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(a) Characters (b) Furniture Items

Instruction: Instruction:
Provide details about the clothing worn by the Please describe the element that is visible in both
character featured in both pictures. pictures.

Answer:
The person in both images is a young woman
wearing a blue jumpsuit and sandals.

Answer:
The item in both pictures is a gray upholstered
sectional sofa.

(c) lcons (d) Book covers
Instruction:

Can you pinpoint the same icon present in both

Instruction:
Discover the connection between these two books

visuals? from their cover images.
1] a
reun ©a0
B ) & e stiouLber
B e
Answer: Answer:

They share the same author, David W. Stoller MD
FACR, and belong to the medical books genre.

Yes, itis an acorn icon symbolizing autumn and
harvest, commonly found on oak trees.

Figure 1: Demonstration of MmLINK’s samples containing each kind of objects. Each sample in our MmLINK dataset consists
of an image pair, a corresponding language instruction, and a textual answer for the instruction. The images in the same pair
depict the same object with different poses, lighting conditions or view angles. To ensure the diversity of the image objects in
our MmLINK dataset, we collect images with variance objects (e.g., characters, furniture items, icons, and book covers) from

different image sources.

1 DATASET CONSTRUCTION DETAILS

As illustrated in Section 3 in the paper, each sample in our MmLINK
dataset consists of an image pair, a corresponding language instruc-
tion, and a textual answer for the instruction. The two images in
the same pair depict the same object with different poses, lighting
conditions or view angles. To ensure the diversity of the image
objects in our MmLINK dataset, we collect images with variance
objects (e.g., characters, furniture items, icons, and book covers)
from different image sources, as shown in Figure 1. Number of
samples containing each kind of objects in our MmLINK dataset is
shown in Table 1.

1.1 Construction details for different objects

For different types of objects appeared in our MmLINK dataset,
slightly various pipelines are employed to create the corresponding
samples. In this section, we provide information on the construction
pipeline for samples involving all kind of objects.

1.1.1  Characters. The construction detail of character data is illus-
trated in Section 3 of the paper.

1.1.2  Furniture ltems. Compared to characters, the construction
detail of samples involving furniture items has only minor dif-
ferences as illustrated in Figure 2. Specifically, in the first step,
we construct image groups for different furniture items from the
Amazon Berkeley Objects (ABO) Dataset [5], which contains a com-
prehensive 360-degree perspective of furniture items. We select
two different perspectives of the same furniture items as the source
images. Different from character data, we do not include two other
different furniture images here, considering that multiple items
may pose challenges for inpainting. When the source images are
prepared, the remaining steps are identical to those featuring char-
acters: firstly, we segment each item from the source image using
Segment Anything [12], and place them onto a 512 X 512 mask

Table 1: The distribution of samples containing each type of
object in MmLINK.

Object Sample Number
Characters 3543
Furniture Items 16079
Icons 27741
Book Covers 21012
Total \ 68375

image separately with diverse positions and sizes. In this way, we
obtain two mask images featuring the same furniture item, which
exhibit different view angles and sizes between the images.

In the second step, we inpaint the two mask images with diverse
background descriptions generated by ChatGPT. The inpainting
process is also achieved by Stable-Diffusion-Inpainting [26], which
can generate background pixels smoothly integrated with the items
according to the background descriptions. The two inpainted im-
ages serve as the visual components of each training sample in
MmLINK, challenging models to identify the same furniture item
across images despite varied contexts. Finally, we employ Instruct-
BLIP [6] to generate descriptions of the shared furniture items and
use ChatGPT to obtain refined descriptions, which serve as the
textual components in the final multi-modal samples.

1.1.3  Icons. The Icon645 dataset [19] offers 645K colored icon pic-
tures across 377 categories, such as cake and dog. We construct
2 groups of icon images, where each group contains 4 to 6 icon
categories. The categories are randomly selected, and we ensure
that only one category will appear in both groups. In this way, the
two groups of icon images have only one icon images in common,
serving as the linking information between them. Then we place
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Step2

Step1 Source Images Mask Images
v ‘ ]
Segment
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Final Images

in a spacious living room

Texts

Instruction:

Please describe the element
that is visible in both pictures.
Answer:

The item in both pictures is a
gray uphoistered sectional sofa.

l
® 6

Captioning  Refine

|

©

Generate
background
descriptions

®)

Inpaint

Figure 2: Demonstration of our proposed 2-step sample synthesis pipeline when creating samples containing furniture items as
the linking information. We begin by selecting images featuring furniture items in different view angles. The selected images
are segmented to isolate each item, after which they are merged into mask images. Inpainting technology is then utilized to
fill in the background areas of these mask images to obtain the final images, using descriptions generated by ChatGPT. Text
annotations are generated by InstructBLIP and further refined with ChatGPT.

each group of icon image onto a white background image, where
each icon image has a random size and rotation angle. The result-
ing two images serve as the visual components of each training
sample, challenging models to identify the same icon across images
despite varied contexts and presence of other icon images. The
construction detail of textual components are the same as the one
of furniture items, that is, we employ InstructBLIP [6] to generate
descriptions of the shared icon image and use ChatGPT to obtain
refined descriptions as the final answer.

1.1.4  Book covers. We construct samples involving book covers
from OCR-VQA [20] dataset. The origin dataset contains about 207K
book cover images, with attributes including author, publish year
and genre. We randomly select two images, which share at least
one identical attribute, as the visual components. Then we extract
the identical attributes of the two images from the original dataset,
and utilize ChatGPT to organize them into the final answer. These
training sample involving book covers aim to enhance model’s
semantic alignment between objects recognized by its OCR ability.

1.2 Prompts for dataset construction

In our 2-step sample synthesis pipeline, we utilize ChatGPT for
diverse background descriptions generation and final answer re-
finement. We list the detailed prompts in Figure 4. Note that the
italicized text enclosed in braces in Figure 4 is the content that
needs to be filled in for each sample.

2 FRAMEWORK OF ADAPTIVE ADJUSTMENT

As introduced in Section 4.3 in the paper, we illustrate the detailed
framework of the adaptive adjustment module in our proposed
bidirectional semantic guidance mechanism in Figure 3. Please
recall that P is the patch number in the visual features extracted
by vision encoder, i denotes the currently perceived image index
and m # i denotes the contextual image (i.e., images other than
the currently perceived image) index. The patch-level features of

Adaptive Adjustment

Linear

;

Softmax

D Origin Image Feature D Reweighted Image Feature

Figure 3: Detailed framework of the adaptive adjustment
module in our proposed bidirectional semantic guidance
mechanism. For each image feature extracted by the vision
encoder, the adaptive adjustment module uses a linear layer
and the softmax function to generate normalized patch-level
weights, and then reweights each patch feature using the
normalized weights.

the m-th (m # i) image are denoted as {7, ; }5:1. To eliminate
the prominence of irrelevant patches, we assign weights to each
image patch with the adaptive adjustment module. Firstly, it uses
the linear layer Linear(-) and the softmax function softmax(-) to
generate normalized patch-level weights am, j:

@m,j = softmax(Linear(Zy,,;)) (1)

Then, the adaptive adjustment module re-weights each contextual
patch features and sums up the re-weighted patch features to obtain
the merged contextual features 7

I =G}, Iy = ) (amj * In ) (2)
m#i

This process reduces the influence of irrelevant patches and ampli-
fies important ones, improving patch-level alignment between the
merged contextual features 7 and the currently perceived ones.
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1. Background description generation of character images \
Given diverse descriptions of the possible environments where two standing people might be. For example, "in a
dark train station". Output 100 such descriptions directly and make sure your descriptions are diverse.

2. Background description generation of furniture item images

First, | will provide you with a statement about an object, which may be quite lengthy, containing many attributes and
details and may not be described in English. | need you to provide me with some descriptions of where this object
can be placed. Firstly, these descriptions must have a subject, and the subjectis the object itself. So, you first need
to identify what the object is from the given statement and use up to three English words as the subject. Then, you
need to describe its surroundings, which must be brief, like 'in a living room' or 'on a slightly messy floor'. Here is an
example:

the statementis: Amazon Brand — Rivet Goodwin Modern Sofa, 88.6\"W, Light Grey
Sample descriptions are:

1. The sofa is in a living room

2. The sofa is on a spacious patio

3. The sofa is in a modern office

4. The sofa is in a rustic cabin.

Now the statement is: {original furniture item statement}. Only output 4 descriptions without any other words, and the
scenarios in these descriptions should be diverse.

3. Refinement of character image captions

Assuming there is a task that requires you to find the person appearing in both images and describe his or her attire.
The correct answer is available, but it is quite lengthy and derived from the analysis of a single image. Your first step
is to extract relevant information and compress it. Remember that information only about attire is need, other
information like background or actions should be discarded; secondly, you need to organize the response format to
make it appear as an answer to the task that find the person appearing in both images and describe his or her attire.
Your language organization should be diverse, do NOT use the same pattern such as 'The person appearing in both
images is ..." all the time. Only output your answer without any other words. Now the answer is {captions of character
images}

4. Refinement of furniture item image captions

There is a game where people describe identical items in two pictures. | have one answer, but it may be incomplete
or contain many other details. You need to rewrite this answer, retaining only the relevant descriptionsrelated to the
items, discarding other details (like its surroundings), to make the response more formal and concise, attempting to
describe it in one sentence. But don‘t forget that you are looking for common items in two pictures, so your answer
should reflect this. Now the descriptionis {captions of furniture item images}

5. Refinement of icon image captions

| will provide you with a description of an image, and you need to extract the key information from it and then
paraphrase it. Your paraphrased description should be a little concise. Directly start with your descriptions, like 'an
airplane of ..."' or 'a red apple'. Don't contain prefixes, such as 'The image depicts' and so on. Description: {captions of
icon images}

6. Refinement of identical attributes of book cover images

Imagine there is a task, which requires you to find the common parts between the covers of two books. There is a

correct answer, maybe contains their author, genre and publish year. You need to rewrite this answer, ensuring that

the meaning remains unchanged and information undiscarded while expressingit in a more varied manner. Answer:
@enrical attributes of two book covers} Directly output your answer without any other words. /

Figure 4: Prompt templates of ChatGPT for dataset construction. ChatGPT is utilized in our 2-step sample synthesis pipeline for
diverse background description generation (1, 2) and response refinement (3, 4, 5, 6). The italicized text enclosed in braces is the
content that needs to be filled in for each sample. Specifically, {original furniture item statement} in 2 is the item descriptions
from the original ABO dataset [5].
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3 IMPLEMENTATION DETAILS
3.1 Test dataset details

We conduct zero-shot evaluation on Group Captioning and Sto-
rytelling tasks to evaluate SAM’s generalization ability. Since the
chosen datasets are not naturally suited for testing multi-modal
large language models, we preprocess the raw data and filter out
some dirty data, forming the final test sets, each comprising 500
samples. In the group captioning task, the model is tasked with
generating descriptions that capture commonalities within a given
set of images. Specifically, for this task, we select three datasets:
Conceptual [16], Animal and Vehicle [9]. Note that each sample
in the original Conceptual dataset contains 20 images, requiring
models to describe a group of target images (5 images) in the con-
text of another group of related reference images (15 images). We
only keep the 5 target images during our test. The storytelling
task provides N related pictures and a story description for each of
the first N — 1 pictures. The model is required to generate a story
that corresponds to the content of the last picture and maintains
coherence with the proceeding stories. For this task, we select three
public datasets: AESOP [25], VIST [10] and DM800K [3].

In addition, we conduct experiments on the change captioning
task, demonstrating that SAM still retains the ability of discovering
correlations between highly similar images. We select 4 change
captioning datasets used by Li et al. [15]: IEdit [2], Spot-the-Diff
[11], Birds-to-Words [8] and CLEVR-Change [23]. Each dataset con-
tains 500 samples, challenging models to describe subtle differences
between two highly similar images.

3.2 Metric details

To comprehensively evaluate the model, we use various evaluation
metrics.

3.2.1 ROUGE-L. ROUGE-L (Recall-Oriented Understudy for Gist-
ing Evaluation) [17] is a metric commonly used to evaluate the
quality of text summarization or machine translation outputs by
comparing them to a set of reference summaries. ROUGE-L calcu-
lates the longest common subsequence (LCS) between the generated
summary and the reference summaries. It measures the recall of
the generated summary by computing the ratio of the LCS length
to the length of the reference summary. This recall score is then
used to evaluate the quality of the summary. In essence, ROUGE-L
emphasizes the importance of capturing the longest common subse-
quence of words between the generated and reference summaries,
providing a measure of how well the generated summary covers
the content of the reference summaries.

3.2.2 CIDEr. CIDEr (Consensus-based Image Description Evalu-
ation) [28] is a metric commonly used to evaluate the quality of
image descriptions generated by machine learning models. It as-
sesses the consensus between generated descriptions and human
reference descriptions. The calculation process involves computing
cosine similarity between n-grams (sequences of n words) in the
generated descriptions and reference descriptions. These similari-
ties are then aggregated and transformed into a final score using
various techniques like TF-IDF weighting and inverse document
frequency smoothing. CIDEr emphasizes consensus by considering

Anonymous Authors

multiple reference descriptions and has been shown to correlate
well with human judgments of description quality.

3.2.3 BLEU-4. BLEU (Bilingual Evaluation Understudy) [22] is a
metric commonly used to evaluate the quality of machine-translated
text by comparing it to one or more reference translations. BLEU is
based on the idea that “good” translations are those that are simi-
lar to reference translations and use similar n-grams (contiguous
sequences of n items, typically words). BLEU calculates precision
by counting the number of n-grams in the candidate translation
that match any n-gram in the reference translations. BLEU scores
range from 0 to 1, where 1 indicates a perfect match between the
candidate and reference translations. In this paper we use BLEU-4,
which specifically refers to the use of 4-grams in the calculation
and provides a more comprehensive evaluation compared to lower
n-gram values.

3.3 Baseline details

For a comprehensive comparison, we consider open-source state-
of-the-art MLLMs as well as industrial multi-modal chatbots.

3.3.1 MiniGPT-4. MiniGPT-4 [30] enhances vision-language un-
derstanding by integrating a pre-trained vision encoder with an
advanced LLM through a single projection layer. It is pre-trained
on 5M image-text pairs and then fine-tuned with a 3.5K visual in-
struction dataset for improved natural language generation. The
tested version is “MiniGPT-4 (LLaMA-2 Chat 7B)”.

3.3.2 LLaVA. LLaVA [18] is an end-to-end trained model that inte-
grates a vision encoder (i.e., ViT-L/14 from CLIP [24]) with a LLM
(i.e., LLaMA [27]) using a simple fully-connected layer, enabling it
to comprehend and respond to multi-modal instructions. It lever-
ages machine-generated instruction-following data, created using
GPT-4, to improve zero-shot capabilities across new tasks. Using
this 158K instruction data, LLaVA fine-tunes the FC layer and the
LLM. The tested version is “llava-v1.5-7b-lora”.

3.3.3 BLIP2. BLIP2 [14] uses a trainable module called Q-Former
in a two-stage pre-training process: first for vision-language rep-
resentation learning from a frozen image encoder (i.e., ViT-g/14
from EVA-CLIP [7]), and second for vision-to-language generative
learning from a frozen LLM (i.e., FlanT5 [4]). BLIP-2 is trained on
a dataset comprising 129M images including various sources. The
tested version is “blip2-pretrain-flant5x1”.

3.3.4 InstructBLIP. InstructBLIP [6] introduces an approach to
vision-language instruction tuning using the BLIP-2 model, trans-
forming 26 datasets across 11 task categories into instruction format.
It features an instruction-aware Q-former for adaptive visual fea-
ture extraction, trained on a mix of held-in datasets for instruction
tuning and evaluated on held-out datasets for zero-shot generaliza-
tion. The tested version is “blip2-vicuna-instruct-7b”.

3.3.5 Otter. Otter [13] introduces a multi-modal model that lever-
ages instruction tuning to enhance instruction-following abilities
in multi-modal contexts. It employs the MIMIC-IT dataset, compris-
ing image-instruction-answer triplets with contextual examples for
training. Otter integrates a LLaMA-7B language encoder and a CLIP

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

446

463



465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

522

Supplementary Materials: Semantic Alignment for Multimodal Large Language Models

Table 2: Detailed performance on change captioning tasks. R-L indicates ROUGE-L, C is CIDEr and B-4 is BLEU-4. The best is

bolded and the second best is underlined.
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del IEdit ‘ Spot-the-Diff ‘ Birds-to-Words ‘ CLEVR-Change ‘ Average
Mode
RL C B4|RL C B4|RL C B4|RL C B4|RL C B4
MiniGPT-4 837 146 024 | 1407 097 0.62 | 1563 086 037 | 1499 039 052 | 13.27 092 0.44
LLaVA 7.16 0 0.18 | 13.75 0.13 1.06 | 13.48 0.49 055 | 13.72 1.19 0.88 | 12.03 0.45 0.67
BLIP2 12.81 1.69 0 18.54  7.82 1.02 | 946 157 035 | 12.94 0 0 13.44 277 0.34
InstructBLIP  10.08 451 0.32 | 11.65 1.82 0.88 | 12.05 0.78 059 | 981 038 0.21 109 187 05
Otter 423 087 037 | 1535 573 064 | 1495 285 04 | 13.48 0 0 12 236 035
MMICL 10.26 3.14 0.38 | 18.09 4.56 1.02 | 147 239 058 | 1588 0.05 0.07 | 1473 2.54 0.51
GPT-4V 845 095 0.61 | 1947 10.02 231 | 18.7 235 144 |21.84 02 045 | 17.12 338 1.2
Gemini Pro  11.34 1.23 047 | 19.8 715 183 | 1843 28 1.17 | 20.78 031 0.71 | 17.59 287 1.05
SAM 1224 495 052 | 2232 705 3.02| 148 33 076 | 1497 0.05 0 16.08 3.84 1.08

ViT-L/14 vision encoder, involving approximately 1.3 billion train-
able parameters. The tested version is “OTTER-Image-MPT7B”.

3.3.6 Cheetah. Cheetah [15] introduces VPG-C module for en-
hancing MLLMs to better understand and follow demonstrative
instructions by focusing on missing visual details within images.
VPG-C operates alongside a frozen LLM and a vision encoder. It
employs a synthetic discriminative training strategy, which gen-
erates 64K training samples, making the training process efficient
and less data-dependent. The tested version is “cheetah-vicuna-7b”.

3.3.7 MMICL. MMICL [29] is designed to enhance MLLMs by
efficiently handling multi-modal inputs through a novel context
scheme and a constructed multi-modal in-context learning (MIC)
dataset. The training involves a two-stage process where the model’s
components, except for the image encoder, Q-former, and LLM, are
adjusted during the multi-modal in-context tuning phase using part
of the 5.8M MIC dataset. The tested version is “MMICL-Instructblip-
T5-xx1".

3.3.8 GPT-4V. GPT-4V [21] is an advanced version of OpenATI’s
language models, incorporating multi-modal capabilities that al-
low it to understand and generate not only text but also images
and other forms of media. This enhancement enables GPT-4V to
perform a broader spectrum of tasks effectively, ranging from pro-
viding detailed descriptions to creating intricate visual content. It
can interpret queries that involve both textual and visual contexts,
making it ideal for applications in creative industries, educational
sectors, and technical fields. With a profound grasp of nuanced
language and multimedia content, GPT-4V delivers richer, more
contextually aware interactions, showcasing significant strides in
AT’s ability to mimic human cognitive functions. The tested version
is “gpt-4-vision-preview”.

3.3.9 Gemini Pro. Gemini Pro [1] is Google’s latest breakthrough
in artificial intelligence, integrating advanced multi-modal capabil-
ities that enable it to process and understand both text and visual
inputs. This cutting-edge technology enhances Gemini Pro’s adapt-
ability across various platforms and tasks, from generating artful
visual content to providing sophisticated textual analysis. It’s de-
signed to support a wide range of applications, including creative

endeavors, educational tools, and complex problem-solving scenar-
ios. Gemini Pro leverages deep learning algorithms to deliver more
intuitive and context-aware responses, making it a powerful tool for
industries seeking to harness the full potential of Al in diverse and
dynamic environments. The tested version is “gemini-pro-vision”.

4 MORE EXPERIMENTAL RESULTS

4.1 Detailed performance on the change
captioning task

In issue 2 analyzed in Section 5.3 of the paper, we report the aver-

age performance on the 4 datasets of the change captioning task,

demonstrating that SAM still performs well when reasoning on

highly similar images. We provide detailed performance of each

model on each dataset in Table 2.

4.2 Detailed performance with different data
volumes

In issue 4 analyzed in Section 5.3 of the paper, we report the average
performance on the group captioning task and storytelling task
with different training data volumes, demonstrating that training
SAM is data-efficient. We provide detailed performance of each
training data volumes in Table 3.

4.3 Detailed performance of different
interaction layers

In issue 5 analyzed in Section 5.3 of the paper, we report the aver-
age performance on all 6 test datasets with different bidirectional
interaction layer configurations, demonstrating that the final layers
of the Q-former and the W-former are the best positions to conduct
bidirectional semantic guidance. We provide detailed performance
of each interaction layer configuration in Table 4.

4.4 More case studies

In this section, we provide comparisons of our SAM model with
the baselines on some group captioning and storytelling samples
in Figure 5 - 9.
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581 Table 3: Detailed performance with different data volumes. 639
582 640
583 (a) Group Captioning o4l
584 642
) Conceptual ‘ Animal ‘ Vehicle ‘ Average

585 Data Volumes 043

ROUGE-L CIDEr BLEU-4 ‘ ROUGE-L CIDEr BLEU-4 ‘ ROUGE-L CIDEr BLEU-4 ‘ ROUGE-L CIDEr BLEU-4 644

587 0 12.61 13.69 1.11 14.46 2.81 2.15 15.55 2.45 1.79 14.21 6.32 1.68 645
588 23K 16.29 12.85 1.68 18.58 8.87 2.48 19.44 8.07 2.74 18.10 9.93 2.30 646
589 46K 17.46 13.63 2.10 19.19 14.23 3.24 20.42 12.54 3.28 19.02 13.47 2.87 647
590 69K 20.93 20.19 2.78 19.40 19.92 3.27 20.36 18.35 3.62 20.23 19.49 3.22 648
501 92K 19.74 16.54 2.46 19.15 16.01 3.19 20.15 15.33 3.17 19.68 15.96 2.94 649
592 650

593 (b) Storytelling

594 AESOP | VIST | DM800K | Average 652
B Data Volumes .
595 ROUGE-L CIDEr BLEU-4 | ROUGE-L CIDEr BLEU-4 | ROUGE-L CIDEr BLEU-4 | ROUGE-L CIDEr BLEU-4 653
EZ; 0 19.12 18.28 2.72 16.96 28.79 2.38 8.21 7.75 1.22 14.76 18.27 2.11 Z::
23K 20.36 22.63 3.63 16.68 27.19 2.04 12.07 7.42 1.30 16.37 19.08 2.32
>% 46K 21.76 21.83 3.62 19.69 34.71 3.04 13.76 13.58 2.20 18.40 23.37 2.95 696
599 69K 23.45 25.92 4.13 20.85 39.32 3.65 14.33 11.16 1.97 19.54 25.47 3.25 057
600 92K 22.97 25.01 3.90 20.70 39.90 3.75 14.08 11.27 1.96 19.25 25.39 3.20 658
601 659
602 660

603 661

Table 4: Detailed performance with different interaction layers. [ is the layer that conveys initial visual tokens, k is the layer

oot that conveys contextual semantics, k > I (I and k are defined in Section 4.2 of the paper). 662
605 663
606 664
607 (a) Group Captioning 665
608 Conceptual ‘ Animal ‘ Vehicle ‘ Average 666
o ¥ "ROUGE-L CIDEr BLEU-4 | ROUGE-L CIDEr BLEU-4 | ROUGE-L CIDEr BLEU-4 | ROUGE-L CIDEr BLEU-4 -
611 3-3 18.1 12.73 2 19.36 12.36 2.72 20.44 11.98 2.73 19.30 12.36 2.48 669
612 3-6 18.41 16.92 2.2 18.85 14.12 3.07 20.55 15.75 3.19 19.27 15.60 2.82 670
o3 3-9 18.97 16.9 23 19.43 16.14 3.2 20.31 16.65 34 19.57 16.56 2.97 o
» 3-12 19.86 18.16 2.58 19.2 17.3 3.39 19.98 18.87 332 19.68 18.11 3.10 P,
s 6-6 18.51 14.15 23 19.26 14.37 2.83 20.62 16.06 3.33 19.46 14.86 2.82 s
e 6-9 18.83 15.39 2.21 19.1 16.39 3.04 20.03 17.81 34 19.32 16.53 2.88 .
o 6-12 19.7 17.17 2.6 18.95 17.45 3.36 20.13 17.55 3.35 19.59 17.39 3.10 s
9-9 19.35 17.9 2.41 19.23 17.83 3.16 20.07 16.16 3.18 19.55 17.30 2.92
o8 9-12 19.68 16.63 2.6 19.27 16.79 3.22 20.14 16.41 3.22 19.70 16.61 3.01 ore
o1 12-12 20.93 20.19 278 19.40 19.92 3.27 20.36 18.35 3.62 20.23 19.49 3.22 677
620 678
. (b) Storytelling 679
622 680
o3 Lk AESOP \ VIST \ DM800K \ Average .
624 ROUGE-L CIDEr BLEU-4 | ROUGE-L CIDEr BLEU-4 | ROUGE-L CIDEr BLEU-4 | ROUGE-L CIDEr BLEU-4 682
:Z 3-3 22.14 24.32 378 19.16 32.68 2.35 14.35 6.35 1.73 18.55 21.12 2.62 ;Z
o 3-6 21.56 22.74 3.32 19.25 34.64 3.05 13.12 11.67 1.44 17.98 23.02 2.60 "
3-9 22.43 23.89 3.9 19.44 34.65 3.01 14.35 13.37 1.91 18.74 23.97 2.94
628 3-12 22.67 25.12 3.68 19.85 35.88 3.11 14.25 11.94 2 18.92 24.31 2.93 686
629 6-6 22.2 24.25 3.62 19.21 33.48 2.48 14.59 5.92 1.52 18.67 21.22 2.54 687
630 6-9 22.64 23.78 3.72 19.64 35.77 3.18 14.13 12.63 1.57 18.80 24.06 2.82 688
631 6-12 22.86 25.01 3.75 20 36.27 3.19 14.07 15.16 2.1 18.98 25.48 3.01 689
632 9-9 22.57 22.96 3.91 19.44 33.68 2.85 14.32 11.24 1.73 18.78 22.63 2.83 69
633 9-12 22.97 24.96 3.85 20.05 37.03 3.24 13.89 13.48 1.89 18.97 25.16 2.99 691
634 12-12 23.45 25.92 413 20.85 39.32 3.65 14.33 11.16 1.97 19.54 25.47 3.25 692
635 693
636 694
637 695
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Sum up the common factor in these five pictures in a single statement.

MiniGPT4 || happy republic day with stars and a yellow background.

Happy Republic Day with stars and a yellow background.

LLaVA The common factor in these five pictures is that they all depict a festive celebration, likely related to the
holiday season.

BLIP2 the common factor in these five pictures in a single statement.

InstructBLIP || happy republic day 26 January

India celebrates Republic Day on January 26th, which commemorates the adoption of the Constitution
of India. This holiday honors the country's transition from a British colony to an independent
democratic republic in 1950. The design features an abstract representation of the Indian flag with a
starry background and the text \"happy republic day\" written on it, emphasizing the significance of this
national holiday. The orange, white, and yellow colors are commonly associated with the Indian flag,
making the design visually appealing and patriotic.

Otter Happy Republic Day is a festive occasion celebrated in India.

Cheetah A bright orange and white background with stars, a banner for a national holiday with text in red, a
banner with stars, a poster with the word Happy on it, a banner with stars and words Happy.

MMICL happy republic day

GPT-4V The common factor in these five pictures is the celebration of Republic Day, with references to national
symbols, colors, and festive messages associated with the occasion.

Gemini Pro || The common factor in these five pictures is that they all relate to Republic Day, which is a national
holiday in India that celebrates the adoption of the Constitution of India on January 26, 1950.
SAM The vector illustration depicts a colorful and vibrant background with stars and stripes, creating a

festive atmosphere for Happy Republic Day.

™~

Figure 5: Comparisons of SAM model with the baselines on group captioning samples.
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815 873
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817 (.‘ 875
818 | - 876
819 877
" melissa hasseyprristy
820 878
821 i X i . . (o] 879
. Sum up the common factor in these five pictures in a single statement. o a0
823 881
824 MiniGPT4 | | A rat is standing in the snow, looking up at the camera. The rat's fur is white and it has a candy cane in 552
w25 its mouth. The rat is on the ground and appears to be enjoying the snow. -
826 884
827 LLavA The common factor in these five pictures is that they all feature a mouse or a similar small animal. 435
828 886
829 BLIP2 arat in the snow is a rat in the snow is a rat in the snow is a rat in the 887
830 888
831 instructBLIP | | In the image, a small brown mouse is perched on a tree branch in the forest, surrounded by fallen 889
832 leaves and other debris. The mouse is likely searching for food or exploring its surroundings amidst 890
833 the natural environment. 891
834 892
855 Otter All five images feature a small brown mouse. 8%
836 894
837 895
was Cheetah All of these animals are white and w00
839 897
840 MMICL arat is standing in the snow with a candy cane in front of it and another rat is standing in the snow with 308
sa1 a candy cane next to...[...]...[...]..[...]-- 599
842 900
843 GPT-4V All five pictures have a rodent in the snow. 901
844 902
845 Gemini Pro | | Rodents in various settings, mostly in the snow. 903
846 904
847 905
oas SAM In all five images, a small brown rat is standing on a snow-covered surface, surrounded by snowflakes. 006
849 \_ Y, 907
850 908
851 Figure 6: Comparisons of SAM model with the baselines on group captioning samples. 909
852 910
853 911
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e ™
Sum up the common factor in these five pictures in a single statement. KO\
MiniGPT4 sunset
LLaVA The common denominator in these five images is the presence of a boat on the water, with the sun
setting in the background.
BLIP2 they all show a boat in the water at sunset
InstructBLIP | | a sailboat 1000%
Otter The common denominator is the sun setting over a body of water.
Cheetah The sunset .
MMICL the sun is setting over a body of water and a car is parked on a wet surface in front of a building at
dus...[..]...[.o. ][] [ ]
GPT-4v All five images depict a sunset over a body of water.
Gemini Pro | | All of these images depict a boat or ship on water with the sun rising or setting in the background.
SAM The common element in all images is a boat sailing on the water at sunset, with the sun setting in the
background and casting a warm glow over the scene.
(N J

Figure 7: Comparisons of SAM model with the baselines on group captioning samples.
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1045 1103

1046 1104

1047 1105
1048 1106
1049 1107
1050 1108
1051 1109

1052 1110

1053 1111

1054 Even though they had been e until they With the narratives paired with | O 112
1055 advised against it, Lizzy and Bobby came upon some sand dunes, and the initial images, how would m\ 113
1056 went for a bike ride on the beach Lizzy lost her balance and fell. you conclude the story using 1114
1057 the last picture? 1115
1058 1116
1059 MiniGPT4 They were doing fine until they came upon some sand dunes, and Lizzy lost her balance and fell. The 1117
1060 sun shone brightly overhead, casting a warm glow over the beach 1118
1061 1119
1062 LLaVA In the last picture, Lizzy and Bobby are seen riding their bicycles on the beach, enjoying the sunny day. 120
However, their journey takes a turn as they encounter sand dunes, which causes Lizzy to lose her

1063 1121

balance and fall off her bike. This unexpected event might lead to a humorous or challenging situation
for the two, depending on how they react and handle the situation. The story could continue with them
trying to recover from the fall, finding a way to continue their ride, or even facing the consequences of

1064 1122

1065 1123

1000 their actions. e
1067 1125
1068 BLIP2 Lizzy was able to get up, and Bobby was able to help her up e
1069 1127
1070 1128

InstructBLIP | | Lizzy fell off her bike while riding on the sand dunes.

1071 1129

1072 1130
1073 Otter Upon reaching the end of the beach, they realized that they should have listened to the warnings and 131

turned back.

1074 1132

1075 1133

1076 Cheetah Lizzy tried to catch herself, but Bobby slipped too. The sand was hard to stand on, and they had to be 1134
1077 pulled away by the other people. Lizzy and Bobby didn't want to rest, but their bikes were full of sand. 1135
1078 1136
1079 MMICL A man and a woman are riding bikes down a path. 1137
1080 1138
1081 GPT-4V Lizzy got up, dusted off, and they decided to stick to the safer park trails for their future rides together. 1139
1082 1140
12: Gemini Pro || Lizzy and Bobby learned their lesson and decided to stick to bike paths. 1:;
1085 1143
o5t SAM Bobby helped Lizzy get back on her bike and they continued their ride. s
1087 Ny 4 1145
1088 1146
1089 Figure 8: Comparisons of SAM model with the baselines on storytelling samples. 1147
1090 1148
1091 1149
1092 1150
1093 1151
1094 1152
1095 1153
1096 1154
1097 1155
1098 1156
1099 1157
1100 1158

1101 1159

1102 1160
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1161 T T 1219

1162 1220

1163 1221
1164 1222
1165 1223
1166 1224
1167 1225
1168 1226
1169 1227
1170 1228

1171 1229

1172 1230

1173 1231

1174 1232
1175 1233
1176 1234

1177 1235

1178 1236

1179 1237

1180 1238

| bought a lot of flowers today.

81 ! With the narratives paired with | O 1239
1182 = 4 the initial images, how would |/ '\ 1240
L83 Afterward we all had some drinks you conclude the story using .
1184 at a bar. the last picture? o
1185 1243
1186 MiniGPT4 || The last picture shows a group of people sitting at a table in a bar. They are all wearing suits and ties 1244
187 and smiling for the camera. There is a sign on the wall that reads "Bar" in black letters. 1245
e LLaVA The climax of the story would be the gathering of friends at the bar after the event. The woman in the 1

1189 1247

image, wearing overalls and holding a bouquet of flowers, is surrounded by her friends who are also
holding flowers. They have come together to celebrate a special day, show their support, and enjoy
each other's company. The atmosphere is likely lively and filled with laughter and conversation as they
share their experiences and memories from the day.

1190 1248

1191 1249

1192 1250

1193 1251
1194 BLIP2 We all had a good time and had a lot of fun 1252
1195 1253

1196 1254

InstructBLIP | | We were at a wedding.

1197 1255
e Otter Given the reason that 'The woman is holding a bunch of sunflowers.' The correct option should 1200
1 be:sunflowers. 1257
1200 1258
e Cheetah || We had a good time. 12
1202 1260

1203 1261

MMICL Three men are posing for a picture while sitting at a table with a glass of beer in front of them and a

1204 beer bottle behind them.[...][...][...][...][.-.] 1262
1205 1263
1206 GPT-4V Friends gathered, celebrating with drinks, joyous occasion continues. 1264
1207 1265
1208 Gemini Pro | | The wedding reception was a blast! 1266
1209 1267
1210 SAM We had a great time at the bar. 1208
1211 1269
1212 GT We had a great time hanging out together. 1270
1213 1271
1214 o J 1272
1215 1273
1216 Figure 9: Comparisons of SAM model with the baselines on storytelling samples. 1274
1217 1275

1218 1276
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