Under review as a conference paper at ICLR 2025

BLOCK COORDINATE DESCENT FOR NEURAL NET-
WORKS PROVABLY FINDS GLOBAL MINIMA

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we consider a block coordinate descent (BCD) algorithm for train-
ing deep neural networks and provide a new global convergence guarantee un-
der strictly monotonically increasing activation functions. While existing works
demonstrate convergence to stationary points for BCD in neural networks, our
contribution is the first to prove convergence to global minima, ensuring arbitrarily
small loss. We show that the loss with respect to the output layer decreases expo-
nentially while the loss with respect to the hidden layers remains well-controlled.
Additionally, we derive generalization bounds using the Rademacher complex-
ity framework, demonstrating that BCD not only achieves strong optimization
guarantees but also provides favorable generalization performance. Moreover, we
propose a modified BCD algorithm with skip connections and non-negative pro-
jection, extending our convergence guarantees to ReLU activation, which are not
strictly monotonic. Empirical experiments confirm our theoretical findings, show-
ing that the BCD algorithm achieves a small loss for strictly monotonic and ReLU
activations.

1 INTRODUCTION

Deep learning has led to significant advances across various domains, such as computer vision,
natural language processing, and reinforcement learning, achieving unprecedented performance in
numerous tasks. However, understanding the training dynamics and optimization behavior of deep
neural networks remains an ongoing challenge due to the highly non-convex nature of their loss
functions (Li et al., 2018)). Proving convergence to global minima of gradient descent via backprop-
agation, particularly for deep networks with multiple layers, remains an open problem in the field.
While the neural tangent kernel (NTK) regime (Jacot et al.| 2018]) addresses this problem by reduc-
ing the non-convex loss to the convex one in RKHS, it fails to fully explain the empirical success of
deep learning because it often outperforms kernel methods, even if we employ NTK as the kernel.

Contrary to the backpropagation-based training, the block coordinate descent (BCD), which origi-
nated from the mathematical optimization field (see Tseng| (2001), for example), is an optimization
framework where we divide a variable into several blocks and optimize them alternately. BCD of-
fers computational advantages by updating subsets of parameters iteratively, allowing for tractable
optimization of complex systems. The objective function appearing in the neural network training is
also highly non-convex, and to overcome this issue, BCD-based neural network optimization meth-
ods have been proposed (Carreira-Perpinan & Wang|, 2014} |Askari et al.| 2018 [Lau et al. 2018;
Zhang & Brand, 2017} |Patel et al.| [2020; |Zeng et al.| [2019; [Nakamura et al., 2021} |Qiao et al., 2021}
Zhang et al.l 2022; Xu et al.l 2024). When we apply BCD to neural network training, the most
natural way is that we regard the weights of each layer as a block, and existing works adopt this
way. By the formulation of BCD, the loss function of the neural network can be divided into several
components, one of which coincides with a loss with respect to a layer. Compared to the original
loss, these divided ones have more accessible landscapes to optimize.

Based on such an advantage of BCD for neural networks, its theoretical perspective, mainly about
its convergence guarantee, has been explored in recent years. However, existing theoretical works
on BCD for neural networks (Zhang & Brand, [2017; Zeng et al., 2019} |Zhang et al., 2022} [Xu
et al., [2024) have only focused on the convergence to stationary points, points with zero gradients.
Convergence to stationary points does not imply convergence to global minima, especially when
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the objective function is highly non-convex, such as the loss that appears in the training of neural
networks (L1 et al.l 2018 |Safran & Shamir, [2018).

How neural network training finds global minima has been one of the most significant topics in deep
learning theory literature. However, existing guarantees on BCD remain in convergence to the sta-
tionary points. To bridge this gap, we aim to provide the convergence guarantee to the global minima
of BCD for neural networks. To this end, we consider multi-layer neural networks and employ a
BCD-type algorithm, updating the parameters using vanilla gradient descent. Our contribution can
be summarized as follows:

* We prove the global convergence of a block coordinate descent (BCD) algorithm, where
we train deep neural network models with strictly monotonically increasing activation. We
ensure that the parameters attain arbitrarily small loss by proving that (i) the loss with
respect to the output layer will decrease exponentially to zero and (ii) the loss with respect
to the hidden layers remains small in every iteration. Through the analysis, we carefully
evaluate the difference propagated from the output layer to the input layer. To the best of
our knowledge, this is the first result that guarantees convergence to the global minima of
neural networks with any number of layers beyond the NTK regime.

* We derive a generalization error bound of deep neural networks trained by BCD under
settings with i.i.d. data. In the convergence analysis, we show that the norm of weight
matrices of each layer can be bounded by a constant. Combining this and the Rademacher
complexity argument from Bartlett et al.| (2017) gives a upper bound on generalization
error. Compared to the existing works on gradient descent, BCD enables us to provide the
generalization gap bound for multi-layer neural networks with an optimization guarantee.

* A notable challenge in applying our approach to commonly used activation functions like
ReLU is their non-monotonic nature. Since ReL.U is not strictly monotonically increasing,
our initial convergence result does not directly apply. To address this issue, we propose a
modified BCD algorithm incorporating skip connections (He et al.|2016) and non-negative
projection updates. This modification ensures that convergence guarantees extend to ReLU
networks, thereby broadening the applicability of our method to real-world architectures
that predominantly use ReLU activations.

* We validate our theoretical findings through numerical experiments, showing that BCD for
both strictly monotonic and ReL.U activations achieves arbitrarily small loss values. These
empirical results confirm the practical viability of our proposed methods, demonstrating
their effectiveness in optimizing deep neural networks beyond theoretical guarantees.

1.1 OTHER RELATED WORKS

Convergence guarantee of GD/SGD for neural networks In recent years, theoretical works on
the convergence guarantee of (stochastic) gradient descent for neural networks have been inten-
sively investigated. In the neural tangent kernel (NTK) regime (Jacot et al., 2018} |Allen-Zhu et al.,
2019b; |Arora et al., 2019; Du et al., 2019;|Zou et al., 2020), to name a few, the training dynamics of
deep neural networks can be approximated by the gradient descent in RKHS. While we can ensure
its global convergence by exploiting the convexity, the feature learning ability of neural networks,
which is considered one of the critical ingredients of the practical success of deep learning, is not
reflected since the training dynamics are reduced to the kernel method. For example, the parameters
of networks trained by The NTK regime hardly move from their initial points as the number of pa-
rameters increases. On the other hand, our analysis does not fall into such a situation. Moreover, our
analysis does not require any overparameterization on hidden layers to ensure global convergence.

The mean-field (MF) regime (Nitanda & Suzukil |2017;|Chizat & Bach} 2018} Mei et al.; 2019} Tzen
& Raginsky, |2020; Pham & Nguyen| 2021} |Nguyen & Pham) [2023) is another promising approach
of investigating neural network training. It regards the training of parameters as that of (probability)
measure over the parameters, by which we can convert the non-convex optimization with respect
to the parameters to the convex one where the distribution of parameters itself is a variable to be
optimized. While several studies ensure its global convergence by employing this convexity without
loss of feature learning ability, most of their models only focus on two or three-layer networks, our
analysis admits the any number of hidden layers.
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More recently, [Banerjee et al.|(2023)) proposed restricted strong convexity (RSC) to analyze neural
network training, which derives the global convergence guarantee by assuming that the gradient and
output of neural networks correlate with each other during the training. However, Banerjee et al.
(2023) still requires an analysis of this correlation assumption and does not fully explain the nature
of global convergence in the training.

Generalization error bound of multi-layer neural networks Investigation of generalization er-
ror analysis for multi-layer neural networks has been explored in recent years (Neyshabur et al.,
2015; |[Wei & Ma, [2019; Bartlett et al., 2017; Neyshabur et al.,|2017; |Golowich et al., [2018; Bartlett
et al.l 2019} |Arora et al.l 2018} [Suzuki et al., [2020). These works give a generalization error by
evaluating the complexity of neural networks from various perspective, such as the VC-dimension,
the norm of parameters of networks, and so on. On the other hand, most of these results do not
consider the optimization, but we also demonstrate the global convergence guarantee. Moreover,
several works on generalization error analysis go beyond two-layer networks. However, most focus
only on three-layer networks (Allen-Zhu & Li,[2019; |Allen-Zhu et al.l 2019a).

2 PRELIMINARIES

2.1 NOTATIONS

For an integer n, we define [n] := {1,...,n}. For x € RY, ||z|| denotes its Euclidean norm. We
denote the d-dimensional identity matrix by I4. For A € R™™, [|A|lp = /3, ; A%j denotes its
Frobenius norm, and ||A||,, = ”1;1|‘a<><1 || Az|| denotes its operator norm. For two symmetric matrices

A and B, we denote A < B (A =< B) if and only if the matrix B — A is positive (non-negative)
definite. For z = (71,...,74)" € RY, diag(x) € R¥? denotes a diagonal matrix whose j-th
diagonal component is ;.

2.2 PROBLEM SETTINGS

Here, we introduce problem settings we consider in this paper. We observe n training examples
D = {(4,y:)},—,, where z; € R%" is a feature vector and y; € Rt is a label. Let X =
(z1...2,)" € R"*dn_ Throughout the analysis, we consider high-dimensional settings n < d;,.
Moreover, we make an assumption about the matrix X as follows:

Assumption 1 (Data matrix is full row rank). rank(X) = n.

This assumption is required to show the global convergence. As we will see in the proof of the main
result, we cannot ensure the existence of global minima without Assumption|[T}

A multi-layer neural network is defined by
Inn(x) =Wro(Wr_10(... Wao(Wix))...),

where o is element-wise activation and W; € R™*%in W, € R™" for j € {2,...,L — 1}, and
W, € RéoutX" We consider that all the hidden layers have the same width 7.
Then, we make the following assumption on the activation function.

Assumption 2 (Activation). o : R — R is monotonically increasing and satisfies o(0) = 0.
Especially, there exists a constant 0 < a < 2 such that inﬂg o'(x) > « holds'| Moreover, o is
xTE

o(u1) — o(uz)| < lluy — us| holds.

{-Lipschitz, i.e., for any uy, us € R,

A typical example of activation function satisfying Assumption [2| is LeakyReLU activation x +—»
max{z,ax} (a < 1): which satisfies Assumption 2| with @ = @ and £ = 1. We note that other
activation, such as ReLU = — max{z, 0}, does not satisfy Assumption [2l We also provide the
global convergence algorithm when we use the ReLU activation in Section [5|

Under this formulation of neural networks, we formalize the regression problem

min S (e (@) — ), (1)

'If o is not differentiable, we assume that o'(x1) — o(x2) > a(z; — z2) for any 1, 2 € R.
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where W = (Wq,...,Wy). One of the most straightforward approaches to solve is (stochas-
tic) gradient method, in which the parameters are updated using the loss gradient. Conversely, we
employ a layer-wise optimization method called block coordinate descent, as we introduce in the
following section.

3 BLOCK COORDINATE DESCENT

In this section, after we introduce the basic notion of the block coordinate descent (BCD), we provide
the algorithm we consider in this paper. BCD, which originated from the mathematical optimization
field (see Tseng (2001)), for example), is an optimization framework where we divide a variable into
several blocks and optimize them alternately.

In BCD, instead of directly utilizing the loss (I)), we introduce auxiliary parameters Vi ;... V ;.
V;,; aims to approximate the output of j-th layer for the i-th sample x;. By construction, we have
Vji € R"for j =1,..., L — 1. By using these auxiliary parameters, we reformulate (T) as follows:

%i{} F(W,V):=3", |:||WLVL—1,i —yill* + 'VZJL:_11HU(WJ'VJ‘—1J) -V |2}7 )
where v > 0 is a hyperparameter and we denote Vp; = x;, W = (Wy,..., W), and V =
(Vi1,.--,Vi—1,n). In the reformulated problem , the second term represents the loss at the
j-th layer, indicating how V; ; approximates the output of the layer given the input x;. The first
term represents the loss at the output layer, showing how close the outputs of the network with the
approximated (hidden layer) output Vs are to the training labels y1, . . ., y,. By the construction, if
(W*,V*) satisfies ' = 0 in ( W* is the optimal solution of (I).

One of the benefits of the reformulation (2) is that we can treat the objective function with respect
to the weights of each layer (W1, ..., Wp) separately. Such a simplification results not only in a
faster implementation (e.g., parallelization) but also a favorable loss landscape, including theoretical
tractability. While various methods for optimizing (2)) have been explored, we consider a relatively
simple one, updating weights W; and auxiliary variables V; ; sequentially from the output layer.
Specifically, we update the variables in order Wy, — Vi1 ; = W1 — ... V1 ; — W; by using
the objective function (Z). We summarize the algorithm considered in this paper in Algorithm [T}
From now on, we explain its detailed procedure.

Algorithm 1: Block coordinate descent

input : (W1)ap "% N0, 1/din), (W;)ap “55 N(0,1/r) forall j =2,..., L Vo, = ;.
K: max outer iteration, Ky, Ky, : max inner iteration, nv, 771(4,), 2). step size;
W; < output of Algor1thmw1th inputs s1, s2, and W; for ] = 2 L
‘/]Z(*O'(WVJ 1) forall j =1,. Lflandz—l 3
for k <+ 1to K do
Wr < Wr — 77 VWL S WLV, — vill%s
for i < 1tondo
| Vi< Vieni—mvVv,_,,
forj<—L—1t02d0
2
Wi Wi — i) S0 Vi llo(WiVia) = Vil s
fori<+ 1ton do
for k;;ner < 1 to Ky do
2
| Vi < Vicwi — v Vv, llo(WiViZa) = Vil
for k;,ner < 1to Ky do
| W= W= S Vo (Wi V) = Vil

WirVi_1.i — yil?

[l

Initialization We consider Gaussian initialization for W;; that is, each element of W is sampled
from N(0,d;,!), and each element of W (j = 2,..., L) is sampled from N(0,771). After that,

» n

we apply singular value bounding (SVB) (Jia et al., [2017) to W; (j = 2,...,L). In SVB, we
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Algorithm 2: Singular Value Bounding

input : W;: matrix, (s1, s2): lower and upper bounds on the singular values
(U, X, V) «: Singular value decomposition of W; = UXV;
for s < diagonal components of 3. do
| s < max{s;, min{sz, s}};
output: UXV

conduct the singular value decomposition of W; as W; = U YV, where U and V are orthogonal
matrices, and Y} is a non-negative diagonal matrix. Since W is full-rank with probability 1 over
the initialization, we also have ¥ € R"*" with probability 1. After SVB, we adjust each diagonal
component of X to be within the interval [sy, so]. Then, we utilize W; = UY’ VT as the initial
parameter of W, where ¥’ be the matrix obtained by the adjustment. We summarize this procedure
in Algorithm 2]

InJia et al.[(2017), SVB is conducted at every epoch to enhance the stability of the training and pre-
diction performance of stochastic gradient descent. The upper and lower bounding of the singular
value prevents the amplifying or vanishing of a gradient in the backpropagation. Applying SVB also
has several advantages in BCD, not only for practical reasons but also from a theoretical perspec-
tive. First, the regularity of W; results in a preferable condition number of the objective function
lo(W;V;_1,) — V;.il|? in F, the loss at the j-th layer. Moreover, the upper bound on the singular
value prevents V; from becoming extremely large at the initialization.

Remark 3.1. While|Jia et al.|(2017) applies SVB at every epoch, we use it only at the initialization.
By setting the step size not too large, we can ensure that all the singular values of W; remain in
a bounded interval, as we show in the proof, with which we enjoy the same benefit throughout the
training.

After initializing W}, we initialize V; in an exact manner, i.e., V;; = o(W;V;_1;) for all j =
1,...,L—1and i = 1,...,n. While we can employ any initialization scheme for V;, the exact
manner results in ||o(W;V;_1,;) — Vj; |* = 0 at the initialization, leading to faster convergence.

Update of V' For optimizing W and V, we utilize vanilla gradient descent. We employ a common
step size 7y for each V; ; and perform multiple updates using the loss [|o(W;V;_1 ;) — Vj.i|? (line@

[12), given by

Vi1 Viei —ov Vv W Vo — uil)? 3)

and
2
o(W;Vj—1:) = Viall™

The first update (3) can be interpreted as solving the linear equation W,V _q ; = y;, which has a
solution if the matrix W, is full row rank. We assume that the activation satisfies Assumption[2] In
this case, since the mapping ¢ : R — R is a bijection, there exists an inverse map ¢!, and training
V; can be viewed as equivalent to solving the linear equation W;1V;; = 0~ !(Vj41,;). Therefore,
it is expected that V; ; converges to the solution via gradient descent with a suitable choice of 7y as
long as the matrix W; € R"*" is regular.

ijfl,i — ijfl,i - ’Yanijl,z‘

Update of W  For the update of W; (j = 1,..., L), we use the loss function at j-th layer, that is,
S WLV — wil|* for Wy and 350 o(W;Vio14) = Vial|* for W (= 1,..., L = 1).

For Wy, ..., Wp, we use a common step size 171(,‘1,) and conduct the gradient descent update:

Wy + Wy — UI(/[I/)VWL S IWL Vi — yill?,
and
1 T
Wj — Wj - ’Y'TII(/V) ZZ‘L:1 ij HU(WJVJ»Z) - ‘/j+1,i||2

for each iteration (line EI) For W1, we employ a different step size 771(42,) and apply

Wi <= Wy — ’7771(/[2/) Yo Vi llo(WiVe ;) — Vl,i||27
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multiple (K ) times for each iteration (line [[4). These update manners are required to attain
the global convergence. With respect to the loss of the second to L-th layer, we update both
W; and V;_1 ;. In particular, by applying multiple updates to V;_; ;, we can ensure linear con-
vergence of the loss Y . |lc(W,;V;_1,) — VJ,H2 for each iteration while the singular values of
matrix W; are upper and lower bounded. On the other hand, the existence of W* satisfying
S oWV, ) — ijH2 = 0 is not ensured, particularly in the case where n > r. Hence, it is
not necessary to update W; for multiple times. Furthermore, as the number of iterations increases, it
becomes less likely to maintain the regularity of the matrix W;. This is why we only apply gradient
descent once to W; (j = 2,..., L). On the other hand, in the first layer, the input V ; = x; is fixed,

and we need to demonstrate linear convergence of the loss >, [lo(W1Vp ;) — Vi |* through the
update of ;. In the overparameterized setting d;,, > n, if the data matrix satisfies rank(U) = n,
we can ensure the existence of a global minima W* satisfying Y., |[[c(W*Vp ;) — V1, | = 0, and
hence linear convergence under a suitable choice of 77&2,).

Remark 3.2. Concerning the recent progress of the block coordinate descent algorithms applied
to deep learning, as represented by (Jia et al.| 2017, |Zhang & Brand, 2017, |Lau et al| 2018,
Patel et al., 2020), among others, we employ a relatively simple approach using vanilla gradient
descent without any regularization, focusing on devising the loss function and the order in which the
parameters are updated. While our convergence proof is based on this specific setup, our analysis
can be extended to encompass more complex scenarios. Our algorithm is adaptable to different
settings, including potential applications to other loss functions and problems, such as classification
problems, and the inclusion of regularization terms. We discuss possible extensions in Appendix[A]

4 GLOBAL CONVERGENCE OF BLOCK COORDINATE DESCENT

In this section, we show that BCD for neural networks with an activation satisfying Assumption
finds global minima, in other words, the objective value F' converges to an arbitrarily small value.
In this section, we consider the case with single output (d,,; = 1). We discuss its extension to the
multi-output case in Appendix [B| Moreover, for the single output case, we provide a bound on the
generalization error under the i.i.d. setting by utilizing the Rademacher complexity argument.

4.1 GLOBAL CONVERGENCE WITH MONOTONICALLY INCREASING ACTIVATION

Here, we consider the case of single outputs d,,; = 1. In this case, the objective function is
described by
%i{l/ F(W,V) =" [ |(WLV 1 — yi)” + ’YZ]L;EHU(W]-VJ-,LZ-) - VMH2 . 4)

We now state the first main result, the global convergence of BCD with activation satisfying As-
sumption 2]

Theorem 4.1 (BCD finds global minima of neural networks). We assume that activation o satisfies
Assumptionand there exists a constant Cyy > 0 such that Ay ax (V] VJT) <Cyforj=1,...,L—-1
during training. We denote s = opmin(X) > 0. Let R; = |WVi_1,; — yi| at the initial value of
the objective function with respect to the output layer, and define R ==Y, R?, Ruyax = max R;,

and Ci = (%)L (4Rmax7]\/ + %\/E)

_ (35 1 (1) ny' L (2 1
Then, under (s1,52) = (3, 3). v < gam: My < s6vi (3) W < sy 0d

: —2)rnC? rnC?
=] = e v (225 = s (25)]

it holds F(W,V) <€, where W = (Wq,... . Wr)and V = (Vi1,...,Vi_1,) are the parame-
ters obtained by the output of Algorithm([l]

The proof can be see in Appendix [C} Theorem [4.1] exhibits that BCD provably finds a global min-
imum under a suitable choice of hyperparameters. While the definitions of K, Ky and Ky are
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somewhat complex, the total number of gradient computation to achieve € error is bounded by
O(K (LK + Kw)) = O(log? (1))

The proof consists of two parts: (i) the loss with respect to the output layer is monotonically de-
creasing in the outer loop, and (ii) the loss with respect to the hidden layer remains sufficiently small
at the end of each iteration. We provide more detail to Appendix [C]due to page limitations.

We should note that the claims presented in Theorem [4.1]lie outside the framework of the so-called
NTK regime (Jacot et al., 2018), among others. Specifically, while the NTK regime assumes that
the parameters of neural networks remain almost unchanged during training, our analysis allows for
scenarios where the parameters undergo changes of Q(1).

Remark 4.2. The assumption in Theorem B.1} Aax (V:V.") < Cv, ensures that the auxilia
p 2% ry
parameters V; ; are bounded during training. While we assume the existence of Cy in Theorem

we can provide a quantitative bound on the Cy, as Cyy = O((vnvgnKKv)Q) (note that this bound
may not be tight). We provide a detailed derivation of this bound in Appendix|D}

4.2 GENERALIZATION ERROR BOUND

The objective of this subsection is to show that BCD Algorithm [T] does not only have a strong
convergence guarantee, but also attains favorable generalization performance. To this end, we need
to make an assumption about the data distribution.

Assumption 3. The training sample {(x;,y;)}"_, is independently sampled from a distribution
(x,y) ~ P. Under the distribution P, it holds that ||z|| < Bx and |y| < By almost surely.

The first statement defines the data distribution, which is essential and standard requirement for
describing the generalization error. The one requires that inputs and labels should be bounded with
probability one, which is also standard.

We then provide the following result on the generalization error bound.

Theorem 4.3 (Generalization error bound). Let f NN be the output of Algorithm |l|under the same
condition as Theorem Then, if Assumption 3] holds,

~ 2 1 " R 2
(2.y)~ P |:(fNN(-%”) - y) :| < p Zi:l (fNN(xz) — yl)
o (li’(I(BY + 2L Bx)dE, L (20)F logr + (By + 2L€L—1BX>2\/@> .

with probability at least 1 — § over the training sample {(z;,y;)}";.

The proof can be seen in Appendix [E| Notably, Theorem #.3]provides a bound on the generalization
error for multi-layer neural networks with optimization guarantees, beyond the NTK regime. To
obtain Theorem@, we utilize a result from Bartlett et al.|(2017), which evaluates the generalization
gap using the spectral norms of the weight matrix of each layer. As mentioned in the previous
section, we can show that the spectral norm (equal to the maximum singular value) of W; is upper
bounded. Combining this with the result from Bartlett et al.| (2017)), we can derive the generalization
gap of BCD (see Appendix [E] for details).

5 RELU ACTIVATION

In this section, we propose a BCD algorithm specifically for the ReLU activation o(x) :=
max{z, 0}, which has been excluded in Theorem due to Assumption 2| The difficulty in han-
dling the ReLU activation is that it only takes non-negative values. For attaining zero loss for a

hidden layer |lo(W;V;_1) — Vj||2, we need to prevent V; from taking negative value due to this
non-negativity. Therefore, we must exclude such situations by modifying Algorithm I}

5.1 BCD FOR NEURAL NETWORKS WITH SKIP CONNECTION

As a solution to overcome the difficulty of ReLU activation, we consider ResNet (He et al.l [2016))
type networks, where the neural networks includes skip connection. With skip connection, the
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objective function treated in BCD is given by
min F(W, V) =37, [(WLVL,M —yi)? + v o (W, Vimaa) + Viri — Vj,z‘HQ] ;

where the loss of the hidden layer, 'ny;f lo(W;Vic1:) + Vicii — ng||2 differs from . We
describe the modified algorithm in Algorithm We use the notation V]JrZ = max{V};,0}.

Algorithm 3: Block coordinate descent: ReLU

Input: (Wy)a “55 N(0,1/din)s (W;)as "5 N(0,1/r) forall j =2,... L, Vo, = a;

. . . . . 1 2 .
1 K: max iteration, K;,,: max inner iteration, 1y, név), 77‘(,[,): step size;

2 W; < SVB(W;) with inputs s1, so, and W, forj =2,...,L — 1;
3 Vii=o(W;Vi_1:)+ Vi forallj=1,...,L—1landi=1,...,n;
4 fork < 1to K do

5 for i < 1tondo
+

6 ‘ Vi1, < (Ve = v Vv o IWe Ve — will?) s
7 Wi—1 < Wp_1 — ’Ym(;[l/) S Ve NleWoaVi—o) + Vi—ai — Vi—1il%
8 for j < L —1to2do

1 n
) W Wy = i) S0 Vi lo(WVioas) + Vi — Vil
10 for i <+ 1tondo
1 for k;;ner < 1to Ky do
1 | Vievi < Vicvi = vv Vv, lo(W Vi) + Views = Viall%s
13 Vj—l,i <~ (Vj—l,i)+ ;
14 for k;pner < 1to Ky do
15 ‘ Wi+ Wy — 7771(/12/) Z;;l Vi [[WiVo,s — Vl,iHQ;

The initialization and update of W7, ..., Wy,_; are common in Algorithm[TJand Algorithm[3] How-

ever, there are several differences between the two algorithms in their update procedures. First,
in Algorithm [3| we apply the non-negative projection V + V' for each V;; after the inner loop
finishes. This is required for the non-negativity of ReLU: to ensure the solvability of the equation
le(W;Vi_1) = V; | = 0. Next, we do not update Wy, in Algorithm This is required to ensure
the existence of V7,4 ; satisfying W Vi _q; = y; under the condition Vz,_; ; > 0. To verify this,
we first provide the following lemma.

Lemma 5.1. Suppose that the vector W, has both positive and negative entries. Then, for any vy;,
there exists a non-negative vector Vi,_y ; satisfying WrVi,_1; = y;.

This lemma implies that, to ensure the global convergence for arbitrary training label y;, it is suf-
ficient to check that W, has both positive and negative components. Clearly, such a situation will
occur frequently as the with of the hidden layer r increases. Indeed, by the symmetry of the Gaus-
sian distribution, this probability is calculated as 1 —2- ()" = 1 —27"*1. Additionally, we provide
a high probability bound on the norm of the positive and negative components of W, which deter-

mines the convergence speed of the gradient descent.
Lemma 5.2. Let W, ~ N(0,77'1,.), wy = max{W,0"}, and w_ = min{W,0"}. Then,

for any § > 0, with probability at least 1 — 20, min{ Jw|?, [Jw_ ||2} >1—/ w holds.

Since it is not trivial that the similar inequality holds for each iteration when considering the update
of W, we assume that W, is fixed during training for simplicity.

Similarly to the problem (@) considered in the previous section, we consider 1-dimensional outputs
here. We then formally state the convergence result of Algorithm [3|applied to networks with ReLU
activation and skip connections.

Theorem 5.3 (Global convergence of BCD with ReLU activation). We assume that there exists
a constant Cy, > 0 such that /\maX(VjVjT) < Cy forj =1,...,L — 1 during training. We
denote s := 0pin(X). Let R; = \WVi_1, — y;| at the initial value of the objective function with
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respect to the output layer, and define R = Z?:l Rf, Rpax = max R;, and C = (4Rmaxnv +
1

3\ L _ 1 1 (1) ny 2\L
5V€)(2)". Then, under (si,s2) = (0,%), nv < i o E o 7] W < SrovE (2)"

(2) 1
WS Tmaxe)

N 1 3R B 3 49(L—2)rnC2 >-‘ . 1 (g)
K= an min{Jws [, [w |2} log (% ﬂ’Kv - [4’WIV log( e ) P Ew = e les (7)) |

it holds F(W,V) <€, where W = (Wq,... . Wr)and V = (Vi1,...,Vi_1 ) are the parame-
ters obtained by the output of Algorithm|3]

and

The proof can be seen in Appendix [F] Thus, we obtain a global convergence guarantee of BCD for
networks with ReLU activation.

6 NUMERICAL EXPERIMENT

In this section, we conduct numerical experiments to verify our theoretical findings. Particularly,
we numerically confirm that BCD converges to a global minimum for monotonically increasing
activation (Algorithm|I)) and ReLU (Algorithm [3) using an artificial dataset.

—— training loss 101 ; — training loss
1014 — layerl " — layerl
layer2 | | XTTTTTTTTTTTTTTTT layer2
— layer3 107t — layer3
10-14 — layer4 — layerd
- --=- no skip connection
2 g%
° 1034 L
10°°
1 1077 \f\
107 ; : ; . . 10-9
2000 4000 6000 8000 10000 o 500 1000 1500 2000 2500
epoch epoch

Figure 1: Loss of Algorithm[I|with LeakyReLU  Figure 2: Loss of Algorithm 3] with ReLU

6.1 MONOTONICALLY INCREASING ACTIVATION

First, we conduct a numerical experiment for a monotonicall y increasing activation. We apply
Algorithm |I]to a neural network with four hidden layers, each with = 30 nodes, and LeakyReLU
activation o (x) = max{z, 0.5z}, which satisfies Assumption2]with o« = 0.5 and ¢ = 1. We prepare
n = 500 training samples from a teacher network with a single hidden layer and the same activation.
We set d;;,, = 600, sample x; from the normal distribution, and define y; as the output of the teacher

network. For hyperparameters, we employ Ky = Ky = 100 and ny = 77511,) = 77512,) =1.

Figure (1| shows the result. The black line means the training error, i.e., £ " | (fan(2:) — ;)2
Other lines represent the loss of j-th layer, i.e, Y . [|c(W;V;_1:) — Vi, 1> for j € {1,2,3,4}. We
can observe that the training error monotonically decreases while the losses for each layer remain

small, which reflects our theoretical findings.

6.2 RELU ACTIVATION

Next, we experimentally examine BCD for ReLU activation using Algorithm 3] We apply Algo-
rithm E] to a neural network with for hidden layers, » = 30, ReLU activation and skip connec-
tion. Similarly to the monotinically increasing activation, we prepare a dataset with n = 500 and
d;», = 600 using a teacher network. For hyperparameters, we employ Ky = Ky = 100 and
=y =0y = 1.
w w

Figure[2shows the result. Like Figure[T} the black line means the training error. Other lines represent
the loss of j-thlayer,i.e, > . [|[o(W;Vj_1,) + Vj_1,i — V“||2 forj € {1,2,3,4}. We can observe
the same convergence procedure here: the training error monotonically decreases and the losses for
each layer remain small.



Under review as a conference paper at ICLR 2025

Additionally, we plot the training loss without using the skip connection as the dashed black line.
While the training loss for BCD without skip connections does not decrease due to the difficulty of
maintaining non-negativity, the skip connection drastically improves BCD training.

7 CONCLUSION

In this paper, we proposed a block coordinate descent (BCD) algorithm for training deep neural
networks and ensured the convergence to global minima for networks with strictly monotonically
increasing activation functions. We also derived a generalization bound using Rademacher complex-
ity, ensuring both strong optimization and generalization performance. For ReLU activations, we
introduced a modified BCD algorithm with skip connections and non-negative projection updates to
ensure convergence. Empirical validation demonstrated the practical effectiveness of our algorithms
for both monotonic and ReLU activations. Overall, this work advances the understanding of BCD
in neural networks, offering provable convergence and generalization guarantees.
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A DISCUSSION OF EXTENSION

As we mentioned in Remark[3.2] we consider a simple form of BCD for the convergence guarantee,
where we just apply the gradient descent update using the /5 distance. This section discusses the
possible extension of the BCD algorithms Algorithm [I|and Algorithm

General loss function One possible and somewhat straightforward extension is to employ general
loss function #(+, -) instead of ¢5 distance we consider in this paper. This implies that our results are
not restricted to regression. In this case, we can consider the total loss

n L—1
%1{} F(W,V) = Z CWrVi_1,i,v:) +7 ZHU(WJ'VJ'—M) — V“H2 ,

i=1 j=1

where the loss of the output layer is replaced by /(-,-) compared to . Since the term
725;11||0(Wj\/j,1’i) - ij||2 remains the same as H we can employ the same argument as
Theorem [.T|for its convergence proof. Therefore, we only need to ensure the global convergence of
the output layer (W, and V7, _1) to obtain a similar result to Theorem@ Indeed, we can consider
strongly convex losses and replace the bound on F, with an ordinal convergence guarantee for the
convex function. One example of such a loss is cross-entropy loss, defined by

dout

- exp(WrVp—1)
WLV 1,y:) = — E Yij log c .

ST b exp(W Vi),

which is typically used for the d,,-class classification problem. Thus, while we focus on the re-
gression problem, our analysis can be extended to classification problems as well.

Different activation between layers While we consider a model that uses the same activation o
for all layers, we can employ different activation o; for j-th layer, provided they satisfy Assump-
tion We can follow the exactly same proof we show in Theorem by replacing o in the
convergence argument with respect to the loss of j-th layer by o;.

Other initialization schemes In Algorithm (I} we initialize the weights W; using the Gaussian
initialization and apply singular value bounding to them, and then initialize V; ; in the exact manner,
ie., Vj; = o(W;_1V;_1,). However, to ensure the global convergence, we only need to preserve
the condition in Lemma [C.4] during the training. Therefore, several variants of the initialization
scheme can be considered. In particular, we do not need to initialize the weights using a Gaussian
distribution. Xavier’s initialization, which employs a uniform distribution instead of a Gaussian, is
one possible choice.

Activation violating Assumption2] Here, we discuss the possibility of employing activation other
than those that satisfy Assumption [2]or ReLU. First, we note that our analysis relies on the mono-
tonicity property of the activation function, including ReLU. Without this assumption, we cannot
rule out the possibility that the parameters may be trapped in local minima due to the existence of
points where ¢’ = 0. Thus, the monotonicity of the activation function is crucial in our proof.

For monotonically increasing activation that violate Assumption [2, one can employ sigmoid, tanh,
and similar activation. As discussed in Section[5]for ReLU,one of the difficulties in handling such ac-
tivations is that they cannot take any value in R. For example, the sigmoid activation x > 1

1+exp(—z)
only takes values in [0, 1], and the tanh activation x — 2’;"(”)_78"1)(:3”) only takes values in [—1, 1].
p(z)+exp(—x)

In these cases, we need to take care of V;; not to go out of these ranges. For ReLU activation, we
employ skip connection to overcome this problem.

13
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Training loss with the regularization term A line of works investigates BCD methods usually
considers the regularization term, meaning the loss function is given by

. o 02 2
%3{1, F(W, V) = Zz:; {(WLVLsz yl) + TW(WL)
L—-1
2
9 Y 0 (WVimvs) = Vil + rw (W5) + v (V).

j=1

where ryy and ry denotes the regularization terms with respect to W and V', respectively. In this
case, additional term appears in gradient descent updates. While these make convergence guarantees
more challenging, convergence to a global minimum is still ensured as long as ry and 7y are
strongly convex, such as Tikhonov regularization. However, we need to carefully evaluate the gap
in training loss caused by the regularization to derive the generalization error bound in Theorem4.3)

B EXTENSION TO MULTI DIMENSIONAL OUTPUT

Here, we consider the case with multi-output, where the loss is given by
min F(W, V) =377, {”WLVL—M — il + v 5 e (W, Vims) — Viall?| -

with y; € R%ut (d,,; > 1). Comparing to the above result, a difficulty emerges in the optimization
of the output layer: convergence analysis of Wy, and V,_q ;. If rank(Wp) > dyy:, we can obtain
the same result as Theorem [.1] since the linear equation

WiVe—1:—9: =0 @)

have a solution, and we can prove the convergence of gradient descent using the same argument
as the proof of Theorem In the case dyy: > rank(W7), the linear equation may not have
solutions, which means we cannot ensure the global convergence, and furthermore, nor can we
verify the existence of global minima. To overcome such a situation, we introduce the following
assumption: the labels have a low-rank representation.

Assumption 4. There exists an integer r < dgy; such that there exists a matrix Uy € RoutX7
satisfying y; = Uy z; with z; € R” for any i € [n)].

In this case, the equation (E]) has solutions, including Wy, = U; and V;,_1; = y;. On the other
hand, whether the parameters can converge to one of such solutions is not trivial. As an attempt to
investigate this problem, we first write down the update of W7, by line[5|in Algorithm [T}

Update of W; With general d,,;, the straight-forward calculation gives

Wék) = W£k_1) (1 — W Dy VL*LZ'VLT—Li) +wli Yo, ZiVLT—l,i'

Let us discuss this update. The first term represents that with a sufficient small 7y so that the
maximum eigenvalue of the (symmetric) matrix 7y Z?:l VL717iV[:r,17Z' is smaller than 1, W,
shrinks to zero exponentially. In the second term, a matrix spanned by U, is added to Wp. Es-
pecially when the matrix Y 7", 2V, , ; € R™" is full rank, W, = nwU; Yi_ %V, ; and

Yi = (77W DOy ziVLT_M) 71yi can be a solution of . Thus, throughout the gradient descent up-
date, only matrices aligning with U; are added to W, and W, loses other components exponentially.
On the other hand, ensuring this procedure rigorously is still not easy, for example, the evaluation
of the minimum eigenvalue of the matrix >, 2; VLT_M is complicated. Recently, Ye & Du|(2021)
shows the global convergence of this update as follows:

Theorem B.1 (Theorem 1.1 in|Ye & Du| (2021)). Suppose Y = (y1,...,yn) € R¥PutX" satisfies
Assumption{d| Let s1 and s, be the minimum and maximum singular value of Y. Assume that each

entry of Wy, and Vi,_1; are initialized from Gaussian distribution with mean 0 and variance &2,
2

where e = O (m) Then, with setting n = O (S;“s ), the output of the gradient descent

S1

S1 €

achieves Z?ZIHWLVL_M — yi||2 < e after O (% log (ﬁ) + i log (%’“)) iterations.
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To apply this to BCD in the multi-output case, we only need to modify the proof of Theo-
rem H in two points: (i) convergence analysis of Wy, and Vz_; ; and (ii) adjust the initializa-
tion scheme. For (i), while we use a simple convergence analysis in Appendix [C] we directly can
apply Theorem instead. Then, the number of the iteration K in Theorem {.1|is replaced by
@) (n% log (=) + Tir log (%)) as shown in Theorem For (ii), Theorem requ1res Gaus-
sian initialization for each component of Wy, V1 ;, which does not align with the exact manner
initialization V; ; = o(V;_1;) considered in Theorem We need to bridge this gap to attain a
convergence guarantee. However, as we discussed in Appendix |Al the exact manner initialization
is only required for small objective value at initialization, and we can extend our analysis to any
initialization scheme. Thus, our analysis can be extended to the multi-dimensional output case.

C PROOF OF THEOREM [4.1]

In this section, we provide the proof to Theorem[.1] The key notion is the block-wise analysis. First,
we provide the preliminary lemmas for the proof. After that, we prepare the block-wise analysis and
combine them.

Throughout this section, we suppose that the conditions in Theorem [4.1] are satisfied.

C.1 PRELIMINARY RESULTS

The following lemma immediately follows from the smoothness of the activation.

Lemma C.1. Let d > 1 an integer. For any x1, xo € RY, it holds that ||o(z1) — o(z2)|]> <
€2||$1 - :L‘2H2.

Next, by utilizing Assumption [2{ we derive the following lemma.

Lemma C.2. For activation function satisfying Assumption[2} for any x, y € R, there exists & such
thata < ¢ </lando(z+vy) = o(x) + &y hold.

Proof. We first consider the case y > 0. Then, we have
Yy
o(z+y)—o(x)= / o (x +t)dt > ay.
0

The Lipschitz continuity of o gives o(x + y) < o(x) + fy. Thus we get

o(z+y) —o(x)
Y

OtSf:: Séa

which gives the conclusion.
The case y < 0 can be proven by substituting « and y in above discussion by = + y and —y.

In the case y = 0 we can take arbitrary £ with a < £ < / to satisfy the assertion. [

This lemma gives the following proposition, which we utilize throughout the convergence analysis.

Proposition C.3. For activation functions satisfying Assumption |2| and an integer d > 1, for any
x, y € RY, there exists a diagonal matrix = such that each diagonal entry Ej; of A satisfies o <
Zi; <lando(x +y) =o(z) + Ey.

Proof. Note that by Lemma foreach j = 1,...,d, there exists a Z;; satisfying o(x + y); =
o(x); + Zj;y;. Then, E = diag(Z11, . .., Zq4q) satisfies the desired condition. O

Next, we prove that the singular values of W; (j = 2,..., L) are upper and lower bounded during
the training.

Lemma C.4 (Regularity of weight matrix W, during training). For j = 2,...,L,
AL/2 (Wj WJ-T) < /\Iln/fx (Wj W]-T) < 2 always holds during the training.

min

<

N[—=
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47’

Proof. By Lemma it suffices to show that every row w of W; satisfies || Aw|| < L, where
Aw denotes the difference between w at the start and end of the training. Indeed, this implies

Omac(AW) = M (AWAWT) < [ ST A(AWAWT)

p=1

VTN AWAWT) = AW, <

Combining this with 2 < Apin < Amax < 2 gives the conclusion.

IA
=

To this end, we prove ||Aw|| < ﬁ. This follows from

MV ullo(wV) = V' = 29l - |[diag(o’ (wV )V (o(wV) — V')
< 2PV (VVT) - lo(wV) = V||

max

" o\ L 1
<2 Cy - -] <

= lw TtV v (a) ~ 4AK\r’

where the last inequality follows from the definition of 17‘(,[1,). O

Lemma C.5 (Weyl’s inequality for singular values). Let A € R4 pe g real-valued matrix, then,
for every matrix A € R4*% it holds that

ml?X ‘O'k(A + A) - Uk(A)| < Umax(A)7

where oy,(A) denotes the k-th largest singular value of A and ox(A) denotes its maximum singu-
lar value.

C.2 ANALYSIS OF GRADIENT DESCENT IN A GENERAL FORM

First, we introduce the key idea of analysis with general notationsﬂ Let us consider the regression
problem with an objective

b

Y (o (wza) —ya)”,

a=1

. . 2
where w € R? is a trainable parameter. Let w’ = w — 7V ZZ=1 (0 (waa) - ya) , where w’
denotes the parameter obtained by a single update of gradient descent with a step-size 7 > 0. Denote

X = (v1,...25)" € R and Y = (y1,...,4)" € R’. Then, Zzzl(a(w—rxa) - ya)2 =
lo(Xw) — Y||* holds and a straightforward calculation shows w’ = w — 2nX | D(o(Xw) — Y),
where D = diag((o’(w'z1),...,0'(w 2))). Then, we have

lo(xw) = Y| = [|o(Xw — 20X X T D(o(Xw) - V)) = Y|
= |lo(Xw) = 20EXX " D(o(Xw) - Y) = Y|

2
)

where E is a diagonal matrix which is determined by Proposition[C.3] Thus, we obtain
2 — 2
lo(Xw') = Y|I" = ||(I - 2nEXX D) (c(Xw) = Y)||". (6)
The obtained relationship (6) implies that with a sufficiently small choice of 7 satisfying

|1 —2nEXX "D, <1, (@)

the loss [|o(Xw) — Y||* will linearly decrease to zero.

2Qur analysis is simlar to that in|Yehudai & Ohad|(2020); [Frei et al.| (2020)
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Here, we explain how (7) holds even when the matrix 22X X T D is not symmetric, i.e., positive-
semidefinite. Let M := X X T, which is positive-semidefinite. Since diagonal matrices commute,
we have

EXX'D = (27'D) *Di=tMEIDE(E71D)?.

_1
Let N .= (E’lD) 2. Then, we obtain
I-2=XXTD = N(1-2yptetmtph) N1,

Since QnD%E%M Z2D7 is positive-semidefinite, I — ZnD%E%M =:D2 only has positive eigen-
value for a sufficiently small 7, and its largest eigenvalue is smaller than one if 277D% 22 ME2D? s
positive-definite. Since the eigenvalues are invariant with respect to the change of basis, we obtain

(7).
C.3 BLOCK-WISE CONVERGENCE ANALYSIS

According to the relationship (6)), we provide the block-wise convergence analysis, that is, the con-
vergence analysis of the W} and V; of the each layer.

Updateof Vj; (j = 1,...,L—2) According to Algorithm[T} the update of V;; (j = 1,...,L—1)
is written by

T 2
Vi Vii—mv > Vv, (U(wj,pvm) - (Vj+1,i)p> , (8)
p=1
where w; ;, denotes the p-th row of the weight matrix of the j-th layer W; and (V11 ;), denotes the
p-th component of V¢ ;.

Despite the abuse of notation, we omit the layer index j and the sample index ¢ for notational
simplicity. We note that the analysis here can be independently applied to each layer and sample,
as shown in the proof of the main theorem; hence, this abbreviation does not matter in the proof of
Theorem[d.1] Then, (8) can be rewritten by

Ve Vo Y Vv (o(w,V) - V)7, )
p=1

where we denote V) := (Vj41.i)p-

Let Fy (v) = Y7 (0(wpv) — V;)Q(z lo(Wv) — V’||*) and V(© be the initial point of V; of the
inner loop for each outer iteration (we also use abuse of notation here), and V' (¥) be the parameter
obtained by k iterations of the inner loop.

Under these settings, we first show the existence of global minima of Fy, as follows:

Lemma C.6 (Existence of v*). Suppose that % < Omin(W) and 0,0 (W) < 2 hold. Let Av :=
o(WV©)) — V' Then, there exists a unique v satisfying Fy (v*) = 0 and

2
Hv<0> — vl < Z)aul.
[0

Proof. Let Av == o= (c(WV©) + Av) — WV (O, Then, it follows that v* = V() + W~1Ay

since
CT(V(O) + WﬁlAv> =0 (071 (J(WV(O)) + Av)) = O’(WV(O)> + Av.

Now, o(=1)(-) is L-Lipschitz and satisfies o(0) = 0. Then, we have ||Av|| < 1||Av|| and conse-
quently

[ve o = w=ta0) < w1, - 1] < 2 o).
op (8%

This gives the assertion. ]
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Next, by using the observation in (6)), we provide the convergence analysis to the update (9).

Lemma C.7 (Convergence analysis of V). Under the same condition as Theorem[d.1} it holds that

HU(WV(’C)) v < exp(—ya?lny k) HO’(WV(O)) _v|’

Proof. Let a(WV®) == o(WV~1) — Ac. Then, by lettinga — 1, b — 7, 1, — wj, Yo — V'
in (6), there exists a diagonal matrix = such that

Ao == (nynVWTD(k’l) (U(WVU“*U) - V’))
and of < = < (I, where
D=1 — diag((a’(wlv(k*”), cee U’(er(kfl))>) eR™".
Then, it holds that

2
oWV Ry - v7|2 = H (1= 29 EWWTDED) (WY ED) - )

2

2
< HI — 2y EWW T DED|” |lowyv -0y — |7

op

By using the fact that %I < WWT <45 and o < D* =1 < (], we have %QZUV < Amin(4) <

Amax (A) < 8y02ny for A = 2ynyEWW T D* =1 Hence, by taking 1y < 87%, we have
= T (k1) ya?l
0< HIfQWW:WW D <120t
op
and therefore,
2 vl 2
v < (1= 2250 ) v -
This results in
2 26 2k
Jotrven v < (1= 25w ) v - v
2
< exp (f’yazénvk) HU(WV(’“I)) -V,
where the last inequality follows from 1 — xz < e~*. Thus we obtain the conclusion. O

Finally, we provide a lemma evaluating distance to global minima based on the objective value:
Lemma C.8. Suppose that Fyy (v) < € holds. Then,

2
lv = v < = Ve
«

Proof. Since
1
€ Fy(v) = [o(Wo) —o(Wo') [ > o?[Wo — Wo' | > 2a[lo— ']
we obtain [[v — v*|| < 2/e. O

18
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Updateof W; (j =2,...,L —1) Letw;, € R" be the p-th row of the weight matrix W;. Then,
update of each wj , is given by

n 2
1
Wi Wi =1 D Vs, (003 V5) = (Vien), ) (10)
=1

For notational simplicity, we omit the layer index j and the node index p. Namely, the update (I0)
is simply rewritten by

w s w =y Y V(o (wVi) = V)%,
i=1
where we denote V; = Vj; and V/ = (Vj11,)p. Let Fiyy(w) = Y i (o(wV;) — V/)3(=
o(wV) — V'||*) and w(® be the initial point of wj,p of the inner loop for each outer iteration

(we also use abuse of notation here), and w®) be the parameter obtained by k iterations of the inner
loop. Against to the argument of Fy, in the above paragraph, Fy have not a solution w* satisfying
Fyw (w*) = 0 especially when n > r. However, we can still ensure that the objective value remains
small during the update of W} as follows:

Lemma C.9 (Convergence analysis of W;). Under the same condition as Theorem[.1] it holds that
lo(w'V) = V'II* < flo(wV) = V.

Proof. By letting a — i, b — i, o, — V;and y, — V' in (@) there exists a diagonal matrix =
satisfying o < = < ¢I and

2
lo(w'V) = V/||2 = H (I - 27n§;)EVVTD<k*1>) (o (w*=DV) — V)

2

2
< HI - 2777‘(,[1,)EVVTD(7“*1) o(wF DY) —v’

op
By using the fact that O < VVT < Oyl and of < D%V < (I, we have
Amax (2’)/77‘(,[1,)EVVTD(’“*1)) < 270\/627)‘(/{1,). Hence, by taking 771(41,) < W, we obtain the
conclusion. O

Update of W, Letw, € R%n the p-th row of the weight matrix 1/;. Then, the update of each wy,
is given by

n 2
wp = wy =0 D V(o) = Vi), ) - (1)
=1

Namely, the update (TT) is simply rewritten by

w®) k=1 — 777‘(,3) ivw <0<w(’“*1)xi) — VZ-)Q, (12)
i=1

where we denote V; := (V1;);.
Let Fyy(w) == 327 (o (wz;) — V;)*(= |lo(wX) — V||*) and w(®) be the initial point of w; of the

inner loop for each outer iteration (we also use abuse of notation here), and w*) be the parameter
obtained by k iterations of the inner loop.

Lemma C.10 (Existence of W*). Let Av == o(w®)x;) — V. Then, there exists a w* such that
Fy(w*) =0and

1
O _ ¥ <« ———||A
[ =] < ot
Proof. The proof is essentially same as that of Lemma [C.6] O
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We then provide the convergence analysis to the update (I2) by using the observation in (6)), we.
Lemma C.11 (Convergence analysis of W1). Under the same condition as Theorem{d.]]

o (w3) [ < v ) i

Proof. By letting a — i, b — i, £, — ; and y, — V; in (6), we obtain
2 2
5) 5 = o w05) 1m0 o w3) )|

= (7= 2mP=xx"DED) (ot Dx) - Vi) HQ

2

2
< HI — 2y PExxT D" || (wk-Dx) — V1H .

op

By using the fact that 0 < s := Apin (XX 7) and Apax (XX ) < max|z;||?, we have
2, (2) ) 2 112,,(2)
2’)/801 77W S /\mm(A) S Amax(AA) S 276 maX”x’L” 77W

for A = 2yn{¥ZX X T D* =1 Then, by taking (2 < we obtain

1
2’yézmiax\|:ci\|2 ’
(k) 2 2, (2))? (k—1) 2
Ho(w X)—V1H < (1727501 nW> Ho(w X)7V1H .
By using 1 — x < e™ 7, this concludes
2 2k 2
w3 < (1) o)
2
< exp(—4’ysa2nl(,‘2,)k) Ha(w(O)X) - VlH )
which is the desired bound.

C.3.1 PROOF OF THEOREM [4.]]
Before providing the proof of Theorem .1} we introduce the following lemma:

Lemma C.12 (Bound on Awv at the output layer). Let R; = ’Wj(o) VL(OJM — yi|. Then, we have

<4R;ny.

32

k k—1
Hvl(ﬁ)l,i - V[(ﬁl .

Proof. By the construction of the algorithm, we have

(k (k—1)
HVL—)l,i - VL—l,i

k) yr(k— k
= H277V(W£ )VL(,—l}i) — y) W} )H

<o [ W - [wiRvED <y
op
< ||V - || = 4w R,
which gives the conclusion.
Then, we move to the proof to Theorem 1]
Proof of Theorem Let us consider the decomposition of F' as
L—1 n L-1 r
F:FL+ZFj :Z FL,i‘*’ZZFj,im )
j=1 i=1 j=1 p=1
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where
n
Fri=WiVi-1:— )", Fp, = ZFL,i
and
2 n T
Fjip= W(U(Weru)p - (Vj,i)p) c FE =YY Fiap
i=1 p=1

forj = 1,...,L — 1. The proof consists of two parts: (I) F, is monotonically decreasing in the

outer loopand (II) F;; , (j = 1,..., L —1,1=1,...,n,p = 1,...,7) is sufficiently small at the
end of each inner iteration.

() Bound on F, The update of Vi, ; is described by
V= VD~ (WU — )i
Then, we have
WY HEY g = (1 = 2nv||wi?| ) (WivE = u).
This results in

2?2 2 B B
Fif) < (1 = 2nv||wP| ) FED < exp<—4v7vHW£’“>H )Fg’; D < exp (=) FY,

where the second inequality follows from 1 — 2 < e~7 and the last inequality from HWSC) H > %

This concludes
F{P < exp (—nvk)

Since Féo) = R by the definition of R, after k = 1og ( ) iterations, F( ) < § holds.

(ID-(i) Bound on F; (j = 2,...,L — 1) Letusdefine Av;; = o(W;11V;;) — Vjy1,; for j =
1,...,L— 1, where we denote Vy ; := y;. Then, by Lemma@and Lemma@ we have

[Avill < = (I\Av;+1z||+\f)

foranyj=1,..., L —2andi=1,.. nWehaveHAvL 1

< 4Rpaxnv by Lemma|C.12{ By

using this bound, we can derive

) 2 2\"'7 2
HAUji < 4Rmax77\/ + 7\% - - \/g (13)
’ 2—« « 2—«
2 2\*
< | 4Rmaxnv + m\/E > (14)

by induction. Indeed, (13) holds for j = L — 1 with equality. Moreover, under the induction

hypothesis, it holds that
L—j
2 2 2 2
- 4Rmax77\/ + \/E - — 7\/E =+ \/E
«a 2—-« « 2—-«a

L-(j-1)
2 2 2
= <4Rmax77v + 204\/E) () - Ve

o 2 -«
This concludes (I3) for j = 1,..., L — 1. Then, by using Lemma|[C.7] we have

L 2
2 2
Fiip < vexp (_’yaz‘gn\/kinner) : <a) (4Rmax77v + Q—aﬁ> .

IN

[Avj—14ll < = (HAvgzIH\f)

ThllS, kinner = ’YazéWV IOg (( ) (4Rmax77v + \/>) W) giVeS Fj,i,p S m

and hence, I < m by summing up F ; .
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(II)-(ii) Bound on F}; By using Lemma|C.11] we have

n 2
Z Fl,i,p S eXp(7478a277§/3)kinner> ‘U(W(O)U) - VlH

Since Av%{? < (4Rmax77v + ﬁ\ﬁ) (%)L_l, we have
2 /g 2 9 2 sg\2L
O — z ) — - A
|lrwOr) - < ; (a(||AvLZ| —|—e)) - n(mmxw + 5= aﬁ) <a>
2 2L 3,
ThUS, kinner = m IOg (n (Rmaan + ﬁ\ﬁ) ’ (a) 2 ) glves Zz 1 F1 V1P < e for
p=1,...,r. Thisresults in F; = >, Z;Zl Frip <5

(III) Summing up all By combining all, after K outer iterations and Ky and Ky inner iterations,
we have

L-1 . L-1 . .
F=F F;, < - - =
ALY 3L-2) 3 ©
Jj=1 ~— J=2 L =~
Fr Fa...,Fr 1 "
which gives the conclusion. O

D QUANTITATIVE EVALUATION OF CYy,

Here, we provide the quantitative bound on Cy satisfying Amax(V; VT) <Cyforj=1,...,L—1
during the training, which we introduced in Theorem 4.1 and Remark-

Proposition D.1. Let ¢y == 2max > ||V, 1%, where Vs are the parameters at the initialization.
J

Under the same settings as Theorem We can take

Cy = cv + O((ypv InK Kv)?).

Proof. First, we have

Amax (V3 V1) < Z (V) =t (V)

L n n
= tr (Z Vm‘@ﬁ) => (Vi Vih) = Ivial®. (15)
i=1 i=1 i=1

This implies that we only need to evaluate the norm of Vj ;s during the training. Remind that the
update of V; is given by
Vi< Vi =2y W, D(e(W;V;i) — V1),
where D = diag(c’(W;V};)). Let AV; ; := 2yny W' D(0(W;V;;) — Vj41,i). Then, we have
1AV, il = 2ynv || W, D(e(W;V;.0) = Vit < 29w - (W, 1Dl opllo (WV50) = Vigwi
S 4767]‘/0}(7
where in the second inequality, we use [[Wjl|,, = )\Iln/fx(WjoT) < 2 from Lemma

IDll,, < ¢ and [[o(WV;) = Vit < Ck from (Note that the objective function

le(WV;;) — VjH,iHQ is monotonically decreasing from Lemma always holds). Since
the total number of updating V; ; is K - Ky, by using the triangle inequality we have

Vil V3] + K - K -anme i,
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where || V%] is the initial value of V; ;.
Substituting this bound to (15]), we obtain

n

Amax (V;V,T) < Z(HV{’;“H + K - Ky - 46y Cr)’

(|\V-f?”|\ (K - Ky - 40y O

I M: I

< ey + O((yvnKKy)?),

where we use the inequality (a + b)? < 2a? + 2b? in the second inequality. Thus, we obtain the
conclusion. O

E PROOF OF THEOREM [4.3]

Here, we provide the proof of Theorem.3] the generalization error bound of neural networks trained
by Algorithm T}

Proof of Theorem[{.3] By using the bound on u and y supposed in Assumption[3] we have
|f(u) =yl < By + [Wro(Wr—1...0(Wiu)...)|
< By + Wil pWe—10(Wr—2...0(Wiu) ... )|
<...

L
< By + ¢ TTIW51,, | IWiul
j=2

< By + 2" u
< By +2M¢*"1By.

Hence, by taking M = By + 2L¢2~!1 Bx and R(F) as what derived by Lemmain Lemma
we obtain the conclusion. [

Lemma E.1 (Theorem 11.3 in Mohri et al.| (2018)). For a hypothesis class F and a training data
{(zi,y:) }1y, let us define its (empirical) Rademacher complexity by

R(F) = El Tf(“)l,
fE]:

a n

where f(x) = (f(x1),..., f(x,)) and o is a random vector whose each component independently
takes value +1 with probability 5. Suppose that |h(z) — y| < M a.s. for any h € F. Then, for any
0 < § < 1, with probability at least 1 — & over a sample, we have

log(2/9)
/9,

E [(h(x) = 9)°] < =3 (i) — )" + 2MR(F) + 3M* | =~

=1

Lemma E.2 (Rademacher complexity bound). Let F be the class of neural network predictors
obtained by Algorithm[I| Then, the Rademacher complexity of F can be bounded by

R < s () e

with R = d;,, (2r)F L3|| U || log(2r?) (log n).

To obtain this result, we apply the obtained bound on the spectral of W to the Rademacher com-
plexity bound shown in|Bartlett et al.| (2017) as follows:
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Lemma E.3 (Lemma A.8 in Bartlett et al. (2017)). Assume activation functions {o;(-)}f_, such
that each o is p;-Lipschitz continuous and 0 ;(0) = 0. Let us define

Fe={orWeoralconWi) ) [IWil,, < By, IWill,, <b; 1 <5< D).

Op -
Then, it holds that

4
< —— 41
R(]:)_n\/ﬁ—i_ og

where Ry > 0 is a constant defined by

(&)=

3
2
b\ 3
_ 2 j
R = || X||*log(2r?)(log n) HB]pj ; <BJ)
Proof of Lemma[E.2] By applying Lemma[E3|with p; = --- = pp, = 1, B; = 2, b) = 2d;,, and
bj=2rforj=1,...,L—2and by = 2, we obtain
L-1 L /o3 3
» = [ og(er)togn) (40, [0 | {3 (%)
j=2 j=1
= ||X|?log(2r?)(log n) - 4d;, (2r) 2 L37? = d;,, (2r)“ L3||U|| log(2r?)(log n),
which gives the conclusion. O

F PROOF OF THEOREM[3. 3]

F.1 PROOF OoF LEMMA[5.2]

Proof of Lemma[5.2] First, we have E[||w_||?] = E[|w_]||?] = 1. The first equality follows from
the symmetricity, and the second equality follows from
1 1 2 1 1 2
5 = SE[IWel] = SE[lwsl? + lw ] = 5 (Ellwy 2] +E[lw_|2]) = Ellw, )

where we use E[||lw ||?] = E[||w_||?] in the last equality. Then, by using the concentration inequal-
ity argument (see Example 2.11 in[Wainwright| (2019) for example), we have

1 12
(|l - 3] 2 ¢) <2e(- %)

8log(2/4)

forany ¢ € (0,1). By letting t = , we obtain

P(|w+|2 <3- 810%?2/5)) <5

Since the same argument holds with w_, taking a union bound concludes the assertion. O

F.2  ANALYSIS OF GRADIENT DESCENT WITH SKIP CONNECTION
We introduce the key idea of analysis with general notations similarly to Appendix |C, while there
exists a skip connection. Let us consider the regression problem with an objective

b

D (o(wza) +wa — va)’s

a=1

where w € R? is a trainable parameter. Let w’' == w — 7V, 22:1( (w'zq) + wa — ya)Q,
where w’ denotes the parameter obtained by a single update of gradient descent with a step-
size¢ n > 0. Denote X = (v1,...73)" € R and Y = (y1,...,9)" € R’ Then,

24



Under review as a conference paper at ICLR 2025

ZZ=1 (o(w'zq) + we — ya)2 = ||lo(Xw) +w — Y|® holds and a straightforward calculation
shows w’ = w—2n(X"D+1I)(0(Xw) +w —Y), where D = diag((o/(w' 21),...,0" (w"z))).
Then, we have

o(Xw')+w =Y
=o(Xw-2mX(X'D+1I)(c(Xw)+w-Y))+w—2n(X"D+1I)(c(Xw)+w-Y)-Y
=o(Xw) = 2EX(X "D+ D(o(Xw)+w—-Y)+w—2n(X "D+ I)(c(Xw)+w-Y)-Y
=[I-2n(I +EXX"D+EX + X' D)](c(Xw) + w—Y),
where = is a diagonal matrix which is determined by Proposition[C.3] Thus, we obtain

lo(Xw') +w' = Y|* = ||[I = 2n(I + EXX "D+ EX + X D)](0(Xw) +w — Y)||2. (16)

The obtained relationship (I6) implies that with a sufficiently small choice of 7 satisfying
11— 2nEXXTDHOp < 1, the loss ||o(Xw) — Y||* will linearly decrease to zero.

Lemma F.1. O <X D <] holds.

Proof. The assertion directly follows from o’(u) € {0, 1} for arbitrary v € R. O

Lemma F.2. Suppose || X||,, < 3. Then, the inequality

= T = T 2
|[I-2n(I+EXX"D+EX +X D)Hopgl—gn

holds.

Proof. Since Amin(EXX D) >0, we have |1 — 2n(I + EXX T D)|| <1 — 2n. Moreover, we

have

op

2

IEX + XD, < Bl X[ + 11X, 1D, < 3

op
Then, the triangle inequality gives

|1 =29(I +EXX'D+EX+X'D)|_ <[l -29(I +EXXTD)||, +2n||EX +X"D|
2

2
sl=2n+2m-gn=1-3n,

which is the conclusion. O

Lemma F.3. Suppose [|[W],, < $and V' > 0. Then, if |c(WV) +V — V'|I? < e then

V- <e
lo(W(V)*) + (V)* = V| < %96

Proof. Since c(WV) > 0and V > 0, we have

2 lo(WV)+ V=V 2 3 [o(WV); +V; - V]
V;<0
2

which gives the first conclusion. The second follows from
lo (W) + V)" =V < [l (W) = aWV) + (V)" = V|| + lsWV) +V = V|
< [lo (W) =WV + [(V)F = V][ +loVV) +V = V|

< W (V) = V)| + €2 +e2

< le% +2€2 = Ze%

=3 3%
where we use the triangle inequality in the first and second inequalities, and 1-Lipschitzness of the
ReLU activation in the third inequality. [
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Lemma F4. Suppose that VO satisfies c(WV () + VO V' = Av and V* satisfies oc(WV*)+
VE=V"If|W|,, <1 it holds that

HV“”—V* < 1Av].

1
1- ||WHop

Proof. We have

|Av]| = ||[o(WV©®) 4 VO _y7

=|lo(WV©O) 4+ VO _g(WV*) —V*

> [v© —y|| - HO’(WV(O)) — (W)
> v~y —HW(V(O)—V*)’
> VO v =, v - ve| = (11w, [V - v

where we use the the triangle inequality in the first inequality, the 1-Lipschitzness of ReLU activation
in the second inequality. Dividing each term by 1 — [[W]|, gives the conclusion. O

F.3 PRELIMINARY RESULTS

Lemma F.5 (Regularity of weight matrix W} during training). For j =2,...,L —1,
always holds during the training.

Will,, < 3

Proof. By Lemma , it suffices to show that every of W; satisfies ||Aw|| < ﬁ, where Aw
denotes the difference between w at the start and end of the training by the same as the proof of

LemmalC4]

To this end, we prove ||Aw|| < Tl\/F This follows from

M Vullo(wV) +V = V'|[* = 29 - ||diag(o’ (wV))V T (o(wV) + V = V)|
< mWAA2 (VVT) - o(wV) +V = V)|

max

(1) 3\“ 1

<2 Hl, LCy - -] < —=

= Sl Ev v (2) ~ 12K\r’

where the last inequality follows from the definition of n‘(,[l,). O

Lemma F.6 (Convergence analysis of W;). Under the same condition as Theoremd.1} it holds that

) v < or) -

Proof. The proof is essentially same as that of Lemma|C.9 O

Lemma F.7 (Bound on Av at the output layer). Let R; := ‘W;O) VL@M — y;|. Then, we have

k k—1
HVIE—)M - VL(—l,i)

<4Rny.
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Proof. Since VL(Ii)l > 0, we have

k k—1
V45, - Vit

o (R RE I AT I L M

) )

= H (VL(I:}%‘) —2nv (WLVL(]S,I') - yi) WL) - V(k—l)H

= "QWV(WI(Jk)VL(ﬁE}i) - yz)Wék)H

k k) (k—
S L I e

< 4anW£O)vL(O_>M — il = dnv R,

which gives the conclusion. O

F.4 PROOF OF THEOREM[3.3]

Proof of Theorem[5.3] We follow the similar argument as that of Theorem[d.1} Let us consider the
decomposition of F' as

L—1 n L-1 r
F=Fi+y) Fj=) |\Fritv) > Fip,
j=1 i=1 7j=1p=1
where
n
Fri=WiVi 1, —u) Fr = ZFL,l
=1
and
2 n r
Fiip = (U(WjVj—l,i)p + (Vi—1i)p — (Vj,z‘)p) . F =) Fip
i=1 p=1

forj=1,...,L —1.

(I) Bound on F;, We only need to consider the case WLV,EI:)? —y; # 0. The update of V;,_1 ;
is described by

k k— k— + k - _
VL(—)M = (VL(—l,li) —2ny (WLVL(—l,l‘) - yz) WL) = VIE—)I,i - QnV(WLVL(—Ll‘) — i)W,

where we define W = (277V(WLVL(’i_1,li) — ;) (V,f’:lz) — V,fk) ) Then, we have

“1,
WV <y = (L= 2 W) (WevE — ).
Then, we show an inequality
@ Wi > min{[lwy |%, lw-|*}. (17)
First we consider a case I/VLVLUi_1 1i) —y; > 0. In this case, we have
(277\/ (WLVLU:,? - yz) UN’) _
J

k— k— + k—
= ((fo—l,li) -2y (WLVIE—l,li) - yi)WL> - VL(—l,li)> ‘
J

2ny (WeVE) =) W), ifj e = {51 (W), <0},
1

= Loy (WoviEDY — ) (We), ifje o= {51 (We), > 0and V) > 20 (WLVL(’:}) - yi)(WL)j},

(2

(V,—E " 11) ) ; otherwise.
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This gives
wTWL = Z("Z))j(WL)j
j=1

PIRUAEIEDS 2nv(WLV£’:})—yi)*l(vé’i;}))j(m)j

JjE€J1UJ2 je(J1UJ2)"
> (W) = [lw_|?, (18)
JjE€J1

where in the inequality we use (VL(’:U> > 0and (Wy); > 0forj € (J3 UJ2)".
/g
(k1) :
IE WLV~ 7 —vi <0, itholds that

(277v (WLVL(’:},») - yz) lD)j

2y (Wi = v ) ), it g e = {51 W), = 0f,

=42 WLVL(Ii_l,l‘) =y )(Wr); ifj€ Jo:=1j](Wr); <Oand VL(’:;) > 2y (WLVL(’i—l}i) _ %)(WL)]},
(VL( ]i_l 12) ) ; otherwise.

This gives

j=1

— 71 —_—
= > i+ > av(wevit —w) (VD) v,
JETLUT, FE(J1UT)° J
> (WL)? = Jlwg]?, (19)
JE€J1

where in the inequality we use (VLUi_1 12) > 0and (Wp); < 0forj € (J; U.Jz) . The two bounds
g

(T8) and (T9) conclude (17).

This results in

Fékz) < (1 — 2nvaWL)2Fgffl) < eXP(—4TIV@TWL)FS,€;1)

. k—
< exp((—ny min w1, -7} F5Y,

where the second inequality follows from 1 — z < e~ * and the last inequality from (17). This
concludes

F{F < exp(—ny min{ |, o | 1) £,

Since Féo) = R by the definition of R, as long as we set ny < S]] 1”2 o |2} after k =
minq [|wg |7, [|w—

1
dny min{[lwy |12, )lw-2 }

log (22) iterations, F*) < & holds.

(ID-@) Bound on F; (j = 2,...,L —1) Letusdefine Av;; = o(W;41V;;) + V;,; — Vjq1,, for
AP < 2ny R; holds and Lemma

j=1,...,L —1, where we denote V7, ; := ;. Then, i

gives

1

3 b)
[ Avjql| < m(HAijrl,i” +Ve) +e< 3 <|A'Uj+1,i|| + 3\/E>.
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By these inequalities, we can ensure
3\ L
JAvll < (4Rumaxty +5V€) (2)

by taking o = % in .
By for each j, it holds that

Ha’(WV(kinnc'r‘)) 4 V(kinncr) o V/”Z

= H |:I _ 2,7/,7‘/ (I + EWWTD(kmner_l) +EW + WTD(kmneT—l)):| (O_(Wv(kmﬂer—l)) + V(kinner—l) _ V/)

2
< H[ — 2vny ([ + =2WW T DGinner—=1) L =117 4 WTD(kinner_l))

op
2

)

9 2
S (1 a 377’]‘/) HU(WV(kinner_l)) + V(kt’n,ner_l) _ V/

which gives

2

2kinner
2 inner
||0—(WV(kinne7‘)) + V(kinner) _ V/HQ S (1 _ 3,71,]‘/) O,(WV(O)) + V(O) _ V/

2 2kinner
< exp (— Svnv>

4 2
= exp <3’YTlvkmner) HU(WV(O)) + VO _yr

oWV + v v ’

Hence, by taking kipner = 473;7‘/ log((4Rmaan + 5#)2(%)%%), we obtain Fj; <

49(;’%2%. Then, Lemma gives Ij; < m after the non-negative projection (line
is applied.

(II)-(ii) Bound on F} The update of W is same as what we considered in Theorem @ (Algo-
rithm[I). Therefore, by using Lemma[C.11] we have

9 2L
F < exp(—sn‘(,?/)k) HU(Wl(O)X) - V1H < exp(—sn‘(,‘z/)k) - (4Rmaxny + 51/€)? (3) )
Thus, k = ﬁ log((4Rmaan + Sﬁ)(%)L%) gives F1 < £.
Sw

(III) Summing up all By combining all, after K iterations and Ky and Ky iterations, we have

L—1 L-1
€ € €
F=F F, < = - _—
L+Z is 3 +‘ 37(L—2)rnrn€+ 3 €,
Jj=1 ~N— =2 L =~
Fr Fo.. Fr_1 3
which gives the conclusion. O
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