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1. Introduction 
 Continual learning on edge demands energy-
efficient hardware capable of dynamic 
adaptation through few-shot data acquisition, 
presenting fundamental challenges to 
conventional von Neumann architectures. This 
work addresses this imperative by proposing an 
in-memory computing architecture utilizing our 
customised dual-gate back-end-of-line (BEOL) 
Ferroelectric Field-Effect Transistors (FeFETs). 
Integrated with state-of-the-art subnet systems, 
our computation architecture combines energy-
efficient MAC operation with concurrent subnet 
masking for rapid and resource-efficient 
continual learning. A single 400×100 FeFET 
crossbar array supports simultaneous MAC and 
masking operation, achieving at least 2.42× 
improvement in energy efficiency. Leveraging 
this architecture, we achieve 90.6% average 
accuracy over 10 incremental tasks using the 
Permuted-MNIST (PMNIST) benchmark dataset, 
comparable to GPU baselines at 91.9%. With 
model size scaling, our architecture consistently 
demonstrates at least 1.39× area efficiency and at 
least 2.13× faster computation speed compared 
to state-of-the-art approaches. These results 
underscore the critical role of unconventional 
computing architectures in overcoming the 
energy, latency, and scalability barriers, and 
thereby advancing hardware-realizable 
continual learning for edge intelligence. 
2. Methodology 
2.1 Dual-gate Ferroelectric Field-Effect Transistor 
Here we introduce a dual-gate Field-Effect 
Transistor (DG-FeFET) with Ferroelectric gate 
insulator (HZO) at the top side of channel 
material and normal high-k (HfO) at the bottom 
side. The fabrication process flow is shown in 
Fig.1. Our DG-FeFET features top of the class 
memory window of 2.1V, high on/off ratio of 106 
without hysteresis, an on current of 10 μA/μm at 
drain voltage of 0.1V, and long retention of 104s 
as shown in Fig.2(a). Most importantly, the top 
and bottom gate can work independently 
through the same channel to support MAC and 
masking operation simultaneously. Fig.2(b) 
demonstrates highly responsive channel 

conductance with gate voltage control, 
providing effective mask control.  

 
Fig.1: Structure of Dual-gate FeFET device [1]. 

 
    Fig.2: Id-Vg of TG-FeFET and BG-FET. 

2.2 DG-FeFETs Crossbar Array Architecture 

 
Fig.3: FeFET crossbar array architecture. 

As shown in Fig.3, each computing element in 
the crossbar array comprises a single DG-FeFET. 
The top gate performs compute-in-memory (CIM)  
like [2], [3] whereas the bottom gate serves as the 
binary subnetwork mask M that disables 
computation for weights not used during 
inference following 𝑦 = 𝑀 ⊙ 𝑊 × 𝑋 [4]. The 
overall workflow is illustrated in Fig.4. 

 
Fig.4: Flowchart of FeFET crossbar array. 
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2.3 Experimental Setup 
Experiments were conducted on a consistent 
two-layered subnetwork-based deep neural 
network (DNN) with a 400-100-10 architecture 
using the PMNIST dataset [5]. In our continual 
learning model, each permuted dataset is 
learned incrementally with a dedicated 
subnetwork mask before the inference process. 
A total of 5 epochs and 20% subnetwork mask 
sparsity are used throughout the evaluation. 
3. Results and discussion 
3.1 Graphic Processing Unit (GPU) vs DG-FeFET 
By encoding input signals as analog voltages and 
representing weights as the conductance of 
FeFETs, our CIM approach overcomes the Von-
Neumann bottleneck and effectively increases 
information density compared to the digital 
counterparts in conventional GPU platforms. As 
shown in Table 1, this leads to more than 30× 
improvement in TOPS/W. 

Table 1: Benchmark between GPU and our work  
(*: estimated value based on energy efficiency). 

Metric GPU [6] This work 
Average accuracy 90.6% 91.9% 

Computation time (s) 3.2×10-5* 2.47×10-4 
Energy (J) 1.57×10-4* 3.75×10-7 
TOPS/W 10 518 

Leveraging our DG-FeFET memory window, 
high on-off ratio, and long retention, our array 
achieved an average accuracy of 90.6% on the 
PMNIST dataset (derived based on Fig.5), closely 
matching the 91.9% accuracy obtained with a 
conventional GPU-based implementation. We 
achieve an excellent 518 TOPs/W (Appendix A), 
~30× of conventional GPU implementation, 
through the integration of weight masking at the 
bottom gate. This approach eliminates the need 
for additional switching transistors and separate 
dot product computations.  

 
Fig.5: Prediction accuracy of each PMNIST task inferred 

once a new task is introduced. 
3.2 Evaluation Against State-Of-The-Art CIM 
Compared to other state-of-the-art FeFET-based 

CIM architecture with an extra switch transistor 
for mask control, our DG-FeFET approach 
integrates mask control and computation in a 
single transistor. Table 2 highlights the 
characteristics of our DG-FeFET and 1T1FeFET.  

Table 2: Device parameters for DG-FeFET and TG-FeFET.  

Devices 
Max Cond- 

uctance 
Min Cond- 

uctance Size (W/L) Off current 

DG FeFET 1×10-12 5×10-6 500/70 nm 1×10-13 

TG FeFET 4.5×10-11 4.5×10-5 500/40nm 2×10-12 

 
Fig.6: Comparison of (a) computation speed, (b) energy 
consumption, (c) array area, and (d) energy efficiency 

between 1T1FeFET and DG-FeFET [7]. 
Despite the smaller device size of the additional 
switching transistor, our DG-FeFET design 
reduces the overall footprint by ~30% (Fig.6c). 
By reducing the switching time in subnetwork 
computation, DG-FeFETs also reduce the 
computation time by at least 2.13× (Fig.6a) and 
improve the overall energy efficiency by ~2.5× 
(Fig.6d). 
4. Conclusion 
Through device-algorithm co-design, novel 
algorithms call for unconventional computing to 
maximize performance and efficiency. Our 
demonstration highlights the potential for ~30× 
and ~2.5× improvement in computation and 
energy efficiency to conventional GPU-based 
and 1T1FeFET implementations respectively. 
These results underscore the critical role of 
unconventional computing architectures in 
overcoming the energy, latency, and scalability 
barriers, and thereby advancing hardware-
realizable continual learning for edge 
intelligence.  
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Appendix A.  Energy Efficiency Calculation 
To calculate TOPS/W for 1T1FeFET and DG-
FeFET solutions, total number of operations 
(TOP) are calculated as:  

𝑇𝑂𝑃 = 𝑅𝑜𝑤 × 𝐶𝑜𝑙 + 𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 × 𝑅𝑜𝑤 × 𝐶𝑜𝑙 
, where Row and Col refers to the row and column 
size of CIM array and sparsity is the percentage of 
subnetwork weight used for inference of each 
task (20% in this case). The former term 
calculates the total number of dot products, and 
the latter term finds the total number of MAC for 
sparse matrix multiplication.  
Appendix B.  Computation Time and Energy 
Estimation 
To estimate the computation time for 
subnetwork-based matrix multiplication, the 
total number of computations is estimated 
following Appendix A, and the operating 
frequency of GPU is chosen as 1.5GHz as a typical 
value. Then, the energy is estimated by dividing 
TOPS/W from TOPS estimated. 
Appendix C.  Simulation Platform For 
1T1FeFET and DG-FeFET CIM Array 
In this work, NuroSim is used as a standard open-
source benchmark platform. Characteristics of 
single-gate and double-gate FeFET fabricated are 
updated in NeuroSim to ensure a consistent 
comparison. The additional switch transistor for 
1T1FeFET approach is modelled using standard 
cell in 32 nm technology node. Computation 
speed takes into account of gate capacitance 
switching time of all transistors used in CIM 
array.  
Appendix D.  Hyperparameter For Continual 
Learning Training 

Dataset PMNIST 
Network 

Configuration 
400-100-10 784-256-10 

Batch Size 256 
Weight and Mask 

Initialization 
Kaiming Uniform 

method 
Activation Function ReLU 
Number Of Epochs 5 

Training 
Framework 

Pytorch with SGD 
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