APPENDIX
A. Analysis of contact margins

This section intends to justify why the feasibility of the
initial and target state according to the proposed SpringGrasp
metric is a good heuristic to indicate feasibility of the entire
dynamic process. For simplicity of the analysis, we consider
a problem with three fingertips that make contact with a 2D
object as shown in Figure 14. In this system, the pose of the
object can be described by s(t) = {z(t),y(t), z(t),0(¢t)}. If
the damping coefficients of each virtual spring are sufficiently
large, no oscillation will happen during the dynamic process.
This means that for any time, we can express it as convex
combination of initial state and target state with a blending
coefficient 3(t),t € [to, teq] Where 3(tg) = 0 and [(teq) = 1:

s(t) = (1 = B(t))s(to) + B(t)s(teq)
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Fig. 14: Three fingertips making contact with a 2D triangle. Fingertips apply
force toward o; and move with the object from p;(to) to p;(teq)

1) Translation only: We define the angle between the force
vector f;(t) and surface normal vector m(t) as «;(t). To
examine the temporal evolution of «;(t), we initially consider
a scenario involving only translation. Assuming the object
undergoes a rigid translation ¢ towards the equilibrium point,
the initial force vector is given by:

fi(to) = ki(o; — pi(to))

where k; is controller gain of fingertip. At any subsequent
time, the force vector will be:

fi(t) = ki(o; — pi(to) — B(t)t) = fi(to) — kiB(t)t

indicating that, during translation, the force vector changes
from f;(to) to fi(to) — kit. The normal vector remains con-
stant as translation does not affect the direction of the normal
vector. Consequently, «;(t) stays within the bounds defined
by «;(to) and «;(teq). Provided that the force directions at
the initial and equilibrium states fall within the friction cone,

the force direction at any transient state will also lie within
this cone.

2) Including rotation: When the dynamic grasping process
involves rotation, the feasibility of the initial and equilibrium
state does not guarantee the feasibility of the transient states.
Consider a triangle rotating around its center c¢ (see Figure 15).
We choose a target location o;, where the distance between ¢
and o; is %r, with r denoting the shortest distance from ¢
to any edge of the triangle. Let the triangle rotate around its
center until the force aligns with the surface normal vector.
Then, «;(t) initially increases to a maximum of ama = §
when f;(t) is perpendicular to 0, — ¢, and then decreases to 0
at tq. If initially, angle /p;(to)co; is less than 7,a;(t) will
monotonically decrease and the force direction will always lies
between the initial and equilibrium force directions. Bringing
0, closer to ¢ reduces the change in «;(t) for the same rotation
angle on the object orientation 6(t), necessitating a greater
rotation on () for «;(¢) to reach its maximum. Thus, adding
FE,: to the energy function Eq.18 encourages the target location
to stay deep inside the object, which allows more rotation
on the object. Adding E., to Eq. 18 regulates movement
during the dynamic process and reduces the rotation during
the dynamic process. In practice, the feasibility of transient
states can usually be inferred from the feasibility of initial
and equilibrium states.

Fig. 15: Triangle rotate around c, at time ¢, the force vector is perpendicular

to vector ¢ — 0; and «;(t) = T = 45°. In initial state and equilibrium state:

4
ai(to) = 42°,ai(th) =0

B. Collision spheres

Here we provide details on how we compute the energy
terms Egeirhont in Eq 16 that are related to collisions with the
hand itself, the object and table. Fig. 16 shows the placement
of spheres that we use to approximate the geometry of the
hand. s; ~ sy; have a radius of Icm and s;3 ~ si5 have
radius of 2cm. For computing self-collision energy Fges, we
find it is sufficient to check the following collision pairs:
(s1,84), (51, 87), (81, 510), (84, 57), (S4, S10), (57, $10), (52, 85),
(s5,88). When computing the hand object collision energy



Fig. 16: Placement of collision spheres for computing collision loss, each
sphere has radius of 0.015

Ey, and hand table collision energy Ey, we use all collision
spheres.

C. Energy function of baseline method

For our baseline approach, we define the following energy
function:

E = wi By + waisiEaise + Weol Beol + wregEreg + Wuncer Euncer

Most terms in this energy function are directly migrated from
our method Eq. 18. We remove FEg,;, as gains are choosen
independently hence no other variables depends on the gains
in the optimization problem. Therefore, the optimizer would
drive the controller gains directly to the lowest possible value.
We also remove Ei, and Eroee as force and target locations
are the result of the inner force closure solver of the baseline
and therefore cannot be controlled by the outer loop. We set
wge = 200 and weights of other energy term is the same as
Eq. 18. In [5, 4], E is approximated by assuming that each
fingertip can only apply a force along the contact normal with
a fixed magnitude, which accelerates computation. We replace
it with a more accurate force closure metric as defined in [6]
and compute it using the differentiable convex optimization
solver cvxpylayers[1] as:
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As the grasps optimized by the baseline method do not
involve a dynamic process, we use f;, p; without the time
index. Because the force direction is determined by the force
closure solver which cannot be controlled to reduce pregrasp

[ fill, fi - 7 < —Fhin

Triangle 1 Triangle 2
config 1 | (0.5,0.0), (0.75,0.5), (0.25,0.5)  (0.5,0.0), (1.0,0.5), (0.5,0.5)
config 2 | (0.4,0.0), (0.8,0.4), (0.2,0.4) (0.4,0.0), (1.0,0.4), (0.4,0.4)
config 3 | (0.6,0.0), (0.7,0.6), (0.3,0.6) (0.6,0.0), (1.0,0.6), (0.6,0.6)

Table V: Summary of fingertip contact configurations

uncertainty, we instead focus on reducing uncertainty at the
fingertip contact location p; and set the uncertainty energy
term Eyycer as follows:

Eyncer = Z do (pz)

Where d, is variance value function of GPIS as shown in
Sec. III-D.

D. Grasp coverage experiment setup

Fig. 17 shows dimension of two triangles and positions of
different contact configurations we used in experiment I'V-1. To
ensure the best coverage of our method during optimization,
we randomly initialize 2000 target positions and controller
gains when optimizing grasp for each object pose.

o configl Aconfig2 <¢config3
(0.5,1.0) (1.0,1.0)
(0.0,0.0) (1.0,0.0) (0.0,0.0) (1.0,0.0)

0:(0.5,0.0), (0.75, 0.5), (0.25, 0.5)
A:(04,0.0), (0.8,0.4), (0.2,04)
©:(0.6,0.0), (0.7, 0.6), (0.3,0.6)

0:(0.5,0.0), (1.0,0.5), (0.5,0.5)
A:(04,0.0),(1.0,0.4), (0.4,04)
©: (0.6, 0.0), (1.0, 0.6), (0.6,0.6)

Fig. 17: Specification of two triangles. Vertices are expressed in the local
object frame. Contact points in each contact configurations are expressed as
different markers.

E. Clipping of spring grasp energy function

Here we illustrate implementation details of our spring grasp
energy function F.q. As the value of the contact margins
€i(to), €i(teq) is in the range of [—2,1], in rare cases if
contact margins are below -1 and logarithm mapping becomes
undefined, directly clipping the value of the margin will set
the gradient of the energy function to zero. Inspired by Leaky
Relu [7], we switch to an auxiliary energy to encourage the
contact force to stay close to surface normal if contact margins
are below -1. Therefore, E, is defined as:

S IOg(Gz(to) + 1) ei(tO) > -1
Esp = — Z 1 _filto) . t () < —1
©8 Hf-(tomg ni(to) ei(to) <
i IOg Ez eq + 1) ei(teq) > -1
- i (te
7 (log ufx(teqqm N(teq) €ilteq) < —1



FE. Fitting GPIS from partial point cloud

We estimate the true surface of an object from a partial point
cloud by fitting a GPIS to it. Following [3], we use three sets
of points to fit GPIS: a) Surface points, b) Exterior points, and
c¢) Interior points. We assign a different value and noise level
to each set of points.

1) Surface points: We use points from the partial point
cloud as surface points. As the object surface is represented by
the zero-level set of GPIS, we assign each point in the point
cloud the value 0. We set the noise level of each point to be
0.005m.

2) Exterior points: To generate exterior points, we initially
determine the axis-aligned bounding box of the surface points
and scale it by 120% relative to the surface points’ center.
In total we have 14 exterior points which are located at each
corner of the upscaled bounding box, as well as the midpoint
of each bounding box edge. 14 points is sufficient for GPIS
to distinguish between outside region and internal region.
When fitting the GPIS, we found empirically that setting each
exterior point value to be equal to half the length of the longest
edge in the scaled bounding box works well. The noise level
for each point is set to 0.2 meters.

3) Interior points: We compute interior points through
convex combination of all surface points with random weights.
To distribute these points evenly, rather than simply assigning
weights from a uniform distribution to each surface point, we
apply a softmax function to the initial random weights. This
approach determines the actual weights for calculating interior
points. For every object, we generate 50 interior points using
this method. We found empirically that assigning each point a
negative value equal to a quarter of the length of the longest
edge of the upscaled bounding box works well. The noise level
for each point is set at 0.05 meters.

G. Initial guesses for grasp planning

We initialize 7 wrist poses around the center of the oriented
bounding box of the observed partial point cloud. The 7 poses
consist of 5 with the palm facing the table and 2 with the
palm perpendicular to the table. Tab.VI illustrates different
initial guesses. Moreover, we always initialize joint angles as
the relaxed joint pose defined in [17] and initialize the target
position as a halfway point from each fingertip toward their
center. Lastly, we use ki, ko, k3 = 80,k4 = 160 as initial
controller gains.

H. Partial successes

To provide more information for Tab.Il, we show the
number of partial successes of each entry in Tab. VIL

APPENDIX REFERENCES
[Al] Akshay Agrawal, Brandon Amos, Shane T. Barratt,
Stephen P. Boyd, Steven Diamond, and J. Zico Kolter.
Differentiable convex optimization layers. In Neural
Information Processing Systems, 2019.

wrist pose | position(xyz) orientation(Euler)

1 | -0.05, 0.0, 0.06 0,0,0

2 | -0.04, 0.03, 0.03 0, 0, -45

3 | -0.04,-0.03, 0.03 | 0,0, 45

4 | 0.1, 0.06, -0.05 -90, 90, 0

5 | 0.0, 0.06, 0.05 -90, 0, 0

6 | -0.0, -0.06, 0.03 0,0, 90

7 | 0.02, -0.04, 0.03 0, 0, 135

Table VI: Initial wrist position and orientation, the unit of position is meter,
and the unit of orientation is degree. We use intrinsic convention for Euler
angles.

[A2] Solak Gokhan. Allegro hand kdl. https://github.com/
ARQ-CRISP/allegro_hand_kdl, 2020.

Miao Li, Kaiyu Hang, Danica Kragic, and Aude Bil-
lard. Dexterous grasping under shape uncertainty.
Robotics Auton. Syst., 2016.

Tengyu Liu, Zeyu Liu, Ziyuan Jiao, Yixin Zhu, and
Song-Chun Zhu. Synthesizing diverse and physically
stable grasps with arbitrary hand structures using dif-
ferentiable force closure estimator. RA-L, 2022.
Ruicheng Wang, Jialiang Zhang, Jiayi Chen, Yinzhen
Xu, Puhao Li, Tengyu Liu, and He Wang. Dexgrasp-
net: A large-scale robotic dexterous grasp dataset for
general objects based on simulation. In ICRA, 2023.
Albert Wu, Michelle Guo, and Karen Liu. Learning
diverse and physically feasible dexterous grasps with
generative model and bilevel optimization. In CoRL,
2022.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li.
Empirical evaluation of rectified activations in convo-
lutional network. 2015.

[A3]

[A4]

[AS5]

[A6]

[AT]


https://github.com/ARQ-CRISP/allegro_hand_kdl
https://github.com/ARQ-CRISP/allegro_hand_kdl

Ours Ours Ours w/o uncertainty | w/o pregrasp | Bilevel-high  Bilevel-low  Bilevel-heu

(3 views) (2 views) (1 view) (1 view) (1 view) (2 views) (2 views) (2 views)
Mustard bottle 1 0 0 3 1 2 1 1
Lego 1 1 0 1 0 1 3 1
Pyramid 0 0 0 2 1 3 3 2
Campell can 0 0 0 1 0 1 1 2
Cheezit box 0 0 0 2 1 2 3 2
Mug 1 1 2 3 2 1 3 2
Orange 0 2 1 0 0 1 2 0
Coffee bottle 0 0 1 1 1 1 2 2
Spam 2 1 2 2 2 2 2 3
Plane 0 2 1 2 2 4 1 3
Car 1 1 1 3 3 2 2 4
Banana 0 0 1 2 1 1 0 2
Pear 0 0 1 0 2 2 2 2
Small box 0 0 0 1 3 2 2 1
Total 6 8 10 23 19 25 27 27

Table VII: Number of partial success for each experiment.
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