as "just beginning to rise above the horizon". Let's set the sun_elevation to -5.
- sun_rotation: The description does not provide any specific information about the sun's rotation, so we can set it to 0.
- air_density: The air is described as "crisp and cool" and "untouched by human presence". Let's set the air_density to 0.
- dust_density: The description does not mention any dust or particles in the air, so we can set the dust_density to 0.
- ozone: The description does not provide any specific information about the ozone density, so we can set it to 1.
- cloud_density: The clouds are described as "moderate" and "spread out across the sky in a gentle, billowing fashion". Let's set the 
cloud_density to 0.02.
We can model the sky by calling the following function:
```python
sky_texture_node(sun_intensity='low', sun_elevation=-5, sun_rotation=0, air_density=0, dust_density=0, ozone=1, cloud_density=0.02)
```

Figure 5. Communication Between System and Modeling Agent.

5



3DV
#112

3DV
#112

3DV 2025 Submission #112. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Document:
Explanation: The function takes a built natural scene as input and adds base trees to it.   
Inputs:  

scene: The built natural scene.
density(float): The density of the trees.
distance_min(float): Minimum distance between trees.
leaf_type(string): The type of leaf on the tree. Select one from the list [‘leaf’, ‘leaf_broadleaf’, ‘leaf_ginko’, ‘leaf_maple’, ‘flower’, ‘None’]. 

‘Leaf’ allows further custom settings like changing the leaf shape and color. ‘Leaf_broadleaf’, ‘leaf_ginko’, and ‘leaf_maple’ build the leaves with 
predefined shapes: broad, ginko, and maple respectively. ‘Flower’ will create flowers on the tree instead of leaves. ‘None’ will not generate leaves on 
the tree.

fruit_type(string): The type of fruit on the tree. Select one from the list [‘apple’, ‘blackberry’, ‘coconut_green’, ‘durian’, ‘starfruit’, ‘strawberry’, 
‘custom_fruit’, ‘None’]. Each of the fruit types will create the corresponding fruit on the tree. ‘Custom_fruit’ can create customizable fruit on the tree 
with further adjustments. If the desired fruit is not on the list, ‘custom_fruit’ should be chosen. ‘None’ will not generate any fruit on the tree.

Code:
    ```python
 import TreeFactory
 def add_trees(scene, density, distance_min, leaf_type, fruit_type, leaf_density):
 trees = TreeFactory.create(density, leaf_type, fruit_type, leaf_density) # create trees
 scene.placement(trees, distance_min) # place trees in the scene
 return
    ```

Information:
"Possible trees in the scene, tree types, leaf density, possible seasons, tree size, appearance of the tree branch, branch type, and leaf color."

Example:
Question: Given the text description of the scene, analyze the function parameters and call the function to add more trees that fit the text 

description.
Solution: From the text description, three different types of trees are identified in the scene: birch, dogwood, and Japanese maple. From “a cluster 

of,” we infer the tree density is relatively high; let’s set it to 0.2. Birch tree leaves are typically oval or triangular, so let’s set the leaf type to ‘leaf’ to 
allow further customization. There are no fruits mentioned for the birch tree in the description. Given the scene likely depicts autumn, the leaf_density
should not be too high; let’s set it to 0.02. For the dogwood tree, as the leaves are described as oval or elliptical with smooth edges, the leaf type is set 
to ‘leaf’. It is mentioned that “clusters of small, vibrant berries cling to its branches,” so we can choose the fruit_type as ‘blackberry’. The 
leaf_density is set to 0.02. For the Japanese maple tree, the leaf type is set to ‘leaf_maple’. No fruits are mentioned for the maple tree. As the scene 
likely takes place in autumn, the leaf density for the maple tree should be high; let’s set it to 0.1. The function can be called three times to create three 
different trees:

    ```python
 add_trees(scene, density=0.2, distance_min=1, leaf_type='leaf', fruit_type='None', leaf_density=0.02) # create birch trees
 add_trees(scene, density=0.1, distance_min=1, leaf_type='leaf', fruit_type='blackberry', leaf_density=0.02) # create dogwood trees
 add_trees(scene, density=0.1, distance_min=1, leaf_type='leaf_maple', fruit_type='None', leaf_density=0.1) # create Japanese maple trees
    ```

Figure 6. Prompt Example of Adding Trees.

6



3DV
#112

3DV
#112

3DV 2025 Submission #112. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Document:
Input:

sun_intensity: Multiplier for sun disc lighting. (Choose from ‘low’, ‘median’, ‘high’)
sun_elevation: Rotation of the sun from the horizon (in degrees). (0: sunset, sun rising, 90: daytime, -10: night)
sun_rotation: Rotation of the sun around the zenith (in degrees).
air_density: Density of air molecules. (0: no air, 1: clear day atmosphere, 2: highly polluted day)
dust_density: Density of dust and water droplets. (0: no dust, 1: clear day atmosphere, 5: city-like atmosphere, 10: hazy day)
ozone: Density of ozone molecules; useful to make the sky appear bluer. (0: no ozone, 1: clear day atmosphere, 2: city-like atmosphere). A 

higher value yields a bluer sky.
cloud_density: Density of the clouds, ranging from 0 to 0.04. (0.01: very thick cloud, 0.04: very heavy cloud)

Output:
texture_color_output: The output texture color of the sky.

Code:
    ```python
 import nishita_sky_modelling
 def sky_texture_node(sun_intensity, sun_elevation, sun_rotation, air_density, dust_density, ozone, cloud_density):
 texture = nishita_sky_modelling.model_sky(sun_intensity, sun_elevation, sun_rotation, air_density, dust_density, ozone, cloud_density)
 return texture
    ```

Information:
The time of day depicted in the scene (morning/noon/evening), the possible season, the condition of the air, the blueness of the sky, and the cloud 

density.

Example:
Question: 

Given the text description of the scene: “The river, reflecting the clear blue of the sky, glistened like a silver ribbon as it wound its way through 
the lush valley, its tranquil waters whispering secrets to the ancient trees,” analyze the function parameters and call the function to generate the sky.

Solution: 
From the description of a “clear blue sky,” we infer that sun_intensity cannot be low, let's set it as "median". As the sky is clear and blue, the 

sun_elevation must not be very low, indicating it's not morning or evening; we can set it to 50 degrees.
Sun rotation does not impact the appearance of the sky significantly; thus, we will set it to 0 degrees. To align with the description of "clear 

blue," we should choose lower values for air_density and dust_density. Hence, we will set air_density to 1 and dust_density to 0. To enhance the 
blueness of the sky, we can increase the ozone value to 2.

As the description suggests a clear, blue sky, the cloud density must be low. Therefore, we will set it to 0.0005. The sky can be modeled by 
invoking the function as follows:

        ```python
 sky_texture_node(sun_intensity='median', sun_elevation=50, sun_rotation=0, air_density=1, dust_density=0, ozone=2, cloud_density=0.0005)
        ```

Figure 7. Prompt Example of Sky Modeling Function.

7



3DV
#112

3DV
#112

3DV 2025 Submission #112. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a). “The sun shines brightly in a clear blue sky. 
Not a cloud in sight.”

(b). “Thick gray clouds cover the entire sky, 
diffusing the sunlight.”

(d). “The sky is painted in shades of orange
and pink as the sun sets behind the island.”

(e). “The sky is a mixture of soft purples 
and pinks as the sun rises.”

(f). “A canopy of stars fills the dark night 
sky, with the island bathed in moonlight.”

(c). “The sky appears hazy, with a soft, 
diffuse sunlight filtering through.”

(a). Solution: From the description of "clear blue sky" and "not a cloud in sight", we can infer that the sun_intensity should be high, the sun_elevation 
should be around 90 (daytime), the sun_rotation can be set to 0. The air_density and dust_density should be low, so we can set them to 1 and 0
respectively. Since there are no clouds, the cloud_density should be 0. To make the sky appear bluer, we can increase the ozone value, so let's set it to 2.
We can model the sky by calling the following function:
```python
sky_texture_node(sun_intensity='high', sun_elevation=90, sun_rotation=0, air_density=1, dust_density=0, ozone=2, cloud_density=0)
```

(b). Solution: From the description of "Thick gray clouds cover the entire sky", the sun_intensity should be low to account for the diffused sunlight. Let's 
set it as "low". The sun_elevation should be high to indicate that it is daytime. Let's set it to 90. The sun_rotation does not affect the sky appearance, so we 
can set it to 0. The air_density and dust_density should be high to represent the presence of thick clouds. Let's set air_density to 2 and dust_density to 5. 
Since the sky is covered with thick gray clouds, the ozone value can be low. Let's set it to 0. As mentioned, the entire sky is covered with thick gray clouds, 
so the cloud_density should be high. Let's set it to 0.04. We can model the sky by calling the following function:
```python
sky_texture_node(sun_intensity='low', sun_elevation=90, sun_rotation=0, air_density=2, dust_density=5, ozone=0, cloud_density=0.04)
```

(c). Solution: From the description of "hazy sky" and "soft, diffuse sunlight", we can infer that the sun_intensity should be low. Let's set it as "low". The 
sun_elevation should be low as well, indicating a time close to sunrise or sunset. Let's set it to -10. The sun_rotation does not affect the sky appearance, so 
we can set it to 0. To fit the description of a hazy sky, the air_density and dust_density should be higher. Let's set air_density to 2 and dust_density to 5. 
The ozone value can be set to 1 to maintain a natural sky color. Since the sky is hazy, the cloud_density should be higher as well. Let's set it to 0.02 to 
represent a moderately cloudy sky. We can model the sky by calling the following function:
```python
sky_texture_node(sun_intensity='low', sun_elevation=10, sun_rotation=0, air_density=2, dust_density=5, ozone=1, cloud_density=0.02)
```

(d). Solution: From the description of "shades of orange and pink", the sun_intensity can be set as "low" to create a softer and warmer lighting. As the sun 
is setting, the sun_elevation can be set to 0. The sun_rotation does not affect the sky appearance, so it can be set to 0. To fit the description of "shades of 
orange and pink", the air_density and dust_density should be low, so we can set air_density to 1 and dust_density to 0. To create a warmer and more 
vibrant sky, we can set the ozone value to 1. As the sun is setting, there might be some clouds in the sky, so we can set the cloud_density to 0.01. We can 
model the sky by calling the following function:
```python
sky_texture_node(sun_intensity='low', sun_elevation=0, sun_rotation=0, air_density=1, dust_density=0, ozone=1, cloud_density=0.01)
```

(e). Solution: From the description of "soft purples and pinks", the sun_intensity can be set to "low" to create a softer lighting effect. Since the sun is 
rising, the sun_elevation can be set to a low value, such as 10. The sun_rotation does not affect the sky appearance, so it can be set to 0. To create a purple 
and pink sky, the air_density and dust_density can be set to low values, such as 1 and 0. The ozone value can be set to 0 to avoid making the sky bluer. 
Since the sky is described as a mixture of colors, the cloud_density can be set to a low value, such as 0.001. We can model the sky by calling the following 
function:
```python
sky_texture_node(sun_intensity='low', sun_elevation=10, sun_rotation=0, air_density=1, dust_density=0, ozone=0, cloud_density=0.001)
```

(f). Solution: From the description of "dark night sky" and "canopy of stars", we can assume that the sun is not visible in the sky. Therefore, the 
sun_intensity can be set to 'low'. Since it is a night scene, the sun_elevation can be set to -10. The sun_rotation does not affect the sky appearance, so it can 
be set to 0. As it is a dark night sky, the air_density and dust_density can be set to 0. The ozone value can also be set to 0 as there is no mention of blueness 
in the description. Since there are no clouds mentioned, the cloud_density can be set to 0. We can model the sky by calling the following function:
```python
sky_texture_node(sun_intensity='low', sun_elevation=-10, sun_rotation=0, air_density=0, dust_density=0, ozone=0, cloud_density=0)
```

Figure 8. Single Function Control Result. Visual result (top) and modeling agent response example (bottom). Our method demonstrates a
high degree of accuracy in inferring algorithm parameters, even when they do not possess a direct connection to visual appearance.

8



3DV
#112

3DV
#112

3DV 2025 Submission #112. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References157

[1] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall.158
DreamFusion: Text-to-3D using 2D diffusion. arXiv preprint159
arXiv:2209.14988, 2022. 1160

[2] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh,161
Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell,162
Pamela Mishkin, Jack Clark, et al. Learning transferable visual163
models from natural language supervision. In International164
conference on machine learning, pages 8748–8763. PMLR,165
2021. 2166

9


	. Comparison with Text-to-3D
	. Implementation Detail
	. Ablation Study Details
	. Agent Responses
	. Visual Result

