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ABSTRACT

In this paper, we consider a block coordinate descent (BCD) algorithm for train-
ing deep neural networks and provide a new global convergence guarantee un-
der strictly monotonically increasing activation functions. While existing works
demonstrate convergence to stationary points for BCD in neural networks, our
contribution is the first to prove convergence to global minima, ensuring arbitrarily
small loss. We show that the loss with respect to the output layer decreases expo-
nentially while the loss with respect to the hidden layers remains well-controlled.
Additionally, we derive generalization bounds using the Rademacher complex-
ity framework, demonstrating that BCD not only achieves strong optimization
guarantees but also provides favorable generalization performance. Moreover, we
propose a modified BCD algorithm with skip connections and non-negative pro-
jection, extending our convergence guarantees to ReLU activation, which are not
strictly monotonic. Empirical experiments confirm our theoretical findings, show-
ing that the BCD algorithm achieves a small loss for strictly monotonic and ReLU
activations.

1 INTRODUCTION

Deep learning has led to significant advances across various domains, such as computer vision,
natural language processing, and reinforcement learning, achieving unprecedented performance in
numerous tasks. However, understanding the training dynamics and optimization behavior of deep
neural networks remains an ongoing challenge due to the highly non-convex nature of their loss
functions (Li et al., 2018). Proving convergence to global minima of gradient descent via backprop-
agation, particularly for deep networks with multiple layers, remains an open problem in the field.
While the neural tangent kernel (NTK) regime (Jacot et al., 2018) addresses this problem by reduc-
ing the non-convex loss to the convex one in RKHS, it fails to fully explain the empirical success of
deep learning because it often outperforms kernel methods, even if we employ NTK as the kernel.

Contrary to the backpropagation-based training, the block coordinate descent (BCD), which origi-
nated from the mathematical optimization field (see Tseng (2001), for example), is an optimization
framework where we divide a variable into several blocks and optimize them alternately. BCD of-
fers computational advantages by updating subsets of parameters iteratively, allowing for tractable
optimization of complex systems. The objective function appearing in the neural network training is
also highly non-convex, and to overcome this issue, BCD-based neural network optimization meth-
ods have been proposed (Carreira-Perpinan & Wang, 2014; Askari et al., 2018; Lau et al., 2018;
Zhang & Brand, 2017; Patel et al., 2020; Zeng et al., 2019; Nakamura et al., 2021; Qiao et al., 2021;
Zhang et al., 2022; Xu et al., 2024). When we apply BCD to neural network training, the most
natural way is that we regard the weights of each layer as a block, and existing works adopt this
way. By the formulation of BCD, the loss function of the neural network can be divided into several
components, one of which coincides with a loss with respect to a layer. Compared to the original
loss, these divided ones have more accessible landscapes to optimize.

Based on such an advantage of BCD for neural networks, its theoretical perspective, mainly about
its convergence guarantee, has been explored in recent years. However, existing theoretical works
on BCD for neural networks (Zhang & Brand, 2017; Zeng et al., 2019; Zhang et al., 2022; Xu
et al., 2024) have only focused on the convergence to stationary points, points with zero gradients.
Convergence to stationary points does not imply convergence to global minima, especially when
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the objective function is highly non-convex, such as the loss that appears in the training of neural
networks (Li et al., 2018; Safran & Shamir, 2018).

How neural network training finds global minima has been one of the most significant topics in deep
learning theory literature. However, existing guarantees on BCD remain in convergence to the sta-
tionary points. To bridge this gap, we aim to provide the convergence guarantee to the global minima
of BCD for neural networks. To this end, we consider multi-layer neural networks and employ a
BCD-type algorithm, updating the parameters using vanilla gradient descent. Our contribution can
be summarized as follows:

• We prove the global convergence of a block coordinate descent (BCD) algorithm, where
we train deep neural network models with strictly monotonically increasing activation. We
ensure that the parameters attain arbitrarily small loss by proving that (i) the loss with
respect to the output layer will decrease exponentially to zero and (ii) the loss with respect
to the hidden layers remains small in every iteration. Through the analysis, we carefully
evaluate the difference propagated from the output layer to the input layer. To the best of
our knowledge, this is the first result that guarantees convergence to the global minima of
neural networks with any number of layers beyond the NTK regime.

• We derive a generalization error bound of deep neural networks trained by BCD under
settings with i.i.d. data. In the convergence analysis, we show that the norm of weight
matrices of each layer can be bounded by a constant. Combining this and the Rademacher
complexity argument from Bartlett et al. (2017) gives a upper bound on generalization
error. Compared to the existing works on gradient descent, BCD enables us to provide the
generalization gap bound for multi-layer neural networks with an optimization guarantee.

• A notable challenge in applying our approach to commonly used activation functions like
ReLU is their non-monotonic nature. Since ReLU is not strictly monotonically increasing,
our initial convergence result does not directly apply. To address this issue, we propose a
modified BCD algorithm incorporating skip connections (He et al., 2016) and non-negative
projection updates. This modification ensures that convergence guarantees extend to ReLU
networks, thereby broadening the applicability of our method to real-world architectures
that predominantly use ReLU activations.

• We validate our theoretical findings through numerical experiments, showing that BCD for
both strictly monotonic and ReLU activations achieves arbitrarily small loss values. These
empirical results confirm the practical viability of our proposed methods, demonstrating
their effectiveness in optimizing deep neural networks beyond theoretical guarantees.

1.1 OTHER RELATED WORKS

Convergence guarantee of GD/SGD for neural networks In recent years, theoretical works on
the convergence guarantee of (stochastic) gradient descent for neural networks have been inten-
sively investigated. In the neural tangent kernel (NTK) regime (Jacot et al., 2018; Allen-Zhu et al.,
2019b; Arora et al., 2019; Du et al., 2019; Zou et al., 2020), to name a few, the training dynamics of
deep neural networks can be approximated by the gradient descent in RKHS. While we can ensure
its global convergence by exploiting the convexity, the feature learning ability of neural networks,
which is considered one of the critical ingredients of the practical success of deep learning, is not
reflected since the training dynamics are reduced to the kernel method. For example, the parameters
of networks trained by The NTK regime hardly move from their initial points as the number of pa-
rameters increases. On the other hand, our analysis does not fall into such a situation. Moreover, our
analysis does not require any overparameterization on hidden layers to ensure global convergence.

The mean-field (MF) regime (Nitanda & Suzuki, 2017; Chizat & Bach, 2018; Mei et al., 2019; Tzen
& Raginsky, 2020; Pham & Nguyen, 2021; Nguyen & Pham, 2023) is another promising approach
of investigating neural network training. It regards the training of parameters as that of (probability)
measure over the parameters, by which we can convert the non-convex optimization with respect
to the parameters to the convex one where the distribution of parameters itself is a variable to be
optimized. While several studies ensure its global convergence by employing this convexity without
loss of feature learning ability, most of their models only focus on two or three-layer networks, our
analysis admits the any number of hidden layers.
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More recently, Banerjee et al. (2023) proposed restricted strong convexity (RSC) to analyze neural
network training, which derives the global convergence guarantee by assuming that the gradient and
output of neural networks correlate with each other during the training. However, Banerjee et al.
(2023) still requires an analysis of this correlation assumption and does not fully explain the nature
of global convergence in the training.

Generalization error bound of multi-layer neural networks Investigation of generalization er-
ror analysis for multi-layer neural networks has been explored in recent years (Neyshabur et al.,
2015; Wei & Ma, 2019; Bartlett et al., 2017; Neyshabur et al., 2017; Golowich et al., 2018; Bartlett
et al., 2019; Arora et al., 2018; Suzuki et al., 2020). These works give a generalization error by
evaluating the complexity of neural networks from various perspective, such as the VC-dimension,
the norm of parameters of networks, and so on. On the other hand, most of these results do not
consider the optimization, but we also demonstrate the global convergence guarantee. Moreover,
several works on generalization error analysis go beyond two-layer networks. However, most focus
only on three-layer networks (Allen-Zhu & Li, 2019; Allen-Zhu et al., 2019a).

2 PRELIMINARIES

2.1 NOTATIONS

For an integer n, we define [n] := {1, . . . , n}. For x ∈ Rd, ∥x∥ denotes its Euclidean norm. We

denote the d-dimensional identity matrix by Id. For A ∈ Rn×m, ∥A∥F :=
√∑

i,j A
2
ij denotes its

Frobenius norm, and ∥A∥op := max
∥x∥≤1

∥Ax∥ denotes its operator norm. For two symmetric matrices

A and B, we denote A ≺ B (A ⪯ B) if and only if the matrix B − A is positive (non-negative)
definite. For x = (x1, . . . , xd)

⊤ ∈ Rd, diag(x) ∈ Rd×d denotes a diagonal matrix whose j-th
diagonal component is xj .

2.2 PROBLEM SETTINGS

Here, we introduce problem settings we consider in this paper. We observe n training examples
D = {(xi, yi)}ni=1, where xi ∈ Rdin is a feature vector and yi ∈ Rdout is a label. Let X =
(x1 . . . xn)

⊤ ∈ Rn×din . Throughout the analysis, we consider high-dimensional settings n ≤ din.
Moreover, we make an assumption about the matrix X as follows:
Assumption 1 (Data matrix is full row rank). rank(X) = n.

This assumption is required to show the global convergence. As we will see in the proof of the main
result, we cannot ensure the existence of global minima without Assumption 1.

A multi-layer neural network is defined by

fNN (x) := WLσ(WL−1σ(. . .W2σ(W1x)) . . .),

where σ is element-wise activation and W1 ∈ Rr×din , Wj ∈ Rr×r for j ∈ {2, . . . , L − 1}, and
WL ∈ Rdout×r. We consider that all the hidden layers have the same width r.

Then, we make the following assumption on the activation function.
Assumption 2 (Activation). σ : R → R is monotonically increasing and satisfies σ(0) = 0.
Especially, there exists a constant 0 < α < 2 such that inf

x∈R
σ′(x) ≥ α holds1. Moreover, σ is

ℓ-Lipschitz, i.e., for any u1, u2 ∈ R, |σ(u1)− σ(u2)| ≤ ℓ|u1 − u2| holds.

A typical example of activation function satisfying Assumption 2 is LeakyReLU activation x 7→
max{x, ax} (a < 1): which satisfies Assumption 2 with α = a and ℓ = 1. We note that other
activation, such as ReLU x 7→ max{x, 0}, does not satisfy Assumption 2. We also provide the
global convergence algorithm when we use the ReLU activation in Section 5.

Under this formulation of neural networks, we formalize the regression problem

min
W

∑n
i=1(fNN (xi)− yi)

2
, (1)

1If σ is not differentiable, we assume that σ(x1)− σ(x2) ≥ α(x1 − x2) for any x1, x2 ∈ R.
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where W = (W1, . . . ,WL). One of the most straightforward approaches to solve(1) is (stochas-
tic) gradient method, in which the parameters are updated using the loss gradient. Conversely, we
employ a layer-wise optimization method called block coordinate descent, as we introduce in the
following section.

3 BLOCK COORDINATE DESCENT

In this section, after we introduce the basic notion of the block coordinate descent (BCD), we provide
the algorithm we consider in this paper. BCD, which originated from the mathematical optimization
field (see Tseng (2001), for example), is an optimization framework where we divide a variable into
several blocks and optimize them alternately.

In BCD, instead of directly utilizing the loss (1), we introduce auxiliary parameters V1,i . . . VL,i.
Vj,i aims to approximate the output of j-th layer for the i-th sample xi. By construction, we have
Vj,i ∈ Rr for j = 1, . . . , L− 1. By using these auxiliary parameters, we reformulate (1) as follows:

min
W,V

F (W,V) :=
∑n

i=1

[
∥WLVL−1,i − yi∥2 + γ

∑L−1
j=1 ∥σ(WjVj−1,i)− Vj,i∥2

]
, (2)

where γ > 0 is a hyperparameter and we denote V0,i := xi, W = (W1, . . . ,WL), and V =
(V1,1, . . . , VL−1,n). In the reformulated problem (2), the second term represents the loss at the
j-th layer, indicating how Vj,i approximates the output of the layer given the input xi. The first
term represents the loss at the output layer, showing how close the outputs of the network with the
approximated (hidden layer) output Vj,i are to the training labels y1, . . . , yn. By the construction, if
(W∗,V∗) satisfies F = 0 in (2), W∗ is the optimal solution of (1).

One of the benefits of the reformulation (2) is that we can treat the objective function with respect
to the weights of each layer (W1, . . . ,WL) separately. Such a simplification results not only in a
faster implementation (e.g., parallelization) but also a favorable loss landscape, including theoretical
tractability. While various methods for optimizing (2) have been explored, we consider a relatively
simple one, updating weights Wj and auxiliary variables Vj,i sequentially from the output layer.
Specifically, we update the variables in order WL → VL−1,i → WL−1 → . . . V1,i → W1 by using
the objective function (2). We summarize the algorithm considered in this paper in Algorithm 1.
From now on, we explain its detailed procedure.

Algorithm 1: Block coordinate descent

input : (W1)ab
i.i.d.∼ N (0, 1/din), (Wj)ab

i.i.d.∼ N (0, 1/r) for all j = 2, . . . , L ,V0,i = xi.
1 K: max outer iteration, KV , KW : max inner iteration, ηV , η(1)W , η(2)W : step size;
2 Wj ← output of Algorithm 2 with inputs s1, s2, and Wj for j = 2, . . . , L;
3 Vj,i ← σ(WjVj−1,i) for all j = 1, . . . , L− 1 and i = 1, . . . , n.;
4 for k ← 1 to K do
5 WL ←WL − η

(1)
W ∇WL

∑n
i=1∥WLVL−1,i − yi∥2;

6 for i← 1 to n do
7 VL−1,i ← VL−1,i − ηV∇VL−1,i

∥WLVL−1,i − yi∥2;
8 for j ← L− 1 to 2 do
9 Wj ←Wj − γη

(1)
W

∑n
i=1∇Wj∥σ(WjVj,i)− Vj+1,i∥2;

10 for i← 1 to n do
11 for kinner ← 1 to KV do
12 Vj−1,i ← Vj−1,i − γηV∇Vj−1,i

∥σ(WjVj−1,i)− Vj,i∥2 ;
13 for kinner ← 1 to KW do
14 W1 ←W1 − γη

(2)
W

∑n
i=1∇W1

∥σ(W1V0,i)− V1,i∥2 ;

Initialization We consider Gaussian initialization for Wj ; that is, each element of W1 is sampled
from N (0, d−1

in ), and each element of Wj (j = 2, . . . , L) is sampled from N
(
0, r−1

)
. After that,

we apply singular value bounding (SVB) (Jia et al., 2017) to Wj (j = 2, . . . , L). In SVB, we
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Algorithm 2: Singular Value Bounding
input : Wj : matrix, (s1, s2): lower and upper bounds on the singular values

1 (U,Σ, V )←: Singular value decomposition of Wj = UΣV ;
2 for s← diagonal components of Σ do
3 s← max{s1,min{s2, s}};

output: UΣV

conduct the singular value decomposition of Wj as Wj = UΣV ⊤, where U and V are orthogonal
matrices, and Σ is a non-negative diagonal matrix. Since Wj is full-rank with probability 1 over
the initialization, we also have Σ ∈ Rr×r with probability 1. After SVB, we adjust each diagonal
component of Σ to be within the interval [s1, s2]. Then, we utilize Wj = UΣ′V ⊤ as the initial
parameter of Wj , where Σ′ be the matrix obtained by the adjustment. We summarize this procedure
in Algorithm 2.

In Jia et al. (2017), SVB is conducted at every epoch to enhance the stability of the training and pre-
diction performance of stochastic gradient descent. The upper and lower bounding of the singular
value prevents the amplifying or vanishing of a gradient in the backpropagation. Applying SVB also
has several advantages in BCD, not only for practical reasons but also from a theoretical perspec-
tive. First, the regularity of Wj results in a preferable condition number of the objective function
∥σ(WjVj−1,i) − Vj,i∥2 in F , the loss at the j-th layer. Moreover, the upper bound on the singular
value prevents Vj from becoming extremely large at the initialization.
Remark 3.1. While Jia et al. (2017) applies SVB at every epoch, we use it only at the initialization.
By setting the step size not too large, we can ensure that all the singular values of Wj remain in
a bounded interval, as we show in the proof, with which we enjoy the same benefit throughout the
training.

After initializing Wj , we initialize Vj in an exact manner, i.e., Vj,i = σ(WjVj−1,i) for all j =
1, . . . , L − 1 and i = 1, . . . , n. While we can employ any initialization scheme for Vj , the exact
manner results in ∥σ(WjVj−1,i)− Vj,i∥2 = 0 at the initialization, leading to faster convergence.

Update of V For optimizing W and V , we utilize vanilla gradient descent. We employ a common
step size ηV for each Vj,i and perform multiple updates using the loss ∥σ(WjVj−1,i)− Vj,i∥2 (line 6,
12), given by

VL−1,i ← VL−1,i − ηV∇VL−1,i
∥WLVL−1,i − yi∥2 (3)

and

Vj−1,i ← Vj−1,i − γηV∇Vj−1,i∥σ(WjVj−1,i)− Vj,i∥2.
The first update (3) can be interpreted as solving the linear equation WLVL−1,i = yi, which has a
solution if the matrix WL is full row rank. We assume that the activation satisfies Assumption 2. In
this case, since the mapping σ : R → R is a bijection, there exists an inverse map σ−1, and training
Vj can be viewed as equivalent to solving the linear equation Wj+1Vj,i = σ−1(Vj+1,i). Therefore,
it is expected that Vj,i converges to the solution via gradient descent with a suitable choice of ηV as
long as the matrix Wj ∈ Rr×r is regular.

Update of W For the update of Wj (j = 1, . . . , L), we use the loss function at j-th layer, that is,∑n
i=1∥WLVL−1,i − yi∥2 for WL and

∑n
i=1∥σ(WjVj−1,i)− Vj,i∥2 for Wj (j = 1, . . . , L− 1).

For W2, . . . ,WL, we use a common step size η
(1)
W and conduct the gradient descent update:

WL ←WL − η
(1)
W ∇WL

∑n
i=1∥WLVL−1,i − yi∥2,

and

Wj ←Wj − γη
(1)
W

∑n
i=1∇Wj

∥σ(WjVj,i)− Vj+1,i∥2

for each iteration (line 5, 9). For W1, we employ a different step size η
(2)
W and apply

W1 ←W1 − γη
(2)
W

∑n
i=1∇W1

∥σ(W1V0,i)− V1,i∥2,

5
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multiple (KW ) times for each iteration (line 14). These update manners are required to attain
the global convergence. With respect to the loss of the second to L-th layer, we update both
Wj and Vj−1,i. In particular, by applying multiple updates to Vj−1,i, we can ensure linear con-
vergence of the loss

∑n
i=1∥σ(WjVj−1,i)− Vj,i∥2 for each iteration while the singular values of

matrix Wj are upper and lower bounded. On the other hand, the existence of W ∗ satisfying∑n
i=1∥σ(W ∗Vj−1,i)− Vj,i∥2 = 0 is not ensured, particularly in the case where n > r. Hence, it is

not necessary to update Wj for multiple times. Furthermore, as the number of iterations increases, it
becomes less likely to maintain the regularity of the matrix Wj . This is why we only apply gradient
descent once to Wj (j = 2, . . . , L). On the other hand, in the first layer, the input V0,i = xi is fixed,
and we need to demonstrate linear convergence of the loss

∑n
i=1∥σ(W1V0,i)− V1,i∥2 through the

update of W1. In the overparameterized setting din ≥ n, if the data matrix satisfies rank(U) = n,
we can ensure the existence of a global minima W ∗ satisfying

∑n
i=1∥σ(W ∗V0,i)− V1,i∥2 = 0, and

hence linear convergence under a suitable choice of η(2)W .

Remark 3.2. Concerning the recent progress of the block coordinate descent algorithms applied
to deep learning, as represented by (Jia et al., 2017; Zhang & Brand, 2017; Lau et al., 2018;
Patel et al., 2020), among others, we employ a relatively simple approach using vanilla gradient
descent without any regularization, focusing on devising the loss function and the order in which the
parameters are updated. While our convergence proof is based on this specific setup, our analysis
can be extended to encompass more complex scenarios. Our algorithm is adaptable to different
settings, including potential applications to other loss functions and problems, such as classification
problems, and the inclusion of regularization terms. We discuss possible extensions in Appendix A.

4 GLOBAL CONVERGENCE OF BLOCK COORDINATE DESCENT

In this section, we show that BCD for neural networks with an activation satisfying Assumption 2
finds global minima, in other words, the objective value F converges to an arbitrarily small value.
In this section, we consider the case with single output (dout = 1). We discuss its extension to the
multi-output case in Appendix B. Moreover, for the single output case, we provide a bound on the
generalization error under the i.i.d. setting by utilizing the Rademacher complexity argument.

4.1 GLOBAL CONVERGENCE WITH MONOTONICALLY INCREASING ACTIVATION

Here, we consider the case of single outputs dout = 1. In this case, the objective function is
described by

min
W,V

F (W,V) :=
∑n

i=1

[
(WLVL−1,i − yi)

2
+ γ

∑L−1
j=1 ∥σ(WjVj−1,i)− Vj,i∥2

]
. (4)

We now state the first main result, the global convergence of BCD with activation satisfying As-
sumption 2.

Theorem 4.1 (BCD finds global minima of neural networks). We assume that activation σ satisfies
Assumption 2 and there exists a constant CV > 0 such that λmax

(
VjV

⊤
j

)
≤ CV for j = 1, . . . , L−1

during training. We denote s := σmin(X) > 0. Let Ri = |WLVL−1,i − yi| at the initial value of
the objective function with respect to the output layer, and define R :=

∑n
i=1 R

2
i , Rmax := max

i
Ri,

and CK :=
(
2
α

)L (
4RmaxηV + 2

2−α

√
ϵ
)

.

Then, under (s1, s2) = ( 34 ,
5
4 ), ηV ≤

1
8αℓ2 , η(1)W ≤ η−1

V

8
√
rCV K

(
α
2

)L
, η(2)W ≤ 1

2ℓ2·max
i

∥xi∥ , and

K =
⌈

2
ηV

log
(
3R
ϵ

)⌉
,KV =

⌈
1

γαℓηV
log
(

3γ(L−2)rnC2
K

ϵ

)⌉
,KW =

⌈
1

4γsα2η
(2)
W

log
(

3rnC2
K

ϵ

)⌉
,

it holds F (W,V) ≤ ϵ, where W = (W1, . . . ,WL) and V = (V1,1, . . . , VL−1,n) are the parame-
ters obtained by the output of Algorithm 1.

The proof can be see in Appendix C. Theorem 4.1 exhibits that BCD provably finds a global min-
imum under a suitable choice of hyperparameters. While the definitions of K, KV and KW are
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somewhat complex, the total number of gradient computation to achieve ϵ error is bounded by
Õ(K(LKV +KW )) = Õ

(
log2

(
1
ϵ

))
.

The proof consists of two parts: (i) the loss with respect to the output layer is monotonically de-
creasing in the outer loop, and (ii) the loss with respect to the hidden layer remains sufficiently small
at the end of each iteration. We provide more detail to Appendix C due to page limitations.

We should note that the claims presented in Theorem 4.1 lie outside the framework of the so-called
NTK regime (Jacot et al., 2018), among others. Specifically, while the NTK regime assumes that
the parameters of neural networks remain almost unchanged during training, our analysis allows for
scenarios where the parameters undergo changes of Ω(1).

Remark 4.2. The assumption in Theorem 4.1, λmax

(
VjV

⊤
j

)
≤ CV , ensures that the auxiliary

parameters Vj,i are bounded during training. While we assume the existence of CV in Theorem 4.1,
we can provide a quantitative bound on the CV as CV = O((γηV ℓnKKV )

2
) (note that this bound

may not be tight). We provide a detailed derivation of this bound in Appendix D.

4.2 GENERALIZATION ERROR BOUND

The objective of this subsection is to show that BCD Algorithm 1 does not only have a strong
convergence guarantee, but also attains favorable generalization performance. To this end, we need
to make an assumption about the data distribution.
Assumption 3. The training sample {(xi, yi)}ni=1 is independently sampled from a distribution
(x, y) ∼ P . Under the distribution P , it holds that ∥x∥ ≤ BX and |y| ≤ BY almost surely.

The first statement defines the data distribution, which is essential and standard requirement for
describing the generalization error. The one requires that inputs and labels should be bounded with
probability one, which is also standard.

We then provide the following result on the generalization error bound.

Theorem 4.3 (Generalization error bound). Let f̂NN be the output of Algorithm 1 under the same
condition as Theorem 4.1. Then, if Assumption 3 holds,

E
(x,y)∼P

[(
f̂NN (x)− y

)2]
≤ 1

n

∑n
i=1

(
f̂NN (xi)− yi

)2
+ Õ

(
∥X∥
n (BY + 2LℓL−1BX)d

1
2
inL

3
2 (2r)

L
2 log r + (BY + 2LℓL−1BX)2

√
log(1/δ)

n

)
.

with probability at least 1− δ over the training sample {(xi, yi)}ni=1.

The proof can be seen in Appendix E. Notably, Theorem 4.3 provides a bound on the generalization
error for multi-layer neural networks with optimization guarantees, beyond the NTK regime. To
obtain Theorem 4.3, we utilize a result from Bartlett et al. (2017), which evaluates the generalization
gap using the spectral norms of the weight matrix of each layer. As mentioned in the previous
section, we can show that the spectral norm (equal to the maximum singular value) of Wj is upper
bounded. Combining this with the result from Bartlett et al. (2017), we can derive the generalization
gap of BCD (see Appendix E for details).

5 RELU ACTIVATION

In this section, we propose a BCD algorithm specifically for the ReLU activation σ(x) :=
max{x, 0}, which has been excluded in Theorem 4.1 due to Assumption 2. The difficulty in han-
dling the ReLU activation is that it only takes non-negative values. For attaining zero loss for a
hidden layer ∥σ(WjVj−1)− Vj∥2, we need to prevent Vj from taking negative value due to this
non-negativity. Therefore, we must exclude such situations by modifying Algorithm 1.

5.1 BCD FOR NEURAL NETWORKS WITH SKIP CONNECTION

As a solution to overcome the difficulty of ReLU activation, we consider ResNet (He et al., 2016)
type networks, where the neural networks includes skip connection. With skip connection, the

7
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objective function treated in BCD is given by

min
W,V

F (W,V) :=
∑n

i=1

[
(WLVL−1,i − yi)

2
+ γ

∑L−1
j=1 ∥σ(WjVj−1,i) + Vj−1,i − Vj,i∥2

]
,

where the loss of the hidden layer, γ
∑L−1

j=1 ∥σ(WjVj−1,i) + Vj−1,i − Vj,i∥2 differs from (4). We
describe the modified algorithm in Algorithm 3. We use the notation V +

j,i = max{Vj,i, 0}.

Algorithm 3: Block coordinate descent: ReLU

Input: (W1)ab
i.i.d.∼ N (0, 1/din), (Wj)ab

i.i.d.∼ N (0, 1/r) for all j = 2, . . . , L, V0,i = xi

1 K: max iteration, Kin: max inner iteration, ηV , η(1)W , η(2)W : step size;
2 Wj ← SVB(Wj) with inputs s1, s2, and Wj for j = 2, . . . , L− 1;
3 Vj,i = σ(WjVj−1,i) + Vj−1,i for all j = 1, . . . , L− 1 and i = 1, . . . , n;
4 for k ← 1 to K do
5 for i← 1 to n do
6 VL−1,i ←

(
VL−1,i − ηV∇VL−1,i

∥WLVL−1,i − yi∥2
)+

;
7 WL−1 ←WL−1 − γη

(1)
W

∑n
i=1∇WL−1

∥σ(WL−1VL−2,i) + VL−2,i − VL−1,i∥2;
8 for j ← L− 1 to 2 do
9 Wj ←Wj − γη

(1)
W

∑n
i=1∇Wj

∥σ(WjVj−1,i) + Vj−1,i − Vj,i∥2;
10 for i← 1 to n do
11 for kinner ← 1 to KV do
12 Vj−1,i ← Vj−1,i − γηV∇Vj−1,i

∥σ(WjVj−1,i) + Vj−1,i − Vj,i∥2;
13 Vj−1,i ← (Vj−1,i)

+ ;
14 for kinner ← 1 to KW do
15 W1 ←W1 − γη

(2)
W

∑n
i=1∇W1∥W1V0,i − V1,i∥2;

The initialization and update of W1, . . . ,WL−1 are common in Algorithm 1 and Algorithm 3. How-
ever, there are several differences between the two algorithms in their update procedures. First,
in Algorithm 3, we apply the non-negative projection V 7→ V + for each Vj,i after the inner loop
finishes. This is required for the non-negativity of ReLU: to ensure the solvability of the equation
∥σ(WjVj−1)− Vj∥2 = 0. Next, we do not update WL in Algorithm 3. This is required to ensure
the existence of VL−1,i satisfying WLVL−1,i = yi under the condition VL−1,i ≥ 0. To verify this,
we first provide the following lemma.

Lemma 5.1. Suppose that the vector WL has both positive and negative entries. Then, for any yi,
there exists a non-negative vector VL−1,i satisfying WLVL−1,i = yi.

This lemma implies that, to ensure the global convergence for arbitrary training label yi, it is suf-
ficient to check that WL has both positive and negative components. Clearly, such a situation will
occur frequently as the with of the hidden layer r increases. Indeed, by the symmetry of the Gaus-
sian distribution, this probability is calculated as 1−2 ·

(
1
2

)r
= 1−2−r+1. Additionally, we provide

a high probability bound on the norm of the positive and negative components of WL, which deter-
mines the convergence speed of the gradient descent.

Lemma 5.2. Let W⊤
L ∼ N (0, r−1Ir), w+ := max{WL,0

⊤}, and w− := min{WL,0
⊤}. Then,

for any δ > 0, with probability at least 1− 2δ, min
{
∥w+∥2, ∥w−∥2

}
≥ 1

2 −
√

8 log(2/δ)
r holds.

Since it is not trivial that the similar inequality holds for each iteration when considering the update
of WL, we assume that WL is fixed during training for simplicity.

Similarly to the problem (4) considered in the previous section, we consider 1-dimensional outputs
here. We then formally state the convergence result of Algorithm 3 applied to networks with ReLU
activation and skip connections.

Theorem 5.3 (Global convergence of BCD with ReLU activation). We assume that there exists
a constant CV > 0 such that λmax

(
VjV

⊤
j

)
≤ CV for j = 1, . . . , L − 1 during training. We

denote s := σmin(X). Let Ri = |WLVL−1,i − yi| at the initial value of the objective function with

8
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respect to the output layer, and define R :=
∑n

i=1 R
2
i , Rmax := max

i
Ri, and CK := (4RmaxηV +

5
√
ϵ)
(
3
2

)L
. Then, under (s1, s2) = (0, 1

4 ), ηV ≤
1

2min{∥w+∥2,∥w−∥2} , η(1)W ≤ η−1
V

24
√
rCV K

(
2
3

)L
,

η
(2)
W ≤ 1

2·max
i

∥xi∥ , and

K =

⌈
1

4ηV min{∥w+∥2,∥w−∥2} log
(
3R
ϵ

)⌉
,KV =

⌈
3

4γηV
log
(

49(L−2)rnC2
K

3ϵ

)⌉
,KW =

⌈
1

4γsη
(2)
W

log
(

C2
K

ϵ

)⌉
,

it holds F (W,V) ≤ ϵ, where W = (W1, . . . ,WL) and V = (V1,1, . . . , VL−1,n) are the parame-
ters obtained by the output of Algorithm 3.

The proof can be seen in Appendix F. Thus, we obtain a global convergence guarantee of BCD for
networks with ReLU activation.

6 NUMERICAL EXPERIMENT

In this section, we conduct numerical experiments to verify our theoretical findings. Particularly,
we numerically confirm that BCD converges to a global minimum for monotonically increasing
activation (Algorithm 1) and ReLU (Algorithm 3) using an artificial dataset.

Figure 1: Loss of Algorithm 1 with LeakyReLU Figure 2: Loss of Algorithm 3 with ReLU

6.1 MONOTONICALLY INCREASING ACTIVATION

First, we conduct a numerical experiment for a monotonicall y increasing activation. We apply
Algorithm 1 to a neural network with four hidden layers, each with r = 30 nodes, and LeakyReLU
activation σ(x) = max{x, 0.5x}, which satisfies Assumption 2 with α = 0.5 and ℓ = 1. We prepare
n = 500 training samples from a teacher network with a single hidden layer and the same activation.
We set din = 600, sample xi from the normal distribution, and define yi as the output of the teacher
network. For hyperparameters, we employ KV = KV = 100 and ηV = η

(1)
W = η

(2)
W = 1.

Figure 1 shows the result. The black line means the training error, i.e., 1
n

∑n
i=1 (fNN (xi)− yi)

2.
Other lines represent the loss of j-th layer, i.e,

∑n
i=1∥σ(WjVj−1,i)− Vj,i∥2 for j ∈ {1, 2, 3, 4}. We

can observe that the training error monotonically decreases while the losses for each layer remain
small, which reflects our theoretical findings.

6.2 RELU ACTIVATION

Next, we experimentally examine BCD for ReLU activation using Algorithm 3. We apply Algo-
rithm 3 to a neural network with for hidden layers, r = 30, ReLU activation and skip connec-
tion. Similarly to the monotinically increasing activation, we prepare a dataset with n = 500 and
din = 600 using a teacher network. For hyperparameters, we employ KV = KV = 100 and
ηV = η

(1)
W = η

(2)
W = 1.

Figure 2 shows the result. Like Figure 1, the black line means the training error. Other lines represent
the loss of j-th layer, i.e,

∑n
i=1∥σ(WjVj−1,i) + Vj−1,i − Vj,i∥2 for j ∈ {1, 2, 3, 4}. We can observe

the same convergence procedure here: the training error monotonically decreases and the losses for
each layer remain small.

9
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Additionally, we plot the training loss without using the skip connection as the dashed black line.
While the training loss for BCD without skip connections does not decrease due to the difficulty of
maintaining non-negativity, the skip connection drastically improves BCD training.

7 CONCLUSION

In this paper, we proposed a block coordinate descent (BCD) algorithm for training deep neural
networks and ensured the convergence to global minima for networks with strictly monotonically
increasing activation functions. We also derived a generalization bound using Rademacher complex-
ity, ensuring both strong optimization and generalization performance. For ReLU activations, we
introduced a modified BCD algorithm with skip connections and non-negative projection updates to
ensure convergence. Empirical validation demonstrated the practical effectiveness of our algorithms
for both monotonic and ReLU activations. Overall, this work advances the understanding of BCD
in neural networks, offering provable convergence and generalization guarantees.
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A DISCUSSION OF EXTENSION

As we mentioned in Remark 3.2, we consider a simple form of BCD for the convergence guarantee,
where we just apply the gradient descent update using the ℓ2 distance. This section discusses the
possible extension of the BCD algorithms Algorithm 1 and Algorithm 3.

General loss function One possible and somewhat straightforward extension is to employ general
loss function ℓ(·, ·) instead of ℓ2 distance we consider in this paper. This implies that our results are
not restricted to regression. In this case, we can consider the total loss

min
W,V

F (W,V) :=

n∑
i=1

ℓ(WLVL−1,i, yi) + γ

L−1∑
j=1

∥σ(WjVj−1,i)− Vj,i∥2
 ,

where the loss of the output layer is replaced by ℓ(·, ·) compared to (4). Since the term
γ
∑L−1

j=1 ∥σ(WjVj−1,i)− Vj,i∥2 remains the same as (4), we can employ the same argument as
Theorem 4.1 for its convergence proof. Therefore, we only need to ensure the global convergence of
the output layer (WL and VL−1) to obtain a similar result to Theorem 4.1. Indeed, we can consider
strongly convex losses and replace the bound on FL with an ordinal convergence guarantee for the
convex function. One example of such a loss is cross-entropy loss, defined by

ℓ(WLVL−1, yi) = −
dout∑
c=1

yij log
exp(WLVL−1)c∑dout

c=1 exp(WLVL−1)c
,

which is typically used for the dout-class classification problem. Thus, while we focus on the re-
gression problem, our analysis can be extended to classification problems as well.

Different activation between layers While we consider a model that uses the same activation σ
for all layers, we can employ different activation σj for j-th layer, provided they satisfy Assump-
tion 2. We can follow the exactly same proof we show in Theorem 4.1, by replacing σ in the
convergence argument with respect to the loss of j-th layer by σj .

Other initialization schemes In Algorithm 1, we initialize the weights Wj using the Gaussian
initialization and apply singular value bounding to them, and then initialize Vj,i in the exact manner,
i.e., Vj,i = σ(Wj−1Vj−1,i). However, to ensure the global convergence, we only need to preserve
the condition in Lemma C.4 during the training. Therefore, several variants of the initialization
scheme can be considered. In particular, we do not need to initialize the weights using a Gaussian
distribution. Xavier’s initialization, which employs a uniform distribution instead of a Gaussian, is
one possible choice.

Activation violating Assumption 2 Here, we discuss the possibility of employing activation other
than those that satisfy Assumption 2 or ReLU. First, we note that our analysis relies on the mono-
tonicity property of the activation function, including ReLU. Without this assumption, we cannot
rule out the possibility that the parameters may be trapped in local minima due to the existence of
points where σ′ = 0. Thus, the monotonicity of the activation function is crucial in our proof.

For monotonically increasing activation that violate Assumption 2, one can employ sigmoid, tanh,
and similar activation. As discussed in Section 5 for ReLU,one of the difficulties in handling such ac-
tivations is that they cannot take any value in R. For example, the sigmoid activation x 7→ 1

1+exp(−x)

only takes values in [0, 1], and the tanh activation x 7→ exp(x)−exp(−x)
exp(x)+exp(−x) only takes values in [−1, 1].

In these cases, we need to take care of Vj,i not to go out of these ranges. For ReLU activation, we
employ skip connection to overcome this problem.
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Training loss with the regularization term A line of works investigates BCD methods usually
considers the regularization term, meaning the loss function is given by

min
W,V

F (W,V) :=

n∑
i=1

[
(WLVL−1,i − yi)

2
+ rW (WL)

2

+ γ

L−1∑
j=1

[
∥σ(WjVj−1,i)− Vj,i∥2 + rW (Wj) + rV (Vj)

]]
,

where rW and rV denotes the regularization terms with respect to W and V , respectively. In this
case, additional term appears in gradient descent updates. While these make convergence guarantees
more challenging, convergence to a global minimum is still ensured as long as rW and rV are
strongly convex, such as Tikhonov regularization. However, we need to carefully evaluate the gap
in training loss caused by the regularization to derive the generalization error bound in Theorem 4.3.

B EXTENSION TO MULTI DIMENSIONAL OUTPUT

Here, we consider the case with multi-output, where the loss is given by

min
W,V

F (W,V) :=
∑n

i=1

[
∥WLVL−1,i − yi∥2 + γ

∑L−1
j=1 ∥σ(WjVj−1,i)− Vj,i∥2

]
.

with yi ∈ Rdout (dout > 1). Comparing to the above result, a difficulty emerges in the optimization
of the output layer: convergence analysis of WL and VL−1,i. If rank(WL) ≥ dout, we can obtain
the same result as Theorem 4.1 since the linear equation

WLVL−1,i − yi = 0 (5)

have a solution, and we can prove the convergence of gradient descent using the same argument
as the proof of Theorem 4.1. In the case dout > rank(WL), the linear equation may not have
solutions, which means we cannot ensure the global convergence, and furthermore, nor can we
verify the existence of global minima. To overcome such a situation, we introduce the following
assumption: the labels have a low-rank representation.
Assumption 4. There exists an integer r < dout such that there exists a matrix U1 ∈ Rdout×r

satisfying yi = U1zi with zi ∈ Rr for any i ∈ [n].

In this case, the equation (5) has solutions, including WL = U1 and VL−1,i = yi. On the other
hand, whether the parameters can converge to one of such solutions is not trivial. As an attempt to
investigate this problem, we first write down the update of WL by line 5 in Algorithm 1.

Update of WL With general dout, the straight-forward calculation gives

W
(k)
L = W

(k−1)
L

(
1− ηW

∑n
i=1 VL−1,iV

⊤
L−1,i

)
+ ηWU1

∑n
i=1 ziV

⊤
L−1,i.

Let us discuss this update. The first term represents that with a sufficient small ηW so that the
maximum eigenvalue of the (symmetric) matrix ηW

∑n
i=1 VL−1,iV

⊤
L−1,i is smaller than 1, WL

shrinks to zero exponentially. In the second term, a matrix spanned by U1 is added to WL. Es-
pecially when the matrix

∑n
i=1 ziV

⊤
L−1,i ∈ Rr×r is full rank, WL = ηWU1

∑n
i=1 ziV

⊤
L−1,i and

yi =
(
ηW
∑n

i=1 ziV
⊤
L−1,i

)−1
yi can be a solution of (5). Thus, throughout the gradient descent up-

date, only matrices aligning with U1 are added to WL and WL loses other components exponentially.
On the other hand, ensuring this procedure rigorously is still not easy, for example, the evaluation
of the minimum eigenvalue of the matrix

∑n
i=1 ziV

⊤
L−1,i is complicated. Recently, Ye & Du (2021)

shows the global convergence of this update as follows:
Theorem B.1 (Theorem 1.1 in Ye & Du (2021)). Suppose Y = (y1, . . . , yn) ∈ Rdout×n satisfies
Assumption 4. Let s1 and sr be the minimum and maximum singular value of Y . Assume that each
entry of WL and VL−1,i are initialized from Gaussian distribution with mean 0 and variance δ2,

where ϵ = Õ
(

sr√
r3s1(n+dout)

)
. Then, with setting η = O

(
srδ

2

rs1

)
, the output of the gradient descent

achieves
∑n

i=1∥WLVL−1,i − yi∥2 ≤ ϵ after O
(

1
ηs1

log
(
rsr
ϵ

)
+ 1

ηsr
log
(
sr
ϵ

))
iterations.
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To apply this to BCD in the multi-output case, we only need to modify the proof of Theo-
rem 4.1 in two points: (i) convergence analysis of WL and VL−1,i and (ii) adjust the initializa-
tion scheme. For (i), while we use a simple convergence analysis in Appendix C, we directly can
apply Theorem B.1 instead. Then, the number of the iteration K in Theorem 4.1 is replaced by
O
(

1
ηs1

log
(
rsr
ϵ

)
+ 1

ηsr
log
(
sr
ϵ

))
as shown in Theorem B.1. For (ii), Theorem B.1 requires Gaus-

sian initialization for each component of WL, VL−1,i, which does not align with the exact manner
initialization Vj,i = σ(Vj−1,i) considered in Theorem 4.1. We need to bridge this gap to attain a
convergence guarantee. However, as we discussed in Appendix A, the exact manner initialization
is only required for small objective value at initialization, and we can extend our analysis to any
initialization scheme. Thus, our analysis can be extended to the multi-dimensional output case.

C PROOF OF THEOREM 4.1

In this section, we provide the proof to Theorem 4.1. The key notion is the block-wise analysis. First,
we provide the preliminary lemmas for the proof. After that, we prepare the block-wise analysis and
combine them.

Throughout this section, we suppose that the conditions in Theorem 4.1 are satisfied.

C.1 PRELIMINARY RESULTS

The following lemma immediately follows from the smoothness of the activation.

Lemma C.1. Let d ≥ 1 an integer. For any x1, x2 ∈ Rd, it holds that ∥σ(x1)− σ(x2)∥2 ≤
ℓ2∥x1 − x2∥2.

Next, by utilizing Assumption 2, we derive the following lemma.

Lemma C.2. For activation function satisfying Assumption 2, for any x, y ∈ R, there exists ξ such
that α ≤ ξ ≤ ℓ and σ(x+ y) = σ(x) + ξy hold.

Proof. We first consider the case y > 0. Then, we have

σ(x+ y)− σ(x) =

∫ y

0

σ′(x+ t)dt ≥ αy.

The Lipschitz continuity of σ gives σ(x+ y) ≤ σ(x) + ℓy. Thus we get

α ≤ ξ :=
σ(x+ y)− σ(x)

y
≤ ℓ,

which gives the conclusion.

The case y < 0 can be proven by substituting x and y in above discussion by x+ y and −y.

In the case y = 0 we can take arbitrary ξ with α ≤ ξ ≤ ℓ to satisfy the assertion.

This lemma gives the following proposition, which we utilize throughout the convergence analysis.

Proposition C.3. For activation functions satisfying Assumption 2 and an integer d > 1, for any
x, y ∈ Rd, there exists a diagonal matrix Ξ such that each diagonal entry Ξjj of A satisfies α <
Ξjj < ℓ and σ(x+ y) = σ(x) + Ξy.

Proof. Note that by Lemma C.2, for each j = 1, . . . , d, there exists a Ξjj satisfying σ(x + y)j =
σ(x)j + Ξjjyj . Then, Ξ = diag(Ξ11, . . . ,Ξdd) satisfies the desired condition.

Next, we prove that the singular values of Wj (j = 2, . . . , L) are upper and lower bounded during
the training.

Lemma C.4 (Regularity of weight matrix Wj during training). For j = 2, . . . , L, 1
2 ≤

λ
1/2
min

(
WjW

T
j

)
≤ λ

1/2
max

(
WjW

⊤
j

)
≤ 2 always holds during the training.
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Proof. By Lemma C.5, it suffices to show that every row w of Wj satisfies ∥∆w∥ ≤ 1
4
√
r

, where
∆w denotes the difference between w at the start and end of the training. Indeed, this implies

σmax(∆W ) = λ
1
2
max

(
∆W∆W⊤) ≤

√√√√ r∑
p=1

λp(∆W∆W⊤)

≤
√
Tr(∆W∆W⊤) = ∥∆W∥F ≤

1

4
.

Combining this with 3
4 ≤ λmin ≤ λmax ≤ 5

4 gives the conclusion.

To this end, we prove ∥∆w∥ ≤ 1
4
√
r

. This follows from

η
(1)
W γ∇w∥σ(wV )− V ′∥2 = 2η

(1)
W γ ·

∥∥diag(σ′(wV ))V ⊤(σ(wV )− V ′)
∥∥

≤ 2η
(1)
W γℓλ1/2

max(V V ⊤) · ∥σ(wV )− V ′∥

≤ 2η
(1)
W γℓCV · ηV

(
2

α

)L

≤ 1

4K
√
r
,

where the last inequality follows from the definition of η(1)W .

Lemma C.5 (Weyl’s inequality for singular values). Let A ∈ Rd1×d2 be a real-valued matrix, then,
for every matrix ∆ ∈ Rd1×d2 , it holds that

max
k
|σk(A+∆)− σk(A)| ≤ σmax(∆),

where σk(A) denotes the k-th largest singular value of A and σmax(A) denotes its maximum singu-
lar value.

C.2 ANALYSIS OF GRADIENT DESCENT IN A GENERAL FORM

First, we introduce the key idea of analysis with general notations2. Let us consider the regression
problem with an objective

b∑
a=1

(
σ
(
w⊤xa

)
− ya

)2
,

where w ∈ Rd is a trainable parameter. Let w′ := w − η∇
∑b

a=1

(
σ
(
w⊤xa

)
− ya

)2
, where w′

denotes the parameter obtained by a single update of gradient descent with a step-size η > 0. Denote
X := (x1, . . . xb)

⊤ ∈ Rb×d and Y := (y1, . . . , yb)
⊤ ∈ Rb. Then,

∑b
a=1

(
σ(w⊤xa)− ya

)2
=

∥σ(Xw)− Y ∥2 holds and a straightforward calculation shows w′ = w − 2ηX⊤D(σ(Xw)− Y ),
where D = diag

(
(σ′(w⊤x1), . . . , σ

′(w⊤xb))
)
. Then, we have

∥σ(Xw′)− Y ∥2 =
∥∥σ(Xw − 2ηXX⊤D(σ(Xw)− Y )

)
− Y

∥∥2
=
∥∥σ(Xw)− 2ηΞXX⊤D(σ(Xw)− Y )− Y

∥∥2,
where Ξ is a diagonal matrix which is determined by Proposition C.3. Thus, we obtain

∥σ(Xw′)− Y ∥2 =
∥∥(I − 2ηΞXX⊤D

)
(σ(Xw)− Y )

∥∥2. (6)

The obtained relationship (6) implies that with a sufficiently small choice of η satisfying∥∥I − 2ηΞXX⊤D
∥∥
op

< 1, (7)

the loss ∥σ(Xw)− Y ∥2 will linearly decrease to zero.

2Our analysis is simlar to that in Yehudai & Ohad (2020); Frei et al. (2020)
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Here, we explain how (7) holds even when the matrix 2ηΞXX⊤D is not symmetric, i.e., positive-
semidefinite. Let M := XX⊤, which is positive-semidefinite. Since diagonal matrices commute,
we have

ΞXX⊤D =
(
Ξ−1D

)− 1
2D

1
2Ξ

1
2MΞ

1
2D

1
2

(
Ξ−1D

) 1
2 .

Let N :=
(
Ξ−1D

)− 1
2 . Then, we obtain

I − 2ηΞXX⊤D = N
(
I − 2ηD

1
2Ξ

1
2MΞ

1
2D

1
2

)
N−1.

Since 2ηD
1
2Ξ

1
2MΞ

1
2D

1
2 is positive-semidefinite, I − 2ηD

1
2Ξ

1
2MΞ

1
2D

1
2 only has positive eigen-

value for a sufficiently small η, and its largest eigenvalue is smaller than one if 2ηD
1
2Ξ

1
2MΞ

1
2D

1
2 is

positive-definite. Since the eigenvalues are invariant with respect to the change of basis, we obtain
(7).

C.3 BLOCK-WISE CONVERGENCE ANALYSIS

According to the relationship (6), we provide the block-wise convergence analysis, that is, the con-
vergence analysis of the Wj and Vj of the each layer.

Update of Vj,i (j = 1, . . . , L−2) According to Algorithm 1, the update of Vj,i (j = 1, . . . , L−1)
is written by

Vj,i ← Vj,i − γηV

r∑
p=1

∇Vj,i

(
σ(wj,pVj,i)− (Vj+1,i)p

)2
, (8)

where wj,p denotes the p-th row of the weight matrix of the j-th layer Wj and (Vj+1,i)p denotes the
p-th component of Vj+1,i.

Despite the abuse of notation, we omit the layer index j and the sample index i for notational
simplicity. We note that the analysis here can be independently applied to each layer and sample,
as shown in the proof of the main theorem; hence, this abbreviation does not matter in the proof of
Theorem 4.1. Then, (8) can be rewritten by

V ← V − γηV

r∑
p=1

∇V

(
σ(wpV )− V ′

p

)2
, (9)

where we denote V ′
p := (Vj+1,i)p.

Let FV (v) :=
∑r

p=1

(
σ(wpv)− V ′

p

)2
(= ∥σ(Wv)− V ′∥2) and V (0) be the initial point of Vj of the

inner loop for each outer iteration (we also use abuse of notation here), and V (k) be the parameter
obtained by k iterations of the inner loop.

Under these settings, we first show the existence of global minima of FV as follows:
Lemma C.6 (Existence of v∗). Suppose that 1

2 ≤ σmin(W ) and σmax(W ) ≤ 2 hold. Let ∆v :=

σ(WV (0))− V ′. Then, there exists a unique v satisfying FV (v
∗) = 0 and∥∥∥V (0) − v∗

∥∥∥ ≤ 2

α
∥∆v∥.

Proof. Let ∆v := σ−1(σ(WV (0) + ∆v) −WV (0). Then, it follows that v∗ = V (0) + W−1∆v
since

σ
(
V (0) +W−1∆v

)
= σ

(
σ−1

(
σ(WV (0)) + ∆v

))
= σ

(
WV (0)

)
+∆v.

Now, σ(−1)(·) is 1
α -Lipschitz and satisfies σ(0) = 0. Then, we have ∥∆v∥ ≤ 1

α∥∆v∥ and conse-
quently ∥∥∥V (0) − v∗

∥∥∥ =
∥∥W−1∆v∥ ≤ ∥W−1

∥∥
op
· ∥∆v∥ ≤ 2

α
∥∆v∥.

This gives the assertion.
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Next, by using the observation in (6), we provide the convergence analysis to the update (9).

Lemma C.7 (Convergence analysis of V ). Under the same condition as Theorem 4.1, it holds that∥∥∥σ(WV (k))− V ′
∥∥∥2 ≤ exp

(
−γα2ℓηV k

)∥∥∥σ(WV (0))− V ′
∥∥∥2.

Proof. Let σ(WV (k)) := σ(WV (k−1))−∆σ. Then, by letting a→ l, b→ r, xa → wj , ya → V ′

in (6), there exists a diagonal matrix Ξ such that

∆σ = ΞW
(
2γηV W

⊤D(k−1)
(
σ(WV (k−1))− V ′

))
and αI ≺ Ξ ≺ ℓI , where

D(k−1) = diag
((

σ′(w1V
(k−1)), . . . , σ′(wrV

(k−1))
))
∈ Rr×r.

Then, it holds that

∥σ(WV (k))− V ′∥2 =
∥∥∥(I − 2γηV ΞWW⊤D(k−1)

)
(σ(WV (k−1))− V ′)

∥∥∥2
≤
∥∥∥I − 2γηV ΞWW⊤D(k−1)

∥∥∥2
op

∥∥∥σ(WV (k−1))− V ′
∥∥∥2,

By using the fact that 1
4I ≺ WW⊤ ≺ 4I and αI ≺ D(k−1) ≺ ℓI , we have γα2ℓ

2 ηV ≤ λmin(A) ≤
λmax(A) ≤ 8γℓ2ηV for A = 2γηV ΞWW⊤D(k−1). Hence, by taking ηV ≤ 1

8γℓ2 , we have

0 ≤
∥∥∥I − 2γηV ΞWW⊤D(k−1)

∥∥∥
op
≤ 1− γα2ℓ

2
ηV

and therefore, ∥∥∥σ(WV (k))− V ′
∥∥∥2 ≤ (1− γα2ℓ

2
ηV

)2 ∥∥∥σ(WV (k−1))− V ′
∥∥∥2.

This results in ∥∥∥σ(WV (k))− V ′
∥∥∥2 ≤ (1− γα2ℓ

2
ηV

)2k ∥∥∥σ(WV (0))− V ′
∥∥∥2

≤ exp
(
−γα2ℓηV k

) ∥∥∥σ(WV (k−1))− V ′
∥∥∥2,

where the last inequality follows from 1− x ≤ e−x. Thus we obtain the conclusion.

Finally, we provide a lemma evaluating distance to global minima based on the objective value:

Lemma C.8. Suppose that FV (v) ≤ ϵ holds. Then,

∥v − v∗∥ ≤ 2

α

√
ϵ.

Proof. Since

ϵ ≥ FV (v) = ∥σ(Wv)− σ(Wv∗)∥2 ≥ α2∥Wv −Wv∗∥2 ≥ 1

4
α2∥v − v∗∥,

we obtain ∥v − v∗∥ ≤ 2
α

√
ϵ.
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Update of Wj (j = 2, . . . , L− 1) Let wj,p ∈ Rr be the p-th row of the weight matrix Wj . Then,
update of each wj,p is given by

wj,p ← wj,p − γη
(1)
W

n∑
i=1

∇wj,p

(
σ(wj,pVj,i)− (Vj+1,i)p

)2
, (10)

For notational simplicity, we omit the layer index j and the node index p. Namely, the update (10)
is simply rewritten by

w ← w − γη
(1)
W

n∑
i=1

∇w(σ(wVi)− V ′
i )

2
,

where we denote Vi := Vj,i and V ′
i := (Vj+1,i)p. Let FW (w) :=

∑n
i=1(σ(wVi) − V ′

i )
2(=

∥σ(wV )− V ′∥2) and w(0) be the initial point of wj,p of the inner loop for each outer iteration
(we also use abuse of notation here), and w(k) be the parameter obtained by k iterations of the inner
loop. Against to the argument of FV in the above paragraph, FW have not a solution w∗ satisfying
FW (w∗) = 0 especially when n > r. However, we can still ensure that the objective value remains
small during the update of Wj as follows:
Lemma C.9 (Convergence analysis of Wj). Under the same condition as Theorem 4.1, it holds that

∥σ(w′V )− V ′∥2 ≤ ∥σ(wV )− V ′∥2.

Proof. By letting a → i, b → i, xa → Vi and ya → V ′ in (6), there exists a diagonal matrix Ξ
satisfying αI ≺ Ξ ≺ ℓI and

∥σ(w′V )− V ′∥2 =
∥∥∥(I − 2γη

(1)
W ΞV V ⊤D(k−1)

)
(σ(w(k−1)V )− V ′)

∥∥∥2
≤
∥∥∥I − 2γη

(1)
W ΞV V ⊤D(k−1)

∥∥∥2
op

∥∥∥σ(w(k−1)V )− V ′
∥∥∥2.

By using the fact that O ⪯ V V ⊤ ≺ CV I and αI ≺ D(k−1) ≺ ℓI , we have
λmax

(
2γη

(1)
W ΞV V ⊤D(k−1)

)
≤ 2γCV ℓ

2η
(1)
W . Hence, by taking η

(1)
W ≤ 1

2γCV ℓ2 , we obtain the
conclusion.

Update of W1 Let wp ∈ Rdin the p-th row of the weight matrix W1. Then, the update of each wp

is given by

wp ← wp − γη
(2)
W

n∑
i=1

∇wl

(
σ(wpxi)− (V1,i)p

)2
. (11)

Namely, the update (11) is simply rewritten by

w(k) ← w(k−1) − γη
(2)
W

n∑
i=1

∇w

(
σ
(
w(k−1)xi

)
− Vi

)2
, (12)

where we denote Vi := (V1,i)l.

Let FW (w) :=
∑n

i=1(σ(wxi)− Vi)
2(= ∥σ(wX)− V ∥2) and w(0) be the initial point of wj of the

inner loop for each outer iteration (we also use abuse of notation here), and w(k) be the parameter
obtained by k iterations of the inner loop.

Lemma C.10 (Existence of W ∗). Let ∆v := σ(w(0)xi) − Vi. Then, there exists a w∗ such that
Fw(w

∗) = 0 and ∥∥∥w(0) − w∗
∥∥∥ ≤ 1

ασmin(X)
∥∆v∥

Proof. The proof is essentially same as that of Lemma C.6.
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We then provide the convergence analysis to the update (12) by using the observation in (6), we.

Lemma C.11 (Convergence analysis of W1). Under the same condition as Theorem 4.1,∥∥∥σ(w(k)X
)
− V1

∥∥∥2 ≤ exp
(
−4γsα2η

(2)
W k

)∥∥∥σ(w(0)X
)
− V1

∥∥∥2.
Proof. By letting a→ i, b→ i, xa → xi and ya → Vi in (6), we obtain∥∥∥σ(w(k)X

)
− V1

∥∥∥2 =
∥∥∥σ(w(k−1)X

)
− V1 − 2γη

(2)
W AXX⊤D(k−1)

(
σ
(
w(k−1)X

)
− V1

)∥∥∥2
=
∥∥∥(I − 2γη

(2)
W ΞXX⊤D(k−1)

)(
σ(w(k−1)X)− V1

)∥∥∥2
≤
∥∥∥I − 2γη

(2)
W ΞXX⊤D(k−1)

∥∥∥2
op

∥∥∥σ(w(k−1)X)− V1

∥∥∥2.
By using the fact that 0 < s := λmin

(
XX⊤) and λmax

(
XX⊤) ≤ max

i
∥xi∥2, we have

2γsα2η
(2)
W ≤ λmin(A) ≤ λmax(A) ≤ 2γℓ2max

i
∥xi∥2η(2)W

for A = 2γη
(2)
W ΞXX⊤D(k−1). Then, by taking η

(2)
W ≤ 1

2γℓ2max
i

∥xi∥2 , we obtain

∥∥∥σ(w(k)X)− V1

∥∥∥2 ≤ (1− 2γsα2η
(2)
W

)2 ∥∥∥σ(w(k−1)X)− V1

∥∥∥2.
By using 1− x ≤ e−x, this concludes∥∥∥σ(w(k)X)− V1

∥∥∥2 ≤ (1− 2γsα2η
(2)
W

)2k ∥∥∥σ(w(0)X)− V1

∥∥∥2
≤ exp

(
−4γsα2η

(2)
W k

)∥∥∥σ(w(0)X)− V1

∥∥∥2,
which is the desired bound.

C.3.1 PROOF OF THEOREM 4.1

Before providing the proof of Theorem 4.1, we introduce the following lemma:

Lemma C.12 (Bound on ∆v at the output layer). Let Ri :=
∣∣∣W (0)

j V
(0)
L−1,i − yi

∣∣∣. Then, we have∥∥∥V (k)
L−1,i − V

(k−1)
L−1,i

∥∥∥ ≤ 4RiηV .

Proof. By the construction of the algorithm, we have∥∥∥V (k)
L−1,i − V

(k−1)
L−1,i

∥∥∥ =
∥∥∥2ηV (W (k)

L V
(k−1)
L−1,i − yi)W

(k)
L

∥∥∥
≤ 2ηV

∥∥∥W (k)
L

∥∥∥
op
·
∥∥∥W (k)

L V
(k−1)
L−1,i − yi

∥∥∥
≤ 4ηV

∥∥∥W (0)
L V

(0)
L−1,i − yi

∥∥∥ = 4ηV Ri,

which gives the conclusion.

Then, we move to the proof to Theorem 4.1.

Proof of Theorem 4.1. Let us consider the decomposition of F as

F = FL +

L−1∑
j=1

Fj =

n∑
i=1

FL,i +

L−1∑
j=1

r∑
p=1

Fj,i,p

,
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where

FL,i := (WLVL−1,i − yi)
2
, FL =

n∑
i=1

FL,i

and

Fj,i,p := γ
(
σ(WjVj−1,i)p − (Vj,i)p

)2
, Fj =

n∑
i=1

r∑
p=1

Fj,i,p

for j = 1, . . . , L − 1. The proof consists of two parts: (I) FL is monotonically decreasing in the
outer loop and (II) Fj,i,p (j = 1, . . . , L − 1, i = 1, . . . , n, p = 1, . . . , r) is sufficiently small at the
end of each inner iteration.

(I) Bound on FL The update of VL−1,i is described by

V
(k)
L−1,i = V

(k−1)
L−1,i − 2ηV

(
W

(k)
L V

(k−1)
L−1,i − yi

)
W

(k)
L .

Then, we have

W
(k)
L V

(k−1)
L−1,i − yi =

(
1− 2ηV

∥∥∥W (k)
L

∥∥∥2)(W (k)
L V

(k−1)
L−1,i − yi

)
.

This results in

F
(k)
L,i ≤

(
1− 2ηV

∥∥∥W (k)
L

∥∥∥2)2

F
(k−1)
L,i ≤ exp

(
−4ηV

∥∥∥W (k)
L

∥∥∥2)F (k−1)
L,i ≤ exp (−ηV )F (k−1)

L,i ,

where the second inequality follows from 1 − x ≤ e−x and the last inequality from
∥∥∥W (k)

L

∥∥∥ ≥ 1
2 .

This concludes
F

(k)
L ≤ exp (−ηV k)F (0)

L .

Since F
(0)
L = R by the definition of R, after k = 1

ηV
log
(
3R
ϵ

)
iterations, F (k)

L ≤ ϵ
3 holds.

(II)-(i) Bound on Fj (j = 2, . . . , L − 1) Let us define ∆vj,i := σ(Wj+1Vj,i) − Vj+1,i for j =
1, . . . , L− 1, where we denote VL,i := yi. Then, by Lemma C.6 and Lemma C.8, we have

∥∆vj,i∥ ≤
2

α

(
∥∆vj+1,i∥+

√
ϵ
)

for any j = 1, . . . , L− 2 and i = 1, . . . , n. We have
∥∥∥∆v

(k)
L−1,i

∥∥∥ ≤ 4RmaxηV by Lemma C.12. By
using this bound, we can derive∥∥∥∆v

(k)
j,i

∥∥∥ ≤ (4RmaxηV +
2

2− α

√
ϵ

)(
2

α

)L−1−j

− 2

2− α

√
ϵ (13)

≤
(
4RmaxηV +

2

2− α

√
ϵ

)(
2

α

)L

(14)

by induction. Indeed, (13) holds for j = L − 1 with equality. Moreover, under the induction
hypothesis, it holds that

∥∆vj−1,i∥ ≤
2

α

(
∥∆vj,i∥+

√
ϵ
)
≤ 2

α

((
4RmaxηV +

2

2− α

√
ϵ

)(
2

α

)L−j

− 2

2− α

√
ϵ+
√
ϵ

)

=

(
4RmaxηV +

2

2− α

√
ϵ

)(
2

α

)L−(j−1)

− 2

2− α

√
ϵ.

This concludes (13) for j = 1, . . . , L− 1. Then, by using Lemma C.7, we have

Fj,i,p ≤ γ exp
(
−γα2ℓηV kinner

)
·
(
2

α

)L(
4RmaxηV +

2

2− α

√
ϵ

)2

.

Thus, kinner = 2
γα2ℓηV

log

((
2
α

)L (
4RmaxηV + 2

2−α

√
ϵ
)2

3(L−2)rnγ
ϵ

)
gives Fj,i,p ≤ ϵ

3(L−2)rn

and hence, Fj ≤ ϵ
3(L−2) by summing up Fj,i,p.
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(II)-(ii) Bound on F1 By using Lemma C.11, we have
n∑

i=1

F1,i,p ≤ exp
(
−4γsα2η

(2)
W kinner

)∥∥∥σ(W (0)U)− V1

∥∥∥2
Since ∆v

(k)
1,i ≤

(
4RmaxηV + 2

2−α

√
ϵ
) (

2
α

)L−1
, we have

∥∥∥σ(W (0)U)− V1

∥∥∥2 ≤ n∑
i=1

(
2

α
(∥∆v1,i∥+ ϵ)

)2

= n

(
4RmaxηV +

2

2− α

√
ϵ

)2

·
(
2

α

)2L

Thus, kinner = 1

4γsα2η
(2)
W

log

(
n
(
RmaxηV + 2

2−α

√
ϵ
)2
·
(
2
α

)2L 3r
ϵ

)
gives

∑
i=1 F1,i,p ≤ ϵ for

p = 1, . . . , r. This results in F1 =
∑n

i=1

∑r
p=1 F1,i,p ≤ ϵ

3 .

(III) Summing up all By combining all, after K outer iterations and KV and KW inner iterations,
we have

F = FL +

L−1∑
j=1

Fj ≤
ϵ

3︸︷︷︸
FL

+

L−1∑
j=2

ϵ

3(L− 2)︸ ︷︷ ︸
F2...,FL−1

+
ϵ

3︸︷︷︸
F1

= ϵ,

which gives the conclusion.

D QUANTITATIVE EVALUATION OF CV

Here, we provide the quantitative bound on CV satisfying λmax(VjV
⊤
j ) ≤ CV for j = 1, . . . , L− 1

during the training, which we introduced in Theorem 4.1 and Remark 4.2.

Proposition D.1. Let cV := 2max
j

∑n
i=1∥Vj,i∥2, where Vjs are the parameters at the initialization.

Under the same settings as Theorem 4.1, We can take

CV = cV +O((γηV ℓnKKV )
2
).

Proof. First, we have

λmax(VjV
⊤
j ) ≤

r∑
j=1

λj(VjV
⊤
j ) = tr

(
VjV

⊤
j

)
= tr

(
n∑

i=1

Vj,iV
⊤
j,i

)
=

n∑
i=1

tr
(
Vj,iV

⊤
j,i

)
=

n∑
i=1

∥Vj,i∥2. (15)

This implies that we only need to evaluate the norm of Vj,is during the training. Remind that the
update of Vj is given by

Vj,i ← Vj,i − 2γηV W
⊤
j D(σ(WjVj,i)− Vj+1,i),

where D = diag(σ′(WjVj,i)). Let ∆Vj,i := 2γηV W
⊤
j D(σ(WjVj,i)− Vj+1,i). Then, we have

∥∆Vj,i∥ = 2γηV
∥∥W⊤

j D(σ(WjVj,i)− Vj+1,i)
∥∥ ≤ 2γηV · ∥Wj∥op∥D∥op∥σ(WVj,i)− Vj+1,i∥
≤ 4γℓηV CK ,

where in the second inequality, we use ∥Wj∥op = λ
1/2
max(WjW

⊤
j ) ≤ 2 from Lemma C.4,

∥D∥op ≤ ℓ, and ∥σ(WVj,i)− Vj+1,i∥ ≤ CK from (14) (Note that the objective function
∥σ(WVj,i)− Vj+1,i∥2 is monotonically decreasing from Lemma C.7, (14) always holds). Since
the total number of updating Vj,i is K ·KV , by using the triangle inequality we have

∥Vj,i∥ ≤
∥∥V init

j,i

∥∥+K ·KV · 4γℓηV CK ,
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where
∥∥V init

j,i

∥∥ is the initial value of Vj,i.

Substituting this bound to (15), we obtain

λmax(VjV
⊤
j ) ≤

n∑
i=1

(∥∥V init
j,i

∥∥+K ·KV · 4γℓηV CK

)2
≤

n∑
i=1

2
(∥∥V init

j,i

∥∥2 + (K ·KV · 4γℓηV CK)
2
)

≤ cV +O((γηV ℓnKKV )
2
),

where we use the inequality (a + b)2 ≤ 2a2 + 2b2 in the second inequality. Thus, we obtain the
conclusion.

E PROOF OF THEOREM 4.3

Here, we provide the proof of Theorem 4.3, the generalization error bound of neural networks trained
by Algorithm 1.

Proof of Theorem 4.3. By using the bound on u and y supposed in Assumption 3, we have

|f(u)− y| ≤ BY + |WLσ(WL−1 . . . σ(W1u) . . . )|
≤ BY + ℓ∥WL∥op∥WL−1σ(WL−2 . . . σ(W1u) . . . )∥
≤ . . .

≤ BY + ℓL−1

 L∏
j=2

∥Wj∥op

∥W1u∥

≤ BY + 2LℓL−1∥u∥
≤ BY + 2LℓL−1BX .

Hence, by taking M = BY +2LℓL−1BX andR(F) as what derived by Lemma E.2 in Lemma E.1,
we obtain the conclusion.

Lemma E.1 (Theorem 11.3 in Mohri et al. (2018)). For a hypothesis class F and a training data
{(xi, yi)}ni=1, let us define its (empirical) Rademacher complexity by

R(F) := E
σ

[
sup
f∈F

σ⊤f(u)

n

]
,

where f(x) = (f(x1), . . . , f(xn))
⊤ and σ is a random vector whose each component independently

takes value ±1 with probability 1
2 . Suppose that |h(x)− y| ≤M a.s. for any h ∈ F . Then, for any

0 < δ < 1, with probability at least 1− δ over a sample, we have

E
(x,y)∼P

[
(h(x)− y)2

]
≤ 1

n

n∑
i=1

(h(xi)− yi)
2
+ 2MR(F) + 3M2

√
log(2/δ)

2n
.

Lemma E.2 (Rademacher complexity bound). Let F be the class of neural network predictors
obtained by Algorithm 1. Then, the Rademacher complexity of F can be bounded by

R(F) ≤ 4

n
√
n
+ log

(
1√
n

)
12
√
RF

n

with RF = din(2r)
LL3∥U∥2 log(2r2)(log n).

To obtain this result, we apply the obtained bound on the spectral of W to the Rademacher com-
plexity bound shown in Bartlett et al. (2017) as follows:
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Lemma E.3 (Lemma A.8 in Bartlett et al. (2017)). Assume activation functions {σj(·)}Lj=1 such
that each σj is ρj-Lipschitz continuous and σj(0) = 0. Let us define

F :=
{
σL(WLσL−1(. . . σ1(W1·) . . .) | ∥Wj∥op ≤ Bj , ∥Wj∥2,1 ≤ bj (1 ≤ j ≤ L)

}
.

Then, it holds that

R(F) ≤ 4

n
√
n
+ log

(
1√
n

)
12
√
RF

n
,

where RF > 0 is a constant defined by

RF := ∥X∥2 log(2r2)(log n)

 L∏
j=1

Bjρj

 L∑
j=1

(
bj
Bj

) 2
3

3

.

Proof of Lemma E.2. By applying Lemma E.3 with ρ1 = · · · = ρL = 1, Bj = 2, b1 = 2din and
bj = 2r for j = 1, . . . , L− 2 and bL = 2, we obtain

RF = ∥X∥2 log(2r2)(log n)

4din

L−1∏
j=2

(2r)

 L∑
j=1

(
2r

2

) 2
3

3

= ∥X∥2 log(2r2)(log n) · 4din(2r)L−2L3r2 = din(2r)
LL3∥U∥2 log(2r2)(log n),

which gives the conclusion.

F PROOF OF THEOREM 5.3

F.1 PROOF OF LEMMA 5.2

Proof of Lemma 5.2. First, we have E[∥w+∥2] = E[∥w−∥2] = 1
2 . The first equality follows from

the symmetricity, and the second equality follows from

1

2
=

1

2
E
[
∥WL∥2

]
=

1

2
E
[
∥w+∥2 + ∥w−∥2

]
=

1

2

(
E
[
∥w+∥2

]
+ E

[
∥w−∥2

])
= E[∥w+∥2],

where we use E[∥w+∥2] = E[∥w−∥2] in the last equality. Then, by using the concentration inequal-
ity argument (see Example 2.11 in Wainwright (2019) for example), we have

P

(∣∣∣∣∥w+∥2 −
1

2

∣∣∣∣ ≥ t

)
≤ 2 exp

(
−rt2

8

)
for any t ∈ (0, 1). By letting t =

√
8 log(2/δ)

r , we obtain

P

(
∥w+∥2 <

1

2
−
√

8 log(2/δ)

r

)
≤ δ

Since the same argument holds with w−, taking a union bound concludes the assertion.

F.2 ANALYSIS OF GRADIENT DESCENT WITH SKIP CONNECTION

We introduce the key idea of analysis with general notations similarly to Appendix C, while there
exists a skip connection. Let us consider the regression problem with an objective

b∑
a=1

(
σ
(
w⊤xa

)
+ wa − ya

)2
,

where w ∈ Rd is a trainable parameter. Let w′ := w − η∇w

∑b
a=1

(
σ
(
w⊤xa

)
+ wa − ya

)2
,

where w′ denotes the parameter obtained by a single update of gradient descent with a step-
size η > 0. Denote X := (x1, . . . xb)

⊤ ∈ Rb×d and Y := (y1, . . . , yb)
⊤ ∈ Rb. Then,
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∑b
a=1

(
σ(w⊤xa) + wa − ya

)2
= ∥σ(Xw) + w − Y ∥2 holds and a straightforward calculation

shows w′ = w−2η(X⊤D+I)(σ(Xw) + w − Y ), where D = diag
(
(σ′(w⊤x1), . . . , σ

′(w⊤xb))
)
.

Then, we have

σ(Xw′) + w′ − Y

= σ
(
Xw − 2ηX

(
X⊤D + I

)
(σ(Xw) + w − Y )

)
+ w − 2η

(
X⊤D + I

)
(σ(Xw) + w − Y )− Y

= σ(Xw)− 2ηΞX(X⊤D + I)(σ(Xw) + w − Y ) + w − 2η
(
X⊤D + I

)
(σ(Xw) + w − Y )− Y

=
[
I − 2η

(
I + ΞXX⊤D + ΞX +X⊤D

)]
(σ(Xw) + w − Y ),

where Ξ is a diagonal matrix which is determined by Proposition C.3. Thus, we obtain

∥σ(Xw′) + w′ − Y ∥2 =
∥∥[I − 2η

(
I + ΞXX⊤D + ΞX +X⊤D

)]
(σ(Xw) + w − Y )

∥∥2. (16)

The obtained relationship (16) implies that with a sufficiently small choice of η satisfying∥∥I − 2ηΞXX⊤D
∥∥
op

< 1, the loss ∥σ(Xw)− Y ∥2 will linearly decrease to zero.

Lemma F.1. O ⪯ D ⪯ I holds.

Proof. The assertion directly follows from σ′(u) ∈ {0, 1} for arbitrary u ∈ R.

Lemma F.2. Suppose ∥X∥op ≤
1
3 . Then, the inequality∥∥I − 2η

(
I + ΞXX⊤D + ΞX +X⊤D

)∥∥
op
≤ 1− 2

3
η

holds.

Proof. Since λmin

(
ΞXX⊤D

)
≥ 0, we have

∥∥I − 2η(I + ΞXX⊤D)
∥∥
op
≤ 1− 2η. Moreover, we

have ∥∥ΞX +X⊤D
∥∥
op
≤ ∥Ξ∥op∥X∥+ ∥X∥op∥D∥op ≤

2

3
.

Then, the triangle inequality gives∥∥I − 2η
(
I + ΞXX⊤D + ΞX +X⊤D

)∥∥
op
≤
∥∥I − 2η(I + ΞXX⊤D)

∥∥
op

+ 2η
∥∥ΞX +X⊤D

∥∥
op

≤ 1− 2η + 2η · 2
3
η = 1− 2

3
η,

which is the conclusion.

Lemma F.3. Suppose ∥W∥op ≤
1
3 and V ′ ≥ 0. Then, if ∥σ(WV ) + V − V ′∥2 ≤ ϵ, then∥∥V − (V )+

∥∥2 ≤ ϵ,∥∥σ(W (V )+
)
+ (V )+ − V ′∥∥2 ≤ 49

9
ϵ

Proof. Since σ(WV ) ≥ 0 and V ≥ 0, we have

ϵ ≥ ∥σ(WV ) + V − V ′∥2 ≥
∑
Vj<0

[
σ(WV )j + Vj − V ′

j

]2
≥
∑
Vj<0

(Vj)
2
=
∥∥V − (V )+

∥∥2,
which gives the first conclusion. The second follows from∥∥σ(W (V )+

)
+ (V )+ − V ′∥∥ ≤ ∥∥σ(W (V )+

)
− σ(WV ) + (V )+ − V

∥∥+ ∥σ(WV ) + V − V ′∥
≤
∥∥σ(W (V )+

)
− σ(WV )

∥∥+ ∥∥(V )+ − V
∥∥+ ∥σ(WV ) + V − V ′∥

≤
∥∥W ((V )+ − V

)∥∥+ ϵ
1
2 + ϵ

1
2

≤ 1

3
ϵ

1
2 + 2ϵ

1
2 =

7

3
ϵ

1
2 ,

where we use the triangle inequality in the first and second inequalities, and 1-Lipschitzness of the
ReLU activation in the third inequality.
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Lemma F.4. Suppose that V (0) satisfies σ(WV (0))+V (0)−V ′ =: ∆v and V ∗ satisfies σ(WV ∗)+
V ∗ = V ′. If ∥W∥op < 1, it holds that∥∥∥V (0) − V ∗

∥∥∥ ≤ 1

1− ∥W∥op
∥∆v∥.

Proof. We have

∥∆v∥ =
∥∥∥σ(WV (0)) + V (0) − V ′

∥∥∥
=
∥∥∥σ(WV (0)) + V (0) − σ(WV ∗)− V ∗

∥∥∥
≥
∥∥∥V (0) − V ∗

∥∥∥− ∥∥∥σ(WV (0))− σ(WV ∗)
∥∥∥

≥
∥∥∥V (0) − V ∗

∥∥∥− ∥∥∥W (V (0) − V ∗)
∥∥∥

≥
∥∥∥V (0) − V ∗

∥∥∥− ∥W∥op∥∥∥V (0) − V ∗
∥∥∥ =

(
1− ∥W∥op

)∥∥∥V (0) − V ∗
∥∥∥,

where we use the the triangle inequality in the first inequality, the 1-Lipschitzness of ReLU activation
in the second inequality. Dividing each term by 1− ∥W∥op gives the conclusion.

F.3 PRELIMINARY RESULTS

Lemma F.5 (Regularity of weight matrix Wj during training). For j = 2, . . . , L− 1, ∥Wj∥op ≤
1
3

always holds during the training.

Proof. By Lemma C.5, it suffices to show that every of Wj satisfies ∥∆w∥ ≤ 1
12

√
r

, where ∆w

denotes the difference between w at the start and end of the training by the same as the proof of
Lemma C.4.

To this end, we prove ∥∆w∥ ≤ 1
12

√
r

. This follows from

η
(1)
W γ∇w∥σ(wV ) + V − V ′∥2 = 2η

(1)
W γ ·

∥∥diag(σ′(wV ))V ⊤(σ(wV ) + V − V ′)
∥∥

≤ 2η
(1)
W γℓλ1/2

max(V V ⊤) · ∥σ(wV ) + V − V ′∥

≤ 2η
(1)
W γℓCV · ηV

(
3

2

)L

≤ 1

12K
√
r
,

where the last inequality follows from the definition of η(1)W .

Lemma F.6 (Convergence analysis of Wj). Under the same condition as Theorem 4.1, it holds that∥∥∥σ(w(k)V
)
− V ′

∥∥∥2 ≤ ∥∥∥σ(w(0)V
)
− V1

∥∥∥2.
Proof. The proof is essentially same as that of Lemma C.9.

Lemma F.7 (Bound on ∆v at the output layer). Let Ri :=
∣∣∣W (0)

j V
(0)
L−1,i − yi

∣∣∣. Then, we have∥∥∥V (k)
L−1,i − V

(k−1)
L−1,i

∥∥∥ ≤ 4RiηV .
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Proof. Since V
(k)
L−1 ≥ 0, we have∥∥∥V (k)

L−1,i − V
(k−1)
L−1,i

∥∥∥ =

∥∥∥∥(V (k−1)
L−1,i − 2ηV

(
WLV

(k−1)
L−1,i − yi

)
WL

)+
− V (k−1)

∥∥∥∥
≤
∥∥∥(V (k−1)

L−1,i − 2ηV

(
WLV

(k−1)
L−1,i − yi

)
WL

)
− V (k−1)

∥∥∥
=
∥∥∥2ηV (W (k)

L V
(k−1)
L−1,i − yi)W

(k)
L

∥∥∥
≤ 2ηV

∥∥∥W (k)
L

∥∥∥
op
·
∥∥∥W (k)

L V
(k−1)
L−1,i − yi

∥∥∥
≤ 4ηV

∥∥∥W (0)
L V

(0)
L−1,i − yi

∥∥∥ = 4ηV Ri,

which gives the conclusion.

F.4 PROOF OF THEOREM 5.3

Proof of Theorem 5.3. We follow the similar argument as that of Theorem 4.1. Let us consider the
decomposition of F as

F = FL + γ

L−1∑
j=1

Fj =

n∑
i=1

FL,i + γ

L−1∑
j=1

r∑
p=1

Fj,i,p

,
where

FL,i := (WLVL−1,i − yi)
2
, FL =

n∑
i=1

FL,i

and

Fj,i,p :=
(
σ(WjVj−1,i)p + (Vj−1,i)p − (Vj,i)p

)2
, Fj =

n∑
i=1

r∑
p=1

Fj,i,p

for j = 1, . . . , L− 1.

(I) Bound on FL We only need to consider the case WLV
(k−1)
L−1,i − yi ̸= 0. The update of VL−1,i

is described by

V
(k)
L−1,i =

(
V

(k−1)
L−1,i − 2ηV

(
WLV

(k−1)
L−1,i − yi

)
WL

)+
= V

(k)
L−1,i − 2ηV (WLV

(k−1)
L−1,i − yi)w̃,

where we define w̃ := (2ηV (WLV
(k−1)
L−1,i − yi))

−1
(
V

(k−1)
L−1,i − V

(k)
L−1,i

)
. Then, we have

W
(k)
L V

(k−1)
L−1,i − yi =

(
1− 2ηV w̃

⊤WL

) (
WLV

(k−1)
L−1,i − yi

)
.

Then, we show an inequality

w̃⊤WL ≥ min
{
∥w+∥2, ∥w−∥2

}
. (17)

First we consider a case WLV
(k−1)
L−1,i − yi > 0. In this case, we have(

2ηV

(
WLV

(k−1)
L−1,i − yi

)
w̃
)
j

=

((
V

(k−1)
L−1,i − 2ηV

(
WLV

(k−1)
L−1,i − yi

)
WL

)+
− V

(k−1)
L−1,i

)
j

=


2ηV

(
WLV

(k−1)
L−1,i − yi

)
(WL)j if j ∈ J1 :=

{
j | (WL)j ≤ 0

}
,

2ηV

(
WLV

(k−1)
L−1,i − yi

)
(WL)j if j ∈ J2 :=

{
j | (WL)j > 0 and V

(k−1)
L−1,i > 2ηV

(
WLV

(k−1)
L−1,i − yi

)
(WL)j

}
,(

V
(k−1)
L−1,i

)
j

otherwise.
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This gives

w̃⊤WL =

r∑
j=1

(w̃)j(WL)j

=
∑

j∈J1∪J2

(WL)
2
j +

∑
j∈(J1∪J2)

c

2ηV

(
WLV

(k−1)
L−1,i − yi

)−1(
V

(k−1)
L−1,i

)
j
(WL)j

≥
∑
j∈J1

(WL)
2
j = ∥w−∥2, (18)

where in the inequality we use
(
V

(k−1)
L−1,i

)
j
> 0 and (WL)j > 0 for j ∈ (J1 ∪ J2)

c.

If WLV
(k−1)
L−1,i − yi < 0, it holds that(

2ηV

(
WLV

(k−1)
L−1,i − yi

)
w̃
)
j

=


2ηV

(
WLV

(k−1)
L−1,i − yi

)
(WL)j if j ∈ J1 :=

{
j | (WL)j ≥ 0

}
,

2ηV

(
WLV

(k−1)
L−1,i − yi

)
(WL)j if j ∈ J2 :=

{
j | (WL)j < 0 and V

(k−1)
L−1,i > 2ηV

(
WLV

(k−1)
L−1,i − yi

)
(WL)j

}
,(

V
(k−1)
L−1,i

)
j

otherwise.

This gives

w̃⊤WL =

r∑
j=1

(w̃)j(WL)j

=
∑

j∈J1∪J2

(WL)
2
j +

∑
j∈(J1∪J2)

c

2ηV

(
WLV

(k−1)
L−1,i − yi

)−1(
V

(k−1)
L−1,i

)
j
(WL)j

≥
∑
j∈J1

(WL)
2
j = ∥w+∥2, (19)

where in the inequality we use
(
V

(k−1)
L−1,i

)
j
> 0 and (WL)j < 0 for j ∈ (J1 ∪ J2)

c. The two bounds

(18) and (19) conclude (17).

This results in

F
(k)
L,i ≤

(
1− 2ηV w̃

⊤WL

)2
F

(k−1)
L,i ≤ exp

(
−4ηV w̃⊤WL

)
F

(k−1)
L,i

≤ exp
(
−4ηV min

{
∥w+∥2, ∥w−∥2

})
F

(k−1)
L,i ,

where the second inequality follows from 1 − x ≤ e−x and the last inequality from (17). This
concludes

F
(k)
L ≤ exp

(
−4ηV min

{
∥w+∥2, ∥w−∥2

}
k
)
F

(0)
L .

Since F
(0)
L = R by the definition of R, as long as we set ηV ≤ 1

2min{∥w+∥2,∥w−∥2} after k =

1

4ηV min{∥w+∥2,∥w−∥2} log
(
3R
ϵ

)
iterations, F (k)

L ≤ ϵ
3 holds.

(II)-(i) Bound on Fj (j = 2, . . . , L− 1) Let us define ∆vj,i := σ(Wj+1Vj,i) + Vj,i − Vj+1,i for

j = 1, . . . , L − 1, where we denote VL,i := yi. Then,
∥∥∥∆v

(k)
j,i

∥∥∥ ≤ 2ηV Ri holds and Lemma F.4
gives

∥∆vj,i∥ ≤
1

1− ∥Wj+1∥
(
∥∆vj+1,i∥+

√
ϵ
)
+ ϵ ≤ 3

2

(
∥∆vj+1,i∥+

5

3

√
ϵ

)
.
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By these inequalities, we can ensure

∥∆vj,i∥ ≤
(
4RmaxηV + 5

√
ϵ
)(3

2

)L

by taking α = 4
3 in (13).

By for each j, it holds that

∥σ(WV (kinner)) + V (kinner) − V ′∥2

=
∥∥∥[I − 2γηV

(
I + ΞWW⊤D(kinner−1) + ΞW +W⊤D(kinner−1)

)](
σ(WV (kinner−1)) + V (kinner−1) − V ′

)∥∥∥2
≤
∥∥∥I − 2γηV

(
I + ΞWW⊤D(kinner−1) + ΞW +W⊤D(kinner−1)

)∥∥∥2
op

∥∥∥σ(WV (kinner−1)) + V (kinner−1) − V ′
∥∥∥2

≤
(
1− 2

3
γηV

)2∥∥∥σ(WV (kinner−1)) + V (kinner−1) − V ′
∥∥∥2,

which gives

∥σ(WV (kinner)) + V (kinner) − V ′∥2 ≤
(
1− 2

3
γηV

)2kinner∥∥∥σ(WV (0)) + V (0) − V ′
∥∥∥2

≤ exp

(
−2

3
γηV

)2kinner∥∥∥σ(WV (0)) + V (0) − V ′
∥∥∥2

= exp

(
−4

3
γηV kinner

)∥∥∥σ(WV (0)) + V (0) − V ′
∥∥∥2.

Hence, by taking kinner = 3
4γηV

log
(
(4RmaxηV + 5

√
ϵ)2
(
3
2

)2L 49(L−2)rn
3ϵ

)
, we obtain Fj,i ≤

3ϵ
49(L−2)rn . Then, Lemma F.3 gives Fj,i ≤ ϵ

3(L−2)rn after the non-negative projection (line 13)
is applied.

(II)-(ii) Bound on F1 The update of W1 is same as what we considered in Theorem 4.1 (Algo-
rithm 1). Therefore, by using Lemma C.11, we have

F1 ≤ exp
(
−sη(2)W k

)∥∥∥σ(W (0)
1 X

)
− V1

∥∥∥2 ≤ exp
(
−sη(2)W k

)
· (4RmaxηV + 5

√
ϵ)2
(
3

2

)2L

.

Thus, k = 1

sη
(2)
W

log
(
(4RmaxηV + 5

√
ϵ)
(
3
2

)L 3
ϵ

)
gives F1 ≤ ϵ

3 .

(III) Summing up all By combining all, after K iterations and KV and KW iterations, we have

F = FL +

L−1∑
j=1

Fj ≤
ϵ

3︸︷︷︸
FL

+

L−1∑
j=2

ϵ

3γ(L− 2)rn
rnϵ︸ ︷︷ ︸

F2...,FL−1

+
ϵ

3︸︷︷︸
F1

= ϵ,

which gives the conclusion.
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