Under review as a conference paper at ICLR 2024

A APPENDIX FOR ADDRESSING CHALLENGES IN REINFORCEMENT
LEARNING FOR RECOMMENDER SYSTEMS WITH CONSERVATIVE
OBJECTIVES

A.1 ABLATION STUDY

Discount Factor and Effect of RL: In reinforcement learning, the discount factor -y is a parameter
that determines the importance of future rewards. When we set the -y to 0, we expect the agent to
only care about the immediate reward and not consider future rewards at all. It becomes a greedy
agent, focusing only on maximizing the immediate reward. In other words, the agent will become
myopic or short-sighted. On the other hand, if we set vy to 0.99 (close to 1), the agent will put more
emphasis on future rewards in its decision-making process. This encourages more exploration and
a more far-sighted policy. The agent is driven to strike a balance between immediate and future
rewards. In a typical recommender system scenario, a model that contemplates long-term user
preferences is usually desirable. In this section, we examine the impact of this parameter on the
system’s performance, which could indicate the potential benefits of integrating the model with
Reinforcement Learning (RL). While our datasets at hand are relatively short-horizon (compared
to control tasks in robotics), characterized by brief interaction sequences per user, the full potential
of RL isn’t entirely manifested since typically, RL considers a much longer horizon by factoring
in higher discount rates. This approach enables the model to emphasize the significance of future
rewards, promoting a far-sighted perspective in decision-making processes. However, we do witness
a noticeable enhancement when incorporating the RL component, indicating a promising direction
for further exploration and optimization. We hypothesize that by employing our framework on a
dataset more suited to reward-oriented learning, we could witness a more significant advantage from
the application of RL. This could unlock more robust policies and performance improvements, further
highlighting the potential of RL in such contexts.

RC15 - Effects of discount factor y and Q-loss weight w RC15 - Effects of discount factor y and Q-loss weight w

Iteration Iteration

Figure 5: Effect of discount factor v and w which scales the magnitude of the Q-loss on Top-5
purchase predictions on the dataset RC15. When 7 is set to 0, the agent will become myopic,
caring only about the immediate rewards. When -y is set closer to 1 (i.e. 0.99) the policy prioritizes
long-term rewards over immediate rewards i.e. becomes long-sighted. This has overall effect on
the performance of the system as whole, where we observe optimal performance and stability with
v=0.5&w=1.0.

Overestimation Bias: Overestimation bias in Q-learning refers to the consistent over-evaluation of
the expected reward of specific actions by the Q-function (action-value function), resulting in less
than optimal policy decisions. This phenomenon can potentially be visualized in several ways. One
of the primary challenges in offline RL revolves around the problem of distributional shift. From the
agent’s perspective, acquiring useful abilities requires divergence from the patterns observed in the
dataset, which necessitates the ability to make counterfactual predictions, that is, speculating about
the results of scenarios not represented in the data. Nonetheless, reliable counterfactual predictions
become challenging for decisions that significantly diverge from the dataset’s behavior. Due to the
conventional update method in RL algorithms, for instance, Q-learning which involves querying
the Q-function at out-of-distribution inputs to calculate the bootstrapping target during the training
process. As a result, standard off-policy deep RL algorithms often tend to inflate the values of such
unseen outcomes i.e. negative actions. This causes a shift away from the dataset towards what seems

14

Under review as a conference paper at ICLR 2024

like a promising result, but actually leads to failure. In order to successfully navigating the trade-off
between learning from the offline data and controlling overestimation bias, we prefer Q-values that
disentangle the distinction between the two (seen and unseen samples) more discernible.

Q-value Distributions Q-value Distributions Q-value Distributions
00030 A A 1600 00030

H .
00025 0.0025
1200
00020 0.0020
1000
5 ooos £ a0 00015
k4 8
00010 600 00010
00
00005 0.0005
200
00000 0.0000

Q-values Negative Actions Q-values Minibatch 00000 00005 00010 00015 00020 00025 00030 Q-values Negative Actio -values Minibatch
Method " Wethod

Qvalues

Figure 6: The Q-values are set to the same initial value across all methods. Initially the mini-batch
and negative actions are treated the same since no learning has taken place.

Q-value Distributions Q-value Distributions Q-value Distributions
— Qwalues Negative Actions,
—— Qwalues Minibatch

a0 0.08
i goos \ i
] H \ H
N / \ H
o \ ©
002 \
o
o

Qvalues Negative Actior values Minibatch) o o 20 EY) EY Q-values Negative Actio values Minibatch
" ethod * Wethod

Figure 7: CQL final Q-values for the final policy. Ideally we prefer to see more distinction between
evaluating the Q-function on the mini-batch samples vs negative actions. For the Q-value distributions,
the x-axis represents the Q-values and we prefer a distribution more shifted towards positive values
for the mini-batch and a narrow, lower Q-values region for the low-reward negative actions.

Q-value Distributions SNQN Q-value Distributions Q-value Distributions

— Qwvalues Neg Act 20
014 —— Qwvalues Minibatch

150 o \ 15
125 010 “
] z \]
S0 % oon / M
H g A\ H
75 0.06 \
\ 5
50 oos \
23 002 \
.
00 _ _

Qvalues Neg Act -values Minibatch o 5 1 5 20 Q-values Neg Act -values Minibatch
Method Method

Figure 8: SNQN final Q-values. In these plots, we observe more overlap between the evaluation of
the Q-function on the mini-batch vs negative actions. This can be undesirable and has lead to reduced
overall performance of the final policy.

Q-value Distributions Q-value Distributions Q-value Distributions

—— Qwvalues Negative Actions,
—— Qwvalues Minibatch

»
w
B

‘ H
‘ »
\ 10
_ o

Q-values Negative Actions Q-values Minibatch o 10 20 By “ 50 2 Q-values Negative Actions Q-values Minibatch
Method Method

FE] 2
H £ oo

Figure 9: SA2C final Q-values. We observe similar trend as the other baseline SNQN, however there
is more overlap between the Q-value distributions as in this case the policy has diverged, leading to
lower performance.

15

Under review as a conference paper at ICLR 2024

A.2 ADDITIONAL RESULTS RC15

RC15 - Negative Sampling 10

le4
05 1.0
0.3 0.8
0.4
0 ®
0.6
Vo3 ®o02 &
® 1] °
-4 9] © 0.4
T a z
02 = H
—— SNON 0.1 —— SNQN <, —— SNQN
—— sA2C —— sA2C " —— sA2C
01 —— SA2C_SmoothEnabled —— SA2C_SmoothEnabled —— SA2C_SmoothEnabled
—— SASRec_CCQL 0.0 —— SASRec_CCQL 0.0 —— SASRec_CCQL
0.0+
0 20 40 60 80 100 0 20 40 60 80 100 00 02 04 06 08 10
Iteration 1le2
RC15 - Negative Sampling 30
le4
1.0
05
0.3 0.8
0.4
0)
0.6
003 ®0.2 9
4 g 5
© 0.4
T [a) =
0.2 = 2
— SNON 01 —— SNON <45 —— SNON
—— SA2C —— SA2C) —— SA2C
01 —— SA2C_SmoothEnabled —— SA2C_SmoothEnabled —— SA2C_SmoothEnabled
—— SASRec_CCQL 0.0 —— SASRec_CCQL 0.0 —— SASRec_CCQL
0 20 40 60 80 100 0 20 40 60 80 100 00 02 04 06 08 10
Iteration le2
RC15 - Negative Sampling 50
le4
05 L0
0.3 0.8
0.4
0 ®
0.6
Vo3 ®o02 &
® O °
4 O T 0.4
T a ES
02 = H
0.1 —— SNON <0, —— SNQN
—— sA2C ' —— sA2C
01 —— SA2C_SmoothEnabled —— SA2C_SmoothEnabled —— SA2C_SmoothEnabled
—— SASRec_CCQL 0.0 —— SASRec_CCQL 0.0 —— SASRec_CCQL
0.0+
0 20 40 60 80 100 0 20 40 60 80 100 00 02 04 06 08 10
Iteration 1le2

Figure 10: Purchase predictions comparisons on Top-5 for varying negative samplings. As we
increase the rate of negative samples during training, we observe performance drop in our baseline
SNQN and divergence with SA2C and SA2C with smoothing i.e. off-policy correction enabled.

A.3 RESULTS STATISTICS

Table 5:

Top-k (k =5, 10, 20) performance comparison of different models on RC15 including mean
and standard deviation errors, averaged across 10 seeds.

Model Reward@20 Purchase Click

HR@S NGes HR@10 NG@10 HR@20 NG@20 HR@S NG@s HR@10 NG@10 HR@20 NG@20
SASRec 13,181 £ 14 0379+ 0.006 0.271 0004 0.482+0.004 0304+ 0.003 0.564 0003 0.325+0.003 0315+ 0001 0.222 40001 04140001 02520001 0487 £0.001 0271 +0.001
SASRec-AC 13,693 428 0.393+0004 0.278+0.003 0497+ 0.004 031240002 0.383+0.006 033440002 0.333+0001 0232+0.001 0.428+0.001 0.263+0.001 0507+ 0.001 0.283 +0.001
SASRec-CO 13,701 £25 0.392+0.003 0.279 +0.002 0.498 +0.004 0.313 +0.002 0.584 +0.005 0.335+0.002 0.333 £ 0.001 0.233 +0.001 0.427 +0.001 0.264 + 0.001 0.507 £+ 0.001 0.283 + 0.001
SASRec-CCQL 14,187+ 57 0.473+0.006 0338+ 0.004 0596 +0.006 0.377+0.004 0.688+0.005 0.401+0.004 0.348+0.001 0227+ 0.001 0.426+0.001 0.259+£0.001 0.508%0.002 0.291 % 0.001

16

Under review as a conference paper at ICLR 2024

Accumulated Rewards Across All Methods on RetailRocket. Accumulated Rewards Across All Methods on RC15.

Reward@20
Reward@20

Figure 11: Comaprison of accummulated rewards across all methods.

A.4 ADDITIONAL DATASETS

Click
Model
HR@5 NG@5 HR@I0 NG@10 HR@20 NG@20

GRU 0.390 0.259 0.515 0.298 0.578 0.314
Caser 0.265 0.206 0.328 0.226 0.484 0.265
SASRec 0.351 0.240 0.421 0.263 0.558 0.298
SASRec-CO 0.453 0.350 0.593 0.402 0.687 0.426
CL4Rec 0.328 0.234 0.394 0.255 0.527 0.289

Table 6: Top-k performance comparison of different models (k =5, 10, 20) on MovieLens.

Click
Model
HR@5 NG@5 HR@I0 NG@10 HR@20 NG@20

GRU 0.031 0.023 0.046 0.028 0.093 0.040
Caser 0.015 0.015 0.031 0.020 0.031 0.020
SASRec 0.023 0.018 0.054 0.027 0.070 0.032
SASRec-CO 0.046 0.032 0.078 0.041 0.109 0.048
CL4Rec 0.023 0.015 0.039 0.020 0.046 0.022

Table 7: Top-k performance comparison of different models (k =5, 10, 20) on AmazonFood.

A.5 HYPERPARAMETERS

Hyperparameter Initial Value Tuning Range
Batch_size 256 32 to 128
Hidden_size 64 32 to 128
Learning Rate 0.001 le-5t0 0.1
Discount (v) 0.5 0.001 to 0.999
Contrastive Loss InfoNCECosine | N/A
Augmentation Permutation N/A

Negative Reward -1.0 -5t00
Negative Samples 10 10 to 50

CQL Temperature 1.0 0.1to5

CQL Min Q Weight | 0.1 0.001 to 5.0

Q Loss Weight 0.5 0.1t02.0

Table 8: Hyperparameters for SASRec-CCQL

17

Under review as a conference paper at ICLR 2024

Hyperparameter | Initial Value | Tuning Range
Batch_size 256 32to 128
Hidden_size 64 32 to 128
Learning Rate 0.01 le-5t0 0.1
Discount () 0.1 0.001 to 0.999
Contrastive Loss InfoNCE N/A
Augmentation Permutation | N/A

Negative Reward | -1.0 -5t00

Table 9: Hyperparameters for SASRec-CO

18

	Appendix for Addressing Challenges in Reinforcement Learning for Recommender Systems with Conservative Objectives
	Ablation Study
	Additional Results RC15
	Results statistics
	Additional Datasets
	Hyperparameters

