
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Algorithm 1 BaB-prob

Input: f(x), P, D, η
1: B ← []

2: f(x), f̄(x), y[N−1]
o

(x), ȳ[N−1]
o (x)← ComputeLinearBounds(f,D,∅)

3: pℓ,o, pu,o ← BoundBranchProbability(P, f(x), f̄(x), y[N−1]
o

(x), ȳ[N−1]
o (x),∅)

4: Bo ← ⟨pℓ,o, pu,o,∅⟩
5: if pℓ,o < pu,o then
6: MarkPreactivationToSplitOn(Bo)

7: B.insert(Bo)
8: while True do
9: Pℓ, Pu ← BoundGlobalProbability(B)

10: if Pℓ ≥ η then return TRUE
11: if Pu < η then return FALSE
12: B = ⟨pℓ, pu, C⟩ ← B.pop()
13:

{
y
(k)
j ≥ 0, y

(k)
j < 0

}
← GenerateNewConstraints(B)

14: for ci ∈
{
y
(k)
j ≥ 0, y

(k)
j < 0

}
do

15: Ci ← C ∪ {ci}
16: f

i
(x), f̄i(x), y[N−1]

i
(x), ȳ[N−1]

i (x)← ComputeLinearBounds(f,D, Ci)
17: pℓ,i, pu,i ← BoundBranchProbability(P, f

i
(x), f̄i(x), y[N−1]

i
(x), ȳ[N−1]

i (x), Ci)
18: Bi ← ⟨pl,i, pu,i, Ci⟩
19: if pl,i < pu,i then
20: MarkPreactivationToSplitOn(Bi)

21: B.insert(Bi)

A DETAILED FRAMEWORK OF BAB-PROB

The pseudocode of BaB-prob is shown in Algorithm 1. During initialization, B is created to main-
tain all candidate branches (Line 1). BaB-prob applies linear bound propagation over D under
no constraint to compute linear bounds for f and y[N−1], yielding f

o
(x), f̄o(x) and y[N−1]

o
(x),

ȳ[N−1]
o (x), such that

f
o
(x) ≤ f(x) ≤ f̄o(x), ∀x ∈ D, (10a)

y(k)
i

(x) ≤ y(k)(x) ≤ ȳ(k)
o (x), ∀x ∈ D, k ∈ [N − 1], (10b)

(Line 2). BaB-prob then applies Equation (4) to compute the probability bounds for P (f(X) > 0),
obtaining the lower bound pℓ,o and the upper bound pu,o, and creates the root branch Bo =
⟨pℓ,o, pu,o,∅⟩ (Line 3-4). Before inserting Bo into B, the preactivation in Bo to be split on is
first identified (though not split immediately) (Line 5-6). This strategy reduces memory usage for
BaB+BaBSR-prob, since the method relies on the linear bounds to choose the preactivation to split
on. By marking the preactivation at this stage, we can discard the linear bound information before
inserting Bo into B. Besides, BaB-prob only performs the identification if (pu − pℓ) is positive. At
the end of initialization, Bo is inserted into B (Line 7).

At each iteration, BaB-prob first computes the global probability bounds for P (f(X) > 0):

Pℓ =
∑

⟨pℓ,pu,C⟩∈B

pℓ, Pu =
∑

⟨pℓ,pu,C⟩∈B

pu, (11)

(Line 9). If the current global probability bounds are already enough to make a certification, BaB-
prob terminates and make the corresponding certification (Line 10-11). Otherwise, BaB-prob pops
the branch B = ⟨pℓ, pu, C⟩ with the largest (pu − pℓ) from B (Line 12) and generates the two
new constraints on the identified preactivation (Line 13). For each new constraint ci, BaB-prob
generates a new set of constraints Ci = C ∪{ci} (Line 14-15). BaB-prob then applies linear bounds
propagation overD under the constraints in Ci to compute linear bounds for f and y[N−1], yielding

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

f
i
(x), f̄i(x) and y[N−1]

i
(x), ȳ[N−1]

i , such that

f
i
(x) ≤ f(x) ≤ f̄i(x), ∀x ∈ D, Ci satisfied, (12a)

y(k)
i

(x) ≤ y(k)(x) ≤ ȳ(k)
i (x), ∀x ∈ D, C[k−1]

i satisfied, k ∈ [N − 1], (12b)

(Line 16). Then, it uses Equation (4) to compute the probability bounds for P (f(X) > 0, Ci),
obtaining pℓ,i and pu,i. Same as the initialization, BaB-prob identifies the preactivation to split on
for Bi = ⟨pℓ,i, pu,i, Ci⟩ in advance (Line 19-20) and then inserts Bi into B.

B PROOF FOR THEORETICAL RESULTS

Lemma 1. Let C =
{
ykℓ
jℓ
≥ 0, ℓ ∈ [s], ykℓ

jℓ
, ℓ ∈ [s+ 1, t]

}
. Assume C can be decomposed by

C(k) =
{
y
(k)
jk,ℓ
≥ 0, ℓ ∈ [sk], y

(k)
jk,ℓ

< 0, ℓ ∈ [sk + 1, tk]
}
, k ∈ [N − 1]. (13)

Let and f(x), f̄(x), y[N−1](x), ȳ[N−1](x) be the linear bounds for f and y[N−1] obtained by linear
bound propagation under the constraints of C. For k ∈ [N − 1], let

C(k)x =
{
x ∈ D : y

(k)
jk,ℓ

(x) ≥ 0, ℓ ∈ [sk], y
(k)
jk,ℓ

(x) < 0, ℓ ∈ [sk + 1, tk]
}
,

C(k)x =
{
x ∈ D : y(k)

jk,ℓ
(x) ≥ 0, ℓ ∈ [sk], ȳ

(k)
jk,ℓ

(x) < 0, ℓ ∈ [sk + 1, tk]
}
,

C̄(k)x =
{
x ∈ D : ȳ

(k)
jk,ℓ

(x) ≥ 0, ℓ ∈ [sk], y
(k)
jk,ℓ

(x) < 0, ℓ ∈ [sk + 1, tk]
}
.

(14)

Then, for all k ∈ [N − 1]
k⋂

r=1

C(r)x ⊆
k⋂

r=1

C(r)x ⊆
k⋂

r=1

C̄(r)x , (15)

and, (N−1⋂
r=1

C(r)x

)
∩ {x ∈ D : f(x) > 0}

⊆
(N−1⋂

r=1

C(r)x

)
∩ {x ∈ D : f(x) > 0}

⊆
(N−1⋂

r=1

C̄(r)x

)
∩ {x ∈ D : f̄(x) > 0}. (16)

Proof. We first prove Equation (15) by induction.

By Equation (3b),
y(1)(x) ≤ y(1)(x) ≤ ȳ(1)(x), ∀x ∈ D. (17)

Therefore, C(1)x ⊆ C(1)x ⊆ C̄(1)x , implying that Equation (15) holds for k = 1.

Assume Equation (15) holds for k − 1, we will prove Equation (15) for k.

∀x ∈
⋂k

r=1 C
(r)
x ⊆

⋂k−1
r=1 C

(r)
x , Equation (15) holding for k − 1 implies that x ∈

⋂k−1
r=1 C

(r)
x , i.e.,

C[k−1] are satisfied. By Equation (3b),

y(k)(x) ≤ y(k)(x) ≤ ȳ(k)(x). (18)

By Equation (18), and since x ∈ C(k)x , it holds that x ∈ C(k)x . So we have x ∈
⋂k

r=1 C
(r)
x , imply-

ing that
⋂k

r=1 C
(r)
x ⊆

⋂k
r=1 C

(r)
x . For the second inequality, ∀x ∈

⋂k
r=1 C

(r)
x , Equation (18) also

holds. Then, also, x ∈ C̄(k)x . So x ∈
⋂k

r=1 C̄
(r)
x , implying that

⋂k
r=1 C

(r)
x ⊆

⋂k
r=1 C̄

(r)
x . Thus,

Equation (15) holds for k. Therefore, Equation (15) holds for all k ∈ [N − 1].

Using Equation (15) for k = N − 1, we can prove Equation (16) similar to how we prove Equa-
tion (15) from k − 1 to k.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Proof of Proposition 1. By Lemma 1 (Equation (16)),

P (f(X) > 0, C) ≥ P
(
f(X) > 0, ykℓ

jℓ
(X) ≥ 0, ℓ ∈ [s], ȳkℓ

jℓ
(X) < 0, ℓ ∈ [s+ 1, t]

)
= P

(
PX+ q

)
. (19)

Similarly, P (f(X) > 0, C) ≤ P
(
P̄X+ q̄

)
.

Proof of Proposition 2. We assume the constraint on y
(k⋆)
j⋆ in C is y(k

⋆)
j⋆ ≥ 0, the other case can be

proved similarly. Assume that for k ∈ [N − 1], k ̸= k⋆,

C(k) =
{
y
(k)
jk,ℓ
≥ 0, ℓ ∈ [sk], y

(k)
jk,ℓ

< 0, ℓ ∈ [sk + 1, tk]
}
, (20)

and
C(k

⋆) =
{
y
(k⋆)
jk⋆,ℓ

≥ 0, ℓ ∈ [sk⋆], y
(k⋆)
jk⋆,ℓ

< 0, ℓ ∈ [sk′ + 1, tk⋆], y
(k⋆)
j⋆ ≥ 0

}
. (21)

By Proposition 1,

pℓ = P


f(X) > 0,

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [N − 1],

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [N − 1]

 . (22)

Applying Lemma 1 (Equation (15)) with k = N − 1,

N−1⋂
r=1

C(r)x ⊆
N−1⋂
r=1

C(r)x , (23)

therefore,

P


f(X) > 0,

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [N − 1],

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [N − 1]



=P


f(X) > 0,

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [N − 1],

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [N − 1],

C[N−1]



=P
(
C[N−1]

)
P


f(X) > 0,

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [N − 1],

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [N − 1]

∣∣∣∣∣∣∣∣ C
[N−1]

 . (24)

By Equation (3a), we have

P


f(X) > 0,

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [N − 1],

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [N − 1]

∣∣∣∣∣∣∣∣ C
[N−1]



≤P


f̄(X) > 0,

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [N − 1],

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [N − 1]

∣∣∣∣∣∣∣∣ C
[N−1]

 . (25)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

From Equation (22) (24) (25),

pℓ ≤ P
(
C[N−1]

)
P


f̄(X) > 0,

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [N − 1],

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [N − 1]

∣∣∣∣∣∣∣∣ C
[N−1]



= P


f̄(X) > 0,

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [N − 1],

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [N − 1],

C[N−1]



≤ P


f̄(X) > 0,

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [N − 1],

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [N − 1],

C[N−2]

 . (26)

Applying the argument of Equation (24)-(26), except that we apply Equation (3b) instead of Equa-
tion (3a) within Equation (25), iteratively to the constrained preactivations in layers N−1, . . . , k∗+
1, we obtain

pℓ ≤ P



f̄(X) > 0,

ȳ
(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆ + 1, N − 1]

y(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆ + 1, N − 1]

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆]

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆]

y(k
⋆)

j⋆
(X) ≥ 0,

C[k
⋆−1]



= P
(
C[k

⋆−1]
)
P



f̄(X) > 0,

ȳ
(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆ + 1, N − 1]

y(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆ + 1, N − 1]

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆]

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆]

y(k
⋆)

j⋆
(X) ≥ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
C[k

⋆−1]


. (27)

Applying Equation (3b) with k = k∗,

y(k
⋆)

jk⋆,ℓ
(x) ≤ y

(k⋆)
jk⋆,ℓ

(x) ≤ ȳ
(k⋆)
jk⋆,ℓ

(x), ∀x ∈ D, C[k
⋆−1] satisfied, ℓ ∈ [tk⋆], (28a)

y(k
⋆)

j⋆
(x) ≤ y

(k⋆)
j⋆ (x) ≤ ȳ

(k⋆)
j⋆ (x), ∀x ∈ D, C[k

⋆−1] satisfied. (28b)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Thus,

P



f̄(X) > 0,

ȳ
(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆ + 1, N − 1]

y(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆ + 1, N − 1]

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆]

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆]

y(k
⋆)

j⋆
(X) ≥ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
C[k

⋆−1]



≤P



f̄(X) > 0,

ȳ
(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆, N − 1]

y(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆, N − 1]

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆ − 1]

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆ − 1]

y(k
⋆)

j⋆
(X) ≥ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
C[k

⋆−1]



=P



f̄(X) > 0,

ȳ
(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆, N − 1]

y(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆, N − 1]

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆ − 1]

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆ − 1]

y(k
⋆)

j⋆
(X) ≥ 0, ȳ

(k⋆)
j⋆ (X) ≥ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
C[k

⋆−1]


. (29)

From Equation (27) (29),

pℓ ≤ P
(
C[k

⋆−1]
)
P



f̄(X) > 0,

ȳ
(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆, N − 1]

y(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆, N − 1]

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆ − 1]

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆ − 1]

y(k
⋆)

j⋆
(X) ≥ 0, ȳ

(k⋆)
j⋆ (X) ≥ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
C[k

⋆−1]



= P



f̄(X) > 0,

ȳ
(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆, N − 1]

y(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆, N − 1]

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆ − 1]

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆ − 1]

y(k
⋆)

j⋆
(X) ≥ 0, ȳ

(k⋆)
j⋆ (X) ≥ 0,

C[k
⋆−1]


. (30)

Then, again applying the argument of Equation (24)-(26), except that Equation (3b) is used instead
of Equation (3a) within Equation (25), iteratively to the constrained preactivations in layers k⋆ −

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

1, . . . , 1, we obtain

pℓ ≤ P


f̄(X) > 0,

ȳ
(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [N − 1]

y(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [N − 1]

y(k
⋆)

j⋆
(X) ≥ 0, ȳ

(k⋆)
j⋆ (X) ≥ 0


= P

f̄(X) > 0, y(k
⋆)

j⋆
(X) ≥ 0, ȳ

(k⋆)
j⋆ (X) ≥ 0,

ȳ
(kℓ)
jℓ

(X) ≥ 0, ℓ ∈ [s], y(kℓ)
jℓ

(X) < 0, ℓ ∈ [s+ 1, t]

 . (31)

On the other hand, from Proposition 1,

pu = P

f̄(X) > 0, ȳ
(k⋆)
j⋆ (X) ≥ 0,

ȳ
(kℓ)
jℓ

(X) ≥ 0, ℓ ∈ [s], y(kℓ)
jℓ

(X) < 0, ℓ ∈ [s+ 1, t]

 . (32)

Then, from Equation (31) (32),

pu − pℓ ≥ P

f̄(X) > 0, ȳ
(k⋆)
j⋆ (X) ≥ 0, y(k

⋆)
j⋆

(X) < 0,

ȳ
(kℓ)
jℓ

(X) ≥ 0, ℓ ∈ [s], y(kℓ)
jℓ

(X) < 0, ℓ ∈ [s+ 1, t]

 (33)

Proof of Proposition 3. Notice that after BaB-prob splits on a preactivation in B and generates B1

and B2, it holds that
P (B) = P (B1) + P (B2) . (34)

Thus, at the beginning each iteration,

P (f(X) > 0) =
∑
B∈B

P (B) . (35)

By Proposition 1, for all B = ⟨pℓ, pu, C⟩ ∈ B, pℓ and pu are lower bounds on P (B). Therefore,
from Equation (35), Pℓ and Pu are lower and upper bounds on P (f(X) > 0).

Proof of Proposition 4. Let f(x), f̄(x) and y[N−1](x), ȳ[N−1](x) be the linear lower and upper
bounds for f and y[N−1] computed by linear bound propagation under the constraints in C. Since
there is no unstable preactivation in B, ino relaxation is performed during the linear bound propa-
gation, the inequalities in Equation (3) become equalities. Thus, all the inclusions ‘⊆’ in the proof
of Lemma 1 become equalities ‘=’, and subsequently, the inequality in the proof of Proposition 1
becomes equality. Therefore, P (B) = pℓ = pu.

Proof of Proposition 5. We prove Proposition 5 by contradiction. Suppose that BaB-prob does not
terminate in finite time. Since there are only finitely many preactivations, there must exist a point
at which every branch in B contains no unstable preactivation. At that point, by Proposition 4,
all branches have exactly tight probability bounds. Consequently, Pℓ = Pu, which implies that
BaB-prob has already terminated — a contradiction.

Proof of Corollary 1. It follows directly from Proposition 3 and Proposition 5.

C EXPERIMENTS DETAILS

C.1 TOY MODELS (SOUNDNESS AND COMPLETENESS CHECK)

Setup. The MLP model has input dimension 5, two hidden FC layers (10 units each), ReLU af-
ter every hidden layer, and a scalar output. The CNN model takes a 1 × 4 × 4 input, has two

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

MLP model CNN model

T/T F/T N/F T/F F/F N/F T/T F/T N/F T/F F/F N/F

PROVEN 4/24 0/24 20/24 0/6 0/6 6/6 5/25 0/25 20/25 0/5 0/5 5/5
PV 24/24 0/24 0/24 0/6 6/6 0/6 25/25 0/25 0/25 0/5 5/5 0/5
SDP 0/24 24/24 0/24 0/6 6/6 0/6 0/25 25/25 0/25 0/5 5/5 0/5
BaB-prob-ordered 24/24 0/24 0/24 0/6 6/6 0/6 25/25 0/25 0/25 0/5 5/5 0/5
BaB+BaBSR-prob 24/24 0/24 0/24 0/6 6/6 0/6 25/25 0/25 0/25 0/5 5/5 0/5

Table 3: Results for toy models. Each cell indicates the number of instances where the algorithm’s
declaration (“T” for True, “F” for False, “N” for no declaration) aligns with the ground truth (“T”
or “F”). For example, “T/T” means the ground truth is True and the algorithm declares it as True;
“F/T” means the ground truth is True but the algorithm declares it as False; “N/T” means the ground
truth is True but the algorithm fails to provide a declaration. Similar interpretations apply to the
other entries.

Conv2d layers (3 channels, kernel 3, stride 2), ReLU after convolutions, then flatten + scalar FC. All
weights/biases are i.i.d. N (0, 0.25). For each architecture we generate 30 instances, i.e., 30 differ-
ent networks, such that x0 = 0 and f(x0) > 0. Noise is N (0, 0.1I). Because PROVEN, PV and
BaB-prob assume bounded inputs, we truncate the Gaussian to its 99.7 %-confidence ball. We use
batch size of 16384 for both versions of BaB-prob and PV, and split depth (maybe splitting multiple
preactivations at one time) of 1 for this experiment. To verify the soundness and completeness, we
do not set a time limit in this experiment. We use a toy MLP model and a toy CNN model to test the
soundness and completeness of different solvers. We use SaVer-Toolbox2 (Sivaramakrishnan
et al. (2024)) to obtain an empirical reference P̂ for P (f(X) > 0) such that the deviation is < 0.1%
with confidence > 1− 10−4. We treat the declaration of SaVer-Toolbox as the ground truth.

Results. Table 3 reports the counts of (declared TRUE/FALSE/No-declaration) vs. ground truth.
Both BaB-prob versions and PV match ground truth on all toy problems; PROVEN returns only a
subset (sound but incomplete), and SDP is mixed. It should be noted that this does not indicate that
SDP is unsound, because it does not declare a TRUE problem as FALSE.

C.2 OTHER EXPERIMENT SETUPS

Untrained models. The architecture for the untrained MLP models are same as that for the toy MLP
model with the difference that the number of input features Di, the number of hidden features Dh,
and the number of hidden layers Nh are not fixed. The architecture for the untrained CNN models
are same as that for the toy CNN model with the difference that the input shape (1,Wi, Hi) with
Wi = Hi, the number of hidden channels Ch, and the number of hidden layers Nh are not fixed. The
weights and biases of all layers in the MLP and CNN models are also randomized with Gaussian
distribution N (0, 0.25). We test on different combination of (Di, Dh, Nh) for MLP models and
(Wi/Hi, Ch, Nh) for CNN models. For each combination, we generated 30 different problems,
each consists of a sample x0 = 0 and a randomly generated network f such that f(x0) > 0. The
noise is zero-mean with diagonal covariance, chosen so that its 99.7%-confidence ball has radius
0.002 for MLP models and 0.01 for CNN models. We use batch size of 4 for BaB-prob and PV,
and split depth of 1 for this experiment.

MNIST and CIFAR-10 models. The MNIST and CIFAR-10 models have similar architecture as
untrained models with the difference that the number of input features (or input shape) is fixed,
the number of output features is 10, and the trained CNN models have a BatchNorm2d layer before
each ReLU layer. We trained MLP models with different combination of (Dh, Nh) and CNN models
with different combination of (Ch, Nh). The models are trained with cross-entropy loss and Adam
optimizer. The batch size for training is 64. The learning rate is 0.001. We train each model for
20 iterations and use the checkpoint with the lowest loss on validation dataset for verification. For
each model, we randomly selected 30 correctly classified samples from the training set. The noise
is zero-mean with diagonal covariance, chosen so that its 99.7%-confidence ball has radius 0.02
for MNIST models and 0.01 for CIFAR-10 models. The output specification for each sample is
Y = {y ∈ R10 : (et − ea)

Ty > 0}, where et and ea are the standard basis vectors, t is the index

2https://github.com/vigsiv/SaVer-Toolbox

18

https://github.com/vigsiv/SaVer-Toolbox

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

10 6 10 5 10 4 10 3 10 2 10 1 100

1 - confidence
0.960
0.965
0.970
0.975
0.980
0.985
0.990
0.995
1.000

EC
DF

(a) BaB-prob-ordered

10 6 10 5 10 4 10 3 10 2 10 1 100

1 - confidence
0.960
0.965
0.970
0.975
0.980
0.985
0.990
0.995
1.000

EC
DF

(b) BaB+BaBSR-prob

Figure 4: ECDF of confidence for BaB-prob-ordered and BaB+BaBSR-prob.

of the ground-truth label and a ̸= t is a randomly selected attacking label. f(x) ∈ Y indicates that
x is not misclassified by index a. We use batch size of 4 for BaB-prob and PV, and split depth of 1
for this experiment.

VNN-COMP 2025 benchmarks. We conducted evaluations on the following benchmark
suites: acasxu 2023, cersyve, cifar100 2024, collins rul cnn 2022, cora 2024,
linearizenn 2024, relusplitter, and safenlp 2024. Due to GPU memory limitations,
for cifar100 2024 we evaluated only the medium models. For relusplitter, we tested all
MNIST models but only the oval21 models among the CIFAR-10 models. Models from other bench-
mark datasets were excluded either because they contained layer types not supported by our method
or were too large to fit within GPU memory. For simplicity, we randomly selected one input region
and one output specification from each original problem. The noise distribution is zero-mean with
diagonal covariance, scaled such that its 99.7%-confidence ellipsoid matches the axis-aligned radii
given in the original problem. In terms of solver configuration, we used a batch size of 8 for both
BaB-prob and PV, with a split depth of 2. For the cifar100 2024 benchmark, the batch size
and split depth were set to 1 for BaB-prob, and the batch size was set to 4 for PV. Furthermore,
since the original radii in cifar100 2024 were too small to present a meaningful verification
challenge, we doubled their values.

C.3 SDP EXPERIMENTAL RESULTS

Untrained models. SDP failed to solve any MLP problem within the time limit and ran out of
RAM on the CNN problems.

MNIST and CIFAR-10 models. SDP failed to solve any MLP problem within the time limit and
ran out of RAM on the CNN problems.

VNN-COMP 2025 benchmarks. The SDP solver does not directly support cersyve,
cifar100 2024, linearizenn 2024, relusplitter (CIFAR-10). Besides, it ran out
of RAM on cora 2024, collins rul cnn 2022 and relusplitter (MNIST). On
acasxu 2023 and safenlp 2024, it hit the time limit on all the problems.

C.4 CONFIDENCE OF BAB-PROB

Derivation of confidence

In our experiments, BaB-prob evaluates the per-branch probability in Equation 4 by Monte Carlo
sampling, using N = 105 i.i.d. samples for each probability it needs to compute. Let Pℓ and Pu

be the true global lower and upper probability bounds, and let P̂ℓ and P̂u be their empirical values.
When BaB-prob terminates, either P̂ℓ ≥ η or P̂u < η. Then, the following proposition gives the
confidence for the certification.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proposition 6.

P (Pℓ ≥ η) ≥ 1− exp

(
− N(P̂ℓ − η)2

2V1 +
2
3 (P̂ℓ − η)

)
, if P̂ℓ ≥ η; (36a)

P (Pu < η) ≥ 1− exp

(
− N(η − P̂u)

2

2V2 +
2
3 (η − P̂u)

)
, if P̂u < η. (36b)

where

V1 =
∑

⟨pℓ,pu,C⟩∈B

pℓ(1− pℓ), (37a)

V2 =
∑

⟨pℓ,pu,C⟩∈B

pu(1− pu). (37b)

Proof. We prove the case of P̂ℓ ≥ η, and P̂u < η can be proved similarly.

Denote pB := pℓ for B = ⟨pℓ, pu, C⟩ ∈ B. Let p̂B be the empirical estimation for pB by Monte
Carlo Sampling. Then,

p̂B =
1

N

N∑
i=1

ZB,i, ZB,i ∼ Bernoulli(pB), (38)

and
Pℓ =

∑
B∈B

pB , P̂ℓ =
∑
B∈B

p̂B . (39)

Consider the estimation error

P̂ℓ − Pℓ =
∑
B∈B

N∑
i=1

1

N
(ZB,i − pB). (40)

The summands are independent, mean-zero, and bounded in [− 1
N , 1

N]; their total variance is

Var
(∑
B∈B

N∑
i=1

1

N
(ZB,i − pB)

)
=

1

N2

∑
B∈B

N∑
i=1

pB(1− pB) =
1

N
V1. (41)

Applying Bernstein’s inequality with ε = P̂ℓ − η (Boucheron et al. (2013)),

P
(
P̂ℓ − Pℓ ≥ ε

)
≤ exp

(
−

1
2ε

2

1
N V1 +

1
3N ε

)
= exp

(
− Nε2

2V1 +
2
3ε

)
. (42)

Therefore,

P (Pℓ ≥ η) ≥ 1− exp

(
− Nε2

2V1 +
2
3ε

)
(43)

The true values of pℓ and pu in Equation 37 are not directly accessible, so we use their empirical
results as replacement. In our experiments, if BaB-prob-ordered or BaB+BaBSR-prob produces
a declaration, that is, P̂l ≥ η or P̂u < η, but with confidence below 1 − 10−4, the algorithm
continues running until the confidence reaches 1−10−4 or the time limit is hit. If when the algorithm
terminates with a declaration but with confidence remaining below 1 − 10−4, we still count it a
successful verification. The following results provide a statistical characterization of the achieved
confidence levels.

Confidence results

Figure 4 presents the Empirical Cumulative Distribution Function (ECDF) of confidence values
for BaB-prob-ordered and BaB+BaBSR-prob across all successfully verified problems. Both
methods achieve confidence greater than 1 − 10−4 in over 99.5% of cases. This demonstrates that,
in practice, the vast majority of problems are certified with very high confidence by both BaB-prob-
ordered and BaB+BaBSR-prob.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D LLM USAGE

The authors acknowledge the use of GPT-4 and GPT-5 for polishing the main text.

21

	Introduction
	Preliminaries
	Notation
	Linear Bound Propagation for Deterministic Verification

	BaB-prob
	Overall Framework
	Probability Bounds for Branches
	Splitting Strategies
	Theoretical Results

	Experiments
	Untrained MLP and CNN models
	MNIST and CIFAR-10 models
	Results for VNN-COMP 2025 models

	Conclusions
	Detailed Framework of BaB-prob
	Proof for Theoretical Results
	Experiments Details
	Toy models (soundness and completeness check)
	Other Experiment Setups
	SDP Experimental Results
	Confidence of BaB-prob

	LLM Usage

