
Appendix

A Definitions from previous work

We first note the definitions of some well-known useful learning theoretic complexity measures.
Recall the definitions of pseudodimension and Rademacher complexity, well-known measures
for hypothesis-space complexity in statistical learning theory. Bounding these quantities implies
immediate bounds on learning error using classic learning theoretic results. In Section 5 we bound the
pseudodimension and Rademacher complexity for the problems of learning unweighted and weighted
graphs.
Definition 14. Pseudo-dimension [Pollard, 2012]. LetH be a set of real valued functions from input
space X . We say that C = (x1, . . . , xm) ∈ Xm is pseudo-shattered by H if there exists a vector
r = (r1, . . . , rm) ∈ Rm (called “witness”) such that for all b = (b1, . . . , bm) ∈ {±1}m there exists
hb ∈ H such that sign(hb(xi)− ri) = bi. Pseudo-dimension ofH is the cardinality of the largest set
pseudo-shattered byH.
Definition 15. Rademacher complexity [Bartlett and Mendelson, 2002]. Let F = {fρ : X →
[0, 1], ρ ∈ C ⊂ Rd} be a parameterized family of functions, and sample S = {xi, . . . , xT } ⊆
X . The empirical Rademacher complexity of F with respect to S is defined as R̂(F ,S) =

Eσ
[
supf∈F

1
T

∑T
i=1 σif(xi)

]
, where σi ∼ U({−1, 1}) are Rademacher variables.

We will also need the definition of dispersion which, informally speaking, captures how amenable a
non-Lipschitz function is to online learning. As noted in [Balcan et al., 2018b, 2020c], dispersion is
necessary and sufficient for learning piecewise Lipschitz functions.
Definition 16. Dispersion [Balcan et al., 2020b]. The sequence of random loss functions l1, . . . , lT is
β-dispersed for the Lipschitz constant L if, for all T and for all ε ≥ T−β , we have that, in expectation,
at most Õ(εT) functions (the soft-O notation suppresses dependence on quantities beside ε, T and β,
as well as logarithmic terms) are not L-Lipschitz for any pair of points at distance ε in the domain C.
That is, for all T and for all ε ≥ T−β ,

E

 max
ρ,ρ′∈C
‖ρ−ρ′‖

2
≤ε

∣∣{t ∈ [T] | lt(ρ)− lt(ρ′) > L ‖ρ− ρ′‖2}
∣∣
 ≤ Õ(εT).

B Motivation for data-driven design

Theorem 5. Let rmin denote the smallest value of threshold r for which every unlabeled node ofG(r)
is reachable from some labeled node, and rmax be the smallest value of threshold r for which G(r) is
the complete graph. There exists a data instance (L,U) such that for any rζ = ζrmin + (1− ζ)rmax

for ζ ∈ (0, 1), there exists a set of labelings U of the unlabeled points such that for some Uζ , Ūζ ∈ U ,
rζ minimizes lA(G(r),L,Uζ) but not lA(G(r),L,Ūζ).

Proof. Note that for any r < rmin, there is no graph similarity information for at least one node, and
therefore all labels cannot be predicted. Also, the graph is unchanged for all r ≥ rmax. Therefore,
r ∈ [rmin, rmax] captures all graphs of interest on a given data instance.

Intuitively the statement claims that any threshold r (modulo the scaling factors for the data em-
bedding) may be optimal or suboptimal for some data labeling for a given constructed instance.
Therefore it is useful to consider several problem instances and learn the optimal value of r for the
data distribution. We will present an example where an unlabeled point is closest to some labeled
point of one class but closer to more points of another class on average. So for small thresholds it
may be labeled as the first class and for larger thresholds as the second class.

Let L = L1 ∪ L2 with |L1| < |L2| and d(u, v) = 0 for u, v ∈ Li, i ∈ {1, 2}, d(u, v) = 3r∗/2 for
u ∈ Li, v ∈ Lj , i 6= j, where r∗ is a positive real. Further let U = {a} such that d(a, ui) = ir∗/2
for each ui ∈ Li. It is straightforward to verify that the triangle inequality is satisfied. Further note
that rmin = r∗/2 and rmax = 3r∗/2. Our set of labelings U will include one that labels a according
to each class. Now we have two cases

14

1. ζ ∈ (0, 1
2): rmin ≤ r < r∗, G(rζ) connects a to L1 but not L2 and we have that the loss is

minimized exactly for the labeling where a matches L1.

2. ζ ∈ [1
2 , 1): r∗ ≤ r ≤ rmax, G(rζ) connects a to both L1 and L2. But since |L1| < |L2|, we

predict that the label of a matches that of L2.

Finally we note that d(u, v) may not be exactly zero when u 6= v for a metric. This is easily fixed by
making tiny perturbations to the labeled points, for any given rζ .

The example presented above captures some essential challenges of our setting in the following
sense. Firstly, we see that the loss function may be non-Lipschitz (as a function of the parameter
r), which makes the optimization problem more challenging. More importantly, it highlights that
graph similarity only approximately corresponds to label similarity, and how the accuracy of this
correspondence is strongly influenced by the graph parameters. In this sense, it may not be possible
to learn from a single instance, and considering a data-driven setting is crucial.

C Dispersion and Online learning

In this appendix we include details of proofs and algorithms from section 4.1.

C.1 Dispersion for threshold graphs

We will need the following simple lemma.
Lemma 17. Let l̄(r) = lA(G(r),L,U) be the loss function for graph G(r) created using the threshold
kernel w(u, v) = I[d(u, v) ≤ r]. Then l̄(r) is piecewise constant and any discontinuity occurs at
r∗ = d(u, v) for some graph nodes u, v.

Proof. This essentially follows from the observation that as r is increased, the graph gets a new edge
only for some r∗ = d(u, v). Therefore no matter what the optimization algorithm is used to predict
labels to minimize the loss, the loss is fixed given the graph, and has discontinuities potentially only
when new edges are added.

We are now ready to establish dispersion for the unweighted graph setting.
Theorem 6. Let l1, . . . , lT : R → R denote an independent sequence of losses as a function of
parameter r, when the graph is created using a threshold kernel w(u, v) = I[d(u, v) ≤ r] and
labeled by applying any algorithm on the graph. If d(u, v) follows a κ-bounded distribution for any
u, v, the sequence is 1

2 -dispersed, and the regret of Algorithm 1 is Õ(
√
T).

Proof. Assume a fixed but arbitrary ordering of nodes in each Vt = Lt ∪Ut denoted by V (i)
t , i ∈ [n].

Define di,j = {d(u, v) | u = V
(i)
t , v = V

(j)
t , t ∈ [T]}. Since di,j is κ-bounded, the probability

that it falls in any interval of length ε is O(κε). Since different problem instances are independent
and using the fact that the VC dimension of intervals is 2, with probability at least 1 − δ/D,
every interval of width ε contains at most O

(
κεT +

√
T logD/δ

)
discontinuities from each di,j

(using Lemma 17). Now a union bound over the failure modes for di,j for different i, j gives

O
(
n2κεT + n2

√
T log n/δ

)
discontinuities with probability at least 1−δ for any ε-interval. Setting

δ = 1/
√
T , for each ε ≥ 1/

√
T the maximum number of discontinuities in any ε-interval is at most

(1− δ)O
(
κn2

√
T log n

√
T

)
+ δT = Õ(εT), in expectation, proving 1

2 -dispersion.

C.2 A general tool for analyzing dispersion

If the weights of the graph are given by a polynomial kernel w(u, v) = (d̃(u, v) + α̃)d, we can apply
the general tool developed by Balcan et al. [2020b] to learn α̃, which we summarize below.

1. Bound the probability density of the random set of discontinuities of the loss functions.

15

2. Use a VC-dimension based uniform convergence argument to transform this into a bound
on the dispersion of the loss functions.

Formally, we have the following theorems from Balcan et al. [2020b], which show how to use this
technique when the discontinuities are roots of a random polynomial.

Theorem 18 (Balcan et al. [2020b]). Consider a random degree d polynomial φ with leading
coefficient 1 and subsequent coefficients which are real of absolute value at most R, whose joint
density is at most κ. There is an absolute constant K depending only on d and R such that every
interval I of length ≤ ε satisfies Pr(φ has a root in I) ≤ κε/K.

Theorem 19 (Balcan et al. [2020b]). Let l1, . . . , lT : R → R be independent piecewise L-
Lipschitz functions, each having at most K discontinuities. Let D(T, ε, ρ) = |{1 ≤ t ≤ T |
lt is not L-Lipschitz on [ρ− ε, ρ+ ε]}| be the number of functions that are not L-Lipschitz on the ball
[ρ− ε, ρ+ ε]. Then we have E[maxρ∈RD(T, ε, ρ)] ≤ maxρ∈RE[D(T, ε, ρ)] +O(

√
T log(TK)).

We will now use Theorems 18 and 19 to establish dispersion in our setting. We first need a simple
lemma about κ-bounded distributions. We remark that similar properties have been proved in Balcan
et al. [2018b, 2020b], in other problem contexts. Specifically, Balcan et al. [2018b] show the lemma
for a ratio of random variables, Z = X/Y , and Balcan et al. [2020b] establish it for the sum
Z = X + Y but for independent variables X,Y .

Lemma 20. Suppose X and Y are real-valued random variables taking values in [m,m+M] and
[m′,m′ +M ′] for some m,m′,M,M ′ ∈ R+ and suppose that their joint distribution is κ-bounded.
Then,

(i) Z = X + Y is drawn from a K1κ-bounded distribution, where K1 ≤ min{M,M ′}.

(ii) Z = XY is drawn from a K2κ-bounded distribution, where K2 ≤ min{M/m,M ′/m′}.

Proof. Let fX,Y (x, y) denote the joint density of X,Y .

(i) The case where X,Y are independent has been studied (Lemma 25 in Balcan et al. [2020b]),
the following is slightly more involved. The cumulative density function for Z is given by

FZ(z) = Pr(Z ≤ z) = Pr(X + Y ≤ z) = Pr(X ≤ z − Y)

=

∫ m′+M ′

m′

∫ z−y

m

fX,Y (x, y)dxdy.

The density function for Z can be obtained using Leibniz’s rule as

fZ(z) =
d

dz
FZ(z) =

d

dz

∫ m′+M ′

m′

∫ z−y

m

fX,Y (x, y)dxdy

=

∫ m′+M ′

m′

(
d

dz

∫ z−y

m

fX,Y (x, y)dx

)
dy

=

∫ m′+M ′

m′
fX,Y (z − y, y)dy

≤M ′κ.

A symmetric argument shows that fZ(z) ≤ Mκ, together with above this completes the
proof.

(ii) The cumulative density function for Z is given by

FZ(z) = Pr(Z ≤ z) = Pr(XY ≤ z) = Pr(X ≤ z/Y)

=

∫ m′+M ′

m′

∫ z/y

m

fX,Y (x, y)dxdy.

16

The density function for Z can be obtained using Leibniz’s rule as

fZ(z) =
d

dz
FZ(z) =

d

dz

∫ m′+M ′

m′

∫ z/y

m

fX,Y (x, y)dxdy

=

∫ m′+M ′

m′

(
d

dz

∫ z/y

m

fX,Y (x, y)dx

)
dy

=

∫ m′+M ′

m′

1

y
fX,Y (z/y, y)dy

≤
∫ m′+M ′

m′

1

m′
fX,Y (z/y, y)dy

≤ M ′

m′
κ.

Similarly we can show that fZ(z) ≤Mκ/m, together with above this completes the proof.

Theorem 7. Let l1, . . . , lT : R → R denote an independent sequence of losses as a function of
α̃, for graph with edges w(u, v) = (d̃(u, v) + α̃)d labeled by optimizing the quadratic objective∑
u,v w(u, v)(f(u)− f(v))2. If d̃(u, v) follows a κ-bounded distribution with a closed and bounded

support, the sequence is 1
2 -dispersed, and the regret of Algorithm 1 may be upper bounded by Õ(

√
T).

Proof. w(u, v) is a polynomial in α̃ of degree d with coefficient of α̃i given by ci = Dd,id̃(u, v)Ed,i

for i ∈ [d]. Since the support of d̃(u, v) is closed and bounded, we have m ≤ d̃(u, v) ≤ M with
probability 1 for some M > 1,m > 0 (since d̃(u, v) is a metric, d̃(u, v) > 0 for u 6= v).

To apply Theorem 18, we note that we have an upper bound on the coefficients, R < (dM)d.
Moreover, if f(x) denotes the probability density of d(u, v) and F (x) its cumulative density,

Pr(ci ≤ xi) = Pr
(
Dd,id̃(u, v)Ed,i ≤ xi

)
= Pr

(
d̃(u, v) ≤

(
xi
Dd,i

)1/Ed,i
)

= F

((
xi
Dd,i

)1/Ed,i
)
.

Thus,

Pr(ci ≤ xi for each i ∈ [d]) = F

(
min
i

(
xi
Dd,i

)1/Ed,i
)
.

The joint density of the coefficients is therefore Kκ-bounded where K only depends on d,m.
(K ≤ maxiDd,i

−1/Ed,im−1+1/Ed,i).

Consider the harmonic solution of the quadratic objective Zhu et al. [2003] which is given by
fU = (DUU −WUU)−1WULfL. For any u ∈ U , f(u) = 1/2 is a polynomial equation in α̃ with
degree at most nd. The coefficients of these polynomials are formed by multiplying sets of weights
w(u, v) of size up to n and adding the products, and are also bounded density on a bounded support
(using above observation in conjunction with Lemma 20). The dispersion result now follows by an
application of Theorems 18 and 19. The regret bound is implied by results from Balcan et al. [2018b,
2020c].

C.3 Dispersion for roots of exponential polynomials

In this section we will extend the applicability of the dispersion analysis technique from Appendix
C.2 to exponential polynomials, i.e. functions of the form φ(x) =

∑n
i=1 aie

bix. We will now extend
the analysis to obtain similar results when using the exponential kernel w(u, v) = e−||u−v||

2/σ2

. The
results of Balcan et al. [2020b] no longer directly apply as the points of discontinuity are no longer
roots of polynomials. To this end, we extend and generalize arguments from Balcan et al. [2020b]
below. We need to generalize Theorem 18 to exponential polynomials below.

17

Theorem 21. Let φ(x) =
∑n
i=1 aie

bix be a random function, such that coefficients ai are real and
of magnitude at most R, and distributed with joint density at most κ. Then for any interval I of width
at most ε, P(φ has a zero in I)≤ Õ(ε) (dependence on bi, n, κ,R suppressed).

Proof. For n = 1 there are no roots, so assume n > 1. Suppose ρ is a root of φ(x). Then a =
(a1, . . . , an) is orthogonal to %(ρ) = (eb1ρ, . . . , ebnρ) in Rn. For a fixed ρ, the set Sρ of coefficients
a for which ρ is a root of φ(y) lie along an n− 1 dimensional linear subspace of Rn. Now φ has a
root in any interval I of length ε, exactly when the coefficients lie on Sρ for some ρ ∈ I . The desired
probability is therefore upper bounded by maxρ VOL(∪Sy | y ∈ [ρ− ε, ρ+ ε])/VOL(Sy | y ∈ R)

which we will show to be Õ(ε). The key idea is that if |ρ− ρ′| < ε, then %(ρ) and %(ρ′) are within a
small angle θρ,ρ′ = Õ(ε) for small ε (the probability bound is vacuous for large ε). But any point in
Sρ is at most Õ(θρ,ρ′) from a point in Sρ′ , which implies the desired bound (similar arguments to
Theorem 18).

We will now flesh out the above sketch. Indeed,

sin θρ,ρ′ =

√
1− (〈%(ρ), %(ρ′)〉)2

‖%(ρ)‖ ‖%(ρ′)‖

=

√
1−

(
∑
i e
biρebiρ′)

2∑
i e

2biρ
∑
i e

2biρ′

=

√∑
i 6=j e

2(biρ+bjρ′) − e(bi+bj)(ρ+ρ′)∑
i e

2biρ
∑
i e

2biρ′
.

Now, for ρ′ = ρ+ ε, |ε| < ε,

sin θρ,ρ′ =

√∑
i 6=j e

2(biρ+bjρ+bjε) − e(bi+bj)(2ρ+ε)∑
i e

2biρ
∑
i e

2biρ′

=

√∑
i 6=j e

2ρ(bi+bj)(e2bjε − e(bi+bj)ε)∑
i e

2biρ
∑
i e

2biρ′
.

Using the Taylor’s series approximation for e2bjε and e(bi+bj)ε, we note that the largest terms that
survive are quadratic in ε. sin θρ,ρ′ , and therefore also θρ,ρ′ , is Õ(ε).

Next it is easy to show that any point in Sρ is at most Õ(θρ,ρ′) from a point in Sρ′ . For n = 2, Sρ and
Sρ′ are along lines orthogonal to ρ and ρ′ and are thus themselves at an angle θρ,ρ′ . Since we further
assume that the coefficients are bounded byR, any point on Sρ is withinO(Rθρ,ρ′) = Õ(θρ,ρ′) of the
nearest point in Sρ′ . For n > 2, consider the 3-space spanned by ρ, ρ′ and an arbitrary ς ∈ Sρ. Sρ and
Sρ′ are along 2-planes in this space with normal vectors ρ, ρ′ respectively. Again it is straightforward
to see that the nearest point in the projection of Sρ′ to ς is Õ(θρ,ρ′).

The remaining proof is identical to that of Theorem 18 (see Theorem 18 of Balcan et al. [2020b]),
and is omitted for brevity.

We will also need the following lemma for the second step noted above, i.e. obtain a result similar to
Theorem 19 for exponential polynomials.

Lemma 22. The equation
∑n
i=1 aie

bix = 0 where ai, bi ∈ R has at most n − 1 distinct solutions
x ∈ R.

Proof. We will use induction on n. It is easy to verify that there is no solution for n = 1. We assume
the statement holds for all 1 ≤ n ≤ N . Consider the equation φN+1(x) =

∑N+1
i=1 aie

bix = 0.

18

WLOG a1 6= 0 and we can write

φN+1(x) =

N+1∑
i=1

aie
bix = a1e

b1x

(
1 +

N+1∑
i=2

ai
a1
e(bi−b1)x

)
= a1e

b1x (1 + g(x)) .

By our induction hypothesis, g′(0) = 0 has at most N − 1 solutions, and so (1 + g(x))′ has at most
N − 1 roots. By Rolle’s theorem, (1 + g(x)) has at most N roots, and therefore φN+1(x) = 0 has at
most N solutions.

Lemma 22 implies that Theorem 19 may be applied. The number of discontinuities may be exponen-
tially high in this case. Indeed solving the quadratic objective can result in an exponential equation of
the form in Lemma 22 with O(|U |n) terms.

C.4 Learning several metrics simultaneously

We start by getting a couple useful definitions out of the way.
Definition 23 (Homogeneous algebraic hypersurface). An algebraic hypersurface is an algebraic
variety (a system of polynomial equations) that may be defined by a single implicit equation of
the form p(x1, . . . , xn) = 0, where p is a multivariate polynomial. The degree d of the algebraic
hypersurface is the total degree of the polynomial p. We say that the algebraic hypersurface is
homogeneous if p is a homogeneous polynomial, i.e. p(λx1, . . . , λxm) = λdp(x1, . . . , xn).

In the following we will refer to homogeneous algebraic hypersurfaces as simply algebraic hypersur-
faces. We will also need the standard definition of set shattering, which we restate in our context as
follows.
Definition 24 (Hitting and Shattering). Let C denote a set of curves in Rp. We say that a subset
of C is hit by a curve s if the subset is exactly the set of curves in C which intersect the curve s. A
collection of curves S shatters the set C if for each subset C of C, there is some element s of S such
that s hits C.

To extend our learning results to learning graphs built from several metrics, we will now state and
prove a couple theorems involving algebraic hypersurfaces. Our results generalize significantly the
techniques from Balcan et al. [2020b] by bringing in novel connections with algebraic geometry.
Theorem 3. There is a constant k depending only on d and p such that axis-aligned line segments in
Rp cannot shatter any collection of k algebraic hypersurfaces of degree at most d.

Proof. Let C denote a collection of k algebraic hypersurfaces of degree at most d in Rp. We say that
a subset of C is hit by a line segment if the subset is exactly the set of curves in C which intersect
the segment, and hit by a line if some segment of the line hits the subset. We seek to upper bound
the number of subsets of C which may be hit by axis-aligned line segments. We will first consider
shattering by line segments in a fixed axial direction x. We can easily extend this to axis-aligned
segments by noting they may hit only p times as many subsets.

Let Lc be a line in the x direction. The subsets of C which may be hit by (segments along) Lc is
determined by the pattern of intersections of Lc with hypersurfaces in C. By Bezout’s theorem, there
are at most kd+ 1 distinct regions of Lc due to the intersections. Therefore at most

(
kd+1

2

)
distinct

subsets may be hit.

Define the equivalence relation Lc1 ∼ Lc2 if the same hypersurfaces in C intersect Lc1 and Lc2 , and in
the same order (including with multiplicities). To determine these equivalence classes, we will project
the hypersurfaces in C on to a hyperplane orthogonal to the x-direction. By the Tarski-Seidenberg-
Łojasiewicz Theorem, we get a semi-algebraic collection Cx, i.e. a set of polynomial equations and
constraints in the projection space. Each cell of Cx corresponds to an equivalence class. Using well-
known upper bounds for cylindrical algebraic decomposition (see for example England and Davenport
[2016]), we get that the number of equivalence classes is at most O

(
(2d)2p−1k2p−122p−1

)
.

Putting it all together, the number of subsets hit by any axis aligned segment is at most

O

(
p

(
kd+ 1

2

)
(2d)2p−1k2p−122p−1

)
.

19

We are done as this is less than 2k for fixed d and p and large enough k, and therefore all subsets may
not be hit.

Theorem 4. Let l1, . . . , lT : Rp → R be independent piecewise L-Lipschitz functions, each having
discontinuities specified by a collection of at most K algebraic hypersurfaces of bounded degree.
Let L denote the set of axis-aligned paths between pairs of points in Rp, and for each s ∈ L define
D(T, s) = |{1 ≤ t ≤ T | lt has a discontinuity along s}|. Then we have E[sups∈LD(T, s)] ≤
sups∈L E[D(T, s)] +O(

√
T log(TK)).

Proof. The proof is similar to that of Theorem 19 (see Balcan et al. [2020b]). The main difference
is that instead of relating the number of ways intervals can label vectors of discontinuity points
to the VC-dimension of intervals, we instead relate the number of ways line segments can label
vectors of K algebraic hypersurfaces of degree d to the VC-dimension of line segments (when
labeling algebraic hypersurfaces), which from Theorem 3 is constant. To verify dispersion, we need a
uniform-convergence bound on the number of Lipschitz failures between the worst pair of points
α, α′ at distance ≤ ε, but the definition allows us to bound the worst rate of discontinuties along any
path between α, α′ of our choice. We can bound the VC dimension of axis aligned segments against
bounded-degree algebraic hypersurfaces, which will allow us to establish dispersion by considering
piecewise axis-aligned paths between points α and α′.

Let C denote the set of all algebraic hypersurfaces of degree d. For simplicity, we assume that every
function has its discontinuities specified by a collection of exactly K algebraic hypersurfaces. For
each function lt, let γ(t) ∈ CK denote the ordered tuple of algebraic hypersurfaces in C whose
entries are the discontinuity locations of lt. That is, lt has discontinuities along (γ

(t)
1 , . . . , γ

(t)
K), but

is otherwise L-Lispchitz.

For any axis aligned path s, define the function fs : CK → {0, 1} by

fs(γ) =

{
1 if for some i ∈ [K] γi intersects s
0 otherwise,

where γ = (γ1, . . . , γK) ∈ CK . The sum
∑T
t=1 fs(γ

(t)) counts the number of vectors (γ
(t)
1 , . . . , γ

(t)
K)

that intersect s or, equivalently, the number of functions l1, . . . , lT that are not L-Lipschitz on s.
We will apply VC-dimension uniform convergence arguments to the class F = {fs : CK →
{0, 1} | s is an axis-aligned path}. In particular, we will show that for an independent set of vectors
(γ

(t)
1 , . . . , γ

(t)
K), with high probability we have that 1

T

∑T
t=1 fs(γ

(t)) is close to E[1
T

∑T
t=1 fs(γ

(t))]
for all paths s. This uniform convergence argument will lead to the desired bounds.

Indeed, Theorem 3 implies that VC dimension of F is O(logK). Now standard VC-dimension
uniform convergence arguments for the class F imply that with probability at least 1 − δ, for all
fs ∈ F ∣∣∣∣∣ 1

T

T∑
t=1

fs(γ
(t))− E

[
1

T

T∑
t=1

fs(γ
(t))

]∣∣∣∣∣ ≤ O
(√

log(K/δ)

T

)
, or∣∣∣∣∣

T∑
t=1

fs(γ
(t))− E

[
T∑
t=1

fs(γ
(t))

]∣∣∣∣∣ ≤ O (√T log(K/δ)
)
.

Now since D(T, s) =
∑T
t=1 fs(γ

(t)), we have for all s and δ, with probability at least 1 − δ,
sups∈LD(T, s) ≤ sups∈L E[D(T, s)] + O(

√
T log(K/δ)). Taking expectation and setting δ =

1/
√
T completes the proof as it allows us to bound the expected discontinuities by O(

√
T) when the

above high probability event fails.

Theorem 4 above generalizes the second step of the dispersion tool from single parameter families to
several hyperparameters, and uses Theorem 3 as a key ingredient. To complete the first step of in the
multi-parameter setting, we can use a simple generalization of Theorem 18 by showing that few zeros
are likely to occur on a piecewise axis-aligned path on whose pieces the zero sets of the multivariate
polynomial is the zero set of a single-variable polynomial. Putting together we get Theorem 8.

20

Theorem 8. Let l1, . . . , lT : Rp → R denote an independent sequence of losses as a func-
tion of parameters ρi, i ∈ [p], when the graph is created using a polynomial kernel w(u, v) =

(
∑p−1
i=1 ρid̃(u, v) + ρp)

d and labeled by optimizing the quadratic objective
∑
u,v w(u, v)(f(u) −

f(v))2. If d̃(u, v) follows a κ-bounded distribution with a closed and bounded support, the sequence
is 1

2 -dispersed, and the regret of Algorithm 1 may be upper bounded by Õ(
√
T).

Proof. Notice that w(u, v) is a homogeneous polynomial in ρ = (ρi, i ∈ [p]). Further, the solutions
of the quadratic objective subject to f(u) = 1/2 for some u are also homogeneous polynomial
equations, of degree nd. Now to show dispersion, consider an axis-aligned path between any two
parameter vectors ρ, ρ′ such that ‖ρ− ρ′‖ < ε (notice that the definition of dispersion allows us
to use any path between ρ, ρ′ for counting discontinuities). To compute the expected number of
non-Lipchitzness in along this path, notice that for any fixed segment of this path, all but one variable
are constant and the discontinuities are the zeros of single variable polynomial with bounded-density
random coefficients, and that Theorem 18 applies. Summing along these paths we get at most Õ(pε)
discontinuities in expectation for any ‖ρ− ρ′‖ < ε. Theorem 4 now completes the proof of dispersion
in this case.

C.5 Semi-bandit efficient algorithms

In this appendix we present details of the efficient algorithms for computing the semi-bandit feedback
sets in Algorithm 2. For unweighted graphs, we only have a polynomial number O(n2) of feedback
sets and the feedback set for a given ρt is readily computed by looking up a sorted list of distances
d(u, v)u,v∈Li∪Ui . For the weighted graph setting, we need non-trivial algorithms.

C.5.1 Min-cut objective

First some notation for this section. We will use G = (V,E) to denote an undirected graph with V
as the set of nodes and E ⊆ V × V the weighted edges with capacity d : E → R≥0. We are given
special nodes s, t ∈ V called source and target vertices. Recall the following definitions.

Definition 25. (s,t)-flows An (s,t)-flow (or just flow if the source and target are clear from context)
is a function f : V × V → R≥0 that satisfies the conservation constraint at every vertex v except
possibly s and t given by

∑
(u,v)∈E f(u, v) =

∑
(v,u)∈E f(v, u). The value of flow (also refered by

just flow when clear from context) is the total flow out of s,
∑
u∈V f(s, u)−

∑
u∈V f(u, s).

Definition 26. (s,t)-cut An (s,t)-cut (or just a cut if the source and target are clear from context) is a
partition of V into S, T such that s ∈ S, t ∈ T . We will denote the set {(u, v) ∈ E | u ∈ S, v ∈ T}
of edges in the cut by ∂S or ∂T . The capacity of the cut is the total capacity of edges in the cut.

For convenience we also define

Definition 27. Path flow. An (s,t)-flow is a path flow along a path p = (s = v0, v1, . . . , vn = t) if
f(u,w) > 0 iff (u,w) = (vi, vi+1) for some i ∈ [n− 1].

Definition 28. Residual capacity graph. Given a set of path flows F , the residual capacity graph
(or simply the residual graph) is the graph G′ = (V,E) with capacities given by c′(e) = c(e) −∑

f∈F f(e).

We will list without proof some well-known facts about maximum flows and minimum cuts in a
graph which will be useful in our arguments.

Fact. 1. Let f be any feasible (s, t)-flow, and let (S, T) be any (s, t)-cut. The value of f is at most
the capacity of (S, T). Moreover, the value of f equals the capacity of (S, T) if and only if f
saturates every edge in the cut.

2. Max-flow min-cut theorem. The value of maximum (value of) (s, t)-flow equals the capacity of the
minimum (s, t)-cut. It may be computed in O(V E) time.

3. Flow Decomposition Theorem. Every feasible (s, t)-flow f can be written as a weighted sum of
directed (s, t)-paths and directed cycles. Moreover, a directed edge (u, v) appears in at least one
of these paths or cycles if and only if f(u, v) > 0, and the total number of paths and cycles is at
most the number of edges in the network. It may be computed in O(V E) time.

21

Algorithm 3 DYNAMICMINCUT(G, σ0, ε)

1: Input: Graph G with unlabeled nodes, query parameter σ0, error tolerance ε.
2: Output: Piecewise constant interval containing σ0.
3: Use a max-flow algorithm to compute max-flow and min-cut C for G(σ), σh = σ0.
4: Compute the flow decomposition of the max-flow, F .
5: Let fe be a unique path flow (i.e. along an st-path, Definition 27) through e ∈ C.
6: Say e is augmentable if flow fe can be increased by amount we(σ)− we(σh) for some σ > σh.
e acts as the bottleneck for increasing the flow fe.

7: Initialize S to C (a set of saturated edges).
8: while All edges e ∈ S are augmentable, do
9: Increase flow in all fe for e ∈ S to keep e saturated.

10: Find first saturating edge e1 /∈ S for some fe′ (e′ ∈ S) and σ′ to within ε.
11: Reassociate flow through e1, e

′ as fe1 . fe′ will now be along an alternate path in the residual
capacities graph (Definition 28).

12: Add e1 to S.
13: Set σh = σ′.
14: Similarly find the start of the interval σl by detecting saturation while reducing flows.
15: return [σl, σh].

We now have the machinery to prove the correctness and analyze the time complexity of our Algorithm
3.

Theorem 9. For the each objective in Table 1 and exponential kernel (Definition 1c), there exists an
algorithm which outputs the interval containing σ in time Õ(n4).

Proof. Mincut objective. First, we briefly recall the set up of the mincut objective. Let L1 and L2

denote the labeled points L of different classes. To obtain the labels for U , we seek the smallest cut
(V1, V \ V1) of G separating the nodes in L1 and L2. To frame as s, t-cut we can augment the data
graph with nodes s, t, and add infinite capacity edges to nodes in L1 and L2 respectively. If Li ⊆ V1,
label exactly the nodes in V1 with label i. The loss function, l(σ) gives the fraction of labels this
procedure gets right for the unlabeled set U . We now discuss the correctness of Algorithm 3.

If the min-cut is the same for two values of σ, then so is prediction on each point and thus the loss
function l(σ). So we seek the smallest amount of change in σ so that the mincut changes. Our
semi-bandit feedback set is given by the intervals for which the min-cut is fixed. Consider a fixed
value of σ = σ0 and the corresponding graph G(σ0). We can compute the max-flow on G(σ0), and
simultaneously obtain a min-cut (V1, V \ V1) in time O(V E) = O(n3). All the edges in ∂V1 are
saturated by the flow. Obtain the flow decomposition of the max-flow (again O(V E) = O(n3)). For
each ei ∈ ∂V1, let fi be a path flow through ei from the flow decomposition (cycle flows cannot
saturate, or even pass through, ei since it is on the min-cut). Note that the fi are distinct due to the
max-flow min-cut theorem. Now as σ is increased, we increment each fi by the additional capacity in
the corresponding edge ei, until an edge e′ in E \ ∂V1 saturates (at a faster rate than the flow through
it). This can be detected by expressing fi as a function of σ for each fi and computing the zero of an
exponential polynomial capturing the change in residual capacity of any edge e /∈ ∂V1. Let fj be one
of the path flows through e′. We reassign this flow to e′ (it will now increase with e′ as its bottleneck)
and find an alternate path avoiding this edge through non-saturated edges and ej (if one exists) along
which we send the new fj . We now increment all the path flows as before keeping their bottleneck
edges saturated. The procedure stops when we can no longer find an alternate path for some ej . But
this means we must have a new cut with the saturated edges, and therefore a new min-cut. This gives
us a new critical value of σ, and the desired upper end for the feedback interval. Obtaining the lower
end is possible by a symmetric procedure that decreases the path flows while keeping edges saturated.

We remark that our procedure differs from the well-known algorithms for obtaining min-cuts in a
static graph. The greedy procedures for static graphs need directed edges (u, v) and (v, u) in the
residual graph, and find paths through unsaturated edges through this graph to increase the flow,
and cannot work with monotonically increasing path flows. We however start with a max flow and
maintain the invariant that our flow equals some cut size throughout.

22

Finally note that each time we perform step 9 of the algorithm, a new saturated edge stays saturated
for all further σ until the new cut is found. So we can do this at most O(n2) times. In each loop we
need to obtain the saturation condition for O(n) edges corresponding to one new path flow. Thus the
entire procedure takesO(n3K(n, ε)) time, whereK(n, ε) is the complexity of solving an exponential
equation φ(y) =

∑n
i=1 aiy

bi = 0 to within error ε. For example, K(n, ε) is O(n log log 1
ε) for the

Newton’s method.

Other objectives. For continuous objectives, we seek a solution fu(σ) = 1
2 for some u ∈ U closest

to given σ0. We can use gradient descent or Newton’s method with σ0 as the starting point. For the
harmonic objective the gradient may be computed as in Appendix C.5.2.

We remind the reader that a remarkable property of finding the min-cuts dynamically in our setting is
an interesting “hybrid" combinatorial and continuous set-up, which may be of independent interest.
A similar dynamic, but purely combinatorial, setting for recomputing flows efficiently online over a
discrete graph sequence has been studied in Altner and Ergun [2008].

C.5.2 Quadratic objective

For completeness we describe how to compute the feedback set for the quadratic objective using
Newton’s method. Running time guarantees are noted in Theorem 9.

Algorithm 4 HARMONICFEEDBACKSET(G, σ0, ε)

1: Input: Graph G with unlabeled nodes, query parameter σ0, error tolerance ε.
2: Output: Piecewise constant interval containing σ0.
3: Let fU = (DUU −WUU)−1WULfL denote the harmonic objective minimizer, where Dij :=

I[i = j]
∑
kWik.

4: for all u ∈ U do
5: Let gu(σ) = (fu(σ)− 1

2)2.
6: σ1 = σ0 − gu(σ0)

g′u(σ0) , where g′u(σ) is given by

∂gu
∂σ

= 2

(
fu(σ)− 1

2

)
∂fu
∂σ

,

∂f

∂σ
= (I − P−1

UU)

(
∂PUU
∂σ

fU −
∂PUL
∂σ

fL

)
,

∂Pij
∂σ

=

∂w(i,j)
∂σ − Pij

∑
k∈L+U

∂w(i,k)
∂σ∑

k∈L+U w(i, k)
,

∂w(i, j)

∂σ
=

2w(i, j)d(i, j)2

σ3
,

where P = D−1W .
7: n = 0
8: while |σn+1 − σn| ≥ ε do
9: n← n+ 1

10: σn+1 = σn − gu(σn)
g′u(σn)

11: σu = σn+1

12: σl = maxu{σu | σu < σ0}, σh = minu{σu | σu > σ0}
13: return [σl, σh].

D Distributional setting

In this appendix we include details of proofs and algorithms from section 5. Recall that we define
the set of loss functions Hr = {lA(G(r),L,U) | 0 ≤ r <∞}, where G(r) is the family of threshold
graphs specified by Definition 1a, andHσ = {lA(G(σ),L,U) | 0 ≤ σ <∞}, where G(σ) is the family
of exponential kernel graphs specified by Definition 1c. We show upper and lower bounds on the
pseudodimension of these function classes below.

23

Theorem 10. The pseudo-dimension ofHr is Θ(log n), where n is number of graph nodes.

Proof. There are at most
(
n
2

)
distinct distances between pairs of data points. As r is increased from

0 to infinity, the graph changes only when r corresponds to one of these distances, and so at most(
n
2

)
+ 1 distinct graphs may be obtained.

Thus given set S of m instances (A(i), L(i)), we can partition the real line into O(mn2) intervals
such that all values of r behave identically for all instances within any fixed interval. Since A and
therefore its loss is deterministic once G is fixed, the loss function is a piecewise constant with only
O(n2) pieces. Each piece can have a witness above or below it as r is varied for the corresponding
interval, and so the binary labeling of S is fixed in that interval. The pseudo-dimension m satisfies
2m ≤ O(mn2) and is therefore O(log n).

To establish the lower bound, we first prove the following useful statement which helps us construct
general examples with desirable properties. In particular, the following lemma guarantees that given
a sequence of values of r of size O(n), it is possible to construct an instance S of partially labeled
points such that the cost of the output of algorithm A(G(r), L) on V as a function of r oscillates
above and below some threshold as r moves along the sequence of intervals (ri, ri+1). Given this
powerful guarantee, we can then pick appropriate sequences of r and generate a sample set of
Ω(log n) instances that correspond to cost functions that oscillate in a manner that helps us pick Ω(n)
values of r that shatters the samples.

Lemma 29. Given integer n > 5 and a sequence of n′ r’s such that 1 < r1 < r2 < · · · < rn′ < 2
and n′ ≤ n−5, there exists a real valued witnessw > 0 and a labeling instance S of partially labeled
n points, such that for 0 ≤ i ≤ n′/2 − 1, lA(G(r),L) < w for r ∈ (r2i, r2i+1), and lA(G(r),L) > w
for r ∈ (r2i+1, r2i+2) (where r0 and rn′+1 correspond to immediate left and right neighborhoods
respectively of r1 and rn′).

Proof. We first present a sketch of the construction. We will use binary labels a and b. We further
have three points labeled a (namely a1, a2, a3) and two points labeled b (say b1, b2). At some intial
r = r0, all the like-labeled points are connected in G(r0) and all the unlabeled points (namely
u1, . . . , un′) are connected to a1 as shown in Figure 4a. The algorithm A(G(r), L) labels everything
a and gets exactly half the labels right. As r is increased to ri, ui gets connected to b1 and b2 (Figure
4b). If the sequence ui is alternately labeled, the loss increases and decreases alternately as all the
predicted labels turn to b as r is increased to rn′ . Further increasing r may connect all the unlabeled
points with true label a to a2 and a3 (Figure 4c), although this is not crucial to our argument. The
rest of the proof gives concrete values of r and verifies that the construction is indeed feasible.

We will ensure all the pairwise distances are between 1 and 2, so that triangle inequality is always
satisfied. It may also be readily verified that O(log n) dimensions suffice for our construction
to exist. We start by defining some useful constants. We pick r−, r+, rmax ∈ (1, 2) such that
r− < r1 < · · · < rn′ < r+ < rmax,

r− =
1 + r1

2
,

r+ = 1 +
rn′

2
,

rmax = 1 +
r+

2
.

We will now specify the distances of the labeled points. The points with the same label are close
together and away from the oppositely labeled points.

d(ai, aj) = r−, 1 ≤ i < j ≤ 3,

d(b1, b2) = r−,

d(ai, bj) = rmax, 1 ≤ i ≤ 3, 1 ≤ j ≤ 2.

Further, the unlabeled points are located as follows
d(a1, uk) = r−, 1 ≤ k ≤ n′,
d(bi, uk) = rk, 1 ≤ k ≤ n′, 1 ≤ i ≤ 2,

d(ai, uk) = r+, 1 ≤ k ≤ n′, 2 ≤ i ≤ 3,

d(ui, uj) = rmax, 1 ≤ i < j ≤ n′.

24

(a) G(r−) (b) G(ri) (c) G(r+)

Figure 4: Graphs G(r) as r is varied, for lower bound construction for pseudodimension ofHr.

That is, all unknown points are closest to a1, followed by bi’s, remaining ai’s and other ui’s in order.
Further let the true labels of the unlabeled nodes be alternating with the index, i.e. uk is a if and only
if k is even.

We will now compute the loss for the soft labeling algorithm A(G(r), L) of Zhu et al. [2003] as r
varies from r− to r+, starting with r = r0 = r−. We note that our construction also works for other
algorithms as well, for example the min-cut based approach of Blum and Chawla [2001], but omit
the details.

For the graph G(r−), A(G,L) labels each unknown node as a since each unknown point is a leaf
node connected to a1. Indeed if f(a1) = 1, the quadratic objective attains the minimum of 0 for
exactly f(uk) = 1 for each 1 ≤ k ≤ n′. This results in half the labels in the dataset being incorrectly
labeled since we stipulate that half the unknown labels are of each category. This results in loss
lA(G(r−),L) =: lhigh say.

Now as r is increased to r1, the edges (bi, u1), i = 1, 2 are added with bi labeled as f(bi) = 0. This
results in a fractional label of 1

3 for f(u1) while f(uk) = 1 for k 6= 1. Indeed the terms involving
f(u1) in the objective are (1− f(u1))2 + 2f(u1)2, which is minimized at 1

3 . Since u1 has true label
b, this results in a slightly smaller loss of lA(G(r1),L) =: llow. This happens when A uses rounding, or
in expectation if A uses randomized prediction with probability f(u).

At the next critical point r2, u2 gets connected to bi’s and gets incorrectly classified as b. This
increases the loss again to lhigh. The loss function thus alternates as r is varied through the specified
values, between lhigh and llow. We therefore set the witness w to something in between.

w =
llow + lhigh

2
.

Continued Proof of Theorem 10 We will now use Lemma 29 to prove our lower bound. Arbitarily
choose n′ = n − 5 (assumed to be a power of 2 just for convenient presentation) real numbers
r[000...01] < r[000...10] < · · · < r[111...11] in (1, 2). The indices are increasing binary numbers of
length m = log n′. We create labeling instances using Lemma 29 which can be shattered by these
r values. Instance Si = (Gi, Li) corresponds to fluctuation of i-th bit bi in our rb sequence, where
b = (b1, . . . , bm) ∈ {0, 1}m, i.e., we apply the lemma by using a subset of the rb values which
correspond to the bit flips in the i-th binary digit. For example, S1 just needs a single bit flip (at
r[100...00]). The lemma gives us both the instances and corresponding witnesses wi.

This construction ensures sign(lA(Gi(rb),Li) − wi) = bi, i.e. the set of instances is shattered. Thus
the pseudodimension is at least log(n− 5) = Ω(log n).

Theorem 11. The pseudo-dimension ofHσ is Θ(n).

Proof. The upper bound trivially follows by noting that we have n vertices and therefore only 2n

possible labelings in an instance. Thus, for m problems, 2m ≤ m2n gives m = O(n). The rest of
the proof deals with the lower bound.

25

Figure 5: The base case of our inductive construction.

The plan for the proof is to first construct a graph where the edge weights are carefully selected, so
that we have 2N oscillations in the loss function with σ for N = Ω(n). Then we use this construction
to create Θ(n) instances, each having a subset of the oscillations so that each interval leads to a
unique labeling of the instances, for a total of 2N labelings, which would imply pseudodimension is
Ω(n). We will present our discussion in terms of the min-cut objective, for simplicity of presentation.

Graph construction: First a quick rough overview. We start with a pair of labeled nodes of each
class, and a pair of unlabeled nodes which may be assigned either label depending on σ. We then
build the graph in N = (n− 4)/2 stages, adding two new nodes at each step with carefully chosen
distances from existing nodes. Before adding the ith pair xi, yi of nodes, there will be 2i−1 intervals
of σ such that the intervals correspond to distinct min-cuts which result in all possible labelings of
{x1, . . . , xi−1}. Moreover, yj will be labeled differently from xj in each of these intervals. The
edges to the new nodes will ensure that the cuts that differ exactly in xi will divide each of these
intervals giving us 2i intervals where distinct mincuts give all labelings of {x1, . . . , xi}, and allowing
an inductive proof. The challenge is that we only get to set O(i) edges but seek properties about 2i

cuts, so we must do this carefully.

Let ς = e−1/σ2

. Notice ς ∈ (0, 1), and bijectively corresponds to σ ∈ (0,∞) (due to monotonicity)
and therefore it suffices to specify intervals of ς corresponding to different labelings. Further we can
specify distances d(u, v) between pairs of nodes u, v by specifying the squared distance d(u, v)2. For
the remainder of this proof we will refer to δ(u, v) = d(u, v)2 by distance and set values in [1.5, 1.6].
Consequently, d(u, v) ∈ (1.22, 1.27) and therefore the triangle inequality is always satisfied. Notice
that with this notation, the graph weights will be w(u, v) = ςδ(u,v).

We now provide details of the construction. We have four labeled nodes as follows. a1, a2 are labeled
0 and are collectively denoted by A = {a1, a2}, similarly b1, b2 are labeled 1 and B = {b1, b2}.
Note that edges between these nodes are on all or no cut separating A,B, we set the distances to 1.6
and call this graph G0. We further add unlabeled nodes in pairs (xj , yj) in rounds 1 ≤ j ≤ N . In
round i, we construct graph Gi by adding nodes (xi, yi) to Gi−1. The distances are set to ensure
that for GN there are 2N unique values of ς corresponding to distinct min-cuts, each giving a unique
labeling for {x1, . . . , xn} (and the complementary labeling for {y1, . . . , yn}). Moreover subsets of
these points also obtain the unique labeling for {x1, . . . , xi} for each Gi.

We set the distances in round 1 such that there are intervals I0 = (ς0, ς
′
0) ⊂ (0, 1) and I1 = (ς1, ς

′
1) ⊂

(0, 1) such that ς ′0 < ς1 and (x1, y1) are labeled (l, 1 − l) in interval Il. In general, there will
be 2i−1 intervals at the end of round i − 1, any interval I(i−1) will be split into disjoint intervals
I

(i)
0 , I

(i)
1 ⊂ I(i−1) where labelings of {x1, . . . , xi−1} match that of I(i−1) and (xi, yi) are labeled

(l, 1− l) in I(i)
l .

26

Figure 6: The inductive step in our lower bound construction for pseudodimension of Hσ. The
min-cut Cb is extended to two new min-cuts (depicted by dashed lines) for which labels of xi, yi are
flipped, at controlled parameter intervals.

Now we set up the edges to achieve these properties. In round 1, we set the distances as follows.

δ(x1, a1) = δ(y1, b2) = 1.5,

δ(x1, a2) = δ(y1, b1) = δ(x1, y1) = 1.5 + 12Nε,

δ(x1, b1) = δ(x1, b2) = δ(y1, a1) = δ(y1, a2) = 1.5 + ε.

where ε is a small positive quantity such that the largest distance 1.5 + 12Nε < 1.6. It is straight-
forward to verify that for I0 = (0, 1

2

1/ε
) we have that (x1, y1) are labeled (0, 1) by determining the

values of ς for which the corresponding cut is the min-cut (Figure 5). Indeed, we seek ς such that
wC01 = w(x1, b1) + w(x1, b2) + w(x1, y1) + w(y1, a1) + w(y1, a2) satisfies

wC01 ≤ wC00 = w(x1, b1) + w(x1, b2) + w(y1, b1) + w(y1, b2),

wC01 ≤ wC11 = w(x1, a1) + w(x1, a2) + w(y1, a1) + w(y1, a2),

wC01 ≤ wC10 = w(x1, a1) + w(x1, a2) + w(x1, y1) + w(y1, b1) + w(y1, b2),

which simultaneously hold for ς < 1
2

1/ε.

Moreover, we can similarly conclude that (x1, y1) are labeled (1, 0) for the interval I1 = (ς1, ς
′
1)

where ς1 < ς ′1 are given by the two positive roots of the equation

1− 2ςε + 2ς12Nε = 0.

We now consider the inductive step, to set the distances and obtain an inductive proof of the claim
above. In round i, the distances are as specified.

δ(xi, a1) = δ(yi, b2) = 1.5,

δ(xi, a2) = δ(yi, b1) = δ(xi, yi) = 1.5 + 12Nε,

δ(xi, b1) = δ(xi, b2) = δ(yi, a1) = δ(yi, a2) = 1.5 + ε,

δ(xi, yj) = δ(yi, xj) = 1.5 + 6(2j − 1)ε (1 ≤ j ≤ i− 1),

δ(xi, xj) = δ(yi, yj) = 1.5 + 12jε (1 ≤ j ≤ i− 1).

We denote the (inductively hypothesized) 2i−1 ς-intervals at the end of round i− 1 by I(i−1)
b , where

b = {b(1), . . . , b(i−1)} ∈ {0, 1}i−1 indicates the labels of xj , j ∈ [i− 1] in I(i−1)
b . Min-cuts from

round i− 1 extend to min-cuts of round i depending on how the edges incident on (xi, yi) are set
(Figure 6). It suffices to consider only those min-cuts where xj and yj have opposite labels for each

27

j. Consider an arbitrary such min-cut Cb = (Ab, Bb) of Gi−1 which corresponds to the interval
I

(i−1)
b , that is Ab = {xj | b(j) = 0} ∪ {yj | b(j) = 1} and Bb contains the remaining unlabeled

nodes of Gi−1. It extends to C[b 0] and C[b 1] for ς ∈ I(i−1)
b satisfying, respectively,

Eb,0(ς) := 1− 2ςε + F (Cb; ς) > 0,

Eb,1(ς) := 1− 2ςε + 2ς12Nε + F (Cb; ς) < 0,

where F (Cb; ς) =
∑
z∈Ab

ςδ(xi,z) −
∑
z∈Bb

ςδ(xi,z) =
∑
z∈Bb

ςδ(yi,z) −
∑
z∈Ab

ςδ(yi,z). If we

show that the solutions of the above inequations have disjoint non-empty intersections with ς ∈ I(i−1)
b ,

our induction step is complete. We will use an indirect approach for this.

For 1 ≤ i ≤ N , given b = {b(1), . . . , b(i−1)} ∈ {0, 1}i−1, let Eb,0 and Eb,1 denote the expressions
(exponential polynomials in ς) in round i which determine labels of (xi, yi), in the case where for all
1 ≤ j < i, xj is labeled b(j) (and let Eφ,0, Eφ,1 denote the expressions for round 1). Let ςb,i ∈ (0, 1)
denote the smallest solution to Eb,i = 0. Then we need to show the ςb,i’s are well-defined and follow
a specific ordering. This ordering is completely specified by two conditions:

(i) ς[b 0],1 < ς[b],0 < ς[b],1 < ς[b 1],0, and

(ii) ς[b 0 c],1 < ς[b 1 d],0

for all b, c,d ∈ ∪i<N{0, 1}i and |c| = |d|.

First we make a quick observation that all ςb,i’s are well-defined and less than (3/4)1/ε. To do

this, it will suffice to note that Eb,i(0) = 1 and Eb,i(
3
4

1/ε
) < 0 for all b, i, since the functions are

continuous in (0, 3
4

1/ε
). This holds because

Eb,0

(
3

4

1/ε
)
< Eb,1

(
3

4

1/ε
)

= 1− 3

2
+

(
3

4

)12N

+ F

(
Cb;

3

4

1/ε
)

≤ −1

2
+

(
3

4

)12N

+

|b|∑
j=1

(
3

4

)6j
(

1−
(

3

4

)6j
)

< −1

2
+

N∑
j=1

(
3

4

)6j

< 0

Let’s now consider condition (i). We begin by showing ς[b],0 < ς[b],1 for any b. The exponential
polynomials Eb,0 and Eb,1 both evaluate to 1 for ς = 0 (since |Ab| = |Bb| = |b|) and decrease
monotonically (verified by elementary calculus) till their respective smallest zeros ς[b],0, ς[b],1. But
then Eb,1(ς[b],0) = 2(ς[b],0)12Nε > 0, which implies ς[b],0 < ς[b],1. Now, to show ς[b 0],1 < ς[b],0,
note that E[b 0],1(ς)−E[b],0(ς) = 2ς12Nε+ ς12iε− ς(12i−6)ε = ς(12i−6)ε(2ς(12(N−i)+6)ε+ ς6ε− 1)

where 1 ≤ i = |b|+ 1 < N . Since ς[b],0 <
3
4

1/ε, it follows that E[b 0],1(ς[b],0) < 0, which implies
ς[b 0],1 < ς[b],0. Similarly, it is readily verified that ς[b],1 < ς[b 1],0, establishing (i).

Finally, to show (ii), note that E[b 0 c],1(ς) − E[b 0 d],0(ς) = 2ς12Nε + ς12iε − ς(12i−6)ε +

ς12iε(F (Cc; ς) − F (Cd; ς)) = ς(12i−6)ε(2ς(12(N−i)+6)ε + ς6ε − 1 + ς6ε(F (Cc; ς) − F (Cd; ς))).
Again, similar to above, we use ς[b 0 d],0 <

3
4

1/ε in this expression to get E[b 0 c],1(ς[b 0 d],0) < 0.
Since the exponential polynomials decay monotonically with ς till their first roots, (ii) follows.

Problem instances: We will now show the graph instances and witnesses to establish the pseudodi-
mension bound. Our graphs will be Gi from the above construction (padded appropriately such that
the min-cut intervals do not change, if we insist each instance has exactly n nodes), and the shattering
family σb (b = (b1, . . . , bN) ∈ {0, 1}N) will be 2N values of σ corresponding to the 2N intervals of
ς with distinct min-cuts in GN described above. To obtain the witnesses, we set the labels so that
only the last pair of nodes (xi, yi) have different labels (i.e. labels are same for all (xj , yj), j < i)

28

Figure 7: Relative positions of critical values of the parameter ς = e−1/σ2

.

and therefore the loss function oscillates 2i times as (xi, yi) are correctly and incorrectly labeled
in alternating intervals. The intervals of successive Gi are nested precisely so that σb shatter the
instances for the above labelings/witnesses. Thus, we have shown that the pseudodimension is
Ω(N) = Ω((n− 4)/2) = Ω(n).

E Further experiments

We include plots for variation of loss function with graph hyperparameters r, σ for unweighted graphs
G(r) and weighted graphs G(σ) for single instances of datasets drawn as described in Section 6. We
examine the full variation of performance of graph-based semi-supervised learning for all possible
graphs G(r) (rmin < r < rmax) and G(σ) for σ ∈ [0, 10] (Figures 8, 9).

(a) MNIST (b) Omniglot (c) CIFAR-10

Figure 8: Loss for different unweighted graphs as a function of the threshold r.

(a) MNIST (b) Omniglot (c) CIFAR-10

Figure 9: Loss for different weighted graphs as a function of the parameter σ.

29

	Definitions from previous work
	Motivation for data-driven design
	Dispersion and Online learning
	Dispersion for threshold graphs
	A general tool for analyzing dispersion
	Dispersion for roots of exponential polynomials
	Learning several metrics simultaneously
	Semi-bandit efficient algorithms
	Min-cut objective
	Quadratic objective

	Distributional setting
	Further experiments

