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ABSTRACT

In this document, we provide further technical details of our method. We also
provide an extensive collection of results from the data presented in the paper
and a discussion about failure cases, pointing to interesting challenges for future
works. We remark here that our method works considering only the point cloud
and does not consider the mesh of the target, which we visualize when available
for clarity. We show the target mesh only for visualization purposes.

1 TECHNICAL DETAILS

1.1 BACKBONE DETAILS

All the trained NF and Uni- baselines use the same backbone network of Corona et al. (2022), which
is composed of an IFNet (Chibane et al. (2020)) to extract global features of the target shape, and
an MLP network to query R

3 points and output offsets (or the universal embedding, in case of Uni-
baselines).

IFNet Network. We start from a 64 × 64 × 64 voxelization of the point cloud. Each voxel is
represented as the distance from its center to the nearest point of the input. We also compute the
discrete gradient of the functions along the three coordinates, and we apply this information to
the input. Then, we use twelve 3D Convolutional layers with the following numbers of filters:
(64, 64, 128, 128, 192, 192, 256, 256, 256, 256, 256, 256). We assign to each point a set of local and
global features considering the output of intermediate layers (one every two) for a total of 1152
features.

MLPs Query Network. This network takes the coordinates of a point with the global features
extracted by IFNet and predicts all the displacements towards 690 locations, which are the ground
truth registered template vertices. In the proposed LVD16, we divided this network into 16 MLPs,
each one composed of 6 layers of dimensions (256, 512, 512, 512, 512, n) where n is the number of
template vertices belonging to that local part. The local region is obtained by performing spectral
clustering on the template described in the next paragraph. The activation function for the first five
layers is the ReLu (Nair & Hinton (2010)).

Template Segmentation. While we could segment the SMPL model using its skinning weights of
the 24 parts, this would need setting thresholds for vertices affected by multiple joints, and grouping
them in a different number (e.g., 10 or 16) would require further manual design. Instead, we rely
on spectral clustering as described in Liu & Zhang (2004). This approach lets us automatically set a
number of segments and divide the template relying on its geometry. To divide the template into m

segments, this algorithm requires computing the Laplace-Beltrami Operator for the surface, collect-
ing its m eigenvectors associated with the m smallest eigenvalues, and using them as features for
K-Means clustering. We use the Laplace-Beltrami Operator discretization provided by the Robust
Laplacian library in Python Sharp & Crane (2020).

1



Under review as a conference paper at ICLR 2024

Training. The backbone network has in total 36776428 parameters, and it is trained end-to-end.
We use a batch size of 8, a learning rate of 1e− 4, and an Adam optimizer (Kingma & Ba (2014)).
During training, for each training sample, we query 2200 points: 400 uniformly sampled in R

3, and
1800 near the input point cloud, by perturbing the points with random Gaussian noise of standard-
deviation 0.05. Hence, the network predicts for each of the 2200 points the offsets towards the
ground truth template vertices positions. Before computing the loss, we rescale the offsets with a
maximum norm of 0.05, so the network learns to converge in small steps.

1.2 TEMPLATE FITTING WITH NF-ICP - DETAILS

NF-ICP iterations For each iteration of our procedure, we consider the vertices of the target point
cloud, pass them toward the query network, compute the loss described in Equation 5 of the paper,
and backpropagate it to update the weights of the backbone network. This is done for 20 steps using
a learning rate of 1e − 5 and an Adam optimizer Kingma & Ba (2014). If the input point cloud is
particularly dense, we sample 20000 random points at each iteration.

Neural Field Evaluation. To evaluate the LVD NF, we initialize 690 points at (0, 0, 0) coordi-
nates, and we update their positions 50 times. For the OneShot baseline, we initialize 690 points
near the target surface and update their position once. After this, we fit a full 6890 SMPL model to
the predicted points, optimizing its parameters for 2000 steps and a learning rate of 1e − 1, using
an Adam optimizer (Kingma & Ba (2014)). The loss is a standard L1, plus the statistical pose prior
of Pavlakos et al. (2019) (weighted for 1e − 8) and an L2 regularization on the shape parameters
magnitude (weighted for 1e− 2).

Chamfer Refinement. The Chamfer refinement optimizes the SMPL parameters using the bidi-
rectional Chamfer Distance between the obtained SMPL and the target point cloud. We perform
500 iterations, with a learning rate of 2e − 2 using an Adam optimizer (Kingma & Ba (2014)).
We generally considered the bidirectional Chamfer loss when the input point cloud is a full human
model. Otherwise, we optimize only for one direction. We keep the regularizers’ weights similar to
the previous step.

SMPL+D. If the shape contains details that the SMPL model cannot express, we compute the
displacements O ∈ R

6890×3 to fit the target point cloud. To do so, for each of the SMPL vertices,
we optimize the bidirectional Chamfer distance, plus an L2 regularization on the offsets magnitudes
and a Laplacian regularization as designed in Gao et al. (2020):

Llap =
1

6890

6890∑

i=1

(∆(vi +Oi)−∆vi)
2, (1)

Where vi the i-esim vertex the SMPL template resulting from the previous step, and ∆ the Laplace-
Beltrami Operator (in our case, obtained using the Robust Laplacian Python library Sharp & Crane
(2020)). This loss promotes the offsets to preserve the smoothness of the input surface. We rely on
an Adam optimizer (Kingma & Ba (2014)).

2 FURTHER ABLATIONS

Number of segments. We trained our backbone network considering different number of segments:
1 (standard LVD), 10, 16, and 24. In all cases, we resized the query MLPs such that they have a
comparable number of parameters. Table 1 reports evaluation results. The localization produces
a significant gain, while its excess causes performance degradation. Given that using 10 or 16
segments performs similarly, we opted for 16 since it performs better on real scans.

Ablation on registration steps. To validate the contribution of our registration method, we report
in Table 2 the quantitative results after enabling different components. We appreciate the significant
improvement provided by NF-ICP, upgrading LVD16 prediction by a margin of 18% on real scans.
To highlight the nature of the contribution, we report in Figure 1 a visualization of the normalized er-
ror following the protocol of Kim et al. (2011) (i.e., error on X-Axis, percentage of correspondences

2



Under review as a conference paper at ICLR 2024

FAUSTR FAUSTS

LVD1 4.78 3.54
LVD10 4.27 3.13
LVD16 4.35 3.11
LVD24 7.92 5.58

Table 1: Ablation study on the number of local MLPs. Increasing the number of components helps, but an
excess is also detrimental. Using 10 and 16 segments lead to a good tradeoff, and our full model relies on the
second, which performs better on real data.

FAUSTR FAUSTS

LVD1 4.78 3.54
LVD16 4.35 3.11
LVD16+NF-ICP (Ours) 2.97 2.55
Ours+R 1.76 1.85

Table 2: Ablation results for different elements of our pipeline. NF-ICP largely improves the results of the
backbone, promoting the better convergence of the refinement.

below that error on Y-Axis). We emphasize that NF-ICP increases the number of correct matches
(doubling the points with 0 error), and is more robust (the curve saturates faster). The similar satura-
tion of curves for our approach before and after the refinement suggests that our method provides a
good initialization for the convergence of Chamfer, which uses the geometry to align local features.

3 FURTHER RESULTS

3.1 REAL SCAN REGISTRATIONS - DFAUST

DFAUST v2v

LVD16+R 3.26
Ours+R 3.08

Table 3: Evaluation on 417 DFAUST shapes compared to the ground-truth registration. NF-ICP improves the
initialization for Chamfer Distance refinement, leading to better final registration.

To further validate the relevance of our NF-ICP, we validate its impact on the real scans of
DFAUST Bogo et al. (2017). Such scans contain noise, missing geometry due to occlusion, and
in particular, identities significantly far from the AMASS distribution Mahmood et al. (2019). We
select 11 sequences of different subjects, and we run our method with and without NF-ICP on a
frame every ten for a total 417 scans. We evaluate our error using the distance from the provided
ground truth. We report the results in Table 3. The results confirm that despite the strong initializa-
tion provided by the data-driven backbone and the robust SMPL refinement using Chamfer distance,
our method provides a further improvement, obtaining a more precise registration. A qualitative
comparison is reported in Figure 2.

3.2 NF-ICP ON POINT CLOUDS

Here we would emphasize the role of NF-ICP refinement in the whole pipeline when the input is a
partial point cloud. In Figure 3 we report some results of our method on point cloud coming from
DSFN Burov et al. (2021) (first two rows) and CAPE Ma et al. (2020) (last two rows), enabling
and disabling the NF-ICP inside the full pipeline. The use of NF-ICP refinement is crucial and lets
the network recover the correct pose of the subject. Without it, the prediction of the backbone is
not good enough to initialize the Chamfer refinement, leading to catastrophic failures. We discuss
failure cases for our method in the next Section.

3.3 ANIMATION

Rigging noise acquisition. The recent advancements in NeRF representations proposed by Milden-
hall et al. (2020) enabled several tools that provide 3D reconstructions of objects from monocular
videos. Among these, Luma AI provides a web interface that automatically segments and outputs
a textured geometry of the object of interest. Automatic character rigging would allow the use of
these reconstructions for a number of downstream applications. However, it often requires water-
tight meshes and manual annotations from the user. Figure 4 shows a user’s 3D reconstruction where
we register and automatically rig a user, enabling its usage in tasks such as animation. We show a
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Figure 1: Error curves for ablation study of the pipeline components. We observe that our NF-ICP refinement
produces a significant impact, doubling the number of exact matches and providing better correspondences.

similar example with heavier cloths in Figure 5. Despite the clutter and geometric gluing caused by
the garments, our registration is precise enough to provide coherent rigging of the target shape.

3.4 FAILURE CASES Input

LVD16+R
Ours+R

Figure 6: Some results on non-humans mod-
els. NF-ICP opens to promising generalization re-
sults in the presence of highly non-isometries and
heavy clutter.

During our experiments, we observed some recur-
rent failure modes for our method. While we show
robustness to clutter when it constitutes a significant
part of the scene (e.g., large objects), our method
cannot distinguish between what is human or not.
Our method performs well with disparate identities
even significantly far from the training distribution,
even on non-humanoids like the ones in Figure 6.
Still, when this is combined with unusual poses,
arms and legs might be wrongly located in space.
Finally, our method can also recover the human pos-
ture in the presence of partial point clouds. How-
ever, if the input does not contain enough informa-
tion to define the position of all the human parts,
the registration may not find the correct locations for
the missing ones attracted by the input point cloud.
Examples of these failures are reported in Figure 7,
where we can appreciate that some of the body parts
are correctly located even in failure cases. We believe that data augmentation combined with seg-
mentation prediction of the input to remove the clutter or highlight what template parts have an
image in the input could be a promising direction to address these challenges.
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Input LVD16+R Ours+R Input LVD16+R Ours+R

Figure 2: Comparison of results from the full pipeline without and with NF-ICP. DFAUST may contain un-
referenced vertices, which significantly change the input implicit representation. NF-ICP helps to refine these
results bringing the deformation of the backbone towards the majority of points, i.e., the target human.
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Input LVD16+ROurs+R

Figure 3: Comparison of results from the full pipeline without and with NF-ICP. Partial point clouds are
significantly far from the training distribution seen at training time by the backbone network. NF-ICP enables
this challenging scenario, improving the geometry fitting.
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RGB Video LUMA Output Ours+R Animations of LUMA Output

Figure 4: Animatable avatar from Luma AI. From left to right: Images from the smartphone video; the textured
geometry obtained by Luma AI NeRF; our registration; motion capture animation applied to the input data.

LUMA output

Animations of LUMA output

Figure 5: Animatable avatar from Luma AI. On the left, the geometry extracted from LUMA. On the right, our
animation results. Our animation results show semantically coherent motions despite the heavy clothing and
gluing that ruined the geometry extracted by LUMA.

Input Ours+R Input Ours+R Input Ours+R

Figure 7: Some failure cases for our pipeline. The presence of heavy clutter, highly unnatural poses, and the
complete absence of limbs are among the main failure cases we observed.
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Input LVD1 LVD1+NF-ICP Input LVD1 LVD1+NF-ICP

Figure 8: Further results on hand fitting.

3.5 FURTHER QUALITATIVE RESULTS

In the last pages of this document, we show many qualitative results from different datasets. In
order:

• Pages 9 to 12: RenderPeople (renderpeople)

• Pages 13 to 17: D-Faust (Bogo et al. (2017))

• Pages 18 to 21: Test shapes from FAUST challenge (Bogo et al. (2014))

• Pages 22 to 24: HuMMan (Cai et al. (2022))

• Pages 25 to 27: BEHAVE (Cai et al. (2022))

For each row, we will display the input and the result of our Ours+R pipeline, both with and without
the SMPL+D refinement on the left-hand side. However, for HuMMan and BHEAVE, we will not
report the SMPL+D since the shapes in the former do not have significant details, and in the latter,
the high-frequency features are primarily noise. It is important to note that we only visualize the
meshes for clarity, and our method works solely from the point cloud and does not consider the
target mesh in any way. We highlight the variety of poses, clothes, clutter, holes, and identities our
method can solve. We also report some further qualitative results on hands fitting in Figure 8.
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