
DRAUC: An Instance-wise Distributionally Robust
AUC Optimization Framework

Siran Dai1,2 Qianqian Xu3∗ Zhiyong Yang4

Xiaochun Cao5 Qingming Huang4,3,6∗
1 SKLOIS, Institute of Information Engineering, CAS

2 School of Cyber Security, University of Chinese Academy of Sciences
3 Key Lab. of Intelligent Information Processing, Institute of Computing Tech., CAS
4 School of Computer Science and Tech., University of Chinese Academy of Sciences
5 School of Cyber Science and Tech., Shenzhen Campus of Sun Yat-sen University

6 BDKM, University of Chinese Academy of Sciences
daisiran@iie.ac.cn xuqianqian@ict.ac.cn

yangzhiyong21@ucas.ac.cn caoxiaochun@mail.sysu.edu.cn
qmhuang@ucas.ac.cn

Abstract

The Area Under the ROC Curve (AUC) is a widely employed metric in long-tailed
classification scenarios. Nevertheless, most existing methods primarily assume that
training and testing examples are drawn i.i.d. from the same distribution, which
is often unachievable in practice. Distributionally Robust Optimization (DRO)
enhances model performance by optimizing it for the local worst-case scenario,
but directly integrating AUC optimization with DRO results in an intractable
optimization problem. To tackle this challenge, methodically we propose an
instance-wise surrogate loss of Distributionally Robust AUC (DRAUC) and build
our optimization framework on top of it. Moreover, we highlight that conventional
DRAUC may induce label bias, hence introducing distribution-aware DRAUC as
a more suitable metric for robust AUC learning. Theoretically, we affirm that the
generalization gap between the training loss and testing error diminishes if the
training set is sufficiently large. Empirically, experiments on corrupted benchmark
datasets demonstrate the effectiveness of our proposed method. Code is available
at: https://github.com/EldercatSAM/DRAUC.

1 Introduction

The Area Under the ROC Curve (AUC) is an essential metric in machine learning. Owing to its
interpretation equivalent to the probability of correctly ranking a random pair of positive and negative
examples [11], AUC serves as a more suitable metric than accuracy for imbalanced classification
problems. Research on AUC applications has expanded rapidly across various scenarios, including
medical image classification [40, 51], abnormal behavior detection [5] and more.

However, current research on AUC optimization assumes that the training and testing sets share the
same distribution [46], a challenging condition to satisfy when the testing environment presents a
high degree of uncertainty. This situation is common in real-world applications.

Distributionally Robust Optimization (DRO) as a technique designed to handle distributional uncer-
tainty, has emerged as a popular solution [38] in various applications, including machine learning
[19], energy systems [1] and transportation [25]. This technique aims to develop a model that
performs well, even under the most adversarial distribution within a specified distance from the
original training distribution. However, existing DRO methods primarily focus on accuracy as a

∗Corresponding authors.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/EldercatSAM/DRAUC

metric, making it difficult to directly apply current DRO approaches to AUC optimization due to its
pairwise formulation. Consequently, it prompts the following question:

Can we optimize the Distributionally Robust AUC (DRAUC) using an end-to-end framework?

This task presents three progressive challenges: 1): The pairwise formulation of AUC necessitates
simultaneous access to both positive and negative examples, which is computationally intensive and
infeasible in online settings. 2): The naive integration of AUC optimization and DRO leads to an
intractable solution. 3): Based on a specific observation, we find that the ordinary setting of DRAUC
might lead to severe label bias in the adversarial dataset.

In this paper, we address the aforementioned challenges through the following techniques: For 1),
we employ the minimax reformulation of AUC and present an early trail to explore DRO under
the context of AUC optimization. For 2), we propose a tractable surrogate loss that is proved to
be an upper bound of the original formulation, building our distribution-free DRAUC optimization
framework atop it. For 3), we further devise distribution-aware DRAUC, to perform class-wise
distributional perturbation. This decoupled formulation mitigates the label noise issue. This metric
can be perceived as a class-wise variant of the distribution-free DRAUC.

It is worth noting that [56] also discusses the combination of DRO techniques with AUC optimization.
However, the scope of their discussion greatly differs from this paper. Their approach focuses on using
DRO to construct estimators for partial AUC and two-way partial AUC optimization with convergence
guarantees, whereas this paper primarily aims to enhance the robustness of AUC optimization.

The main contributions of this paper include the following:

• Methodologically: We propose an approximate reformulation of DRAUC, constructing
an instance-wise, distribution-free optimization framework based on it. Subsequently, we
introduce the distribution-aware DRAUC, which serves as a more appropriate metric for
long-tailed problems.

• Theoretically: We conduct a theoretical analysis of our framework and provide a generaliza-
tion bound derived from the Rademacher complexity applied to our minimax formulation.

• Empirically: We assess the effectiveness of our proposed framework on multiple corrupted
long-tailed benchmark datasets. The results demonstrate the superiority of our method.

2 Related Works

2.1 AUC Optimization

AUC is a widely-used performance metric. AUC optimization has garnered significant interest in
recent years, and numerous research efforts have been devoted to the field. The researches include
different formulations of objective functions, such as pairwise AUC optimization [8], instance-wise
AUC optimization [49, 26, 50], AUC in the interested range (partial AUC [48], two-way partial AUC
[47]), and area under different metrics (AUPRC [35, 44, 45], AUTKC [43], OpenAUC [42]. For
more information, readers may refer to a review on AUC [46].

Some prior work investigates the robustness of AUC. For instance, [52] improves the robustness
on noisy data and [15] studies the robustness under adversarial scenarios. In this paper, we further
explore robustness under the local worst distribution.

2.2 Distributionally Robust Optimization

DRO aims to enhance the robustness and generalization of models by guaranteeing optimal perfor-
mance even under the worst-case local distribution. To achieve this objective, an ambiguity set is
defined as the worst-case scenario closest to the training set. A model is trained by minimizing the
empirical risk on the ambiguity set. To quantify the distance between distributions, prior research
primarily considers ϕ− divergence [2, 16, 4, 31] and the Wasserstein distance [39, 28, 19, 3, 7] as
distance metrics. For more details, readers may refer to recent reviews on DRO [28, 23].

2

DRO has applications in various fields, including adversarial training [39], long-tailed learning [37],
label shift [55], etc. However, directly optimizing the AUC on the ambiguity set remains an open
problem.

3 Preliminaries

In this subsection, we provide a brief review of the AUC optimization techniques and DRO techniques
employed in this paper. First, we introduce some essential notations used throughout the paper.

We use z ∈ Z to denote the example-label pair, and fθ : Z → [0, 1] to represent a model with
parameters θ ∈ Θ. This is typical when connecting a Sigmoid function after the model output. For
datasets, P̂ denotes the nominal training distribution with n examples, while P represents the testing
distribution. We use P̂+ = {x+

1 , ..., x
+
n+} and P̂− = {x−

1 , ..., x
−
n−} to denote positive/negative

training set, respectively. To describe the degree of imbalance of the dataset, we define p̂ = n+

n++n−

as the imbalance ratio of training set, and p = Pr(y = 1) as the imbalance ratio of testing distribution.
The notation EP signifies the expectation on distribution P . We use c(z, z′) = ||z − z′||22 to denote
the cost of perturbing example z to z′.

3.1 AUC Optimization

Statistically, AUC is equivalent to the Wilcoxon–Mann–Whitney test [11], representing the probability
of a model predicting a higher score for positive examples than negative ones

AUC(fθ) = E
P+,P−

[
ℓ0,1(fθ(x

+)− fθ(x
−))
]

(1)

where ℓ0,1(·) denotes the 0-1 loss, i.e., ℓ0,1(x) = 1 if x < 0 and otherwise ℓ0,1(x) = 0. Based on
this formulation, maximizing AUC is equivalent to the following minimization problem

min
θ

E
P+,P−

[
ℓ(fθ(x

+)− fθ(x
−))
]

(2)

where ℓ is a differentiable, consistent surrogate loss of ℓ0,1. However, the pairwise formulation of the
above loss function is not applicable in an online setting. Fortunately, [49] demonstrates that using
the square loss as a surrogate loss, the optimization problem (2) can be reformulated as presented in
the following theorem.
Theorem 1 ([26]). When using square loss as the surrogate loss, the AUC maximization is equivalent
to

min
θ

E
P+,P−

[
ℓ
(
fθ(x

+)− fθ(x
−)
)]

= min
θ,a,b

max
α

E
P
[g(a, b, α,θ, z)] (3)

where

g(a, b, α,θ, z) = (1− p) · (fθ(x)− a)2 · I[y=1] + p · (fθ(x)− b)2 · I[y=0]

+ 2 · (1 + α) · (p · fθ(x) · I[y=0] − (1− p) · fθ(x) · I[y=1] − p(1− p) · α2).
(4)

Moreover, with the parameter θ fixed, the optimal solution of a, b, α, denoted as a⋆, b⋆, α⋆, can be
expressed as:

a⋆ = E
P+

[
fθ(x

+)
]
, b⋆ = E

P−

[
fθ(x

−)
]
, α⋆ = b⋆ − a⋆. (5)

Similar results hold if the true distribution P+, P− in the expressions are replaced with P̂+, P̂−.
Remark 1 (The constraints on a, b, α). Given that the output of the model fθ is restricted to [0, 1],
a, b, α can be confined to the following domains:

Ωa,b = {a, b ∈ R|0 ≤ a, b,≤ 1},
Ωα = {α ∈ R| − 1 ≤ α ≤ 1}. (6)

So that the minimax problem can be reformulated as:

min
θ,(a,b)∈Ωa,b

max
α∈Ωα

E
P
[g(a, b, α,θ, z)] . (7)

3

3.2 Distributionally Robust Optimization

Distributionally Robust Optimization (DRO) aims to minimize the learning risk under the local
worst-case distribution. Practically, since we can only observe empirical data points, our discussion
is primarily focused on empirical distributions. Their extension to population-level is straightforward

min
θ

sup
Q̂:d(Q̂,P̂)≤ϵ

E
Q̂
[ℓ(fθ, z)] (8)

where P̂ is the original empirical distribution, Q̂ is the perturbed distribution and d is the metric of
distributional distance. The constraint d(Q̂, P̂) ≤ ϵ naturally expresses that the perturbation induced
Q̂ should be small enough to be imperceptible.

As demonstrated in [7], when employing the Wasserstein distance Wc as the metric, a Lagrangian
relaxation can be utilized to reformulate DRO into the subsequent minimax problem.

Theorem 2 ([7]). With ϕλ(z,θ) = supz′∈Z{ℓ(fθ, z′)− λc(z, z′)}, for all distribution P̂ and ϵ > 0,
we have

sup
Q̂:Wc(Q̂,P̂)≤ϵ

E
Q̂
[ℓ(f(z))] = inf

λ≥0
{λϵ+ E

P̂
[ϕλ(z,θ)]}. (9)

With the theorem above, one can directly get rid of the annoying Wasserstein constraint in the
optimization algorithms. We will use this technique to derive an AUC-oriented DRO framework in
this paper.

4 Method

4.1 Warm Up: A Naive Formulation for DRAUC

As a technical warm up, we first start with a straightforward approach to optimize AUC metric
directly under the worst-case distribution. By simply incorporating the concept of the Wasserstein
ambiguity set, we obtain the following definition of DRAUC in a pairwise style.

Definition 1 (Pairwise Formulation of DRAUC). Let ℓ be a consistent loss of ℓ0,1, for any nominal
distribution P̂ and ϵ > 0, we have

DRAUCϵ(fθ, P̂) = 1− max
Q̂:Wc(Q̂,P̂)≤ϵ

E
Q̂

[
ℓ
(
fθ(x

+)− fθ(x
−)
)]

. (10)

However, generating local-worst Wasserstein distribution Q̂ is loss-dependent, implying that we need
to know all the training details to deliver a malicious attack. In our endeavor to secure a performance
guarantee for our model, we cannot limit the scope of information accessible to an attacker. This
pairwise formulation elevates the computational complexity from O(n) to O(n+n−), significantly
increasing the computational burden. By a simple reuse of the trick in (7), one can immediately reach
the following reformulation of the minimization of (10).

Proposition 1 (A Naive Reformulation). When using square loss as the surrogate loss, The DRAUC
minimization problem: minθ DRAUCϵ(fθ, P̂), is equivalent to

(Ori) min
θ

max
Q̂:Wc(Q̂,P̂)≤ϵ

min
(a,b)∈Ωa,b

max
α∈Ωα

E
Q̂
[g(a, b, α,θ, zi)] . (11)

Unfortunately, the optimization operators adhere to a min-max-min-max fashion. There is no known
optimization algorithm can deal with this kind of problems so far. Hence, in the rest of this section,
we will present two tractable formulations as proper approximations of the problem.

4.2 DRAUC-Df: Distribution-free DRAUC

Let us take a closer look at the minimax problem (Ori). It is straightforward to verify that, fix all the
other variables, g is convex with respect to a, b and concave with respect to α within Ωa,b,Ωα. We

4

Algorithm 1 Algorithm for optimizing DRAUC-Df:

1: Input: the training data Z , step number K, step size for inner K-step gradient ascent ηz , learning
rates ηλ, ηw, ηα and maximal corrupt distance ϵ.

2: Initialize: initialize a0, b0, α0 = 0, λ0 = λ0.
3: for t = 1 to T do
4: Sample a batch of example z from Z .
5: Generate Local Worst-Case Examples:
6: Initialize z′ = z.
7: for k = 1 to K do
8: z′ = ΠZ(z

′ + ηz · ∇zϕλt,a,b,α(θ, z
′)).

9: end for
10: Update Parameters:
11: Update αt+1 = ΠΩα(α

t + ηα · ∇αg
t(z′)).

12: Update λt+1 = ΠΩλ
(λt − ηl · ∇λ[λϵ+ ϕλt,a,b,α(θ, z

′)]).
13: Update wt+1 = ΠΩw(w

t − ηw · ∇wgt(z′)).
14: end for

are able to interchange the inner min(a,b)∈Ωa,b
and maxα∈Ωα

by invoking von Neumann’s Minimax
theorem [41], which results in

min
θ

max
Q̂:Wc(Q̂,P̂)≤ϵ

max
α∈Ωα

min
(a,b)∈Ωa,b

E
Q̂
[g(a, b, α,θ, z)]. (12)

Moreover, based on the simple property that maxx miny f(x, y) ≤ miny maxx f(x, y), we reach an
upper bound of the objective function:

max
Q̂:Wc(Q̂,P̂)≤ϵ

max
α∈Ωα

min
(a,b)∈Ωa,b

E
Q̂
[g(a, b, α, θ, z)]︸ ︷︷ ︸

DRAUCϵ(fθ,P̂)

≤ min
(a,b)∈Ωa,b

max
α∈Ωα

max
Q̂:Wc(Q̂,P̂)≤ϵ

E
Q̂
[g(a, b, α, θ, z)]︸ ︷︷ ︸

˜DRAUCϵ(fθ,P̂)

(13)

From this perspective, if we minimize ˜DRAUCϵ(fθ, P̂) in turn, we can at least minimize an upper
bound of DRAUCϵ(fθ, P̂). In light of this, we will employ the following optimization problem as
a surrogate for (Ori):

(Df) min
w

max
α∈Ωα

max
Q̂:Wc(Q̂,P̂)≤ϵ

E
Q̂
[g(w, α, z)] (14)

where w = θ, (a, b) ∈ Ωa,b. Now, by applying the strong duality to the inner maximization problem
max

Q̂:Wc(Q̂,P̂)≤ϵ
E
Q̂
[g(w, α, z)]

we have
(Df)min

w
max
α∈Ωα

min
λ≥0

{λϵ+ E
P̂
[ϕw,λ,α(z)]} (15)

where ϕw,λ,α(z) = maxz′∈Z [g(w, α, z) − λc(z, z′)]. This min-max-min formulation remains
difficult to optimize, so we take a step similar to (13) that interchange the inner minλ≥0 and outer
maxα∈Ωα

, resulting in a tractable upper bound
(Df⋆)min

w
min
λ≥0

max
α∈Ωα

{λϵ+ E
P̂
[ϕw,λ,α(z)]}. (16)

In this sense, we will use the (Df⋆) as the final optimization problem for DRAUC-Df.

4.3 DRAUC-Da: Distribution-aware DRAUC

Though AUC itself is inherently robust toward long-tailed distributions, we also need to examine
whether DRAUC shares this resilience. We now present an analysis within a simplified feature
space on the real line, where positive and negative examples are collapsed to their corresponding
clusters. The choice of the feature space is simple yet reasonable since it is a 1-d special case of the
well-accepted neural collapse phenomenon [32, 10, 17, 57, 27].

Specifically, the following proposition states that the distributional attacker in DRAUC can ruin the
AUC performance easily by merely attacking the tail-class examples.

5

Proposition 2 (Powerful and Small-Cost Attack on Neural Collapse Feature Space). Let
the training set comprises n+ positive examples and n− negative examples in R1, i.e., D ={
x+
1 , ..., x

+
n+ , x

−
n++1, ..., x

−
n

}
, with the empirical distribution P̂ = 1

n

∑n
i=1 δxi

(δz represents the

Dirac point mass at point z.). According to the neural collapse assume, we have: x+
i = x+, x−

j = x−.
Given a classifier f(x) = x, we assume that the maximization of perturb distribution Q̂ is further
constrained on the subset:

Q =

{
Q̂ : Q̂ =

1

n

n∑
i=1

δx′
i

}
where xi → x′

i forms a discrete Monge map. Then, we have:

inf
Q̂∈Q,AUC(f,Q̂)=0

Wc(P̂ , Q̂) ≤ p̂ · (1− p̂) · (x+ − x−)2

where p̂ = n+

n is the ratio of the positive examples in the dataset. Moreover, the cost p̂ · (1 − p̂) ·
(x+ − x−)2 is realized by setting:

x+′
= x−′

= p̂ · x+ + (1− p̂) · x−

the barycenter of the two-bodies system (x+, x−).

It is noteworthy that p̂ · (1− p̂) reflects the degree-of-imbalanceness, which is relatively small for
long-tailed datasets. Moreover, the barycenter tends to be pretty close to the head-class examples.
Therefore, only the tail-class examples are required to be revised heavily during the attack. In
this sense, the attacker can always exploit the tail class examples as a backdoor to ruin the AUC
performance with small Wasserstein cost. This is similar to the overly-pessimistic phenomena [6, 16]
in DRO. The following example shows how small such cost could be in a numerical sense.
Example 1. Consider a simplified setting in which the training set is comprised of only one positive
example and 99 negative examples, i.e., P̂ = {x+

1 , x
−
2 , ..., x

−
100} with x+ = 0.99 and x− = 0.01.

The minimum distance required to perturb the AUC metric from 1 to 0 is 0.009702. This result is
achieved by perturbing the positive example from 0.99 to 0.0198 and the negative examples from
0.01 to 0.0198, respectively.

This perturbation strategy indicates a preference towards strong attack on tail-class examples. The
resulting distribution Q̂ is always highly biased toward the original distribution, despite the small
Wasserstein cost. In the subsequent training process, one has to minimize the expected loss over Q̂,
resulting to label noises.

Therefore, it is natural to consider perturbations on the positive and negative distributions separately
to avoid such a problem. Accordingly, we propose here a distribution-aware DRAUC formulation:
Definition 2 (Distribution-aware DRAUC). Let ℓ be a consistent loss of ℓ0,1, for any nominal
distribution P̂ and ϵ+, ϵ− > 0, we have

DRAUCDa
ϵ+,ϵ−(fθ, P̂) = 1− max

Q̂+:Wc(Q̂+,P̂+)≤ϵ+
Q̂−:Wc(Q̂−,P̂−)≤ϵ−

E
Q̂+,Q̂−

[
ℓ(fθ(x

+
i)− fθ(x

−
j))
]
. (17)

For simplicity, let us denote

Q̂ = {Q̂| Wc(Q̂+, P̂+) ≤ ϵ+,Wc(Q̂−, P̂−) ≤ ϵ−} (18)

Similar to DRAUC-Df, we construct our reformulation as follows:

(Da) min
w

max
α∈Ωα

max
Q̂∈Q̂

E
Q̂+,Q̂−

[g(a, b, α,θ, zi)]. (19)

Moreover, we conduct a similar derivation as DRAUC-Df, to construct a tractable upper bound:

(Da⋆)min
w

min
λ+,λ−≥0

max
α∈Ωα

{λ+ϵ+ + λ−ϵ− + p̂ E
P̂+

[ϕw,λ+,α(z)] + (1− p̂) E
P̂−

[ϕw,λ−,α(z)]} (20)

where ϕw,λ+,α(z) = maxz′∈Z [g(w, α, z)− λ+c(z, z
′)] and ϕw,λ−,α(z) = maxz′∈Z [g(w, α, z)−

λ−c(z, z
′)]. Please see Appendix A for the details.

6

Algorithm 2 Algorithm for optimizing DRAUC-Da:

1: Input: the training data Z , step number K, step size for inner K-step gradient ascent ηz , learning
rates ηλ, ηw, ηα and maximal corrupt distance ϵ+, ϵ−.

2: Initialize: initialize a0, b0, α0 = 0, λ0
+ = λ0

− = λ0.
3: for t = 1 to T do
4: Sample a batch of example z from Z .
5: Generate Local Worst-Case Examples:
6: Initialize z′+ = z+, z

′
− = z−.

7: for k = 1 to K do
8: z′+ = ΠZ(z

′
+ + ηz · ∇zϕλt

+,a,b,α(θ, z
′
+)).

9: z′− = ΠZ(z
′
− + ηz · ∇zϕλt

−,a,b,α(θ, z
′
−)).

10: end for
11: Update Parameters:
12: Update αt+1 = ΠΩα(α

t + ηα · (p∇ag
t(z′+) + (1− p)∇ag

t(z′−))).
13: Update λt+1

+ = ΠΩλ
(λt

+ − ηl · ∇λ+
[λ+ϵ+ + ϕλt

+,a,b,α(θ, z
′
+)]).

14: Update λt+1
− = ΠΩλ

(λt
− − ηl · ∇λ− [λ−ϵ− + ϕλt

−,a,b,α(θ, z
′
−)]).

15: Update wt+1 = ΠΩw(w
t − ηw · (p̂∇wgt(z′+) + (1− p̂)∇wgt(z′−))).

16: end for

4.4 Algorithm

4.4.1 DRAUC Optimization

Motivated by the above reformulation, we propose our DRAUC optimization framework, where we
solve this optimization problem alternatively.

Inner maximization problem : K-step Gradient Ascent: Following [39], we consider accessing
K-step gradient ascent with learning rate ηz to solve the inner maximization problem, which is widely
used in DRO and can be considered as a variance of PGM. For α, we use SGA with a step size ηα.

Outer minimization problem: Stochastic Gradient Descent: On each iteration, we apply stochastic
gradient descent over w with learning rate ηw and over λ with learning rate ηλ.

See Algorithms 1,2 for more details.

4.5 Generalization Bounds

In this section, we theoretically show that the proposed algorithm demonstrates robust generaliza-
tion in terms of DRAUC-Da metric, even under local worst-case distributions. That is, we show
that a model sufficiently trained under our approximate optimization (Da⋆) enjoys a reasonable
performance guarantee in DRAUC-Da metric. Our analysis based on the standard assumption that
the model parameters θ are chosen from the hypothesis set Θ(such as neural networks of a specific
structure). To derive the subsequent theorem, we utilize the results analyzed in Section 4.3 and
perform a Rademacher complexity analysis of DRAUC-Da. The proof for DRAUC-Df follows a
similar proof and is much simpler, thus we omit the result here. For additional details, please refer to
Appendix A.
Theorem 3 (Informal Version). For all θ ∈ Θ, λ+, λ− ≥ 0, (a, b) ∈ Ωa,b, α ∈ Ωα and ϵ+, ϵ− > 0,
the following inequality holds with a high probability

DRAUCDa
ϵ+,ϵ−(fθ, P)︸ ︷︷ ︸
(a)

≤ L̂︸︷︷︸
(b)

+O(
√
1/ñ)︸ ︷︷ ︸

(c)

(21)

where ñ is some normalized sample size and L̂ = minw minλ+,λ−≥0 maxα∈Ωα
{λ+ϵ+ + λ−ϵ− +

p̂EP̂+
[ϕw,λ+,α(z)] + (1− p̂)EP̂−

[ϕw,λ−,α(z)]}.

In Thm.3, (a) represents the robust AUC loss in terms of expectation, (b) denotes the training loss
that we use to optimize our model parameters, and (c) is an error term that turns to zero when the

7

(a) Imratio 0.01 (b) Imratio 0.05 (c) Imratio 0.1 (d) Imratio 0.2

Figure 1: Overall Performance of ResNet32 Across Perturbation Levels on CIFAR10. This graph
illustrates the performance of various methods at different corruption levels, with Level 0 indicating
no corruption and Level 5 representing the most severe corruption. In each figure, the seven lines
depict the test AUC for CE, AUCMLoss, FocalLoss, ADVShift, WDRO, DROLT, GLOT, AUCDRO,
DRAUC-Da and DRAUC-Df, respectively. Best viewed in colors.

sample size turns to infinity. In this sense, if we train our model sufficiently within a large enough
training set, we can achieve a minimal generalization error.

5 Experiments

In this section, we demonstrate the effectiveness of our proposed framework on three benchmark
datasets with varying imbalance ratios.

5.1 Experiment Settings

We evaluate our framework using the following approach. First, we conduct a binary, long-tailed
training set. Then, we proceed to train the model on the long-tailed training set with varying imbalance
ratios, tune hyperparameters on the validation set, and evaluate the model exhibiting the highest
validation AUC on the corrupted testing set. For instance, we train our model on binary long-tailed
MNIST [22], CIFAR10, CIFAR100 [18], and Tiny-ImageNet [21], and evaluate our proposed method
on the corrupted version of corresponding datasets [30, 13, 14]. Furthermore, we compare our results
with multiple competitors including the baseline (CE), typical methods for long-tailed problems
[24, 52, 56] and DRO methods [55, 20, 37, 34]. Please see Appendix B for more details.

5.2 Results and Analysis

5.2.1 Overall Performance

The overall performances on CIFAR10 and Tiny-ImageNet are presented in Table 1 and Table 2,
respectively. We further compare model performances by altering the level of perturbation, with
results displayed in Figure 1. Due to the space limitation, we attach results on MNIST and CIFAR100
in Appendix B. Based on these findings, we make the following observations:

Effectiveness. Our proposed method outperforms all competing approaches across Corrupted MNIST,
CIFAR10, CIFAR100 and Tiny-ImageNet datasets for all imbalance ratios, thereby substantiating its
effectiveness. Additionally, our approach exhibits enhanced performance as the level of perturbation
intensifies, indicating its robustness in challenging testing scenarios.

Ablation results. Given that our method is modified on AUCMLoss [52], the results presented in
Figure 1 can be treated as ablation results. Under the same hyperparameters of AUCMLoss, our
method exhibits significant improvement over the baseline, indicating enhanced model robustness.

Advantage of Distribution-awareness. As presented in Table 1, DRAUC-Da attains higher scores
than DRAUC-Df across almost all corrupted scenarios. This supports our hypothesis that a strong
attack on tail-class examples can potentially compromise model robustness.

Performances on non-corrupted data. Within non-corrupted datasets, our approach continues to
exhibit competitive performance under conditions of extreme data imbalance, specifically when the
imbalance ratio equals to 0.01. However, with less imbalanced training data, our method may suffer
performance degradation, attributable to the potential trade-off between model robustness and clean
performance, which is an unavoidable phenomenon in Adversarial Training [54].

8

Table 1: Overall Performance on CIFAR10-C and CIFAR10-LT with different imbalance ratios and
different models. The highest score on each column is shown with bold, and we use darker color to
represent higher performance.

Model Methods
CIFAR10-C CIFAR10-LT

0.01 0.05 0.10 0.20 0.01 0.05 0.10 0.20

ResNet20

CE 62.48 75.87 83.13 86.20 65.43 84.12 92.32 95.68
AUCMLoss 63.93 76.77 81.75 85.26 68.88 84.74 90.97 94.40
FocalLoss 56.56 74.44 81.81 84.97 57.63 81.62 91.33 94.62
ADVShift 61.36 75.97 83.78 87.35 64.97 82.91 87.87 95.46
WDRO 63.19 78.90 80.59 86.02 68.80 88.54 91.04 94.04
DROLT 59.92 77.51 81.09 86.46 60.99 85.76 91.35 95.17
GLOT 63.98 77.19 83.33 87.57 65.95 88.37 90.51 94.62
AUCDRO 63.35 76.19 81.82 85.96 67.14 84.00 90.92 94.88

DRAUC-Df 65.58 80.18 85.71 88.83 68.12 86.47 90.57 94.17
DRAUC-Da 66.06 80.13 85.91 89.51 68.71 84.43 90.30 93.76

ResNet32

CE 64.43 78.79 83.12 86.89 66.05 84.40 90.44 95.61
AUCMLoss 64.00 76.98 81.87 85.66 68.90 84.94 91.52 95.16
FocalLoss 56.96 76.53 83.82 87.42 58.04 82.99 91.02 95.16
ADVShift 55.74 72.42 83.47 88.32 56.73 79.36 87.88 94.95
WDRO 64.51 78.45 83.87 88.03 68.16 86.48 90.11 95.23
DROLT 63.66 76.71 83.93 88.42 65.40 84.68 90.11 95.51
GLOT 62.59 77.21 83.67 87.30 64.53 82.62 89.59 94.62
AUCDRO 65.10 71.23 81.45 86.23 68.69 78.51 90.67 95.07

DRAUC-Df 65.44 80.27 85.70 90.62 67.11 85.03 90.63 94.86
DRAUC-Da 65.50 80.57 86.25 90.15 68.51 85.03 90.98 94.27

Table 2: Overall Performance on Tiny-ImageNet-C and Tiny-ImageNet-LT with different imbalance
ratios and different models. The highest score on each column is shown with bold, and we use darker
color to represent higher performance.

Model Methods
Tiny-ImageNet-C Tiny-ImageNet-LT

Dogs Birds Vehicles Dogs Birds Vehicles

ResNet20

CE 78.46 85.19 87.53 93.72 94.49 97.72
AUCMLoss 77.35 85.98 82.37 93.35 94.11 97.34
FocalLoss 78.34 81.48 86.55 93.25 92.87 97.66
ADVShift 81.20 80.94 86.65 93.70 93.53 97.66
WDRO 82.20 85.23 85.92 94.46 95.50 98.19
DROLT 80.44 86.91 86.76 93.89 96.40 97.86
GLOT 81.96 85.89 86.80 94.67 96.14 98.05
AUCDRO 75.97 83.26 79.46 92.58 93.04 96.29

DRAUC-Df 84.11 87.30 88.67 93.39 95.58 97.50
DRAUC-Da 83.96 87.61 89.06 93.76 95.94 97.25

ResNet32

CE 82.55 84.64 86.26 94.31 94.49 97.76
AUCMLoss 77.25 85.20 81.12 93.19 95.19 97.57
FocalLoss 77.96 79.80 85.33 93.41 92.85 97.78
ADVShift 84.30 84.56 86.43 92.92 94.71 97.59
WDRO 80.08 85.58 86.94 94.39 95.51 97.67
DROLT 79.25 85.75 86.79 91.68 96.06 97.82
GLOT 81.70 83.09 88.24 94.08 95.16 97.92
AUCDRO 78.21 80.55 85.26 91.56 93.15 96.33

DRAUC-Df 85.79 88.00 88.32 94.43 95.29 97.37
DRAUC-Da 84.56 87.60 88.46 94.03 95.96 97.65

9

0.55 0.60 0.65
Test AUC

8

32

64

128

Ep
sil

on

(a) Effect of ϵ on 0.01

0.76 0.78 0.80
Test AUC

8

32

64

128

Ep
sil

on

(b) Effect of ϵ on 0.05

0.82 0.84 0.86
Test AUC

8

32

64

128

Ep
sil

on

(c) Effect of ϵ on 0.1

0.86 0.88 0.90
Test AUC

8

32

64

128

Ep
sil

on

(d) Effect of ϵ on 0.01

0.55 0.60 0.65
Test AUC

0.01

0.02

0.1

0.2

La
m

bd
a

lr

(e) Effect of ηλ on 0.01

0.76 0.78 0.80
Test AUC

0.01

0.02

0.1

0.2

La
m

bd
a

lr

(f) Effect of ηλ on 0.05

0.82 0.84 0.86
Test AUC

0.01

0.02

0.1

0.2

La
m

bd
a

lr

(g) Effect of ηλ on 0.1

0.86 0.88 0.90
Test AUC

0.01

0.02

0.1

0.2

La
m

bd
a

lr

(h) Effect of ηλ on 0.2

Figure 2: Sensitivity analysis of ϵ and ηλ on different imbalance ratios.

5.2.2 Sensitivity Analysis

The Effect of ϵ. In Figure 2-(a)-(d), we present the sensitivity of ϵ. The results demonstrate that
when the training set is relatively balanced (i.e., the imbalance ratio p ≥ 0.1), the average robust
performance improves as ϵ increases. Nonetheless, when the training set is highly imbalanced, the
trend is less discernible due to the instability of the training process in these long-tailed settings.

The Effect of ηλ. In Figure 2-(e)-(h), we present the sensitivity of ηλ. ηλ governs the rate of change
of λ and serves as a similar function to the warm-up epochs in AT. When ηλ is small, λ remains large
for an extended period, so the adversarial example is regularized to be less offensive. In cases where
the training set is extremely imbalanced, a large ηλ introduces strong examples to the model while it
struggles to learn, increasing the instability of the training process and explaining why the smallest ηλ
performs best with an imbalance ratio of 0.01. Conversely, when the model does not face difficulty
fitting the training data, an appropriately chosen ηλ around 0.1 enhances the model’s robustness.

6 Conclusion and Future Works

This paper presents an instance-wise, end-to-end framework for DRAUC optimization. Due to the
pairwise formulation of AUC optimization, a direct combination with DRO is intractable. To address
this issue, we propose a tractable surrogate reformulation on top of the instance-wise formulation of
AUC risk. Furthermore, through a theoretical investigation on the neural collapse feature space, we
find that the distribution-free perturbation is a scheme that might induce heavy label noise into the
dataset. In this sense, we propose a distribution-aware framework to handle class-wise perturbation
separately. Theoretically, we show that the robust generalization error is small if both the training
error and (1/

√
ñ) is small. Finally, we conduct experiments on three benchmark datasets employing

diverse model structures, and the results substantiate the superiority of our approach.

Owing to space constraints, not all potential intersections between AUC optimization and distribu-
tionally robustness can be exhaustively explored in this paper. Numerous compelling aspects warrant
further investigation. We offer a detailed, instance-wise reformulation of DRAUC, primarily evolving
from an AUC optimization standpoint. Future discussions could benefit from initiating dialogue from
the angle of DRO. Additionally, integrating various formulations of AUC such as partial AUC and
AUPRC with distributional robustness presents a fertile ground for exploration. The existence of a
potentially overly-pessimistic phenomenon is yet to be conclusively determined, which paves the
way for future inquiries and discoveries.

10

Acknowledgements

This work was supported in part by the National Key R&D Program of China under Grant
2018AAA0102000, in part by National Natural Science Foundation of China: 62236008, U21B2038,
U2001202, 61931008, 62122075, 61976202, and 62206264, in part by the Fundamental Research
Funds for the Central Universities, in part by Youth Innovation Promotion Association CAS, in part by
the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000)
and in part by the Innovation Funding of ICT, CAS under Grant No. E000000.

References

[1] K. Baker, E. Dall’Anese, and T. Summers. Distribution-agnostic stochastic optimal power flow
for distribution grids. In 2016 North American Power Symposium (NAPS), pages 1–6. IEEE,
2016.

[2] A. Ben-Tal, D. Den Hertog, A. De Waegenaere, B. Melenberg, and G. Rennen. Robust solutions
of optimization problems affected by uncertain probabilities. Management Science, 59(2):341–
357, 2013.

[3] J. Blanchet, Y. Kang, and K. Murthy. Robust wasserstein profile inference and applications to
machine learning. Journal of Applied Probability, 56(3):830–857, 2019.

[4] J. C. Duchi, T. Hashimoto, and H. Namkoong. Distributionally robust losses against mixture
covariate shifts. Under review, 2:1, 2019.

[5] A. Feizi. Hierarchical detection of abnormal behaviors in video surveillance through modeling
normal behaviors based on auc maximization. Soft Computing, 24(14):10401–10413, 2020.

[6] C. Frogner, S. Claici, E. Chien, and J. Solomon. Incorporating unlabeled data into distribution-
ally robust learning. arXiv preprint arXiv:1912.07729, 2019.

[7] R. Gao and A. Kleywegt. Distributionally robust stochastic optimization with wasserstein
distance. Mathematics of Operations Research, 2022.

[8] W. Gao and Z.-H. Zhou. On the consistency of auc pairwise optimization. arXiv preprint
arXiv:1208.0645, 2012.

[9] N. Golowich, A. Rakhlin, and O. Shamir. Size-independent sample complexity of neural
networks. In Conference On Learning Theory, pages 297–299. PMLR, 2018.

[10] X. Han, V. Papyan, and D. L. Donoho. Neural collapse under mse loss: Proximity to and
dynamics on the central path. arXiv preprint arXiv:2106.02073, 2021.

[11] J. A. Hanley and B. J. McNeil. The meaning and use of the area under a receiver operating
characteristic (roc) curve. Radiology, 143(1):29–36, 1982.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–
778, 2016.

[13] D. Hendrycks and T. Dietterich. Benchmarking neural network robustness to common corrup-
tions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

[14] D. Hendrycks and T. Dietterich. Benchmarking neural network robustness to common corrup-
tions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

[15] W. Hou, Q. Xu, Z. Yang, S. Bao, Y. He, and Q. Huang. Adauc: End-to-end adversarial auc
optimization against long-tail problems. In International Conference on Machine Learning,
pages 8903–8925. PMLR, 2022.

[16] W. Hu, G. Niu, I. Sato, and M. Sugiyama. Does distributionally robust supervised learning
give robust classifiers? In International Conference on Machine Learning, pages 2029–2037.
PMLR, 2018.

[17] V. Kothapalli, E. Rasromani, and V. Awatramani. Neural collapse: A review on modelling
principles and generalization. arXiv preprint arXiv:2206.04041, 2022.

[18] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

11

[19] D. Kuhn, P. M. Esfahani, V. A. Nguyen, and S. Shafieezadeh-Abadeh. Wasserstein distribution-
ally robust optimization: Theory and applications in machine learning. In Operations research
& management science in the age of analytics, pages 130–166. Informs, 2019.

[20] Y. Kwon, W. Kim, J.-H. Won, and M. C. Paik. Principled learning method for wasserstein
distributionally robust optimization with local perturbations. In International Conference on
Machine Learning, pages 5567–5576. PMLR, 2020.

[21] Y. Le and X. Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[23] F. Lin, X. Fang, and Z. Gao. Distributionally robust optimization: A review on theory and
applications. Numerical Algebra, Control and Optimization, 12(1):159–212, 2022.

[24] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. In
Proceedings of the IEEE international conference on computer vision, pages 2980–2988, 2017.

[25] H. Liu, K. Han, V. V. Gayah, T. L. Friesz, and T. Yao. Data-driven linear decision rule approach
for distributionally robust optimization of on-line signal control. Transportation Research Part
C: Emerging Technologies, 59:260–277, 2015.

[26] M. Liu, Z. Yuan, Y. Ying, and T. Yang. Stochastic auc maximization with deep neural networks.
arXiv preprint arXiv:1908.10831, 2019.

[27] J. Lu and S. Steinerberger. Neural collapse with cross-entropy loss. arXiv preprint
arXiv:2012.08465, 2020.

[28] P. Mohajerin Esfahani and D. Kuhn. Data-driven distributionally robust optimization using
the wasserstein metric: Performance guarantees and tractable reformulations. Mathematical
Programming, 171(1-2):115–166, 2018.

[29] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT press,
2018.

[30] N. Mu and J. Gilmer. Mnist-c: A robustness benchmark for computer vision. arXiv preprint
arXiv:1906.02337, 2019.

[31] H. Namkoong and J. C. Duchi. Variance-based regularization with convex objectives. Advances
in neural information processing systems, 30, 2017.

[32] V. Papyan, X. Han, and D. L. Donoho. Prevalence of neural collapse during the terminal phase of
deep learning training. Proceedings of the National Academy of Sciences, 117(40):24652–24663,
2020.

[33] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems, 32, 2019.

[34] H. Phan, T. Le, T. Phung, A. T. Bui, N. Ho, and D. Phung. Global-local regularization via
distributional robustness. In International Conference on Artificial Intelligence and Statistics,
pages 7644–7664. PMLR, 2023.

[35] Q. Qi, Y. Luo, Z. Xu, S. Ji, and T. Yang. Stochastic optimization of areas under precision-
recall curves with provable convergence. Advances in Neural Information Processing Systems,
34:1752–1765, 2021.

[36] L. Rice, E. Wong, and Z. Kolter. Overfitting in adversarially robust deep learning. In Interna-
tional Conference on Machine Learning, pages 8093–8104. PMLR, 2020.

[37] D. Samuel and G. Chechik. Distributional robustness loss for long-tail learning. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 9495–9504, 2021.

[38] A. Shapiro. Tutorial on risk neutral, distributionally robust and risk averse multistage stochastic
programming. European Journal of Operational Research, 288(1):1–13, 2021.

[39] A. Sinha, H. Namkoong, R. Volpi, and J. Duchi. Certifying some distributional robustness with
principled adversarial training. arXiv preprint arXiv:1710.10571, 2017.

[40] J. Sulam, R. Ben-Ari, and P. Kisilev. Maximizing auc with deep learning for classification of
imbalanced mammogram datasets. In VCBM, pages 131–135, 2017.

12

[41] J. v. Neumann. Zur theorie der gesellschaftsspiele. Mathematische annalen, 100(1):295–320,
1928.

[42] Z. Wang, Q. Xu, Z. Yang, Y. He, X. Cao, and Q. Huang. Openauc: Towards auc-oriented
open-set recognition. Advances in Neural Information Processing Systems, 35:25033–25045,
2022.

[43] Z. Wang, Q. Xu, Z. Yang, Y. He, X. Cao, and Q. Huang. Optimizing partial area under the top-k
curve: Theory and practice. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2022.

[44] P. Wen, Q. Xu, Z. Yang, Y. He, and Q. Huang. When false positive is intolerant: End-to-end
optimization with low fpr for multipartite ranking. Advances in Neural Information Processing
Systems, 34:5025–5037, 2021.

[45] P. Wen, Q. Xu, Z. Yang, Y. He, and Q. Huang. Exploring the algorithm-dependent generalization
of auprc optimization with list stability. Advances in Neural Information Processing Systems,
35:28335–28349, 2022.

[46] T. Yang and Y. Ying. Auc maximization in the era of big data and ai: A survey. ACM Computing
Surveys, 55(8):1–37, 2022.

[47] Z. Yang, Q. Xu, S. Bao, Y. He, X. Cao, and Q. Huang. When all we need is a piece of the pie: A
generic framework for optimizing two-way partial auc. In International Conference on Machine
Learning, pages 11820–11829. PMLR, 2021.

[48] Y. Yao, Q. Lin, and T. Yang. Large-scale optimization of partial auc in a range of false positive
rates. arXiv preprint arXiv:2203.01505, 2022.

[49] Y. Ying, L. Wen, and S. Lyu. Stochastic online auc maximization. Advances in neural
information processing systems, 29, 2016.

[50] Z. Yuan, Z. Guo, N. Chawla, and T. Yang. Compositional training for end-to-end deep auc
maximization. In International Conference on Learning Representations, 2021.

[51] Z. Yuan, Y. Yan, M. Sonka, and T. Yang. Large-scale robust deep auc maximization: A new
surrogate loss and empirical studies on medical image classification. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 3040–3049, 2021.

[52] Z. Yuan, Y. Yan, M. Sonka, and T. Yang. Large-scale robust deep auc maximization: A new
surrogate loss and empirical studies on medical image classification. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 3040–3049, 2021.

[53] Z. Yuan, D. Zhu, Z.-H. Qiu, G. Li, X. Wang, and T. Yang. Libauc: A deep learning library for
x-risk optimization. In 29th SIGKDD Conference on Knowledge Discovery and Data Mining,
2023.

[54] H. Zhang, Y. Yu, J. Jiao, E. Xing, L. El Ghaoui, and M. Jordan. Theoretically principled
trade-off between robustness and accuracy. In International conference on machine learning,
pages 7472–7482. PMLR, 2019.

[55] J. Zhang, A. Menon, A. Veit, S. Bhojanapalli, S. Kumar, and S. Sra. Coping with label shift via
distributionally robust optimisation. arXiv preprint arXiv:2010.12230, 2020.

[56] D. Zhu, G. Li, B. Wang, X. Wu, and T. Yang. When auc meets dro: Optimizing partial auc for
deep learning with non-convex convergence guarantee. In International Conference on Machine
Learning, pages 27548–27573. PMLR, 2022.

[57] Z. Zhu, T. Ding, J. Zhou, X. Li, C. You, J. Sulam, and Q. Qu. A geometric analysis of neural
collapse with unconstrained features. Advances in Neural Information Processing Systems,
34:29820–29834, 2021.

13

Appendices

Contents

A Proofs 15

A.1 Proof of Proposition 2 . 15

A.2 Derivations of Optimization Problem (20) . 16

A.3 Proof of Theorem 3 . 17

B Experiments 21

B.1 Datasets . 21

B.2 Dataset Constructions . 21

B.3 Competitors . 21

B.4 Implementation Details . 22

B.5 Choices of Hyperparameters . 22

B.6 Additional Empirical Results . 22

B.7 Visualizations . 25

14

A Proofs

A.1 Proof of Proposition 2

Proof. We first give a description of the problem. Our objective is to identify the corrupted distribution
that minimizes the Wasserstein distance to the original distribution, while simultaneously perturbing
the AUC from 1 to 0. Specifically,

minWc(Q̂, P̂) (22)

s.t.AUC(fθ, Q̂) = 0 (23)

From the definition of Wasserstein distance, we have

Wc(P̂ , Q̂) = min
Γ

n∑
i=1

n∑
j=1

Γi,jcx(zi, z
′
j) (24)

s.t. Γi,j ≥ 0,ΓT1 =
1

n
1,Γ1 =

1

n
1, AUC(fθ, Q̂) = 0 (25)

where Γ is the optimal transportation matrix between P̂ , Q̂ and cx(z, z
′) = (x−x′)2+∞· I(y ̸= y′)

is a metric of distance between sample z and z′.

Step 1): Separating positive and negative distance. From the definition of cx, it is easy to check
that cx(zi, z′j) = ∞ if i ≤ n+, j > n+ or i > n+, j ≤ n+. Consequently, the Wasserstein distance
goes infinity if Γi,j > 0 in the corresponding area, resulting in

Γ =



Γ1,1 · · · Γ1,n+

0...
. . .

...
Γn+,1 · · · Γn+,n+

0
Γn++1,n++1 · · · Γn++1,n

...
. . .

...
Γn,1 · · · Γn,n


=

[
Γ+ 0
0 Γ−

]
(26)

Now, we can rewrite the Wasserstein distance by separating positive and negative examples

Wc(P̂ , Q̂) = min
Γ

n+∑
i=1

n+∑
j=1

Γi,j(x
+
i − x+

j

′
)2︸ ︷︷ ︸

positive

+

n∑
i=n++1

n∑
j=n++1

Γi,j(x
−
i − x−

j

′
)2

︸ ︷︷ ︸
negative

(27)

s.t. Γi,j ≥ 0,ΓT1 =
1

n
1,Γ1 =

1

n
1, AUC(fθ, Q̂) = 0 (28)

Step 2): Cancelling Γ. Plugging in x+
i = x+, x−

j = x−,∀i, j, yields the Wasserstein distance of
positive class can be considered as

n+∑
i=1

n+∑
j=1

Γi,j(x
+
i − x+

j

′
)2 (29)

=

n+∑
j=1

(
n+∑
i=1

Γi,j(x
+ − x+

j

′
)2

)
(30)

=

n+∑
j=1

(
n+∑
i=1

Γi,j

)
(x+ − x+

j

′
)2 (31)

=

n+∑
j=1

1

n
(x+ − x+

j

′
)2 (32)

15

Taking a similar step toward the negative Wasserstein distance, yields that

Wc(P̂ , Q̂) =

n+∑
j=1

1

n
(x+ − x+

j

′
)2 +

n∑
j=n++1

1

n
(x− − x−

j

′
)2 (33)

Hence, we only need to analysis the problem:

min
x+′

,x−′

n+∑
j=1

1

n
(x+ − x+

j

′
)2 +

n∑
j=n++1

1

n
(x− − x−

j

′
)2 (34)

s.t. maxx+′ ≤ minx−′
(35)

where x+′
= {x+

1

′
, ..., x+

n+

′},x−′
= {x−

n++1

′
, ..., x−

n
′}. The constraint comes from the definition

of AUC [11].

Step 3): Solving the optimal perturbations.

We now show that, the optimal x+′
,x−′ consists of same element, and we construct the proof by

contradiction. Assume that the optimal perturbation of positive class x+,⋆ and x−,⋆. For the positive
examples, we assume that the vector x+,⋆ has at least two different values. Moreover, we check the
simple solution x̂+,⋆ such that:

x̂+,⋆ = argmin
x∈x+,⋆

(x+ − x)2

and denote x̂+′
= {x̂+,⋆, ..., x̂+,⋆}. It is easy to check that

n+∑
j=1

1

n
(x+ − x̂+,⋆)2 ≤

n+∑
j=1

1

n
(x+ − x+

j

′
)2 (36)

Furthermore, since

max x̂+′ ≤ maxx+,⋆ ≤ minx−,⋆, (37)

we see that x̂+′ is also a feasible solution of the problem. Hence, x̂+′ should be the optimal solution
instead of x+,⋆. Following a similar spirit, we can also show that x−,⋆ is not the optimal solution.
In this since, the optimal solution of both x+′ and x−′ must be a vector containing the same value.

In this sense, we can further simplfy the targeted optimization problem as:

min
x+′,x−′

p̂(x+ − x+′
)2 + (1− p̂)(x− − x−′

)2 (38)

s.t. x+′ ≤ x−′ (39)

where p̂ = n+

n is the ratio of the positive examples in the dataset.

Step 4): Calculating an upper bound of the objective function. To obtain an upper bound, we can
instead check the solution of the following problem:

min
x′

p̂(x+ − x′)2 + (1− p̂)(x− − x′)2 (40)

It achieves an upper bound since x+′ ≤ x−′ is automatically satisfied by setting x+′
= x−′

= x′.
By solving this problem, we can see that the optimal solution is:

x′ = p̂x+ + (1− p̂)x−, (41)

and an upper bound of minimal Wasserstein distance to perturb AUC from 1 to 0 is p̂(1− p̂)(x+ −
x−)2.

A.2 Derivations of Optimization Problem (20)

Remark 2. The original optimization of Distribution-aware DRAUC is

(DRAUC−Da) min
θ

max
Q̂∈Q̂

min
(a,b)∈Ωa,b

max
α∈Ωα

E
Q̂+,Q̂−

[g(a, b, α,θ, zi)]. (42)

16

Similar to what we have done in Section 4.2, for a fixed θ, Q̂+, Q̂−, we are able to interchange the
inner min(a,b)∈Ωa,b

and maxα∈Ωα by invoking von Neumann’s Minimax theorem [41], which results
in

min
θ

max
Q̂∈Q̂

max
α∈Ωα

min
(a,b)∈Ωa,b

E
Q̂+,Q̂−

[g(a, b, α,θ, z)]. (43)

Subsequently, based on the property that maxx miny f(x, y) ≤ miny maxx f(x, y), we reach an
upper bound of the objective function:

max
Q̂∈Q̂

max
α∈Ωα

min
(a,b)∈Ωa,b

E
Q̂+,Q̂−

[g(a, b, α, θ, z)]︸ ︷︷ ︸
DRAUCDa

ϵ+,ϵ−
(fθ,P̂)

≤ min
(a,b)∈Ωa,b

max
α∈Ωα

max
Q̂∈Q̂

E
Q̂+,Q̂−

[g(a, b, α, θ, z)]︸ ︷︷ ︸
˜DRAUC

Da

ϵ+,ϵ−
(fθ,P̂)

(44)

From this perspective, if we minimize ˜DRAUC
Da

ϵ+,ϵ−(fθ, P̂) in turn, we can at least minimize an
upper bound of DRAUCDa

ϵ+,ϵ−(fθ, P̂). In light of this, we will employ the following optimization
problem as a surrogate for (DRAUC−Da):

(Da) min
w

max
α∈Ωα

max
Q̂∈Q̂

E
Q̂+,Q̂−

[g(w, α, z)] (45)

where w = θ, (a, b) ∈ Ωa,b. To further derive a simplified upper bound, one should note that

E
Q̂+,Q̂−

[g(w, α, z)] = p̂ E
Q̂+

[g(w, α, z)] + (1− p̂) E
Q̂−

[g(w, α, z)]

Hence the inner maximization admits an upper bound:

max
Q̂∈Q̂

E
Q̂+,Q̂−

[g(w, α, z)] ≤ p̂ max
Q̂+≤ϵ+

E
Q̂+

[g(w, α, z)] + (1− p̂) max
Q̂−≤ϵ−

E
Q̂−

[g(w, α, z)]

By adopting Thm.2, we reach the correspding upper bound:

(Da) = min
w

max
α∈Ωα

min
λ+,λ−≥0

{λ+ϵ+ + λ−ϵ− + p̂ E
P̂+

[ϕw,λ+,α(z)] + (1− p̂) E
P̂−

[ϕw,λ−,α(z)]}

(46)

where ϕw,λ,α(z) = maxz′∈Z [g(w, α, z) − λc(z, z′)]. This min-max-min formulation remains
difficult to optimize, so we take a step similar to (13) that interchange the inner minλ+,λ−≥0 and
outer maxα∈Ωα

, resulting in a tractable upper bound

(Da⋆)min
w

min
λ+,λ−≥0

max
α∈Ωα

{λ+ϵ+ + λ−ϵ− + p̂ E
P̂+

[ϕw,λ+,α(z)] + (1− p̂) E
P̂−

[ϕw,λ−,α(z)]} (47)

A.3 Proof of Theorem 3

Since we optimize DRAUC-Da in a class-wise manner, we now give our definition of Rademacher
Complexity on positive dn negative distributions, respectively.
Definition 3 (Definition of Rademacher Complexity of Robust AUC). Given a hypothesis class
Θ and empirical distribution P̂ , for all t ∈ Θ, λ+ ≥ 0, λ− ≥ 0, α ∈ Ωα, (a, b) ∈ Ωa,b, the Posi-
tive/Negative Empirical Rademacher Complexity of Robust AUC is defined as

R̂+

P̂+
(Θ) = E

σ

[
sup

w,λ+≥0,α∈Ωα

1

n+

n+∑
i=1

σi · ϕw,λ+,α(z)

]
, (48)

R̂−
P̂−

(Θ) = E
σ

[
sup

w,λ−≥0,α∈Ωα

1

n−

n−∑
i=1

σi · ϕw,λ−,α(z)

]
, (49)

where σ is the Rademacher random variable, and Positive/Negative Rademacher Complexity of
Robust AUC on hypothesis class Θ is

R+
m(Θ) = E

P̂+

[R̂+

P̂+
(Θ)],R−

m(Θ) = E
P̂−

[R̂−
P̂−

(Θ)]. (50)

17

The main result could be restated formally in the following sense.

Theorem 4 (Restate of Theorem 3). If the samples of the training drawn i.i.d., then for all
θ ∈ Θ, (a, b) ∈ Ωa,b, α ∈ Ωα, λ+ ≥ 0, λ− ≥ 0, the following holds with probability at least 1− δ
over the randomness of the sample:

DRAUCDa
ϵ+,ϵ−(fθ, P) ≤ L̂+ 2 · p̂ · R̂+

P̂+
(Θ) + 2 · (1− p̂) · R̂−

P̂−
(Θ)+

C+ · p̂ ·

√
log(8/δ)

2n+
+ C− · (1− p̂) ·

√
log(8/δ)

2n−
+

2 · C∞ ·
√

log(1/δ)

2n

where C+, C−, C∞ are universal constants, p = P[y = 1], p̂ = P̂[y = 1] and

L̂ = min
w

min
λ+,λ−≥0

max
α∈Ωα

[
λ+ϵ+ + λ−ϵ− + p̂ E

P̂+

[ϕw,λ+,α(z)] + (1− p̂) E
P̂−

[ϕw,λ−,α(z)]

]
is the saddle point of the training loss.

Remark 3. The claim of Thm.3 holds since the Rademacher complexity of training data with size n
is known to be scaled like O(

√
1/n) for many hypothesis classes such as linear classifiers [29] and

neural networks [9].

We now give a detailed proof of Theorem 3. As the begining, we give some useful lemmas in proving
the result.

Lemma 1. The following inequality holds for all θ ∈ Θ, ϵ+, ϵ− > 0

DRAUCDa
ϵ+,ϵ−(fθ, P) (51)

≤ min
(a,b)∈Ωa,b

min
λ+,λ−≥0

max
α∈Ωα

{λ+ϵ+ + λ−ϵ− + p E
P+

[ϕw,λ+,α(z)] + (1− p) E
P−

[ϕw,λ−,α(z)]} (52)

Proof. The proof is the similar to the proof derivations in the last subsection, except dropping the
outer minθ and changing the empirical distribution P̂ to the real distribution P .

Lemma 2. For any real valued function continuous function: f : R → R, g : R → R, and for any
tight set X ⊂ R:

max
x∈X

f(x)− max
x′∈X

g(x′) ≤ max
x∈X

f(x)− g(x)

min
x∈X

f(x)− min
x′∈X

g(x′) ≤ max
x∈X

f(x)− g(x)

Proof. Since both f and g are continuous, and X is tight, we now that the maximum and the minimum
in the lemma exists. From the basic property of the maxima, we have:

max
x∈X

f(x)− max
x′∈X

g(x′) = max
x∈X

min
x′∈X

f(x)− g(x′) ≤ max
x∈X

f(x)− g(x′).

Similarly, for the minimum, we have:

min
x∈X

f(x)− min
x′∈X

g(x′) = min
x∈X

max
x′∈X

f(x)− g(x′)

= max
x′∈X

min
x∈X

f(x)− g(x′) ≤ max
x∈X

f(x)− g(x).

18

Lemma 3. Assume that for each x ∈ X , there exist a sample pair (x,x′) ∈ X × X , such that
d(x,x′) < ∞, we have the following result holds for the risk function:

sup
θ∈Θ

[
DRAUCDa

ϵ+,ϵ−(fθ, P)

− min
(a,b)∈Ωa,b

min
λ+,λ−≥0

max
α∈Ωα

{λ+ϵ+ + λ−ϵ− + p̂ · E
P̂+

[ϕw,λ+,α(z)] + (1− p̂) · E
P̂−

[ϕw,λ−,α(z)]

]
≤p̂ · sup

θ∈Θ,(a,b)∈Ωa,b,λ+≥0

[
E
P+

[ϕw,λ+,α(z)]− E
P̂+

[ϕw,λ+,α(z)]

]
+

(1− p̂) · sup
θ∈Θ,(a,b)∈Ωa,b,λ−≥0

[
E
P−

[ϕw,λ−,α(z)]− E
P̂−

[ϕw,λ−,α(z)]

]
+ 2 · C∞ · |p− p̂|

where:
0 ≤ C∞ = sup

z∈Z,w,α∈Ωα,λ≥0
ϕw,λ,α(z) < ∞.

Proof. First, we proof the claim that:
0 ≤ C∞ < ∞

We have:
max

z′∈Z,w,α∈Ωα,λ≥0
[g(w, α, z)− λc(z, z′)] ≥ max

w,α∈Ωα,λ≥0
[g(w, α, z)− λc(z, z)] = max

w,α∈Ωα

[g(w, α, z)].

Moreover, since the output of the scoring function resides in [0, 1], we know that g(w, α, z) is
bounded from below uniformally by 0. Hence, 0 ≤ C∞.

Similarly,
max

z′∈Z,w,α∈Ωα,λ≥0
[g(w, α ∈ Ωα, z)− λc(z, z′)] ≤ max

w,α
[g(w, α, z)]

since c(z, z) ≥ 0. Moreover, since the output of the scoring function resides in [0, 1], we know that
g(w, α, z) is bounded from above uniformally by some finite constant B < ∞. Hence, C∞ < ∞.

From Lem.1, we have:

sup
θ∈Θ

[
DRAUCDa

ϵ+,ϵ−(fθ, P)

− min
(a,b)∈Ωa,b

min
λ+,λ−≥0

max
α∈Ωα

{λ+ϵ+ + λ−ϵ− + p̂ E
P̂+

[ϕw,λ+,α(z)] + (1− p̂) E
P̂−

[ϕw,λ−,α(z)]

]
≤ sup

θ∈Θ

[
min

(a,b)∈Ωa,b

min
λ+,λ−≥0

max
α∈Ωα

{λ+ϵ+ + λ−ϵ− + p E
P+

[ϕw,λ+,α(z)] + (1− p) E
P−

[ϕw,λ−,α(z)]

− min
(a,b)∈Ωa,b

min
λ+,λ−≥0

max
α∈Ωα

{λ+ϵ+ + λ−ϵ− + p̂ E
P̂+

[ϕw,λ+,α(z)] + (1− p̂) E
P̂−

[ϕw,λ−,α(z)]

]
By applying Lem.2 three times for (a, b) ∈ Ωa,b,minλ+≥0,λ−≥0 and α ∈ Ωα, we have:

sup
θ∈Θ

[
DRAUCDa

ϵ+,ϵ−(fθ, P)

− min
(a,b)∈Ωa,b

min
λ+,λ−≥0

max
α∈Ωα

{λ+ϵ+ + λ−ϵ− + p̂ · E
P̂+

[ϕw,λ+,α(z)] + (1− p̂) E
P̂−

[ϕw,λ−,α(z)]

]
≤ sup

θ∈Θ,(a,b)∈Ωa,b,λ+≥0,λ−≥0

[
p · E

P+

[ϕw,λ+,α(z)]− p̂ · E
P̂+

[ϕw,λ+,α(z)]

+ (1− p) · E
P−

[ϕw,λ−,α(z)]− (1− p̂) · E
P̂−

[ϕw,λ−,α(z)]

]
≤ sup

θ∈Θ,(a,b)∈Ωa,b,λ+≥0

[
p · E

P+

[ϕw,λ+,α(z)]− p̂ · E
P̂+

[ϕw,λ+,α(z)]

]
+

sup
θ∈Θ,(a,b)∈Ωa,b,λ−≥0

[
(1− p) · E

P−
[ϕw,λ−,α(z)]− (1− p̂) · E

P̂−

[ϕw,λ−,α(z)]

]

19

For the positive part, we have:

sup
θ∈Θ,(a,b)∈Ωa,b,λ+≥0

[
p · E

P+

[ϕw,λ+,α(z)]− p̂ · E
P̂+

[ϕw,λ+,α(z)]

]
≤ sup

θ∈Θ,(a,b)∈Ωa,b,λ+≥0

[
p · E

P+

[ϕw,λ+,α(z)]− p̂ · E
P+

[ϕw,λ+,α(z)] + p̂ · E
P+

[ϕw,λ+,α(z)]− p̂ · E
P̂+

[ϕw,λ+,α(z)]

]
≤ sup

θ∈Θ,(a,b)∈Ωa,b,λ+≥0

[
(p− p̂) · E

P+

[ϕw,λ+,α(z)]

]
+ p̂ · sup

θ∈Θ,(a,b)∈Ωa,b,λ+≥0

[
E
P+

[ϕw,λ+,α(z)]− E
P̂+

[ϕw,λ+,α(z)]

]
≤C∞ · |p− p̂|+ p̂ · sup

θ∈Θ,(a,b)∈Ωa,b,λ+≥0

[
E
P+

[ϕw,λ+,α(z)]− E
P̂+

[ϕw,λ+,α(z)]

]
.

Similar, we have for the negative part:

sup
θ∈Θ,(a,b)∈Ωa,b,λ−≥0

[
(1− p) · E

P−
[ϕw,λ−,α(z)]− (1− p̂) · E

P̂−

[ϕw,λ−,α(z)]

]
≤C∞ · |p− p̂|+ (1− p̂) · sup

θ∈Θ,(a,b)∈Ωa,b,λ−≥0

[
E
P−

[ϕw,λ−,α(z)]− E
P̂−

[ϕw,λ−,α(z)]

]
.

The result then follows directly.

Proof of Thm.4. For the sake of simplicity, we denote:

(a) = sup
θ∈Θ,(a,b)∈Ωa,b,λ+≥0

[
E
P+

[ϕw,λ+,α(z)]− E
P̂+

[ϕw,λ+,α(z)]

]
(b) = sup

θ∈Θ,(a,b)∈Ωa,b,λ−≥0

[
E
P−

[ϕw,λ−,α(z)]− E
P̂−

[ϕw,λ−,α(z)]

]
(c) = |p− p̂|

From the Rademacher-complexity-based uniform convergence result, we have, with probability at
least 1− δ

4 :

(a) ≤ 2 · R̂+

P̂+
(Θ) + C+ ·

√
log(8/δ)

2n+

where C+ is a universal constant.

Similarly, we have, with probability at least 1− δ
4 :

(b) ≤ 2 · R̂−
P̂−

(Θ) + C− ·

√
log(8/δ)

2n−

where C− is a universal constant. From the Chernoff bound, we have, with probability at least 1− δ
2 :

(c) ≤
√

log(1/δ)

2n
Following the union bound and Lem.3, we have the following result holds for all θ ∈
Θ, (a, b) ∈ Ωa,b, α ∈ Ωα, λ+ ≥ 0, λ− ≥ 0, the following holds with probability at least 1− δ:

DRAUCDa
ϵ+,ϵ−(fθ, P) ≤ L̂+ 2 · p̂ · R̂+

P̂+
(Θ) + 2 · (1− p̂) · R̂−

P̂−
(Θ)+

C+ · p̂ ·

√
log(8/δ)

2n+
+ C− · (1− p̂) ·

√
log(8/δ)

2n−
+

2 · C∞ ·
√

log(1/δ)

2n

20

B Experiments

B.1 Datasets

We first introduce the dataset used in the following section:

• MNIST [22]: The MNIST dataset comprises 60,000 images of digits, each with a resolution
of 28x28, and includes 6,000 images for each digit from 0 to 9. This dataset is partitioned
into a training set containing 50,000 images and a testing set with 10,000 images. We also
allocate 10,000 images from the training set to create a validation set.

• CIFAR-10/CIFAR-100 [18]: CIFAR-10/CIFAR-100 features 60,000 images, each having a
resolution of 32x32x3, equally distributed across 10/100 classes and containing 6,000/600
images per class. The dataset is separated into a training set of 50,000 images and a testing
set of 10,000 images. In addition, we extract 10,000 images from the training set to form a
validation set.

• Tiny-ImageNet [21]: The Tiny-ImageNet dataset comprises 110,000 images in 200 classes,
including 100,000 training examples and 10,000 testing examples. We further split off a
validation set containing 20,000 examples from the training set. We find that generating a
binary Tiny-ImageNet-200 by assigning the first half of the classes as positive and the rest
as negative makes this dataset too challenging to learn. The methods struggle to learn good
features and reach a testing AUC no larger than 0.6. As a result, we assign the binary version
of Tiny-ImageNet by utilizing the hyper-class information. As detailed, we construct three
subsets as follows:

– Tiny-ImageNet-200-Dogs: Classes [11, 39, 78, 135, 182, 194] are assigned as positive,
with the remainder designated as negative.

– Tiny-ImageNet-200-Birds: Classes [35, 41, 67, 115] are assigned as positive, with the
remainder designated as negative.

– Tiny-ImageNet-200-Vehicles: Classes [15, 64, 69, 75, 90, 108, 114, 117, 147, 152, 157,
163] are assigned as positive, with the remainder designated as negative.

• MNIST-C [30]: MNIST-C is a corrupted variant of the original MNIST testing set, con-
sisting of 160,000 testing examples generated through 16 distinct perturbation techniques
(including identity transform) tailored for handwritten digits.

• CIFAR-10-C/CIFAR-100-C [13]: The CIFAR-10-C/CIFAR-100-C datasets are corrupted
versions of the original CIFAR-10/CIFAR-100 testing sets, encompassing 950,000 images
obtained by applying five intensity levels of 19 different corruption types, such as noises,
blurs, and transformations. We analyze the average performance for each corruption level.

• Tiny-ImageNet-C [14]: The Tiny-ImageNet-C is the corrupted version of Tiny-ImageNet.
5 levels of 15 different corruptions including brightness, compression and blurs are applied
to 10,000 images to generate 950,000 testing images.

B.2 Dataset Constructions

We construct our binary long-tailed dataset following a manner similar to [48]. First, we construct a
binary version of the dataset by assigning the former half of the classes as positive and the latter half
as negative. Then, utilizing the imbalance ratio, i.e. {0.01, 0.05, 0.1, 0.2} in our configuration, we
randomly eliminate a portion of positive samples to create the long-tailed version. For instance, to
produce CIFAR10-LT with an imbalance ratio of 0.1, we designate classes 0-4 as positive and classes
5-9 as negative. Subsequently, we randomly remove ≈ 89% of the training samples to achieve the
desired long-tailed dataset.

B.3 Competitors

To confirm the robustness of our proposed method in imbalanced scenarios, we compare it with the
following competitors, each corresponding to one row in Table 1:

• Baseline: Cross-entropy loss (CE).
• Typical methods for long-tailed problems:

21

– FocalLoss [24]: A classical reweighting method for long-tailed problems.
– AUCMLoss [51]: An instance-wise binary AUC optimization technique.
– AUCDRO [56, 53]: A method that integrates DRO technique with partial AUC opti-

mization.

• DRO methods:

– ADVShift [55]: A DRO method addressing label shift.
– WDRO [20]: A Wasserstein DRO technique incorporating local perturbations.
– DROLT [37]: A loss function designed to learn low-variance representations.
– GLOT [34]: A regularization method based on optimal transport distributional robust-

ness.

• Our approach:

– Our Algorithm 1 (DRAUC-Df).
– Our Algorithm 2 (DRAUC-Da).

B.4 Implementation Details

We conducted all experiments on a Ubuntu 20.04.5 server, equipped with an Intel(R)
Xeon(R) Gold 6230R CPU and an RTX 3090 GPU. All codes were implemented using Py-
Torch (v-1.8.2) [33], TorchVision (v-0.9.2), and Numpy (v-1.21.4) under a Python 3.8 and
CUDA 11.1 environment.

For our models, we selected ResNet20 [12], ResNet32, and Small CNN as the backbone architectures.
The models were trained for 100 epochs across all datasets. On the CIFAR10, CIFAR100 and
Tiny-ImageNet datasets, we applied random cropping with padding and random horizontal flipping
as data augmentation techniques. However, for the MNIST dataset, we refrained from applying any
data augmentation because the horizontal flip could alter the semantic meaning of the digits. For all
experiments, we set the weight decay to 5 × 10−4 and the batch size to 128. During training, we
utilized a sampler to ensure that at least one positive example was included in each batch.

B.5 Choices of Hyperparameters

Initial Learning Rate and Learning Rate Scheduler. We selected the initial learning rate from
the set 0.01, 0.05, 0.1, 0.2. In the majority of cases that are not extremely imbalanced, lr = 0.1 is a
favorable choice. However, in situations where the dataset is extremely imbalanced, careful tuning
of the initial learning rate is necessary. We chose the learning rate scheduler from a step scheduler,
which decays the learning rate by 10× at the 50-th and 75-th epochs, and the Cosine Annealing
scheduler.

Robust Diameter ϵ. We selected ϵ from the set {8/255, 32/255, 64/255, 128/255}, considering
l2 distance. A sensitivity analysis regarding ϵ is presented in Section 5.2.2. For distribution-aware
DRAUC, we chose ϵ+ and ϵ− using the following approach: Given an overall diameter ϵ and a
tunable parameter k ∈ {0.5, 0.8, 1, 1.2, 1.5}, we set ϵ+ = kϵ and ϵ− = (1− kp̂)ϵ/(1− p̂).

Learning Rates for Tunable Parameters. We selected ηα = ηw = lr and ηz = 15/255, which
aligns with the standard settings in Adversarial Training [36]. For ηλ, we chose from the set
{0.01, 0.02, 0.1, 0.2}. A sensitivity analysis regarding ηλ is detailed in Section 5.2.2.

Initialization of Tunable Parameters. For initialization, we set λ0 = 1, a0 = 0, b0 = 0, α0 = 0,
and PGD steps K = 10.

B.6 Additional Empirical Results

In Table 3, we display the overall performance metrics for CIFAR100-C and CIFAR100-LT, while
Table 4 illustrates the performance for MNIST-C and MNIST-LT. Additionally, the overall perfor-
mance under varying perturbation levels is presented in Figures 3-5. We have not included the results
for MNIST-C due to the original MNIST-C [30] only providing a single perturbation level. These
comprehensive results facilitate several observations, as detailed in Section 5.2.1:

22

Table 3: Overall Performance on CIFAR100-C and CIFAR100-LT with different imbalance ratios
and different models. The highest score on each column is shown with bold, and we use darker color
to represent higher performance.

Model Methods
CIFAR100-C CIFAR100-LT

0.01 0.05 0.10 0.20 0.01 0.05 0.10 0.20

ResNet20

CE 53.86 60.71 65.11 69.59 54.22 62.30 67.77 74.58
AUCMLoss 55.70 61.91 65.73 69.58 57.38 64.20 69.33 74.92
FocalLoss 52.10 62.28 65.91 70.36 52.46 64.46 69.24 75.05
ADVShift 54.08 61.33 66.13 69.25 54.73 63.71 68.77 73.43
WDRO 55.31 61.38 65.92 70.70 56.79 64.12 68.91 76.37
DROLT 55.61 61.36 63.83 69.13 56.49 63.72 67.74 74.82
GLOT 55.58 60.62 63.53 68.13 57.13 62.43 65.88 71.89
AUCDRO 55.96 61.65 62.67 65.72 57.14 64.74 66.59 70.66

DRAUC-Df 57.47 62.32 66.25 71.36 58.97 63.95 68.78 74.14
DRAUC-Da 57.42 62.28 66.11 71.14 58.94 63.91 68.44 74.07

ResNet32

CE 52.90 60.74 64.57 69.51 53.08 62.03 67.14 74.43
AUCMLoss 56.19 61.87 63.64 69.81 57.62 63.67 67.99 73.85
FocalLoss 50.27 59.70 62.91 68.52 50.41 61.53 66.30 72.20
ADVShift 50.15 59.35 64.00 69.37 50.20 61.97 65.70 73.64
WDRO 55.90 61.17 65.41 68.98 57.19 63.32 68.55 73.10
DROLT 56.43 61.10 64.02 69.61 57.27 63.22 67.37 73.18
GLOT 57.04 60.34 63.76 65.64 58.33 62.53 66.30 70.99
AUCDRO 56.93 61.41 64.08 68.93 58.33 64.02 68.71 73.86

DRAUC-Df 57.17 62.02 65.83 71.22 58.38 63.90 68.51 74.57
DRAUC-Da 56.81 62.48 66.12 70.62 57.98 64.39 68.70 74.26

Table 4: Overall Performance on MNIST-C and MNIST-LT with different imbalance ratios and
different models. The highest score on each column is shown with bold, and we use darker color to
represent higher performance.

Model Methods
MNIST-Origin MNIST-Corrupted

0.01 0.05 0.10 0.20 0.01 0.05 0.10 0.20

SmallCNN

CE 95.54 97.01 98.09 98.41 99.38 99.84 99.94 99.95
AUCMLoss 95.52 98.16 98.04 98.60 99.26 99.87 99.92 99.96
FocalLoss 55.10 91.39 92.61 96.35 67.05 98.64 99.39 99.73
ADVShift 94.06 97.66 98.09 98.09 99.21 99.84 99.95 99.96
WDRO 95.98 97.62 98.48 98.40 99.26 99.89 99.95 99.96
DROLT 88.90 92.36 96.33 98.29 99.46 99.79 99.88 99.96
GLOT 95.78 97.81 97.76 98.56 99.39 99.91 99.94 99.97
AUCDRO 94.00 97.80 97.76 98.54 99.12 99.82 99.92 99.95

DRAUC-Df 96.06 98.38 98.69 98.84 99.19 99.9 99.94 99.96
DRAUC-Da 96.35 98.04 98.59 98.92 99.34 99.86 99.94 99.97

ResNet20

CE 91.88 97.49 97.14 97.88 99.48 99.97 99.98 99.98
AUCMLoss 89.09 97.82 96.26 97.74 99.47 99.82 99.96 99.98
FocalLoss 70.78 94.45 95.83 97.28 98.90 99.85 99.95 99.97
ADVShift 87.43 90.12 96.74 97.36 99.46 99.83 99.97 99.98
WDRO 93.87 97.81 97.66 98.47 99.17 99.94 99.97 99.99
DROLT 88.82 94.49 96.17 97.97 99.73 99.81 99.79 99.98
GLOT 84.46 95.90 97.46 97.07 98.80 99.88 99.96 99.98
AUCDRO 89.11 94.40 95.71 96.73 98.65 99.87 99.89 99.95

DRAUC-Df 95.96 98.21 98.44 98.80 99.45 99.93 99.97 99.97
DRAUC-Da 96.70 98.37 98.57 98.79 99.56 99.91 99.94 99.96

23

(a) Imratio 0.01 (b) Imratio 0.05 (c) Imratio 0.1 (d) Imratio 0.2

Figure 3: Overall Performance of ResNet20 Across Perturbation Levels on CIFAR10. This graph
illustrates the performance of various methods at different corruption levels, with Level 0 indicating
no corruption and Level 5 representing the most severe corruption. In each figure, the seven lines
depict the test AUC for CE, AUCMLoss, FocalLoss, ADVShift, WDRO, DROLT, GLOT, AUCDRO,
DRAUC-Da and DRAUC-Df, respectively. Best viewed in colors.

(a) Imratio 0.01 (b) Imratio 0.05 (c) Imratio 0.1 (d) Imratio 0.2

Figure 4: Overall Performance of ResNet32 Across Perturbation Levels on CIFAR100. This graph
illustrates the performance of various methods at different corruption levels, with Level 0 indicating
no corruption and Level 5 representing the most severe corruption. In each figure, the seven lines
depict the test AUC for CE, AUCMLoss, FocalLoss, ADVShift, WDRO, DROLT, GLOT, AUCDRO,
DRAUC-Da and DRAUC-Df, respectively. Best viewed in colors.

(a) Imratio 0.01 (b) Imratio 0.05 (c) Imratio 0.1 (d) Imratio 0.2

Figure 5: Overall Performance of ResNet32 Across Perturbation Levels on CIFAR100. This graph
illustrates the performance of various methods at different corruption levels, with Level 0 indicating
no corruption and Level 5 representing the most severe corruption. In each figure, the seven lines
depict the test AUC for CE, AUCMLoss, FocalLoss, ADVShift, WDRO, DROLT, GLOT, AUCDRO,
DRAUC-Da and DRAUC-Df, respectively. Best viewed in colors.

(a) Imratio 0.02 (b) Imratio 0.03 (c) Imratio 0.06

Figure 6: Overall Performance of ResNet20 Across Perturbation Levels on Tiny-ImageNet. This
graph illustrates the performance of various methods at different corruption levels, with Level 0
indicating no corruption and Level 5 representing the most severe corruption. In each figure, the
seven lines depict the test AUC for CE, AUCMLoss, FocalLoss, ADVShift, WDRO, DROLT, GLOT,
AUCDRO, DRAUC-Da and DRAUC-Df, respectively. Best viewed in colors.

24

(a) Imratio 0.02 (b) Imratio 0.03 (c) Imratio 0.06

Figure 7: Overall Performance of ResNet32 Across Perturbation Levels on Tiny-ImageNet. This
graph illustrates the performance of various methods at different corruption levels, with Level 0
indicating no corruption and Level 5 representing the most severe corruption. In each figure, the
seven lines depict the test AUC for CE, AUCMLoss, FocalLoss, ADVShift, WDRO, DROLT, GLOT,
AUCDRO, DRAUC-Da and DRAUC-Df, respectively. Best viewed in colors.

20 10 0 10 20

40

20

0

20

40

(a) CE
40 20 0 20 40

20

10

0

10

20

30

(b) AUCMLoss
40 20 0 20

30

20

10

0

10

(c) DRAUC-Df(ours)
30 20 10 0 10 20 30 40

10

0

10

20

30

40

(d) DRAUC-Da(ours)

Figure 8: t-SNE plots of model embeddings on CIFAR10-C.

• Our methods consistently outperform all competitors on the corrupted datasets, across
varying imbalance ratios and model architectures, confirming the effectiveness of our
proposed method.

• Our methods achieve superior performance under stronger perturbations, thereby substantiat-
ing that our proposed methods enhance model robustness. This inference can be considered
an ablation result.

• In most cases, distribution-aware contributes to improving model robustness.

B.7 Visualizations

In this section, we provide more visualization results.

t-SNE Plots. We display the t-SNE plots for CIFAR10-C, CIFAR100-C and MNIST-C in Figures
8, 9 and 10. As evident from the plots, the embeddings on CIFAR100-C are more challenging to
separate than those on CIFAR10-C and MNIST-C. This outcome primarily due to two factors: a)
The number of patterns in CIFAR100 exceeds those in CIFAR10 and MNIST. b) When we create
our binary version datasets, we designate the first half of classes as positive and the remaining half
as negative. Consequently, the positive class of CIFAR100 comprises 50 original classes, making it
more complex to learn, and we should anticipate a larger inner-class variance of its embeddings.

However, as demonstrated by the plots, our proposed method offers a more separable embedding
space compared to the baselines.

An Interpretation of DRAUC’s Improvement on Model Generalization for Corrupted Data.
We provide several examples generated by our method in Figure 11. The results demonstrate that
even without prior knowledge of the corruptions in the testing distribution, our DRAUC method
generates adversarial examples closely resembling the test corruptions, thereby enhancing the model’s
resistance to them.

25

40 20 0 20 40
20

15

10

5

0

5

10

15

20

(a) CE
30 20 10 0 10

40

20

0

20

40

(b) AUCMLoss
30 20 10 0 10 20 30 40

30

20

10

0

10

20

(c) DRAUC-Df(ours)
30 20 10 0 10

40

20

0

20

40

(d) DRAUC-Da(ours)

Figure 9: t-SNE plots of model embeddings on CIFAR100-C.

20 0 20 40

10

0

10

20

(a) CE
20 10 0 10 20 30

20

0

20

40

(b) AUCMLoss
40 20 0 20

30

20

10

0

10

20

(c) DRAUC-Df(ours)
20 0 20 40 60

30

20

10

0

10

20

30

(d) DRAUC-Da(ours)

Figure 10: t-SNE plots of model embeddings on MNIST-C.

(a) Scale (b) Shear

(c) Shot noise (d) Spatter

(e) Gaussian blur (f) Gaussian noise

Figure 11: Visualizations of adversarial examples generated by DRAUC-Df. Each group of
images represent original image, adversarial image generated by DRAUC-Df and the corrupted image
in the testing set, respectively.

26

	Introduction
	Related Works
	AUC Optimization
	Distributionally Robust Optimization

	Preliminaries
	AUC Optimization
	Distributionally Robust Optimization

	Method
	Warm Up: A Naive Formulation for DRAUC
	DRAUC-Df: Distribution-free DRAUC
	DRAUC-Da: Distribution-aware DRAUC
	Algorithm
	DRAUC Optimization

	Generalization Bounds

	Experiments
	Experiment Settings
	Results and Analysis
	Overall Performance
	Sensitivity Analysis

	Conclusion and Future Works
	Proofs
	Proof of Proposition 2
	Derivations of Optimization Problem (20)
	Proof of Theorem 3

	Experiments
	Datasets
	Dataset Constructions
	Competitors
	Implementation Details
	Choices of Hyperparameters
	Additional Empirical Results
	Visualizations

