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Semantic Alignment for Multimodal Large Language Models
Anonymous Author(s)

ABSTRACT
Research on Multi-modal Large Language Models (MLLMs) to-
wards the multi-image cross-modal instruction has received in-
creasing attention and made significant progress, particularly in
scenarios involving closely resembling images (e.g., change caption-
ing). Existing MLLMs typically follow a two-step process in their
pipelines: first, extracting visual tokens independently for each
input image, and then aligning these visual tokens from different
images with the Large Language Model (LLM) in its textual feature
space. However, the independent extraction of visual tokens for
each image may result in different semantics being prioritized for
different images in the first step, leading to a lack of preservation
of linking information among images for subsequent LLM analysis.
This issue becomes more serious in scenarios where significant vari-
ations exist among the images (e.g., visual storytelling). To address
this challenge, we introduce Semantic Alignment for Multi-modal
large language models (SAM). By involving the bidirectional seman-
tic guidance between different images in the visual-token extraction
process, SAM aims to enhance the preservation of linking infor-
mation for coherent analysis and align the semantics of different
images before feeding them into LLM. As the test bed, we propose a
large-scale dataset namedMmLINK consisting of 69K samples. Dif-
ferent from most existing datasets for MLLMs fine-tuning, our Mm-
LINK dataset comprises multi-modal instructions with significantly
diverse images. Extensive experiments on the group captioning task
and the storytelling task prove the effectiveness of our SAM model,
surpassing the state-of-the-art methods by a large margin (+37%
for group captioning and +22% for storytelling on CIDEr score).
Project page: https://anonymous.4open.science/r/SAM-F596.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence.

KEYWORDS
Multi-modal Large Language Models, Multi-image Reasoning, Se-
mantic Alignment, Bidirectional Semantic Guidance Mechanism

1 INTRODUCTION
Multi-modal Large Language Models (MLLMs) [9, 23, 24, 28, 49, 50]
have shown great potential in processing multi-image cross-modal
instructions, with GPT-4V(ision) [32] standing out as a leading
example. Upon reviewing the preliminary exploration report [47]
of GPT-4V, we observe that its successful applications in handling
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Figure 1: GPT-4V shows great performance in pinpointing
differences between highly similar images (a), but struggles
to align character identities across images featuring notably
varied character poses, camera angles and contexts (b). Ex-
ample in (a) is sourced from [47].

multi-image tasks primarily focus on closely resembling images,
as shown in an example from the report (see Figure 1(a)). In such
cases, where images share almost identical background contexts,
MLLMs can effectively address the reasoning tasks by aligning
the similarities and pinpointing the differences between the visual
contents. However, the effectiveness of MLLMs, including GPT-
4V, diminishes when faced with significantly different images in
terms of content, context, or style, as illustrated in Figure 1(b). In
such cases, MLLMs may struggle to establish meaningful semantic
connections between the images and generate accurate responses.

We attribute the deficiency to the absence of semantic alignment
in existing MLLMs when processing multiple images. To see this,
we revisit the two stages in the processing pipeline of MLLMs for
multi-image instructions:
• Independent Perception. This step employs a visual tokenizer

(e.g., Q-Former [23], linear projection [28] or the Resampler [1])
to map the visual features encoded by a pre-trained vision back-
bone (e.g. EVA-CLIP [10]) to visual tokens within the feature
space of the foundation LLM. In this way, the projected visual
tokens of an image carry its visual features.

• Integrated Analysis. After obtaining the projected visual to-
kens of each image, the model fuses them with the textual tokens
of the instruction using cross-modal attention mechanisms [42].
This step allows the model to combine information from different
modalities and images.
In this fashion, MLLMs mainly tackle multi-image reasoning in

the integrated analysis step, which leads to semantic misalignment
problems that hinder the discovery of inter-image correlations.
This is because 1) the visual tokens serving as input to the inte-
grated analysis step may lack crucial ‘linking’ information (e.g.,
character’s identity in Figure 1(b)) necessary for identifying corre-
lations, especially when the input images exhibit diverse contexts.

1
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Specifically, the visual tokens are influenced by the inductive bias
from training data like image-caption pairs, which lead them to
selectively express salient visual contents [12, 24]. Therefore, af-
fected by complex context, the focus of visual tokens of different
images may be different, hindering semantic alignment. 2) In the
integrated analysis stage, LLMs perform attentions on visual tokens
and textual tokens jointly, which leads to the semantic alignment
between visual tokens being overwhelming in a large number of
token interactions [7, 36].

Our solution to address the aforementioned semantic misalign-
ment problem is to introduce contextual semantics from contextual
images (i.e., images other than the currently perceived image) as
guidance in the perception stage. By utilizing contextual images
as references, we may accurately align the extracted visual tokens
of the currently perceived image with contextual semantics before
the integrated analysis step. However, it is crucial to note that not
all contextual images in the input multi-modal instruction may
exhibit direct correlations with the currently perceived image due
to irrelevant or even noisy information. In such cases, directly in-
corporating the whole information from all contextual images may
pose challenges to the perception process. Therefore, in addition
to the semantic misalignment problem mentioned above, how to
accurately extract the contextual semantics highly relevant to the
currently perceived image is another crucial problem deserving
careful consideration.

To tackle the above issues, we propose the Semantic Alignment
method for Multimodal large language models (SAM) towards
the multi-image cross-modal instruction. The SAM model tackles
the misalignment problem between multiple images in the input
multi-modal instruction by incorporating the bidirectional seman-
tic guidance mechanism. Specifically, this mechanism involves two
interacting steps: (1) SAM extracts visual tokens from the currently
perceived image based on the natural language prompt, with the
guidance of the contextual semantics from the contextual images
(i.e., the other images in the input multi-modal instruction). (2) To
obtain representative contextual semantics from the contextual
images, SAM incorporates a novel visual tokenizer called W-former,
which is specifically designed to extract synchronous semantic in-
formation from multiple images. With the visual tokens from the
currently perceived image, the W-former first employs an adaptive
adjustment module at the patch level of each contextual image in
the multi-modal instruction, to enhance the prominence of critical
information. Subsequently, the W-former incorporates the aligned
patch features and the language prompt to extract the contextual
semantics for the visual-token perception from the currently per-
ceived image.

Most existing multi-image datasets applied for fine-tuning the
multi-modal large language models may demonstrate substantial
similarities between images of the multi-modal instruction [24],
lacking associated images with significant difference ( e.g., differ-
ent contexts, variant styles). To this end, we introduce a novel
large-scale multi-modal dataset namedMmLINK for the MLLMs
research. It contains 69K vision-language samples, specifically de-
signed to enhance the model’s abilities of cross-modal multi-image
semantic alignment and correlationmining. Different images within
each multi-modal sample of our dataset exhibit both semantic-level
correlations and significant visual differences (e.g., the same person

in different images with different poses and contexts). Through
extensive experiments, we showcase that training on MmLINK
leads to significant performance improvements in our SAM model,
surpassing the current state-of-the-art models.

Overall, our contributions are summarized as follows:

• To the best of our knowledge, we embark on the early ex-
ploration of the semantic correlation between substantially
diverse images in the multi-modal instruction, within the
MLLMs field. As the research foundation, we construct a
large-scale comprehensive dataset called MmLINK compris-
ing 69K samples.

• We propose the multi-modal model named SAM, which
employs bidirectional semantic guidance between images
of the input multi-modal instruction to align the semantics
of different images in the perception stage.

• Extensive experiments prove the effectiveness of our SAM
model by significantly outperforming the state-of-the-arts.

2 RELATEDWORK
2.1 Multi-modal Large Language Models
Multi-modal pretraining [8, 16, 18, 40, 45, 48] aims to train models
on varied datasets across multiple modalities to capture cross-modal
correlations. Building upon the concept of multi-modal pretrain-
ing, Multi-modal Large Language Models represent a fusion of
multi-modal pretraining techniques with the advanced capabilities
of Large Language Models. Flamingo [1] proposes architectural
innovations that enable the integration of powerful pre-trained
vision-only and language-only models, managing sequences of in-
terleaved visual and textual data, and seamlessly ingesting images
or videos as inputs. BLIP2 [23] employs a lightweight Querying
Transformer (Q-Former) that bridges the modality gap through a
two-stage pre-training process. Following closely are LLaVA [28],
MiniGPT-4 [50] and InstructBLIP [9], which conduct instruction
tuning [33] on MLLMs. They utilize different modules to bridge
the gap between image modality and text modality, like Q-Former
used in InstructBLIP and an linear layer employed in LLaVA. Their
training data includes a wide range of single images and textual
question-answer pairs, enhancing model’s instruction-following
ability. Cheetah [24] and MMICL [49] extend their work into the
field of multi-image reasoning, featuring a visual tokenizer for vi-
sual token extraction and leverage LLMs for integrated analysis.
However, almost all these MLLMs tackle multi-image understand-
ing in the integrated analysis step, leading to ignorance of contex-
tual semantics in the perception step and absence of crucial ‘linking’
information necessary for identifying correlations. To tackle this,
we propose a bidirectional semantic guidance mechanism that in-
corporates contextual semantics during visual token extraction,
enhancing multi-image correlation alignment.

2.2 Multi-image Captioning
Multi-image captioning [6, 14, 31, 41] is an advanced domain within
the field of multi-modal research that focuses on generating de-
scriptive text for a set of images, rather than just a single image.
This area extends the capabilities of traditional image captioning
by considering multiple images simultaneously, aiming to produce

2
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Figure 2: Demonstration of our proposed 2-step sample synthesis pipeline. We begin by selecting images featuring characters
in different poses (A), along with 2 another distinct characters (B, C). The selected images are segmented to isolate each
character, after which they are merged into mask images. Inpainting technology is then utilized to fill in the background areas
of these mask images to obtain the final images, using descriptions generated by ChatGPT. Text annotations are generated by
InstructBLIP and further refined with ChatGPT.

coherent and contextually relevant captions that encapsulate the
collective content and narrative of the images. Significant advance-
ments have been made in multi-image captioning tasks, such as
group captioning [5, 25] and visual storytelling [4, 15, 27, 44, 46].
The challenge of multi-image captioning lies in its requirement
for a deeper understanding of the relationships between images,
the story they tell together, and how elements from each image
relate to one another. Existing models have introduced methods
to explore inter-image correlations. For instance, Li et al. [25] fuse
visual features from multiple images using self-attention [42] mech-
anism. Liu and Keller [27] focus on the importance of characters
in visual storytelling and propose two task: important character
detection and character grounding in visual stories, and develop
unsupervised models for these tasks using distributional similarity
and pre-trained vision-language models. However, these proposed
fusionmethods usually require training the entire model, whichwill
lead to significant training costs for large language models. There-
fore, we propose a more precise structural design that achieves
semantic alignment by introducing fewer trainable parameters.

3 TRAINING DATA CURATION
Most training datasets for Multi-modal Large Language Models
(MLLMs) primarily focus on single-image multi-modal instructions.
However, the development of multi-modal datasets that incorpo-
rate correlations across multiple images for training is still in its
early stages of exploration. The current methods for constructing
multi-image multi-modal datasets mainly focus on creating highly
similar images for correlation establishment. For instance, some re-
searchers [19, 24] modify minor details of the original image while
leaving the majority unchanged, to generate other images in the
multi-image multi-modal instruction. However, these construction
methods overlook the crucial ‘linking’ information across diverse
contexts (e.g., the same person in different images with different ac-
tions and poses), which are often more significant for training the
semantic alignment ability of MLLMs.

Toward this issue, we introduce a novel 2-step sample synthesis
pipeline as shown in Figure 2 to construct our multi-modal dataset,

MmLINK. In the first step, we curate different images featuring
the same object but with varying poses, lighting conditions, or
view angles (e.g., the same person with different actions) to create
the image groups, where each group corresponds to one object.
We then segment the shared object from the images within each
image group to obtain our segmented objects and combine these
segmented objects to generate mask images. In the second step, we
inpaint the mask images based on descriptions generated by LLM
to create a large number of semantically correlated images with
different contexts. This approach ensures that the dataset includes
diverse correlations across multiple images, enhancing the training
process for MLLMs. In order to create the textual components of a
training sample, we automatically generate a language query and
its corresponding answer for two images depicting the same object
but in different contexts.

2-step Sample Synthesis Pipeline. Each sample in our Mm-
LINK dataset consists of an image pair, a corresponding language
instruction, and a textual answer for the instruction. The images in
the same pair depict the same object with different poses, lighting
conditions, or view angles. To ensure the diversity of the image
objects in our MmLINK dataset, we collect the images with variance
objects (e.g., characters, furniture items, icons, and book covers)
from different image sources. Notably, for different types of objects,
slightly various pipelines are employed to create the corresponding
samples. We take the ‘character’ as an example to illustrate the
sample construction pipeline, as depicted in Figure 2. In addition,
we provide information on the construction pipeline for samples
involving other objects in supplementary Section 1.1.

In the first step, we construct image groups for different charac-
ters from the DeepFashion dataset [29], in which the same character
exhibit identical clothing but different poses and view angles. We
select two images of the same character with varied poses as the
main character (e.g., A in Figure 2), along with two another distinct
characters as additional characters (e.g., B and C in Figure 2). Next,
we segment each character from the source image using Segment
Anything [20]. We combine the main character with each of the
two additional characters and place them onto a 512 × 512 mask

3
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image with diverse positions and sizes. In this way, we obtain two
mask images featuring the same character, i.e., the main character.

In the second step, we inpaint the two mask images with di-
verse background descriptions generated by ChatGPT1. This is
achieved by Stable-Diffusion-Inpainting [39], which can generate
background pixels smoothly integrated with the characters accord-
ing to the background descriptions. The two inpainted images serve
as the visual components of each training sample in MmLINK, chal-
lenging models to identify the same character across images despite
the varied contexts and presence of additional characters. Finally,
we employ InstructBLIP [9] to generate descriptions of the main
character and use ChatGPT to obtain refined descriptions, which
serve as the textual components in the final multi-modal samples.

Quality Control. To guarantee the quality of our dataset, we
filter out the noise samples generated in the image-segmentation
and image-inpainting steps in our pipeline. Specifically, during the
image-segmentation process, we utilize CLIP [37] to calculate the
similarity between the segmented characters and their correspond-
ing character descriptions generated by InstructBLIP. This process
serves to filter out incompletely segmented characters with a sim-
ilarity score below 0.8. During the image-inpainting process, the
CLIP model is applied to calculate the similarity score between syn-
thetic images and their corresponding background descriptions, and
filter out the inpainted images which mismatch their corresponding
background descriptions with scores below 0.8.

4 METHOD
In this section, we will introduce our proposed SemanticAlignment
method for Multimodal large language models (SAM) in detail.

4.1 Overview
As illustrated in Figure 3, the pipeline of SAM can be formulated
in three steps. Firstly, given 𝑁 input images, the vision encoder
transforms them into patch-level features. For the 𝑖-th image, we
represent 𝑃 corresponding patch-level features with I𝑖 = {I𝑖, 𝑗 }𝑃𝑗=1,
where 𝑃 is the patch number and 𝑗 denotes the patch index. Then,
we utilize the Bidirectional Semantic Guidance mechanism in the
image perception stage to generate the visual tokens from the patch-
level features with enhanced semantic alignment. Finally, in the
integrated analysis stage, the large language model processes the
visual tokens together with the input textual query and generates
final prediction. In the following sections, we use subscript 𝑖 to
indicate symbols relevant to the currently perceived image.

Bidirectional Semantic Guidance. Towards the semantic mis-
alignment problem in existing MLLMs when processing contex-
tually different images, we introduce the bidirectional semantic
guidance mechanism in the image perception stage. It comprises
two interactive processes, including Part A: Assisted Visual Token
Extraction and Part B: Contextual Semantic Generation. Initially, in
Part A, the Q-former layers are applied to process the currently
perceived image based on the natural language query and extract
the initial visual tokens h𝑖 . Next, in Part B, we propose a novel
visual tokenizer called W-former. Guided by initial visual tokens
h𝑖 , W-former extracts synchronous contextual semantics c𝑖 from

1https://openai.com/blog/chatgpt. The prompts of ChatGPT used for dataset construc-
tion are provided in supplementary Section 1.2.

contextual images (i.e., images other than the currently perceived
image). Finally, the contextual semantics c𝑖 are passed back to the
Q-former layers in Part A to guide the updating of visual tokens by
aligning them with the contextual information based on the natural
language query.

4.2 Part A: Assisted Visual Token Extraction
Most existing Multi-modal Large Language Models (MLLMs) often
generate visual tokens for each input image in the multi-image
cross-modal instruction independently. This may lead to the ab-
sence of semantic alignment between images with diverse contexts,
thereby hindering the ability to identify inter-image correlations. To
address this issue, we introduce contextual semantics from contex-
tual images of the multi-modal instruction and the natural language
query to guide the extraction of visual tokens for the currently per-
ceived image. These contextual semantics are provided from Part B,
which also receives initial visual tokens of currently perceived im-
age generated in Part A as guidance, thereby forming an interactive
mechanism between the two processes.

Specifically, Part A is implemented with the transformer-based
visual tokenizer, Q-former [9]. Q-former consists of several cross-
attention layers, which concatenates pre-trained query vectors and
textual tokens as the Query and the current image features I𝑖 as
the Key and Value, allowing them to interact with each other to
obtain final visual tokens. We define the initial visual tokens h𝑖 as
the inputs at the 𝑙-th intermediate Q-former layer q𝑙

𝑖
:

h𝑖 := q𝑙𝑖 (1)

The initial visual tokens will serve as guidance to help Part B gener-
ate contextual semantics strongly related to the currently perceived
image, by effectively reducing redundant details of contextual im-
ages in the multi-modal instruction.

After Part B generating contextual semantics c𝑖 (see Equation
6), we select a certain subsequent layer 𝑘 (𝑘 ≥ 𝑙) and add c𝑖 to the
input queries of the 𝑘-th Q-former layer q𝑘

𝑖
as a guidance:

q̄𝑘𝑖 = q𝑘𝑖 + c𝑖 (2)

where q̄𝑘
𝑖
denotes the updated input queries. The subsequent Q-

former layers will refer to the contextual semantics to generate the
final visual tokens for the currently perceived image with enhanced
semantic alignment.

4.3 Part B: Contextual Semantic Generation
The contextual semantics c𝑖 from contextual images of the multi-
modal instruction are needed to guide the extraction of visual to-
kens for the currently perceived image in Part A. However, it is
important to note that not all contextual images in the input may
have a direct correlation with the currently perceived image and
the natural language query. Furthermore, even highly related im-
ages may still contain irrelevant or noisy information. To tackle
these issues, we involve the W-former module to Part B. W-former
contains Q-former layers which share the same parameters with
the one in Part A, along with an novel adaptive adjustment design.

Adaptive Weights. Specifically, we denote the contextual im-
age set (i.e., images other than the currently perceived image) as
{I𝑚}𝑚≠𝑖 . The patch-level features of the𝑚-th (𝑚 ≠ 𝑖) image are

4
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Figure 3: Overview of SAM. The core mechanism of our SAMmodel is the Bidirectional Semantic Guidance mechanism with
two interactive processes: Assisted Visual Token Extraction (Part A) and Contextual Semantic Generation (Part B). In Part A,
the Q-former module leverages the contextual semantics c𝑖 , which are generated from contextual images (i.e., images other
than the currently perceived image) in the multi-modal instruction in Part B, to guide the extraction of visual tokens from the
currently perceived image features. In Part B, the W-former module is utilized to select the contextual semantics from the
visual context of contextual images. This selection process is facilitated by the attention mechanism in the adaptive adjustment,
along with assistance from the initial visual tokens h𝑖 , which are extracted from the currently perceived image in Part A.

denoted as {I𝑚,𝑗 }𝑃𝑗=1. Then, we assign weights to each image patch
with our proposed Adaptive Adjustment module, eliminating the
prominence of irrelevant patches. Firstly, the adaptive adjustment
module uses the linear layer Linear(·) and the softmax function
softmax(·) to generate normalized patch-level weights 𝛼𝑚,𝑗 :

𝛼𝑚,𝑗 = softmax(Linear(I𝑚,𝑗 )) (3)

Then, the adaptive adjustment module re-weights each contextual
patch features and sums up the re-weighted patch features to obtain
the merged contextual features Î:

Î = {Î𝑗 }𝑃𝑗=1, Î𝑗 =
∑︁
𝑚≠𝑖

(𝛼𝑚,𝑗 ∗ I𝑚,𝑗 ) (4)

This process reduces the influence of irrelevant patches and ampli-
fies important ones, improving patch-level alignment between the
merged contextual features Î and the currently perceived ones. The
detailed framework of the adaptive adjustment module is illustrated
in supplementary Section 2.

Contextual Semantics. After obtaining merged contextual fea-
tures Î, the W-former module generates the contextual semantics
c𝑖 . To enhance the specificity of c𝑖 with respect to the currently
perceived image, we introduce its initial visual tokens h𝑖 (see Equa-
tion 1), defined as the input queries of the 𝑙-th Q-former layer in
Part A, as a guiding factor. This is achieved by incorporating the
initial visual tokens with the input queries of the corresponding

𝑙-th W-former layer via a linear layer Linear(·):

w̄𝑙 = w𝑙 + Linear(h𝑖 ) (5)

where w𝑙 denotes the original input queries of the 𝑙-th W-former
layer and w̄𝑙 denotes the updated ones. Guided by the initial visual
tokens of currently perceived image, the remainingW-former layers
could efficiently extract relevant details from merged contextual
features Î. At the corresponding 𝑘-th (𝑘 ≥ 𝑙) layer, we derive
contextual semantics from the output tokens w𝑘+1 using a linear
layer Linear(·):

c𝑖 = Linear(w𝑘+1) (6)

The resulting c𝑖 aggregates pertinent information to the currently
perceived image from the entire context, facilitating the generation
of visual tokens aligned with contextual semantics.

4.4 Efficient Training
We perform both interactions at the final layer of the Q-former and
W-former, which means 𝑙 = 𝑘 = 12 (defined in Section 4.2). We
compare the different choices of 𝑙 and 𝑘 in Section 5.3. For efficient
training, we freeze the parameters of the vision encoder and the
LLM. In addition, the Q-former layers are also frozen. This means
that only three linear layers and the LLM projection layer require
fine-tuning, constituting just 4.3M (0.05%) trainable parameters.
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Table 1: Performance on group captioning and storytelling tasks. The best is bolded and the second best is underlined.

(a) Group Captioning

Model
Conceptual Animal Vehicle Average

ROUGE-L CIDEr BLEU-4 ROUGE-L CIDEr BLEU-4 ROUGE-L CIDEr BLEU-4 ROUGE-L CIDEr BLEU-4

MiniGPT-4 9.65 4.66 0.25 9.6 2.11 0.36 12.43 2.13 0.41 10.56 2.97 0.34
LLaVA 13.87 13.76 1.21 17.45 8.4 2.26 16.82 9.55 2.11 16.05 10.57 1.86
BLIP2 15.03 19.31 2.78 14.88 5.66 0.84 14.33 5.77 0.97 14.75 10.25 1.53

InstructBLIP 12.61 13.69 1.11 14.46 2.81 2.15 15.55 2.45 1.79 14.21 6.32 1.68
Otter 14.08 20.15 1.31 14.93 5.41 0.68 15.21 4.72 0.72 14.74 10.09 0.9

Cheetah 12.13 13.35 0.67 13.22 2.73 0.24 12.45 2.21 0.24 12.6 6.1 0.38
MMICL 18.6 4.06 1.44 17.99 12.34 1.97 19.57 11.84 2.16 18.72 9.41 1.86

GPT-4V 12.47 19.94 0.92 19.11 10.64 1.87 18.96 11.99 2.05 16.85 14.19 1.61
Gemini Pro 12.97 20 1.6 18.84 6.53 0.83 17.73 4.36 0.91 16.51 10.3 1.11

SAM 20.93 20.19 2.78 19.4 19.92 3.27 20.36 18.35 3.62 20.23 19.49 3.22

(b) Storytelling

Model
AESOP VIST DM800K Average

ROUGE-L CIDEr BLEU-4 ROUGE-L CIDEr BLEU-4 ROUGE-L CIDEr BLEU-4 ROUGE-L CIDEr BLEU-4

MiniGPT-4 15.42 2.29 0.53 10.36 1.4 0.17 12.01 0.89 0.49 12.6 1.53 0.4
LLaVA 14.52 2.92 0.98 8.66 0.22 0.3 11.35 0.35 0.97 11.51 1.16 0.75
BLIP2 21.49 19.88 2.57 18.31 31.7 2.38 12.35 8.47 1.43 17.38 20.02 2.13

InstructBLIP 19.12 18.28 2.72 16.96 28.79 2.38 8.21 7.75 1.22 14.76 18.27 2.11
Otter 11.4 5.41 0.74 7.32 2.35 0 9.5 3.65 0.69 9.41 3.8 0.48

Cheetah 20.03 21.5 2.87 17.89 31.76 2.63 11.67 9.26 1.01 16.53 20.84 2.17
MMICL 15.2 13.04 1.39 12.13 2.87 0.68 11.79 7.4 0.82 13.04 7.77 0.96

GPT-4V 17.45 18.48 1.41 11.76 23.75 0.86 10.37 11.03 0.59 13.19 17.75 0.95
Gemini Pro 20.52 21.5 3.37 13.84 22.1 1.74 12.96 9.9 1.56 15.77 17.83 2.22

SAM 23.45 25.92 4.13 20.85 39.32 3.65 14.33 11.16 1.97 19.54 25.47 3.25

5 EXPERIMENTS
5.1 Experimental Settings
We implement SAM model in LAVIS library [22], building upon
InstructBLIP-vicuna7b [9] architecture. We use the AdamW [30]
optimizer with 𝛽 = (0.9, 0.999), and a learning rate of 2e-5 along
with a weight decay of 0.05. We employ a cosine learning rate decay
mechanism, along with a warm-up phase of 240 steps. We conduct
training SAM using a batch size of 20 with 4 A100 GPUs.
Datasets. We conduct zero-shot evaluations on Group Captioning
and Storytelling tasks to evaluate SAM’s generalization ability. Both
tasks demand semantic alignment across contextually different
images. For the group captioning task, we select three datasets:
Conceptual [25], Animal and Vehicle [13]. For the storytelling task,
we select AESOP [38], VIST [15] and DM800K [6] as test sets.
Metrics.We measure the performance using a variety of caption-
ing metrics. Following Forbes et al. [11], we report the scores on
ROUGE-L [26], CIDEr [43] and BLEU-4 [34].
Baselines. For a comprehensive comparison, we consider open-
source state-of-the-art MLLMs including MiniGPT-4 [50], LLaVA
[28], BLIP2 [23], InstructBLIP [9], Otter [21], Cheetah [24] and
MMICL [49], as well as industrial multi-modal chatbots including
GPT-4V [32] and Gemini Pro [2].

Please refer to supplementary Section 3 for details about testing
datasets, metrics and baselines.

5.2 Performance Comparison
The overall results of SAM and baselines are listed in Table 1. From
it we can observe that SAM consistently achieves superiority across
all datasets on all evaluation metrics. In particular, SAM outper-
forms other baselines on CIDEr score by a large margin of 5.3
(37%) on group captioning and 4.63 (22%) on storytelling, which
demonstrates that SAM generates more accurate and comprehen-
sive answers. Beyond this, we find that the improvement of our
method mainly manifests in two aspects:

1) Enhance the ability to follow instructions that require
identifying multi-image correlations. We observe that many
MLLMs struggle to follow instructions for identifying correlations,
such as interpreting storytelling tasks through image captions. This
leads to their answers containing only some keywords rather than
coherent story descriptions. We speculate that this issue stems
from their training data lacking semantic correlations between
images. For instance, MMICL relies on in-context learning data
that might not be inherently related. In contrast, our training data
emphasizes inter-image connections across contextually different
images, enabling our model to excel at discerning associations and
responding effectively to tasks that require identifying correlations,
which further indicates the effectiveness of our training dataset.

2) Enhance semantic alignment between contextually dif-
ferent images. We observe that the state-of-the-arts often mis-
interpret the relations between images with diverse contexts. For
instance, they may mix up character identities across images or
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Table 2: Ablation study of different modules in SAM over group captioning and storytelling. +ΔDATA means using our proposed
data for training; +ΔBSG means adding bidirectional semantic guidance without the adaptive adjustment module; +ΔAA means
adding adaptive adjustment module; +ΔLIN means replacing the entire W-former with a simple linear layer.

(a) Group Captioning

+ΔDATA +ΔBSG +ΔAA +ΔLIN
Group Animal Vehicle Average

ROUGE-L CIDEr BLEU-4 ROUGE-L CIDEr BLEU-4 ROUGE-L CIDEr BLEU-4 ROUGE-L CIDEr BLEU-4

1 12.61 13.69 1.11 14.46 2.81 2.15 15.55 2.45 1.79 14.21 6.32 1.68
2 ✓ 17.87 15.61 2.05 18.81 11.18 2.69 19.68 8.78 2.6 18.79 11.86 2.45
3 ✓ ✓ 17.36 15.86 2.17 17.81 10.29 2.31 19.56 12.87 2.45 18.24 13.01 2.31
4 ✓ ✓ 19.75 18.31 2.53 18.94 16.87 3.24 19.78 15.01 3.35 19.49 16.73 3.04

5 (ours) ✓ ✓ ✓ 20.93 20.19 2.78 19.4 19.92 3.27 20.36 18.35 3.62 20.23 19.49 3.22

(b) Storytelling

+ΔDATA +ΔBSG +ΔAA +ΔLIN
AESOP VIST DM800K Average

ROUGE-L CIDEr BLEU-4 ROUGE-L CIDEr BLEU-4 ROUGE-L CIDEr BLEU-4 ROUGE-L CIDEr BLEU-4

1 19.12 18.28 2.72 16.96 28.79 2.38 8.21 7.75 1.22 14.76 18.27 2.11
2 ✓ 22.4 23.77 3.74 19.64 35 2.81 13.88 8.73 1.8 18.64 22.5 2.78
3 ✓ ✓ 18.94 21.71 3.24 14.08 15.55 0.77 13.97 3.74 1.24 15.66 13.67 1.75
4 ✓ ✓ 23.14 24.35 3.83 20.19 36.84 3.48 13.98 10.73 1.68 19.1 23.97 3

5 (ours) ✓ ✓ ✓ 23.45 25.92 4.13 20.85 39.32 3.65 14.33 11.16 1.97 19.54 25.47 3.25

Table 3: Performance comparison on change captioning tasks.
The best is bolded and the second best is underlined.

Model
Average

ROUGE-L CIDEr BLEU-4

MiniGPT-4 13.27 0.92 0.44
LLaVA 12.03 0.45 0.67
BLIP2 13.44 2.77 0.34

InstructBLIP 10.9 1.87 0.5
Otter 12 2.36 0.35
MMICL 14.73 2.54 0.51

GPT-4V 17.12 3.38 1.2
Gemini Pro 17.59 2.87 1.05

SAM 16.08 3.84 1.08

invent details not present in the images. We attribute these hallu-
cinatory responses to the absence of semantic alignment in their
visual tokens. The existing MLLMs isolate the currently perceived
image from its semantic contexts when extract its initial visual to-
kens, leading to semantic misalignment. Interestingly, similar issues
also arise in industrial multi-modal chatbots such as GPT-4V and
Gemini Pro, resulting in suboptimal performance. This indicates
that these chatbots may not pay sufficient attention to multi-image
semantic alignment. However, our approach, with the bidirectional
semantic guidance mechanism, can mitigate the issues by accu-
rately aligning the visual tokens of currently perceived image with
its contexts using contextual semantics.

5.3 In-Depth Analysis
We further validate 5 vital issues of SAM as follows.

1. Each component in SAM contributes to performance
improvement.We conduct an ablation study to illustrate the effec-
tiveness of each component in Table 2. We start with the baseline
model in Row 1 of the table that uses only the Q-former module
to extract visual tokens for each image. 1)We fine-tune the base-
line model on our MmLINK dataset. The experiment results shown
in Row 2 demonstrate that our synthetic training data enhances

Table 4: Inference efficiency test of InstructBLIP and SAM.

Model Average inference time Average GPU memory usage

InstructBLIP 4.9s 17.12 GB
SAM 5.1s (+4.1%) 17.13 GB (+0.06%)

model’s semantic alignment ability across contextual different im-
ages. 2) Next, we introduce the contextual semantics extracted by
a simple linear layer to guide the visual token extraction process.
The experiment results in Row 3 show that this straightforward
approach brings either no improvement or even a decline in perfor-
mance. We speculate that this simple method introduces uncertain
contextual semantics with heavy noise, which misguides the visual
token extraction process. Consequently, we adopt the bidirectional
semantic guidance mechanism based on averaged contextual image
features, which significantly improves the performance as shown
in Row 4. It demonstrates that bidirectional semantic guidance mech-
anism can accurately align visual tokens of currently perceived image
with its contexts. 3) Finally, replacing average contextual image
features with merged contextual features processed through our
adaptive adjustment module leads to enhancement in all tasks, as
indicated by the results in Row 5. This demonstrates that the adap-
tive adjustment module effectively filters out irrelevant information
from contextual images, thus improving patch-level alignment and
the quality of bidirectional semantic guidance.

2. SAM still performs well when reasoning on highly simi-
lar images.We conduct experiments on change captioning task,
which requires model to describe subtle differences between highly
similar images. We test on 4 datasets: IEdit [3], Spot-the-Diff [17],
Birds-to-Words [11] and CLEVR-Change [35]. Dataset details are
provided in supplementary Section 3.1. The average scores on the
4 datasets are reported in Table 3. From it, we find that compared
to the baseline InstructBLIP, SAM does not show a performance
decline. In contrary, SAM demonstrates superior performance com-
paring with those open-source state-of-the-art MLLMs, and even
surpasses industrial multi-modal chatbots on CIDEr score. This
indicates that introducing contextual semantics for alignment will
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Figure 4: Case examples generated by SAM and other MLLMs. Other MLLMs’ answers show either weak instruct-following
ability or contain hallucinations, while SAM successfully performs semantic alignment and produces accurate responses.
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Figure 5: Performance of different data volumes.

not degrade the model’s reasoning performance on highly similar
images; instead, it improves such capabilities.

3. SAM does not significantly increase the inference costs.
We conduct inference efficiency test of SAM and the baseline, In-
structBLIP. We report the average inference time and GPU memory
usage of the two models generating a 20-tokens response in Table 4,
which indicates that our proposed bidirectional semantic guidance
mechanism does not bring obvious extra inference costs.

4. Training SAM is data-efficient. Our bidirectional semantic
guidance mechanism effectively aligns visual tokens with the con-
texts, enhancing the model’s ability to identify correlations, thus
reducing the need for extensive training data. We further investi-
gate the impact of different training data volumes. As shown in
Figure 5, when the number of training data grows from 0 to 69K, the
performance keeps increasing in group captioning and storytelling
tasks. However, when the data volume reaches 92K, performance
starts to decline. An additional increase in data volume leads to
overfitting, confirming that training SAM is data-efficient.

5. The final layers of the Q-former and the W-former are
the best positions to conduct bidirectional semantic guidance.
We investigate the effect of different interaction layers within the
Q-former and the W-former, which comprise 12 layers in total.
We group every 3 layers into a step, ensuring that the interactive
layer 𝑘 , conveying contextual semantics, does not precede layer 𝑙 ,
which conveys initial visual tokens (𝑙 and 𝑘 are defined in Section
4.2). This approach yields 10 distinct configurations of interaction
layers. Our findings, presented in Figure 6, highlight that early-stage

3
6

9
12l 3

6

9

12

k

18.5

19.0

19.5

20.0

S
co

re

(12, 12, 19.88)

(a) ROUGE-L

3
6

9
12l 3

6

9

12

k

16.5

18.5

20.5

22.5

S
co

re

(12, 12, 22.48)

(b) CIDEr

3
6

9
12l 3

6

9

12

k

2.5

2.7

2.9

3.1

3.3

S
co

re

(12, 12, 3.24)

(c) BLEU-4

Figure 6: Average scores on 6 datasets of different interaction
layers. 𝑙 is the layer that conveys initial visual tokens, 𝑘 is
the layer that conveys contextual semantics, 𝑘 ≥ 𝑙 (𝑙 and 𝑘

are defined in Section 4.2). The original 10 points are marked,
and the surface are interpolated from these 10 points.

interactions do not enhance performance, whereas interactions in
later layers lead to improvements. We speculate that this is because
the initial layers of Q-formers capture less meaningful semantics,
lacking the refined semantics needed for effective interaction. In
contrast, the later layers provide high-level semantics for both
Q-formers, significantly boosting performance.

5.4 Case Study
As illustrated in Figure 4, SAM demonstrates strong abilities to
perform group captioning and storytelling tasks. In (a), SAM can
identify commonalities between images accurately, while other
MLLMs’ answers either show weak instruction-following ability or
contain redundancy and hallucinations. In (b), while other MLLMs
might treat the storytelling task as an image captioning task, SAM
successfully discovers the correlation between the characters in
the images and matches them with the names of the characters
in the text, creating a coherent story. More cases are illustrated in
supplementary Section 4.

6 CONCLUSION
In this work, we introduce SAM, an innovative MLLM that utilizes
bidirectional semantic guidance to enhance semantic alignment
between contextual different images in multi-model instructions.
As the test bed, we propose the MmLINK dataset. Experiments on
MmLINK prove the effectiveness of our SAM model.
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