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Abstract
Foundation models, pre-trained on massive datasets, have achieved
unprecedented generalizability. However, is it truly necessary to
involve such vast amounts of data in pre-training, consuming exten-
sive computational resources? This paper introduces data-effective
learning, aiming to use data in the most impactful way to pre-train
foundation models. This involves strategies that focus on data qual-
ity rather than quantity, ensuring the data used for training has
high informational value. Data-effective learning plays a profound
role in accelerating foundation model training, reducing compu-
tational costs, and saving data storage, which is very important
as the volume of medical data in recent years has grown beyond
many people’s expectations. However, due to the lack of standards
and comprehensive benchmark, research on medical data-effective
learning is poorly studied. To address this gap, our paper intro-
duces a comprehensive benchmark specifically for evaluating data-
effective learning in the medical field. This benchmark includes
a dataset with millions of data samples from 31 medical centers
(DataDEL), a baseline method for comparison (MedDEL), and a new
evaluation metric (NormDEL) to objectively measure data-effective
learning performance. Our extensive experimental results show the
baseline MedDEL can achieve performance comparable to the origi-
nal large dataset with only 5% of the data. Establishing such an open
data-effective learning benchmark is crucial for the medical foun-
dation model research community because it facilitates efficient
data use, promotes collaborative breakthroughs, and fosters the
development of cost-effective, scalable, and impactful healthcare
solutions. The benchmark can be accessed at GitHub Repository.
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Figure 1: Data-Effective Learning (DEL) enables more effi-
cient pre-training of foundational models. (a) Data-effective
learning aims to obtain a compact small dataset from a large-
scale pre-training dataset, but the two datasets have similar
effects on foundation model pre-training. (b) Demonstration
of our comprehensive benchmark for DEL. The benchmark
includes a dataset of millions of data samples from 31 med-
ical centers (DataDEL), a baseline method for comparison
(MedDEL), and a new evaluation metric (NormDEL).
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Table 1: Overview of the proposed DataDEL in our benchmark. We integrate 31 medical centers, including data on the scale of
millions, to build a high-quality, large-scale, multi-disease comprehensive dataset, aiming to provide researchers with a better
data platform.

Division Dataset Task Medical centers Videos Frames Disease

Model Pre-training Gastrovision [29] Detection and classification 2 None 8,000 GI
Hyper-Kvasir [8] Classification 1 374 110,079 GI
Kvasir-Capsule [52] Classification 1 117 47,238 GI

Model downstream testing CVC-12k (CVC-ClinicDB) [6] Segmentation 1 None 612 polyp
CVC-300 [55] Segmentation Not mentioned None 60 polyp
CVC-ColonDB [7] Segmentation Not mentioned None 380 polyp
EAD2019 [5] Endoscopic artifacts 6 None 2,991 cancers
EDD2020 [3] Segmentation, detection, and localization 4 None 380 polyp
ETIS [51] Segmentation Not mentioned None 196 polyp
ImageCLEFmed [27] Polyp segmentation 1 None 66,662 polyp
Kvasir-Instrument [28] Segmentation, detection, and localization 1 None 590 polyp
Kvasir-SEG [31] Segmentation, detection, and localization 4 None 1,000 polyp
Kvasir-Sessile [30] Segmentation, detection, and localization 4 None 196 polyp
PolypGen2021 [4] Polyp segmentation 6 None 3,762 polyp

1 Introduction
The effectiveness of foundation models depends on the abundance
of pre-training data, a notion seemingly supported by consensus:
more pre-training data leads to enhanced model performance. How-
ever, is this assumption truly accurate? To explore this issue, we
introduce the concept of data-effective learning, which plays a sig-
nificant role in the field of medical data, accelerating foundation
model training and reducing storage burden in the era of big data
(Figure 1(a)). The global endoscopy surgery market is undergo-
ing significant development, with an estimated daily addition of
22,546,800,000 video frames [1]. However, a substantial presence
of disruptive and invalid data [45] significantly hampers training
efficiency and occupies a considerable amount of storage space [60].
Therefore, achieving data-effective in endoscopy datasets holds the
following special advantages:

• Storage Savings: Assuming the use of traditional high-
definition endoscopes (1080p) [26], the daily uncompressed
endoscopy examination videos would require 12,756,493
TB (about 13.06 exabytes) of storage space. Condensing en-
doscopy datasets can result in substantial storage savings.
• Enhanced Model Efficiency: [8] released the largest di-
gestive system image dataset (Hyper-Kvasir) to date and
showed that upon analyzing data sources, over 90% of video
frames consist of disruptive and invalid data. Core critical
data comprises only 2% of the entire dataset [30, 31]. Effi-
cient utilization of core critical data can significantly improve
the efficiency of model training, in order to achieve rapid
convergence.
• Computational Resource Savings: With the use of a sin-
gle RTX 3090 graphics card and the VGG16 model [33] (ap-
proximately 138 million parameters) for 32-bit floating-point
(FP32) calculations, processing 325.6 images per second is
achievable [35]. In this configuration, training on the daily
added video frames would require 19,200 hours. Utilizing
only core critical data could save nearly 18,816 hours without
compromising precision.

The issue of data-effective learning is not exclusive to endoscopy
datasets; it is also evident in other types of medical datasets. With
the rapid expansion of future medical data, efficiently handling
medical datasets is the next crucial research problem in data-driven
learning methods[47].

In recent years, there has been relevant research on data-effective
learning in natural image datasets such as adversarial samples [20],
and data biases [56], aiming to enhance the robustness and gen-
eralization capabilities of deep learning models. These works in
natural datasets have shown preliminary effectiveness, indicating
significant potential advantages such as data storage, computational
resource savings, and efficient model training. However, despite
the exponential growth of medical datasets, there is currently a
lack of such exploration in the medical field [58]. This is attrib-
uted to the absence of relevant benchmarks, encompassing unified
datasets, baseline methods, and comprehensive evaluation metrics,
providing the academic community with a basis for developing and
comparing advanced methods.

In addition to the absence of benchmark, achieving data-effective
in the field of endoscopy remains a huge challenge [50] and is worth
exploring in depth. Traditional data-effective techniques may strug-
gle to work effectively with datasets that have high-dimensional
features or sparse data. In endoscopy datasets, the challenge lies
more in identifying subtle differences in images, which can be
crucial for medical diagnosis. Therefore, accurately determining
the similarity of images in endoscopy datasets is a top priority in
research. Maintaining data quality and integrity is a key issue in
data-effective learning [18], as it directly affects the usability and
accuracy of the dataset.

Our research contributions can be summarized as follows:

• We introduce the concept of data-effective learning and pro-
vide a corresponding medical benchmark (Figure 1(b)) to
guide data-effective algorithm research in the medical field.
Furthermore, we integrate an open-source dataset called
DataDEL, sourced from a million-level dataset spanning 31
medical centers.
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Figure 2: Pipeline of the baseline method (MedDEL) for data-effective learning in our benchmark. It illustrates effective removal
of disruptive and invalid data from the dataset, aiming to save storage space and computational resources while enhancing
model efficiency.

• In our benchmark, we introduce a baseline method called
MedDEL for data-effective learning, which can outperform
the use of 100% of the data in downstream tasks with 5% of
the pretraining data in extreme cases.
• We develop a new metric called NormDEL, to assess the per-
formance of data-effective in datasets, which considers the
relationship between the proportion of the dataset retained
and the performance of downstream tasks.

2 Related Work
In the natural image domain, benchmarks for assessing data-effective
learning typically involve various techniques such as structural sim-
ilarity index [17], convolutional neural networks [39], and local
feature descriptors [36]. These methods [44, 57] are evaluated on
widely used image datasets like ImageNet [15, 49] and CIFAR [34],
or specialized datasets. PXDedup [59] explores the issue of data-
effective learning in JPEG images, pointing out that traditional
binary stream-based techniques do not work well for compressed
JPEG images. [9] introduces a high-precision image data effective
method that identifies and eliminates duplicate images through
feature extraction and high-dimensional indexing [32]. [10] uses
wavelet decomposition [43] to extract feature vectors from images
and calculate the Manhattan distance to determine image similarity,
thus achieving the detection and removal of duplicate images. How-
ever, when handling datasets with high-dimensional features [48]
or sparse data [59], traditional data-effective techniques might not

work effectively. MFDedup [61] surpasses existing technologies in
improving data reduction rates and recovery throughput, while
also reducing the cost of garbage collection. Storage and memory
capacity [13] can also become limiting factors. [24] discusses how
to accurately estimate the data reduction ratio achieved through
data effective and compression techniques for specific datasets.
Hash methods [46] indeed have a wide application in data effective
processing. The CE-Dedup [38] framework combines hash-based
image data-effective techniques with deep learning image classifi-
cation tasks. By adjusting the deduplication threshold, effectively
balances the trade-off between data reduction rate and model accu-
racy [21]. [40] proposes a deep supervised hash algorithm for image
retrieval by providing the model with pairs of images labeled as
similar/dissimilar. [14] proposed a Core-set selection method based
on metric explanations (CSUME) for the classification of multi-class
electrocardiograms. This work offers us an effective method for
selecting representative datasets within an unsupervised learning
framework, which holds significant importance in the fields of
medical image computing and health informatics.

However, in the medical field, there currently exists no such
benchmark for the research of data-effective learning algorithms.

3 Data-Effective Learning Medical Benchmark
In this section, we introduce the definition of benchmark tasks. Data-
effective learning refers to the practice of using a limited amount
of data for the pre-training phase [19]. Therefore, this benchmark
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encourages researchers to develop advanced data-effective learning
methods to generate a compact version of the originally collected
large-scale dataset, thereby obtaining a compact small-scale new
dataset for pre-training foundational models.

In the era of big data, large models often require massive pre-
training data [11]. However, our perspective challenges this con-
ventional thinking, and we have undertaken the following work to
explore this issue in depth.

Our benchmark consists of three parts, a dataset with millions of
data samples (DataDEL), a baseline method for comparison (Med-
DEL) and a new evaluation metric (NormDEL).

3.1 The benchmark dataset: DataDEL
Given the urgent demand for a comprehensive benchmark in the
medical field, we are facing the pressing task of integrating diverse
large datasets. Currently, prevailing challenges within existing med-
ical datasets encompass issues like the uniformity of data sources,
the standardization of task execution, the limited scope of covered
disease types, imbalances in dataset categories, and the uniformity
of modalities [37].

These limitations hinder the comprehensive development of med-
ical research. Therefore, there is an urgent need for us to construct
a comprehensive medical dataset. Our efforts focus on integrating
datasets from over 31 different centers and 23 different countries,
spanning multiple modalities such as images and videos. Further-
more, our dataset surpasses the million-scale mark, becoming a
large-scale collection that encompasses multiple tasks, modalities,
sources, and diseases. This dataset can provide rich and diverse
support for subsequent research, offering significant convenience
for healthcare professionals and research institutions.

3.2 The benchmark baseline: MedDEL
We introduce a benchmark baseline method (MedDEL) in the en-
doscopic medical field, which is based on the principles of the
SemDeDup method [2]. Endoscopic data holds significant impor-
tance in medical diagnosis and treatment. However, due to various
factors such as organ morphological changes [53], lighting con-
ditions [12], and noise interference [23], the analysis of this data
becomes complex and challenging.

Specifically, the MedDEL method takes an image 𝐼 as an 𝑖𝑡ℎ ex-
ample, the encoder of Vision Transformer (ViT) [16] extracts deep
features from the image, ultimately producing a 768-dimensional
feature output. This output serves as our information embedding.
The high-dimensional representation not only captures the seman-
tic information of the image more effectively but also addresses
semantic repetitiveness issues that are challenging to resolve in
low-dimensional spaces. Considering the encoding process of im-
age 𝐼 through the ViT model, we can represent it with the following
formula:

𝐹𝑥 = 𝑉𝑖𝑇 (𝐼 ) (1)
Where 𝑥 represents the final layer of the 𝑉𝑖𝑇 encoder.

After obtaining the feature embeddings for each image in the
dataset, we can explore the similarity between images in a high-
dimensional space. Let the embedding corresponding to the 𝑖𝑡ℎ
image be denoted as 𝐹 (𝑥, 𝑖), representing all image features as

Algorithm 1 Pseudo Code for MedDEL
Input: Image sequence {𝐼1, 𝐼2, . . . , 𝐼𝑛}
Parameter: Thresholds 𝜖 and 𝜂
1: Let 𝑡 = 0
2: while 𝑡 < max_iterations do
3: for 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do
4: for 𝑗 = 1 to size(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖 ) do
5: if dis(𝐹𝑥,𝑗 , 𝑐𝑒𝑛𝑡𝑒𝑟𝑠𝑖 ) > 𝜖 then
6: Delete 𝐼 𝑗
7: else
8: for 𝑘 = 𝑗 to Size(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖 ) do
9: if cos(𝐹 𝑗 , 𝐹𝑘 ) > 𝜂 then
10: if dis(𝐹 𝑗 ,𝐶𝑖 ) > dis(𝐹𝑘 ,𝐶𝑖 ) then
11: Delete 𝐼𝑘
12: else
13: Delete 𝐼 𝑗
14: end if
15: end if
16: end for
17: end if
18: end for
19: end for
20: Increment iteration counter: 𝑡 ← 𝑡 + 1
21: end while

Table 2: Experimental setting for the parameter of 𝜂 in Algo-
rithm 1 that controls the data remaining ratio. We set several
different ratios to fully assess the performance of MedDEL
under various proportions of remaining data. Additionally,
we also calculate the number of training epochs required for
different ratios of data at the same computational power for
fair comparison.

𝜂 Remaining data ratio Epochs
1.0 88,282 100% 200
0.9 43,484 50% 400
0.85 28,352 33% 600
0.8 16,789 20% 1,000
0.75 9,055 10% 2,000
0.7 4,461 5% 4,000

{𝐹 (𝑥, 1), 𝐹 (𝑥, 2), . . . , 𝐹 (𝑥, 𝑛)}. For typical data-effective methods,
we have to calculate the similarity between any two pairs of embed-
dings, resulting in an overall time complexity of 𝑂 (𝑛2). Taking our
proposed upstream dataset as an example, which includes 88,282
images, the total number of calculations reaches 744 million.

However, by introducing the K-means algorithm [42], the over-
all computational complexity is reduced from 𝑂 (𝑛2) to 𝑂 (𝑁 2/𝑘),
where 𝑘 is the number of clusters. After applying the K-means
algorithm, we obtain 𝑘 clusters. Assuming that the feature 𝐹 (𝑥, 𝑖)
belongs to the 𝑘 cluster, we can derive the following 𝑘 sequences:

𝐶𝑘 = {𝐹 (𝑥, 𝑖) | 𝑖 ∈ 𝑁 ∗, 𝐹 (𝑥, 𝑖) ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑘 } (2)

In each cluster, data points that are far from the cluster centroid
are considered disruptive or invalid data. To filter out interference
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and invalid data, we introduce a predefined threshold 𝜖 . Specifically,
in each cluster𝐶 𝑗 we define the distance from image 𝑖 to the cluster
centroid as 𝑑𝑖 𝑗 . By using the following inequality, we classify image
𝑖 as potentially affected by disruptive or invalid data.

Specifically, we introduce a similarity threshold 𝜂, which is used
to define semantic duplicate information. In category 𝑗 , we per-
form similarity calculations for each pair of embeddings using the
following formula:

𝑆 (𝑝, 𝑞) = 𝑐𝑜𝑠 (𝐹 (𝑥, 𝑝), 𝐹 (𝑥, 𝑞)) (3)

Through this similarity calculation, we retain a set of features
that are closer to the cluster center, achieving the goal of filtering
effective and core-important data. The pseudocode for a simplified
algorithm regarding data effectiveness is presented in Algorithm 1.

3.3 The benchmark evaluation metric:
NormDEL

Currently, there is no comprehensive objective metric for evaluat-
ing the performance of data-effective learning algorithms, where
comprehensive refers to integrating both the test accuracy of down-
stream tasks and the compactness of pre-training data. Hence, We
propose a new data-effective metric, the Normalized Data-Effective
Learning Index (NormDEL). Our objective is that within the same
task, if a model can achieve the same level of performance in down-
stream tasks using fewer pre-training data, its data-effective perfor-
mance should be considered superior. Taking the commonly used
segmentation task in endoscopy as an example, where the general
metric for measuring performance is often mIoU (mean Intersection
over Union), we can formulate the following equation:

𝐷𝐸𝐿 =𝑚𝐼𝑜𝑈 · 𝑒−𝛼 ·𝑅 (4)

Where 𝛼 serves as a positive weight parameter used to adjust the
influence of mIoU and the retention ratio in DEL, and 𝑅 represents
the proportion of the retained dataset.

Subsequently, we aim to normalize DEL to a range between 0
and 1 for a clearer definition of data-effective performance. Thus,
we obtain the definition of NormDEL:

𝑁𝑜𝑟𝑚𝐷𝐸𝐿 =
1

1 + 𝑒−𝐷𝐸𝐿
(5)

Through NormDEL, we can comprehensively evaluate the adapt-
ability of the data-effective model with limited training data, em-
phasizing the critical factors of model data-effective in large-scale
datasets.

4 Experiment
To assess the capability of MedDEL, we train the Foundation Model
on three pre-training datasets as presented in Table 1. Subsequently,
we conduct finetuning on downstream task datasets to evaluate
performance.

4.1 Settings
To achieve the pretraining of the Foundation Model, enabling it to
provide a better initial value for the majority of endoscopy tasks, we
use the unsupervised Masked Auto Encoder (MAE-ViT-Base) [25].

During the training of all models, we selectively filter the pre-
training dataset capacity based on different thresholds of 𝜖 and 𝜂.
Specifically, we set 𝜖 to 0.9 and 𝜂 from 0.7 to 0.9 with a step size of
0.05. Consequently, we obtain the dataset quantities as presented
in Table 2. The batch size is set to 16, and the training is conducted
using AdamW [41] and a cosine learning rate [22]. The model main-
tains a peak learning rate of 1.5 × 10−4 throughout the training
process. In the validation of downstream tasks, we implement a
simple Multi-Layer Perceptron (MLP) [54] to achieve segmentation
heads.

4.2 Effective Data Utilization with MedDEL
Figure 3 demonstrates that, under equivalent computational re-
sources, the MedDEL method which operates on a reduced dataset
(utilizing only 5% of the data, indicated by the red curve), generally
performs comparably to the full dataset (using 100% of the data,
indicated by the black curve) across various downstream tasks.
Moreover, in certain specific scenarios, due to its smaller dataset
size and higher data quality, the MedDEL method exhibits superior
performance when trained on just 5% of the data. This advantage
is particularly pronounced, as seen in the case of CVC-300, high-
lighting its effectiveness in efficiently leveraging a small amount of
high-quality data. This underscores the MedDEL method’s charac-
teristic focus and refinement during the learning process, enabling
it to more effectively capture crucial task features, resulting in im-
proved performance in low-data scenarios. This result emphasizes
the significance of MedDELmethod in enhancing data effectiveness,
particularly in the era of big data when high-performance models
are needed, showcasing its capability for effective data utilization.

4.3 Storage Saving Analysis
Table 3 presents the impact of different amounts of pre-training
data on mIoU and NormDEL across 8 downstream datasets. It is
worth noting, in the majority of tasks, the mIoU achieved with only
5% of the data is comparable to that achieved with 100% of the data.
To clearly assess the influence of pre-training data set proportion
on performance, we computed NormDEL for each proportion. The
results indicate that in some tasks, although the mIoU attained with
5% of the data may not be the highest when considering dataset
size comprehensively, its NormDEL reaches the highest.

Furthermore, To analyze and evaluate the accuracy and robust-
ness of the baseline method under the same time performance,
Figure 4 illustrates a box plot of different proportions of pre-trained
data in various downstream datasets, based on the mIoU probabili-
ties. Each box represents the predictive performance of the model
during the several final epochs, employing the median, approximate
quartiles, and the lowest and highest probabilities to intuitively
display the level, spread, and symmetry of the mIoU distribution.

Figure 4 demonstrates a unique trend in the performance of
models (measured by the median mIoU) across most downstream
tasks, in relation to the increase in the volume of pre-training data.
Initially, performance improves with an increase in data volume,
reaching a peak, and then starts to decline as data volume continues
to grow. Specifically, when a smaller volume of data is used (as in
the case of the 5% data volume), despite the limited quantity, the
average information content per image is higher, enabling themodel
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Figure 3: Demonstration of the feasibility of data-effective learning. We compared the performance differences between using
only 5% of the pre-training data (in red) and using 100% of the data (in black) in 8 datasets. The results indicate that using only
5% of the pre-training data can achieve results comparable to using 100% of the pre-training data, which fully demonstrates the
validity of the MedDEL method.

Table 3: Demonstration of the rationality of NormDEL. The table shows the performance of different proportions of pre-trained
data on mIoU (↑) as well as NormDEL (↑) in eight different datasets. The results indicate that the performance of mIoU is
almost comparable in different scales, suggesting that it primarily measures performance without considering the scale of the
pre-training data used. In contrast, NormDEL incorporates the factor of data scale, and can evaluate data compactness even
with only 5% of the data used. This demonstrates the rationality of the NormDEL method, as it not only assesses performance
but also effectively utilizes the data scale.

Dataset 5% pretraining data 10% pretraining data 20% pretraining data 30% pretraining data 50% pretraining data 100% pretraining data
mIoU NormDEL mIoU NormDEL mIoU NormDEL mIoU NormDEL mIoU NormDEL mIoU NormDEL

Kvasir-Instrument 79.38 68.03 79.52 67.25 80.22 65.85 80.38 64.06 80.48 61.97 79.70 57.28
Kvasir-SEG 75.45 67.21 75.74 66.49 76.37 65.14 76.03 63.33 76.77 61.43 76.02 56.95

ImageCLEFmed 70.95 66.26 71.80 65.69 71.44 64.22 72.58 62.76 71.23 60.64 72.02 56.59
ETIS 47.50 61.11 49.44 61.00 50.20 60.13 50.28 58.94 49.62 57.47 49.13 54.51

PolypGen2021 60.93 64.10 61.61 63.59 61.47 62.32 62.28 61.01 62.20 59.32 60.89 55.58
CVC-300 63.67 64.69 56.69 62.55 61.40 62.31 62.85 61.11 61.97 59.29 61.16 55.60

CVC-ClinicDB 75.24 67.16 74.58 66.26 75.27 64.94 75.50 63.25 75.49 61.25 74.95 56.85
CVC-ColonDB 69.52 65.96 68.58 65.03 69.90 63.93 71.60 62.59 69.72 60.42 69.48 56.36

to achieve relatively decent results. However, as the data volume
increases, redundancy in information also grows. At a certain point,
a balance is reached between information content and redundancy,
culminating in peak model performance. Beyond this point, further
increases in data volume lead to a decline in performance. This
trend is reflected in the length of the boxes in the plot, where the
box length first increases with the data volume, reaches a peak, and
then starts to shorten.

However, in the results from Figure 4, the trends are not as stable,
and there is fluctuation observed in some of the downstream tasks.

This also reflects the limitations of the MedDEL method. These
fluctuations may arise from differences in data characteristics, task
complexities, or other factors. It is precisely this diversity that
complicates the optimization of data effectiveness, requiring in-
depth research and fine-tuning.

Nevertheless, these findings still underscore the effectiveness of
MedDEL in reducing storage burden and achieving good results
with smaller proportions of data. We encourage more researchers
to engage with our study and propose more refined methods to
make the most of limited data resources.
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(b) Box-plot of Kvasir-SEG
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(c) Box-plot of ImageCLEFMed
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(e) Box-plot of PolyGen2021
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(f) Box-plot of CVC-300
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(g) Box-plot of CVC-ClinicDB
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Figure 4: Box plot of the baseline method (MedDEL) for testing mIoU under retaining different data ratios. Under the same
computational resources, we plot the impact of varying proportions of pre-training data on downstream task performance,
using the data proportions from Table 2 and models pre-trained on ImageNet for reference. The results demonstrate that the
performance of downstream tasks initially improves with an increase in pre-training data but eventually decreases. This is
because the initially added data is effective, however, as more data is introduced beyond a certain point, it includes redundancy
or erroneous information, which adversely affects the model’s performance.

Table 4: Illustrating the impact of different pre-training time (epochs) on performance metrics (mIoU) using 20% and 33% of
pretraining data. The results indicate that the optimal performance is often not achieved with the standard pretraining duration
(1,000 epochs for 20% and 600 epochs for 33%) but rather occurs with early pretraining time, demonstrating the effectiveness of
MedDEL in reducing computational resource consumption.

Dataset
Pretraining Time 20% pretraining data 33% pretraining data

200 300 400 500 700 800 900 1,000 240 360 420 480 540 600
Kvasir-Instrument 80.21 79.73 79.98 80.01 80.06 80.11 80.22 80.22 80.25 80.50 80.32 80.39 80.41 80.38

Kvasir-SEG 75.80 75.69 76.13 75.90 76.25 76.33 76.39 76.37 75.73 75.94 75.84 76.07 75.78 76.03
ImageCLEFmed 71.44 71.60 71.44 72.91 71.51 71.52 71.84 71.44 72.59 72.32 72.34 72.54 72.19 72.58

ETIS 49.07 49.70 50.88 51.11 50.96 51.13 51.01 50.20 49.54 51.23 51.30 50.28 50.79 50.28
PolypGen2021 61.64 61.32 61.54 61.00 61.47 61.15 61.30 61.47 61.15 61.62 62.10 62.28 62.29 62.28

CVC-300 58.66 57.52 56.81 60.59 61.51 60.78 60.00 61.40 62.09 62.34 64.40 61.40 63.34 62.85
CVC-ClinicDB 74.66 75.56 75.48 75.29 75.11 74.83 75.41 75.27 75.44 75.11 75.24 75.17 75.28 75.50
CVC-ColonDB 69.83 70.17 70.68 69.65 70.62 70.10 69.89 69.90 72.09 71.62 70.89 71.43 71.95 71.60

4.4 Computing Power Saving Analysis
Section 4.3 demonstrates that MedDEL effectively enhances storage
performance and achieves results comparable to large-scale datasets
by using fewer data. Building upon this, we further explore the
optimization of MedDEL’s time performance. Table 4 presents mod-
els trained with 20% and 33% of pretraining data, using the epoch
numbers from Table 2 as a reference. We progressively decrease the
pretraining time in 10% increments, aiming to explore MedDEL’s

performance metrics (mIoU values) across various downstream
datasets at different pretraining times (epochs).

Remarkably, we observe that optimal performance is not consis-
tently achieved with models trained using 100% of the pretraining
time across nearly all datasets. Instead, we note the presence of a
complex uncertainty and fluctuation, where the optimal result may
be distributed among different pretraining time points in diverse
datasets and with varying proportions of pretraining data. This un-
derscores the effectiveness of MedDEL in conserving computational
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Figure 5: Demonstration of images deleted by MedDEL. This figure shows MedDEL deleting semantically similar images, which
appear to have no significant differences between them from a perceptual perspective,
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Figure 6: Model generalization experiments across different
datasets with different data volumes. The experiments in-
cluded four distinct datasets: Kvasir-SEG, ImageCLEFmed,
CVC-ClinicDB, and CVC-ColonDB. The results indicate the
performance of the model at different volumes of pre-
training data (5%, 20%, 50%, and 100%), and compared the
outcomes between randomly selected data and data selected
using the MedDEL method.

resources. However, it also suggests that optimizing pretraining
time may require different strategies for various tasks and data
contexts. Our study has not yet uncovered the specific relationships
between these strategies, indicating the need for more in-depth
research in the future.

4.5 Visualization of MedDEL(DEL)
The MedDEL algorithm, as a benchmark method in the field of en-
doscopic, is based on the Vision Transformer (ViT) model [16] for
extracting image features, generating a 768-dimensional feature out-
put. By introducing K-means clustering [42], it successfully reduces
computational complexity and further effectively addresses irrele-
vant data in the endoscopic dataset by setting similarity thresholds
and filtering conditions.

Figure 5 visualizes the results of the MedDEL (DEL) algorithm,
where upon observation, it is evident that MedDEL eliminates a

significant portion of redundant data with highly similar features
from the dataset. Considering their similarity, we suppose removing
such redundant data is a reasonable strategy to optimize the dataset
structure, enhancing dataset quality. This optimization improves
the model’s understanding of endoscopic images, making it more
targeted and interpretable, and providing robust support formedical
image analysis [16].

4.6 Ablation Study
To validate the effectiveness of our model, we supplement the fol-
lowing generalization experiments in Fig 6. Specifically, we select
5%, 20%, and 50% of the data and compare the test performance
of random selection and MedDEL. We find that whether using the
random selection method or MedDEL, as the amount of data in-
creases, the model’s generalization ability improves. Furthermore,
at the same data volume, MedDEL shows superior performance
to the random method. Additionally, MedDEL shows comparable
generalization performance when selecting 50% data compared to
using full data.

5 Conclusion
In the era of foundation models, we are the first to propose whether
larger pre-training data necessarily leads to improved model per-
formance. In order to investigate this issue, we propose the first
medical data-effective Benchmark, which involves a million-level
dataset from 31 medical centers (DataDEL), a data-effective ap-
proach (MedDEL), and a comprehensive metric for evaluating pre-
training data volume (NormDEL). The establishment of an open
benchmark for data-effective learning is crucial for the medical
artificial intelligence research community, which is an encouraging
foundation for subsequent research endeavors.
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