Under review as a conference paper at ICLR 2025

Algorithm 1 BaB-prob
Input: f(x),P,D,n
1 B+ []
- f(x), f(x)7XLN_1] (x),y([,N_l] (x) < ComputeLinearBounds(f, D, &)
© Dt,o> Pu,o < BoundBranchProbability (P, f(x), f(x),XLNfl] (x),yLN‘” (x),9)

2

3

4: B, < <pé,07pu,07 ®>
5. if peo < Pu,o then
6‘
7
8

: MarkPreactivation ToSplitOn(B,)
: Buinsert(B,)
: while True do
9: P;, P, < BoundGlobalProbability(B)
10: if P, > 7 then return TRUE

11: if P, < 7 then return FALSE
122 B = (pe,pu; C) < B.pop()
13: {yj(k) > 07y§k) < 0} + GenerateNewConstraints(B)

14: forc; € {y](k) > O,y;k) <0} do

15: Ci+CuU {Cz}

16: f,(x), ﬁ(x),XEN*H (x),yEN_l] (x) < ComputeLinearBounds(f,D,C;)

17: Pe,is Pu,i < BoundBranchProbability(P, f (x), fi(x),yEN_l] (x),yENfl] (x),C;)
18: B; < (p1,is Pu,is Ci) - -

19: if p; < pu,; then

20: MarkPreactivation ToSplitOn(B;)

21: B.insert(B;)

A DETAILED FRAMEWORK OF BAB-PROB

The pseudocode of BaB-prob is shown in Algorithm [I] During initialization, B is created to main-
tain all candidate branches (Line [I). BaB-prob applies linear bound propagation over D under
no constraint to compute linear bounds for f and y!N=1, yielding f (x), fo(x) and yV 1 (x),
_[N—1]

Yo ' (x), such that
io(x) < f(x) < fo(x), Vx € D, (10a)
Y) <y (x) <y (), ¥x €D, ke [N 1], (10b)

(Line[2). BaB-prob then applies Equation (@) to compute the probability bounds for P (f(X) > 0),
obtaining the lower bound py, and the upper bound p, ,, and creates the root branch B, =
(Pe,0, Pu,0, @) (Line . Before inserting B, into B, the preactivation in B, to be split on is
first identified (though not split immediately) (Line [5}j6). This strategy reduces memory usage for
BaB+BaBSR-prob, since the method relies on the linear bounds to choose the preactivation to split
on. By marking the preactivation at this stage, we can discard the linear bound information before
inserting B, into B. Besides, BaB-prob only performs the identification if (p,, — pe) is positive. At
the end of initialization, B, is inserted into B (Line[7).

At each iteration, BaB-prob first computes the global probability bounds for P (f(X) > 0):

Pi= Y. p, Pu= Y. pu (11)

(pe,pu,C)EB (pe,pu,C)EB

(Line @]) If the current global probability bounds are already enough to make a certification, BaB-
prob terminates and make the corresponding certification (Line[I0}[11). Otherwise, BaB-prob pops
the branch B = (py, py,C) with the largest (p, — p¢) from B (Line and generates the two
new constraints on the identified preactivation (Line [I3)). For each new constraint ¢;, BaB-prob
generates a new set of constraints C; = CU{¢; } (Line . BaB-prob then applies linear bounds
propagation over D under the constraints in C; to compute linear bounds for f and y[V =1, yielding

12

Under review as a conference paper at ICLR 2025

£, (x), filx)andy —(x),)"E U such that
[.(x) < f(x) < filx), Vx € D, C; satisfied, (12a)
y(k)() < yP(x) < yM(x), vx € D, Y satisfied, k € [V — 1], (12b)

(Line [16). Then, it uses Equation (@) to compute the probability bounds for P (f(X) > 0, C;),
obtaining p, ; and p,, ;. Same as the initialization, BaB-prob identifies the preactivation to split on
for B; = (ps.s, Pu,i,Ci) in advance (Line|19{20) and then inserts B; into B.

B PROOF FOR THEORETICAL RESULTS

Lemma 1. Let C = {yk"’ > 0,4 € [s], y;-”,f € [s+ 1,t]}. Assume C can be decomposed by

e — {y;k{; > 0,0 [si), yF) < 0,0 s, +1, tk]} ke [N -1]. (13)

Let and f(x), f(x), yN=Y(x), yV =1 (x) be the linear bounds for f and y'¥ =1 obtained by linear
bound propagation under the constraints of C. For k € [N — 1], let

e ={x €Dy, (x) 20,0 € [si], i} (x) < 0,0 €[5y + Lt}

Yjpe \ X
Qg’f) _ {X D y(_k) (x) > 0,0 € [si], ?71('k,)z(x) < 0,0 € [s;+ 1,tk]}, (14)

=1 _(k
e = {xeD: g0 20,0 5], 5P (0 < 0,0 € [si+ 1,1}
Then, forall k € [N — 1]

k k k
e e ced, (15)
r=1 r=1 r=1
and,
N—-1

(ﬂ c@”)) N{xeD: f(x) >0l (16)

Proof. We first prove Equation (I3)) by induction.

By Equation (3b)),
YV (x) <yP(x) <yV(x), v¥xeD. (17)

Therefore, QS) - C:(El) - C_il), implying that Equation holds for k = 1.
Assume Equation (T3] holds for k — 1, we will prove Equation for k.

Vx € ﬂ ; - ﬂk 1 ¢\", Equation (15) holding for k — 1 implies that x € ﬂk Lo i
cl+=11 are satlsﬁed By Equatlon ey

yP (x) <y®(x) <y (x). (18)
By Equation l| and since x € Q;k), it holds that x € C¥). So we have x € ﬂ’:zl C,ir), imply-

ing that (*_, (") C ﬂle . For the second inequality, Vx € ﬂf L ¢, Equation also

holds. Then, also, x € CF). So x € ne_ z ,1mply1ng that (_ Cér) C ﬂlec_y). Thus,
Equation (15| . holds for k. Therefore, Equatlon [15) holds for all k € [N 1].

Using Equation (I3) for K = N — 1, we can prove Equation (I6) similar to how we prove Equa-
tion (T3) from k — 1 to k. 0O

13

Under review as a conference paper at ICLR 2025

Proof of Proposition[I] By Lemma[I](Equation (T6)),
P(f(X)>0,0)>P (i(X) > 0,44(X) > 0,0 € [s], 7/ (X) < 0.0 € [s + 1,t])
—P(PX +q). (19)

Similarly, P (f(X) > 0, C) <P (PX +q). O

Proof of Proposition|2] We assume the constraint on yyf*) inC is yj(-lf*)

proved similarly. Assume that for k € [N — 1], k # k*,

> (), the other case can be

¢ = {yi¥) 20, 0¢ [si], yi), <0, £€ [sk+ 1,40}, (20)
and
) = {yfi) =0, 0 s, ik, <0 Le s+ 1ty 200 @
By Proposition|[T}
f(X) >0,
pe=P | (X) 20, L€ [s], kelN-1] |, (22)
g (X) <0, 0€ [si+1L,t), ke [N—1]
Applying Lemmal[T] (Equation (13)) with k = N — 1,
N-1 N-1
e e (e, (23)
r=1 r=1
therefore,
f(X) >0
P (k)(X)>O € [s], ke[N-1],
T (X) <0, 0€ s+ 1,1, ke[N—1]
f(X)>0
<’<> (X)>O € [si], ke [N -1],
=F (k)
Ui, L(X) <0, L€ [sp+1t], ke[N-—1],
cv-1]
f(X) >0,
=P (C[N*I]) P le:)l(x) >0, £ € [sk), ke[N-1], |civ-1], (24)
T (X) <0, L€ s+ 1), ke[N-1]
By Equation (3a)), we have
()>0
P (X) >0, ¢ € [sg], ke[N-1], |cN-1
g](fZ(X) <0, € sk +1,t), ke[N-1]
f(X)>0
<p| v (X) >0, €€ [si], ke[N—1], |civ-1u]. 25)
g (X) <0, 0€ s+ 1,1, ke[N—1]

14

Under review as a conference paper at ICLR 2025

From Equation (22) (24) (23),
F(X) >0,
pe<P ()R |4 (X) 20, L€ [, ke[N—1),
J5, (X) <0, €€ [s + 1,8, ke [N-1]
f(X) >0,
Yy (X) 20, € [si], ke[N-1],
=P g0 (X) <0, €€ [sp+1,t), ke[N-1],
ciN-1]
F(X) >0,
g(k?[(X) >0, 0 € [si], ke [N —1],

T aM(X) <0, 0 s+ 1,8, ke [N 1],

Ik,

cliv-2]

civ-1]

(26)

Applying the argument of Equation (24)-(26), except that we apply Equation (3b) instead of Equa-
tion (3a) within Equation (23), iteratively to the constrained preactivations in layers N —1,..., k* +

1, we obtain

f(X) >0,
?J(‘f,)z(x) >0, L€ [s], kelk*+1,N—1]
¥ (X) <0, L€ sy +1,t), ek +1,N—1]
(k) .
pe <Py (X) 20, £ [si], k€ [k*]
_(k «
7P (X) <0, £ € [si+1L,1], ke k']
y(x) =0,
C[k*fl]
fX) >0,
70 (X) > 0, £ € [s), kel +1,N—1]
gg.’:)e(X) <0,0€[sp+1,t], ke[k*+1,N—1]
=P (C[k*—l]) Pl . clk* 1)
;" (X) 20, L€ [s], k € [k*]
G (X) <0, L€ s+ 1,1, k€ k)
Y (X) 20
Applying Equation (3b) with k& = k*,
) () <y, (0 < 7 (), vx € D, CF 1 satisfied, £ € [ty],
gﬁ,’f*)(x) < yj(»]f*)(x) < §§If*)(x), vx € D, C*" 1 satisfied.

15

27)

(28a)

(28b)

Under review as a conference paper at ICLR 2025

Thus,
fX)>o,
7y, (X) > 0, € € [si], kelk*+1,N—1]
y P (X) <0, 0 s+ 1,0), ke b +1,N 1] -
g Y (X) 20, £ € [si], k e [k*] ¢
T (X) <0, €€ [sk+ 1,1, k€ [K]
yE(X) =0
f(X) >0,
7 (X) >0, £ € [si], ke kN —1]
yg.’]j?((X) <0,l€ sk +1,t), kelk",N—1] .
=F gS":L (X) >0, £ € [s], ke [k*—1] ¢
7P (X) <0, L€ [se+Lt], ke —1]
yI(X) = 0
f(X) >0,
Ty, (X) >0, €€ [s], ke k", N —1]
Y (X) <0, 0 € [sy+1,t5], ke k", N—1] -
=" ng),z (X) >0, £ € [s], ke [k —1] ¢ : (29)
g (X) <0, 0€ s+ 1 t), ke k-1
y(X) > 0, 717 (X) > 0
From Equation 29,
F(X) >0,
3 (X) 20, £ € [si], ke kN - 1]
) gg,’;)e(X) <0,0€[sp+1,ts], kel N—1] *
pe <P (c[k —11) P S ()0, £ 1), . ol 1)
B (X) <0, 0€ s+ 1,1, kelk —1]
y*(X) >0, i (X) > 0
f(X) >0,
By, (X) 20, € € [si], ke [k*,N—1]
yW (X) <0, L€ s+ 1,1, ke kN —1]
—p [y (X) >0, 0€ s, ke [k —1] _ 30)
T (X) <0, €€ [sk+ 1,1, ke [k —1]
y(X) 2 0, 587 (X) > 0,

Then, again applying the argument of Equation (Z4)-(26), except that Equation (3b) is used instead
of Equation (3a) within Equation (23)), iteratively to the constrained preactivations in layers k* —

16

Under review as a conference paper at ICLR 2025

1,...,1, we obtain
fX) >0,
Gy (X) 2 0, € € [se], ke[N-1]
pe <P '

gg,’z)Z(X) <0,0€[sp+1,t], ke[N—

—_

]
(k%) —(k*)
Y (X) >0, Yjn (X)>0

7 k* —(k*)
FX) >0, % (X) >0, g (X) = 0,

=P (ko) (ko) 3D
y;,"(X) > 0,0 € [s], Y., (X) <0,£€[s+1,1]
On the other hand, from Proposition
b _p (X > 050 =0)
h 7o (X) > 0,0 € [s], ") (X) < 0,0 €[5+ 1,1
Then, from Equation (31) (32),
pu—pe =P J0) >0, 7,7(%) 2 0, 410 (X) <0, (33)
ST \E) 20 e 5] g0 (X) <0,0€ [s+1,1]
O

Proof of Proposition[3] Notice that after BaB-prob splits on a preactivation in B and generates By
and Bs, it holds that

P(B) =P (B1) +P(B2). (34)
Thus, at the beginning each iteration,
P(f(X)>0)= > P(B). (35)
BeB
By Proposition 1}, for all B = (py, p,,C) € B, pe and p,, are lower bounds on P (B). Therefore,
from Equation (35)), P; and P, are lower and upper bounds on P (f(X) > 0). O

Proof of Proposition[] Let f(x), f(x) and ylN=1(x), yiN=1(x) be the linear lower and upper
bounds for f and y! =1 computed by linear bound propagation under the constraints in C. Since
there is no unstable preactivation in B, ino relaxation is performed during the linear bound propa-
gation, the inequalities in Equation (3)) become equalities. Thus, all the inclusions ‘C” in the proof
of Lemma [T become equalities ‘=", and subsequently, the inequality in the proof of Proposition [I]
becomes equality. Therefore, P (B) = py = pa. O

Proof of Proposition[5] We prove Proposition [5|by contradiction. Suppose that BaB-prob does not
terminate in finite time. Since there are only finitely many preactivations, there must exist a point
at which every branch in B contains no unstable preactivation. At that point, by Proposition
all branches have exactly tight probability bounds. Consequently, P, = P,, which implies that
BaB-prob has already terminated — a contradiction. O

Proof of Corollary[l] It follows directly from Proposition [3]and Proposition 5 O

C EXPERIMENTS DETAILS

C.1 ToYy MODELS (SOUNDNESS AND COMPLETENESS CHECK)

Setup. The MLP model has input dimension 5, two hidden FC layers (10 units each), ReLU af-
ter every hidden layer, and a scalar output. The CNN model takes a 1 x 4 x 4 input, has two

17

Under review as a conference paper at ICLR 2025

| MLP model | CNN model

‘ T/T F/T N/F T/F F/F N/F ‘ T/T F/T N/F T/F F/F N/F
PROVEN 4/24 0/24 20124 0/6 0/6 6/6 | 5/25 0/25 20125 0/5 0/5 5/5
PV 24724 024 024 0/6 6/6 0/6 | 25/25 0/25 0/25 0/5 5/5 0/5
SDP 0/24 2424 0124 0/6 6/6 0/6 | 0/25 2525 0/25 0/5 5/5 0/5

BaB-prob-ordered | 24/24 0/24 0/24 0/6 6/6 0/6 | 2525 0/25 025 0/5 5/5 0/5
BaB+BaBSR-prob | 24/24 0/24 0/24 0/6 6/6 0/6 | 2525 0/25 025 0/5 5/5 0/5

Table 3: Results for toy models. Each cell indicates the number of instances where the algorithm’s
declaration (“T” for True, “F” for False, “N” for no declaration) aligns with the ground truth (“T”
or “F”). For example, “T/T” means the ground truth is True and the algorithm declares it as True;
“F/T” means the ground truth is True but the algorithm declares it as False; “N/T” means the ground
truth is True but the algorithm fails to provide a declaration. Similar interpretations apply to the
other entries.

Conv2d layers (3 channels, kernel 3, stride 2), ReLU after convolutions, then flatten + scalar FC. All
weights/biases are i.i.d. N (0,0.25). For each architecture we generate 30 instances, i.e., 30 differ-
ent networks, such that x, = 0 and f(x¢) > 0. Noise is A/(0,0.1I). Because PROVEN, PV and
BaB-prob assume bounded inputs, we truncate the Gaussian to its 99.7 %-confidence ball. We use
batch size of 16384 for both versions of BaB-prob and PV, and split depth (maybe splitting multiple
preactivations at one time) of 1 for this experiment. To verify the soundness and completeness, we
do not set a time limit in this experiment. We use a toy MLP model and a toy CNN model to test the
soundness and completeness of different solvers. We use Save r—ToolboxE] (Sivaramakrishnan
et al[(2024)) to obtain an empirical reference P for P (f(X) > 0) such that the deviation is < 0.1%
with confidence > 1 — 10, We treat the declaration of SaVer—Toolbox as the ground truth.

Results. Table [3| reports the counts of (declared TRUE/FALSE/No-declaration) vs. ground truth.
Both BaB-prob versions and PV match ground truth on all toy problems; PROVEN returns only a
subset (sound but incomplete), and SDP is mixed. It should be noted that this does not indicate that
SDP is unsound, because it does not declare a TRUE problem as FALSE.

C.2 OTHER EXPERIMENT SETUPS

Untrained models. The architecture for the untrained MLP models are same as that for the toy MLP
model with the difference that the number of input features D;, the number of hidden features Dy,
and the number of hidden layers IV}, are not fixed. The architecture for the untrained CNN models
are same as that for the toy CNN model with the difference that the input shape (1, W;, H;) with
W; = H;, the number of hidden channels C},, and the number of hidden layers NV}, are not fixed. The
weights and biases of all layers in the MLP and CNN models are also randomized with Gaussian
distribution A/ (0, 0.25). We test on different combination of (D;, Dy, Nj,) for MLP models and
(W;/H;,Ch, Ny) for CNN models. For each combination, we generated 30 different problems,
each consists of a sample xg = 0 and a randomly generated network f such that f(x¢) > 0. The
noise is zero-mean with diagonal covariance, chosen so that its 99.7%-confidence ball has radius
0.002 for MLP models and 0.01 for CNN models. We use batch size of 4 for BaB-prob and PV,
and split depth of 1 for this experiment.

MNIST and CIFAR-10 models. The MNIST and CIFAR-10 models have similar architecture as
untrained models with the difference that the number of input features (or input shape) is fixed,
the number of output features is 10, and the trained CNN models have a BatchNorm2d layer before
each ReLU layer. We trained MLP models with different combination of (D},, N},) and CNN models
with different combination of (C},, Nj,). The models are trained with cross-entropy loss and Adam
optimizer. The batch size for training is 64. The learning rate is 0.001. We train each model for
20 iterations and use the checkpoint with the lowest loss on validation dataset for verification. For
each model, we randomly selected 30 correctly classified samples from the training set. The noise
is zero-mean with diagonal covariance, chosen so that its 99.7%-confidence ball has radius 0.02
for MNIST models and 0.01 for CIFAR-10 models. The output specification for each sample is
y={yce€ R0 . (e; — ea)Ty > 0}, where e; and e, are the standard basis vectors, ¢ is the index

https://github.com/vigsiv/SaVer-Toolbox

18

https://github.com/vigsiv/SaVer-Toolbox

Under review as a conference paper at ICLR 2025

1.000 1.000
0.995 1 0.995 1
0.990 1 0.990 1
u 0.985 w 0.9851
a | [a) I
O 0.980 O 0.980
W 0.9751 W 0.9751
0.9701 0.9701
0.965 1 0.965 1
0.960 &= ‘ ‘ - : ‘ : 0.960 4 ‘ ‘ : : ‘
107 10~> 10~* 1073 10°2 10~! 10° 107 10~> 10~* 10°3 1072 10~! 10°
1 - confidence 1 - confidence
(a) BaB-prob-ordered (b) BaB+BaBSR-prob

Figure 4: ECDF of confidence for BaB-prob-ordered and BaB+BaBSR-prob.

of the ground-truth label and a # ¢ is a randomly selected attacking label. f(x) €) indicates that
x is not misclassified by index a. We use batch size of 4 for BaB-prob and PV, and split depth of 1
for this experiment.

VNN-COMP 2025 benchmarks. We conducted evaluations on the following benchmark
suites: acasxu_2023, cersyve, cifar100.2024,collins_rul_cnn_2022, cora_2024,
linearizenn 2024, relusplitter,and safenlp_2024. Due to GPU memory limitations,
for cifar100.2024 we evaluated only the medium models. For relusplitter, we tested all
MNIST models but only the oval21 models among the CIFAR-10 models. Models from other bench-
mark datasets were excluded either because they contained layer types not supported by our method
or were too large to fit within GPU memory. For simplicity, we randomly selected one input region
and one output specification from each original problem. The noise distribution is zero-mean with
diagonal covariance, scaled such that its 99.7%-confidence ellipsoid matches the axis-aligned radii
given in the original problem. In terms of solver configuration, we used a batch size of 8 for both
BaB-prob and PV, with a split depth of 2. For the cifar100.2024 benchmark, the batch size
and split depth were set to 1 for BaB-prob, and the batch size was set to 4 for PV. Furthermore,
since the original radii in cifar100.2024 were too small to present a meaningful verification
challenge, we doubled their values.

C.3 SDP EXPERIMENTAL RESULTS
Untrained models. SDP failed to solve any MLP problem within the time limit and ran out of
RAM on the CNN problems.

MNIST and CIFAR-10 models. SDP failed to solve any MLP problem within the time limit and
ran out of RAM on the CNN problems.

VNN-COMP 2025 benchmarks. The SDP solver does not directly support cersyve,
cifarl100.2024, linearizenn_2024, relusplitter (CIFAR-10). Besides, it ran out
of RAM on cora_2024, collins_rul_cnn_2022 and relusplitter (MNIST). On
acasxu-2023 and safenlp_2024, it hit the time limit on all the problems.

C.4 CONFIDENCE OF BAB-PROB

Derivation of confidence

In our experiments, BaB-prob evaluates the per-branch probability in Equation |4/ by Monte Carlo
sampling, using N = 10° i.i.d. samples for each probability it needs to compute. Let P, and P,

be the true global lower and upper probability bounds, and let Py and P, be their empirical values.
When BaB-prob terminates, either P, > n or P, < 7. Then, the following proposition gives the
confidence for the certification.

19

Under review as a conference paper at ICLR 2025

Proposition 6.

N(P, —n)* A
P(Przn)>1l—exp|———F="— |, ifPi=n; (36a)
2Vi + 5(Pr =)
N(n— P,)? R
P(P, <n)>1—exp —% ., ifP, <. (36b)
2V + 5(77]Du)
where
Vi= > pe(1—po), (37a)
(pe,pu,C)EB
Vo= > pu(l—pw). (37b)
(pe,pu,C)EB

Proof. We prove the case of P> 7, and P, < 7 can be proved similarly.

Denote pp = py for B = (py, pu,C) € B. Let pp be the empirical estimation for pp by Monte
Carlo Sampling. Then,

N
g = ~ Z Bi» B.i ~ Bernoulli(pp), (38)

and

Pi=> ps, Pi=> ps (39)

BeB BeB
Consider the estimation error

ZZ (ZB.i — pB)- (40)

BeB i=1

The summands are independent, mean-zero, and bounded in [—%, %] their total variance is

N
Var(ZZ%(Zgl pB)) N2 ZZpB 1-pgB) 7fV1, 41)

BeB i=1 BeB i=1

Applying Bernstein’s inequality with ¢ = P, — 71 (Boucheron et al.| (2013)),

N 162 NEQ
P (Pg — P> 5) < exp <—121) = exp (—2> . 42)
ﬁvl + Wé‘ 2V1 + §€
Therefore,
Ne?
P(P,>n)>1-— _—— 43
o> 1o (2) w
]

The true values of p, and p,, in Equation [37] are not directly accessible, so we use their empirical
results as replacement. In our experiments, if BaB-prob-ordered or BaB+BaBSR-prob produces
a declaration, that is, 15; > nor]5“ < n, but with confidence below 1 — 1074, the algorithm
continues running until the confidence reaches 1—10~% or the time limit is hit. If when the algorithm
terminates with a declaration but with confidence remaining below 1 — 10~%, we still count it a
successful verification. The following results provide a statistical characterization of the achieved
confidence levels.

Confidence results

Figure [] presents the Empirical Cumulative Distribution Function (ECDF) of confidence values
for BaB-prob-ordered and BaB+BaBSR-prob across all successfully verified problems. Both
methods achieve confidence greater than 1 — 10~% in over 99.5% of cases. This demonstrates that,
in practice, the vast majority of problems are certified with very high confidence by both BaB-prob-
ordered and BaB+BaBSR-prob.

20

Under review as a conference paper at ICLR 2025

D LLM USAGE

The authors acknowledge the use of GPT-4 and GPT-5 for polishing the main text.

21

	Introduction
	Preliminaries
	Notation
	Linear Bound Propagation for Deterministic Verification

	BaB-prob
	Overall Framework
	Probability Bounds for Branches
	Splitting Strategies
	Theoretical Results

	Experiments
	Untrained MLP and CNN models
	MNIST and CIFAR-10 models
	Results for VNN-COMP 2025 models

	Conclusions
	Detailed Framework of BaB-prob
	Proof for Theoretical Results
	Experiments Details
	Toy models (soundness and completeness check)
	Other Experiment Setups
	SDP Experimental Results
	Confidence of BaB-prob

	LLM Usage

