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A Summary of Shorthand Notations Used in the Appendix

In this appendix, we simplify the notation Q, as @, and (QT)STST as Qgg, since the reference node r is
used throughout the analysis and should be understood implicitly. We follow the same practice for similar
shorthand notations in most part of the appendix to lighten the notations a little bit. This should not cause
confusion since the elements in S are pairs of nodes (two dimensional), while those in S, are individual nodes
(one dimensional). Simlarly, we also write Q£K+1) as QEHD and (Q£K+1))ST(‘K+1)S£K+1) as ng;fl))smﬂ).
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B Details of Experiments

B.1 Synthetic Experiments

Given fixed values of p and d, we simulate sparse random graphs by first randomly choosing whether an
edge exists or not with a probability of I%. At the end we check if the maximum neighborhood size d
is satisfied; if not, we redo the generating process until we get a random graph with maximum degree
d. For the non-zero edge values, we use mized couplings (Ravikumar et all |2010), that is, each existent
edge (edge in the true support union in our case) has value s = +£0.5 with equal probability. Then, to
generate the random parameter of each task: for 1 <k < K + 1 and (s,t) € S, we set 0‘2’;) = éstXif) with

Xﬁf) 5 Bernoulli(0.9). For the samples, we use Gibbs sampling (Casella & George, [1992) with 10 iterations

to generate each p-dimensional data sample for the binary node values according to the specific distributions
of Ising models (see ) using our simulated parameter values. Under each setting of the (p,C) pair, we
run the experiment 100 times to record whether or not it successfully recovers the neighborhood sets, and
take the average of these 100 repetitions to calculate the success rate ﬁ”[./\A/(r) = N (r)]. The regularization

parameter A in the improper estimation is set to be a constant factor of 4/ IZ% as suggested by Theorem

Here the constant factor is set to 1 by default, which works well. With AE+1 a constant factor (i.e.,
1) of \/% in the restricted estimation , we then estimate the novel task parameter 100 times for

nE+D) = C'd%log(d) with different values for C’, where the success rate for the novel task include sign

information, i.e., it is calculated as ]f”[./\A/iKH)(r) = NiKH)(r)] over the 100 repetitions.

More on Comparison. For learning the support union, we tried multi-task method of (Guo et al., |2015).
We then joined all supports from each task. We show the results on Figure |3} Compared with our Figure [1|in
our paper, we observe that multi-task learning fails to estimate the support union, with such few samples per
task.
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Figure 3: The success rates (over 100 repetitions) support union recovery vs. the choice of C' for multi-task
learning (Guo et al., 2015) as a comparison to our method in Figure El

For estimating the novel task parameter, we evaluated the single-task method of (Ravikumar et al., |2010) on
the novel task data only, using the same number of samples as in our experiments, and produced a resulting
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plot here in Figure left). Compared with our Figure [2|in our paper, we can see that given such few samples,
the alternative method cannot succeed at learning, giving near zero success rates. We also tried pooling all
data from auxiliary tasks together with the novel task, and using the single-task method of (Ravikumar et al.,
2010)). We report the results on Figure right). While this method might be reasonably good for estimating
the support union, it fails for estimating the correct signs and support of the novel task. This is due to the
fact that the support of the novel task is a subset of the support union.
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Figure 4: The success rates (over 100 repetitions) for signed edge recovery for novel task vs. the choice C' for
the single-task method of (Ravikumar et al., 2010) using novel task data only (left) and using all data from
auxiliary tasks and novel task (right). Both serve as a comparison to our method in Figure El

B.2 Real-world Data Experiments

For the real-world data experiment, the sample sizes for each individual task range from 300 to 4374, with an
average size of around 1553 and standard deviation 914. We have an independent set with 68259 samples to
retrieve the “true” support union as well as the “true” novel task support. When running the algorithm for
support union recovery, we used 40 tasks. We used task 41 as the novel task. The constant factor in A was
tuned to be 2 to get reasonably sparse graphs d = 19 compared to the number of nodes p = 157.

More on Comparison. We validated our results with comparison methods. For learning the support
union, we tried multi-task method of (Guo et al.,|2015). We then joined all supports from each task. This
method obtained a precision 0.3916, recall 0.9938 and F1-score 0.5619, versus our Fl-score of 0.8869. For the
novel task, we tried the single-task method of (Ravikumar et al., 2010). This method obtained a precision
0.8170, recall 0.3472 and F1-score 0.4873, versus our F1l-score of 0.6228. We also tried pooling all data from
auxiliary tasks together with the novel task, and using the method of (Ravikumar et al., 2010)). This method
obtained a precision 0.2402, recall 0.9889 and F1-score 0.3865, versus our F1-score of 0.6228.

Interpretation of Support Union. In the data of Functional Connectomes for our real data experiments,
we found that the support union shows some nice inter and intra symmetry between the left and right side
of the brain. For inter symmetry, Broadmann areas in the left side of the brain interact similarly as the
Broadmann areas in the right side of the brain (see Figure|5)). For intra symmetry: One Broadmann area in
the left is most likely to interact with its corresponding Broadmann area in the right (see Figure @ This
shows that estimating the support union is important as it reduces the search space for the novel task graph
a lot in the real-world case.

C lllustrative Example

To verify that Assumption [4.3]can be satisfied for a large family of distributions, we provide an illustrative
example to demonstrate its viability. The infinity norm in the assumption can be written explicitly as

IEa~p [Ex gin [ X\ Ex sl Xl Xr] = ExogyalXel X\ ))IA] ] oo (31)
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Figure 8: Observable graphs with edge vector  + A, each with 2 edges with the same value a.

Next, we need to find a value of a that can fulfill our condition. Notice that the condition involves the
expectation over both A and X, and thus we need to find out explicitly the probabilities of all combinations
of the 3 binary states under each of the three graph settings.

In the following, we use P(z1,z2,x3) to denote P(X; = x1, Xo = x4, X3 = x3) for simplicity. Now consider
node r = 1. In particular we will need the conditional distribution of X; given X5 and X3. For the first
setting (the graph on the left in Figure , we have the joint distributions

e2a
P(1,1,1) =P(-1,-1,-1) = —

P(1,1,-1) =P(1,-1,1) = P(~1,1,—-1) = P(-1,-1,1) =

)

N[~

where

Z=—
4 4 2(e20e—2a)
is the normalizing term. The joint distribution of X5 and X3 can be found to be

€2a e—2a

+
]P)mes(l’ 1) = HDX2,X3(_L _1) = Ta

N[ o

PXz;XS(l’ _1) = II;17-)(2,)(3(_15 1) =

Then we can derive that the conditional expectation of X; given X5 and X3 are

e2a _ o~

e2a + e—2a ’

2a
E[Xl‘XQ = 17X3 = 1} —

E[X1|X; =1,X3 = 1] =E[X{|Xo = —1,X3=1] =0,
-2

e’ —e
e2a+672a'

2a
E[X1]| Xy = —1,X5 = —1] =

For the other 3 graph structures (middle and right in Figure, we can derive the probabilities and expectations
similarly. Also note that for node » = 1, these two graph structures are symmetric to X;. Finally with all
these values we have, plugging them into the infinity norm in and setting it to be small (e.g., 0 in this
illustrative example), we have that a ~ 1.75. Since our setting design is symmetric for all X, Xo, X3, the
same result hold when r = 2 or 3.
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D Proof of Theorem 4.7

D.1 Primal-dual Witness for Recovery of the Latent Common Graph

The main technique we use throughout the theoretical proof is the primal-dual witness approach (Wainwright,
2009; Ravikumar et al.l 2010) that relies on the Karush-Kuhn Tucker conditions in optimization and
concentration inequalities in learning theory. Essentially, it constructs a primal-dual pair, i.e., a primal
solution 6 € RP~! and an associated sub-gradient vector 2 € RP~! as a dual solution so that the sub-gradient
optimality conditions in the convex program are satisfied. We show that under the conditions on
(n,p,d, K) stated in the theorem, the primal-dual pair (é, 2) can be constructed to act as a witness that
guarantees the method correctly recovers the structure of the graph parametrized by the true common
parameter 6.

For the convex program , the zero sub-gradient optimality condition (Rockafellar, 2015 has the form of

A

VEO) + A2 =0, (32)
where the dual (the sub-gradient vector) 2 € RP~1 must satisfy
sign(2,4) = sign(fy¢) if 0y #0 and |2.| < 1 otherwise. (33)

By convexity, a pair (é, 2) € RP~1 x RP~! is a primal-dual optimal solution to the convex program if and
only if the two conditions and are satisfied. Furthermore, this optimal primal-dual pair correctly
specifies the signed neighborhood of node r if and only if

sign(2) = sign(f,) V(r.t) € S, (34)

and

0.0 =0 Y(rt)e S (35)
The ¢i-regularized logistic regression problem is convex. The following lemma provides sufficient
conditions for it to be strictly convex and hence the uniqueness of the optimal solution, as well as the shared
sparsity among optimal solutions.
Lemma D.1 (A generalization of Lemma 1 in |Ravikumar et al.| (2010)). Suppose that there exists an optimal
primal solution 0 with associated optimal dual vector 2 such that ||Zsc|lco < 1. Then any optimal primal
solution 6 must have fgc = 0. Moreover, if the Hessian sub-matriz [V20(0; {X7})]ss is strictly positive
definite for the loss function defined in the paper, then 0 is the unique optimal solution.

Proof. The proof follows exactly the same logic as that for Lemma 1 in Ravikumar et al. (2010)), except that
the loss function in our case is one more generalized — the average of the losses in each task, which does
not change the property of strict convexity when it is present. To see this, note that the loss function in
Ravikumar et al.| (2010) corresponds to £(*)(#) we defined in the paper, the loss for each task in our case. [

Based on Lemma we construct a primal-dual witness pair (é, 2) with the following steps.

Step 1. We set fs as the minimizer of the £1-penalized likelihood

Os = arg min{£(6; {X7}{) + Al|6s][1}, (36)
(05,0)

~

and set Zg = sign(fg).
Step 2. We set fgc = 0 so that condition holds.

Step 3. We obtain 2g. from (32)) by substituting in the values of s and 2. At this point, our construction
satisfies conditions and (35)).
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Step 4. We need to show that the stated scaling of (n,p,d, K) in Theorem implies that, with high
probability, the remaining conditions and are satisfied.

The last step is most challenging and is the goal of the majority of our proof. Our analysis guarantees that
2s<]loo < 1 with high probability. Another condition to be satisfied is the positive definiteness stated in
Lemma [D.1} for which by Assumptions [i.1] and 4.2} we prove that the sub-matrix of the sample Fisher
information matrix is strictly positive deﬁnlte with high probability, so that the primal solution 0 is guaranteed
to be unique. The next two subsections contribute exactly to these two parts of the proof.

D.2 Uniform Convergence of Sample Information Matrices in Auxiliary Tasks

To satisfy the condition of positive definiteness in Lemma and to lay the foundation for the analysis
under the assumptions of the sample information matrix of having bounded eigenvalues in the next subsection
we aim to prove here that if the dependency and incoherence conditions from Assumptions and
are imposed on the population Fisher information matrix then under the specified scaling of (n,p,d, K),
analogous bounds hold for the sample Fisher information matrix with probability converging to one.

Recall the definition of the population Fisher information matrix (dropping the subscript r) from Section

1.1.1] we have (see (14)):

A 1 - (k BN T
Q=2 Y En(xX®:0x7(x{}) ] (37)
k:l

and its sample counterpart, i.e., the sample Fisher information matrix is defined as
~ 1 1 &
A n Z Z k e

Here the E in Q is the population expectation under the joint distribution of the randomness in the model
parameters {A<k)}kK:1 and the random samples {X7}¥ for the K auxiliary tasks, while E in QV denotes the
empirical expectation, and the variance function is defined in .

D.2.1 Uniform Convergence for Dependence Assumption

For the dependence assumption, we show that the eigenvalue bounds in Assumptions hold with high
probability for sample Fisher information matrix and sample covariance matrices in the following two lemmas:
Lemma D.2. Suppose that Assumption holds for the population Fisher information matriz Q and the

pooled population covariance matriz E( Zszl X(k)(X(k))T). For any 6 > 0 and some fized constants A
and B, we have

N 5°nK
PlAmin(Qss) < Crmin — 6] < 2exp —Aid2 + Blog(d) |, (39)
and
1 &1 82K
k
max ? kzl E Zl (,\)r ,\r ] > Dmax — 61 < 2exp (_Adz + Blog(d)) . (40)

The proof of this lemma is in Section

D.2.2 Uniform Convergence for Incoherence Assumption

The following lemma is the analog for the incoherence assumption in Assumption showing that the scaling
of (n,p,d, K) given in Theorem guarantees that population incoherence implies sample incoherence.
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Lemma D.3. If the pooled population covariance satisfies |HQSCS(QSS)_1|HOO < 1 — « with parameter
a € (0,1], then the sample matriz satisfies an analogous version, with high probability in the sense that

P [flotst@is ™| 21 5] <o (-8 + 106 (a1)

for some fixed constant B.

The proof of this lemma is in Section [H.1.2

D.3 Analysis under Assumptions of Sample Information Matrices in Auxiliary Tasks

With the incoherence and dependence conditions guaranteed with high probability (proved in Section ,
we then begin to establish model selection consistency when assumptions are imposed directly on the sample
Fisher information matrix Q" as opposed to Q. Recalling the definition of the sample Fisher information
matrix QV, we define the "good event"

MEETH) = {0 € {1, +1} P |QN satisfies Assumptions [4.1]and [4.2]. (42)
As in the statement of Theorem the quantities L and ¢; refer to constants independent of (n,p, d, K).
With this notation, we have the following:
Proposition D.4 (Fixed design for auxiliary tasks). If the event M({X7}) holds, the sample size per task
and number of tasks satisfy nK > Ld?log p, and the reqularization parameter is chosen such that A > 3 12%

for some fized constant B > 0, then for recovering the true common parameter vector  of the latent common
graph, with probability at least 1 — 6exp(—c§\nK) — 1 for some constant ¢ > 0, the following properties hold,

(a) For each node r € V, the £ -reqularized logistic regression for the improper estimation of 0 has a unique
solution, and so uniquely specifies a signed neighborhood Ny (r).

(b) For each v € V, the estimated signed neighborhood Ni(r) correctly excludes all edges not in the true
support union. Moreover, it correctly includes all edges with |0,| > CI—Q\/&)\, along with their correct sign.

Intuitively, this result guarantees that if the sample Fisher information matrix is "good", then the probability
of success for the recovery of the underlying latent graph parametrized by the true common parameter 6
converges to 1 at the specified rate. The following subsection is devoted to the proof of Proposition

D.3.1 Key Technical Results in the Proof of Proposition [D.4]

We follow the steps of primal-dual witness as stated at the beginning of Section [D] Since the key is to
guarantee the strict dual feasibility ||Zs<||so < 1 with high probability in Step 4, we make a series of deliberate
constructions to find out the explicit expression of ||Zg¢||o and try to bound it.

Starting from the stationarity condition in ([B2): V£(0; {X7}4) + A2 = 0, adding to both sides
W = —V0(0; {XT}T), (43)

we get . -
Ve(0; {X1H) = VO {X7}) = W = xz. (44)

Note that W is just a shorthand notation for the (p — 1)-dimensional score function. Then, applying the
mean-value theorem coordinate-wise to the expansion gives

V20, {x" N0 —6) = WN — X2+ RN, (45)
where the remainder term takes the form

RY = —[V20(09); {x7}5) — V20(8; {x7 )T (6 - 0), (46)

J
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with ) being a parameter vector on the line between 6 and é, and with [];F denoting the j-th row of the
matrix.

Recalling our shorthand notation QN = —V24(0; {X7}X) and the fact that we have set fg = 0 in our
primal-dual construction:
QS‘ [ } = Wé\fc - )\230 + Rgc (47)
—Q3sl0s — ] W —Aes + RY
Since the matrix QX is invertible by assumption, it can be re-written as
Qe5(Q5s) W3 — Mg + RJ] = W4l — A2se + RS-, (48)
by using the common parts s — O in the equations. Rearranging yields:
. 1 1 _ —1a
Zge = X[Wsj,\i + R3] - XQgcs(Qgs) 'WE + RS+ Q5es(Q5s) ' 2s (49)
By the assumptions H‘QgCS(QgS)_lH’oo <1 — «, and the fact that ||25]|ec = 1, we have
R RV WV
25w < (1) + (2 — ) [ Il T (50)
A A
Strict Dual Feasibility. Now, to satisfy the strict dual feasibility ||2s¢||c < 1, we need to bound %

(RS W™ )loo
and 5y t Py

. The following two lemmas show tha decays to 0 at an exponential rate and ||RY ||
can be bounded deterministically accordingly under some conditions.

Lemma D.5 (Decaying behavior of W). For the specified mutual incoherence parameter o € (0,1] and a

fixed constant ¢, we have
2 -« e a?)\?

P - < ——nK 1

( 3 > 4> _6exp< c(2—a)2n —|—log(p)>, (51)

which converges to 0 at rate exp(—c'\*nK) for some fived constant ', as long as A\ > @\/%.

The proof of this lemma is in Section [H.2.1

Lemma D.6 (Control on the remainder term RY). If \d < 1008:“ 72 and [|[WV s < 3, then

”RNHOO 25D ax «
< A < . 2
Y Sz Mt ig—a (52)

The proof of this lemma is in Section [H.2.2
Next, applying Lemmas and [D.6, we have the strict dual feasibility as

=1

o< (l-a)+ 5+

~ 0
[\ o)

l|25e

with probability converging to one.

Correct Sign Recovery. For the statement of correct sign recovery in Proposition [D.4, we show here that
our primal sub-vector 0 defined by (36) satisfies sign consistency 51gn(93) = sign(fs), which suffices to show
that

A Y emin
105 — Oslo0 < 5

where O, = ming, yyegs |§rt|. The following lemma is used in the proof here, which establishes that the
sub-vector fg is an fo-consistent estimate of the true common sub-vector 5.
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Lemma D.7 ({3-consistency of primal sub-vector). If Ad < 10Dm‘“ and [|[W¥ ||l < %, then

A3 5
105 = Osll> < 5—dA (53)

The proof of this lemma is in Section [H.2.3

By Lemma [D.7, we can write

—[0s = Oslloe < =105 — Os]2
2 5
< = dA
B min Cmiﬂf 7

which is less than 1 as long as |0, > w2 V/dA\.

Cmin

Now it is clear that the uniform convergence of sample information matrices (in Section together with
Proposition |D.4| (from Section |D.3) completes the proof of Theorem

E Proof of Theorem [4.8

For I' = {F(k)}szl, we know that there is a bijection between £ and the set of all circular permutations
of nodes V = {1,...,p}. Thus |&|, i.e., the size of £, is the total number of circular permutations of p
elements, which is Cg := (p — 1)!/2. Since FE is uniformly distributed on &, the entropy of FE given T' is
H(E|T) =logCg.

Consider a family of p-dimensional Ising models of size K with parameters {é(k)}szl generated according to

Theorem We use X := {ng)}lgtgmlgkgg to denote the collection of n samples from each of the K
tasks. Then for the mutual information I(X; E|T'). We have the following bound:

I(X; E|T) < ZZKL Px|prllPx e r)

E E’

C2 ZZZZKL X(”\ErmH (k)|E17F(k))

E FE k=1t=1

(54)

According to Lemma 19 in (Honorio, [2011), PX<k)|E roo 18 (foo, 2)-Lipschitz continuous for VE € £ and
2B,

1 <k < K. Then by Theorem 7 in (Honorio, 2011), we have

KL (Pyo  roo

Pty ) < 2009 =8Oy < 2p/, (55)

where the second inequality follows by the definition of §(*) and T'®) € [~1/d*, 1/d*]P*P in Theorem
Putting back to gives

n

K

1

I(X; E|T) < cz SN 2p/d? = 2mpK ) d? (56)
E E' k=1t=1

For any estimate S of S, define £ = {(i,5) : (i,5) € S,i # j}. Since E C S, we have P{S # S} > P{E # E}.
Then by applying Theorem 1 in (Ghoshal & Honorio, 2017)), we get
P{S # 8} > P{E # E}
I(X; S|T') + log 2
H(S|T)
2npK /d® + log 2
~ logl(p - 1)1/2]

>1-
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For log((p — 1)!), we have:

log((p —1)!) = ilogi

p—1
> / log xdx
1

=(p—1)loglp—1)—p+2

p—1
=(p—1)logp+ (p—1)log

+2-p

Since
p—1

1
(p—1)log +22(p1)log<1+1)221>0
p—

we have
log((p—1!) > (p—1)logp —p=plogp—p —logp
log((p — 1)!/2) =log((p — 1)!) —log2 = plogp — p — log 2p
For p > 5, plogp — p —log2p > 0, thus we have

npK/d® + log 2 2npK /d® + log 2

P{S#8}>1— -
575} 2 log[(p—1)!/2] = plogp—p—log2p

which completes our proof of Theorem [4.8

F Proof of Theorem 4.9

We have supposed that we have recovered the true support union S from our estimate for the true common
parameter, 0. The constraint in then enables us to convert the problem into one without the restriction
and with a parameter of dimension |S,| with |S,| < d for all » € V, for we can combine the constraint
straightforward into the minimization problem. With some abuse of notation using S to denote S, as before,
we can write

. . n )
19(SK+1) — arg min {g(K«H)(QS; {351,5“ }(K+1)) + >\(K+1)||95H1}, (57)
0seRP—1

and é(SIfH) = 0, since we know that
S+ C g (58)

This simplifies the problem to a great extent, and our proof henceforth takes on a similar pattern as the proof
without restriction in Ravikumar et al. (2010)), but with reduced dimensions.

F.1 Primal-dual Witness for Graph Recovery in the Novel Task

We again use the primal-dual witness approach (Wainwright, 2009; Ravikumar et al.,|2010) as stated in the
proof of Theorem See Section [D] With the loss function, parameter and data changed for only one task —
the novel task.

For the convex program , the zero sub-gradient optimality condition (Rockafellar, 2015 has the form of

VAU (D) 4 ATHD D — g, (59)

) 2;K+1) € RISl must satisfy

where the dual (the sub-gradient vector
sign(éﬁf“h = sign(égﬁl)) if 0.y #0 and |2.| <1 otherwise. (60)
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By convexity, a pair (ééKH KH)) RIS x R‘ST‘ is a primal-dual optimal solution to the convex program

if and only if the two conditions ( and (| are satisfied. Furthermore, this optimal primal-dual pair
correctly specifies the signed neighborhood of node r if and only if

sign(25 ) = sign(05Y) V(r,t) € SEHD, (61)

and
0T =0 V(r,t) e [SEFTD)e, (62)

For this restricted problem, we have a similar lemma as[D.I to for the uniqueness of the solution and shared
sparsity.

Lemma F.1 (Lemma 1 in Ravikumar et al. (2010) with reduced dimensions). Suppose that there exists

an optimal primal solution é(SK'H) with associated optimal dual vector 2(3K+1) such that ||2(§:P1)]C||oo < 1.

Then any optimal primal solution é(SK'H) must have é[(é((:ﬂ)]c = 0. Moreover, if the Hessian sub-matriz

[Vzé(K“)(QAéKH); {%?gﬂ)}(KH))]S(KH)S(KH) is strictly positive definite, then égKH) is the unique optimal
solution.

Proof. See proof of Lemma 1 in |[Ravikumar et al.| (2010). The case in this convex program has a loss function
(4D carrying the same meaning as those in [Ravikumar et al. (2010)), only with the dimensions of the
parameter vector and our samples reduced since they are restricted to the true support union S (see ) O]

(é (K+1) A(K+1))

Based on Lemma E, we construct a primal-dual witness pair 2 with the following steps.

Step 1. We set ég({; +11)) as the minimizer of the ¢;-penalized likelihood

Osucsn = argmin {£(0s; {X7 s}1) + A5 0500 1}, (63)
(Og(x+1),0)
and set z(ﬁ:}l)) = (9(1({;:;11)))

Step 2. We set 0(§:ﬂ)]c = 0 so that condition holds.

Step 3. We obtain Z[(5<K+1) . from . by substituting in the values of GSI((I:TI)) nd 2;1((,21)) so that our

construction satisfies conditions (| and (| .

Step 4. We need to show that the stated scaling of (n®*1) d) in Theorem implies that, with high
probability, the remaining conditions and @ are satisfied.

Our analysis in the last step guarantees that ||z(§(;ti1)]c lloo < 1 with high probability. Another condition to

be satisfied is the positive definiteness stated in Lemma [F.1] for which by Assumptions [£.5]and [£.6] we prove
that the sub-matrix of the sample Fisher information matrix is strictly positive definite with high probability,
oYt

so that the primal solution is guaranteed to be unique. The next two subsections contribute to these

two parts of the proof.

F.2 Uniform Convergence of Sample Information Matrices in Novel Task

To satisfy the condition of positive definiteness in Lemma and to prepare for the analysis under the
assumptions of the sample information matrix of having bounded eigenvalues in the next subsection [F.3] we
will prove in this subsection that if the dependency and incoherence conditions from Assumptions and
are imposed on the population Fisher information matrix then under the specified scaling of (n(K . d),
analogous bounds hold for the sample Fisher information matrix with probability converging to one.
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Recall the definition of the population Fisher information matrix (dropping the subscript r) from (4.1.2), we
have (see (20):
QU = Bfy(x§E ;g0 X JH (x )T, (64)

and its sample counterpart, i.e., the sample Fisher information matrix is defined as

p(K+1)

1 — T
Q(K+1): [ vzg(Kﬂ)( g+, {xn 5}1 )}:Tl) Z n(xggﬂ);egk+1))x§g+1)<x§g+1)) ) (65)

i=1

Here the E in Q5 *Y is the population expectation under the joint distribution of the randomness in the
model parameter A+ and the random samples {X7}5+V for the the novel task. E in Q¥+ denotes
the empirical expectation, and the variance function is defined in .

F.2.1 Uniform Convergence for Dependence Assumption

For the dependence assumption, we show that the eigenvalue bounds in Assumptions hold with high
probability for sample Fisher information matrix and sample covariance matrices in the following two lemmas:

Lemma F.2. Suppose that AssumptionlE holds for the population Fisher information matriz Q5+ and

T
population covariance matrix IE(X(KH)(XE(KH)) ). For any 6 > 0 and some fized constants A and B, we
have
(K+1) (K+1) nE+D
{ min ( S(K+1>s(K+1>) Crin 6} < 2exp _AT + Blog(d) (66)
and

n(K+1)

§2n(K+1)
P Amax( (K+1) Z 9”5 Y 5?1)) ) > DIEID — 6] < 2exp <—A &

7 + Blog(d)) (67)

The proof of this lemma is in Section [[.1.1.

F.2.2 Uniform Convergence for Incoherence Assumption

The following lemma is the analog for the incoherence assumption in Assumption showing that the scaling
of (n,p,d, K) given in Theorem guarantees that population incoherence implies sample incoherence.

Lemma F.3. If the population covariance satisfies H‘Q_g;?ﬁk}ismﬂ)(Qsﬁ:ll)s(xﬂ) IHLO <1-— o with
parameter o € (0, 1], then the sample matriz satisfies an analogous version, with high probability in the sense

that
(K+1)

-1
Pl Q{2 o QU ) | 21 a2 <o (<™ o)) (09)
for some fixed constant B.

The proof of this lemma is in Section [I.1.2.

F.3 Analysis under Assumptions of Sample Information Matrices

With the incoherence and dependence conditions guaranteed with high probability (proved in Section ,
we can begin to establish model selection consistency when assumptions are imposed directly on the sample
Fisher information matrix Q¥ *1) as opposed to Q5X+1) . Recalling the definition of the sample Fisher
information matrix Q*1) we define a "good event" for the novel task

MUIED (g U)
= {{x?fg“)}“(“) e {-1, —|—1}"(K+1)X|5T||Q(K+1) satisfies Assumptions 4.5/ and . (69)

27



Published in Transactions on Machine Learning Research (08/2024)

As in the statement of Theorem the quantities L and ¢ refer to constants independent of (n(+1) p, d).
With this notation, we have the following proposition:

Proposition F.4 (Fixed design for novel task). Suppose we have recovered the true support union S. If
the event M(K“)({%"(KH)}(KH)) holds, the sample size satisfy nE+Y) > Ld?logd, and the reqularization

parameter is chosen such that A > 16(2 ) A/ ni?{gﬁl) , then for recovering the true common parameter vector

OE+D) of the latent common graph, wzth probability at least 1 — 2 exp(—cA?nK+1) = 1 for some constant
¢ > 0, the following properties hold,

(a) For each node v € V, the {i-reqularized logistic regression for estimating 0 K+1)

given data {%?(KH)}(K“)has a unique solution 95; 1)
./\AQ(EKH)(T) = {sign(é,(«ﬂﬂ_l Julu € V\ r, OLET) o 0}

in the novel task,

, and so uniquely specifies a signed neighborhood

(b) For each r € V, the estimated signed neighborhood ./\/(K+ (r) correctly excludes all edges not in the true
neighborhood J\/(KH)( )= {sign(é,(-ff+1 Yulu € V\ 7,0y KH) # 0}. Moreover, it correctly includes all edges
with |9(K+1)| > \f)\(K“ , along with their correct sign.

mm

Loosely stated, this result guarantees that if the sample Fisher information matrix is "good", then the
probability of success for the recovery graph by converges to 1 at the specified rate. The following subsection
is devoted to the proof of Proposition [F.4.

F.3.1 Key Technical Results in the Proof of Proposition [F.4]

We follow the steps of primal-dual witness as stated at the beginning of Section Since the key is to
guarantee the strict dual feasibility ||z(§:ﬂ)?c lloo < 1 with high probability in Step 4, we first try to find

out the explicit expression of Hz(é((;ﬂ)?c lloo and try to bound it.

Starting from the stationarity condition in : V[(HA(SKH)) + )\A(KH) = 0, adding to both sides

WD = KD (D), (70)

(K+1)}

noticing that IE[W(K +1)] = 0, and skipping writing down the sample {f{” (K41 in the loss function, we

get
vg(Kﬂ)(é(SKH)) B vg(K+1)(ééK+1)) — WEHD K+ (K+1) (71)

Note that W+ is just a shorthand notation for the |S,|-dimensional score function. Then, applying the
mean-value theorem coordinate-wise to the expansion gives

VQE(K+1)(§(SK+1 )[g (K+1) G(SK“)] — W E+FD )\(KH)%(SKH) + R(K+1), (72)

where the remainder term takes the form

R§K+1) [VQE(K+1)(9(K+1 ) — V2Z(K+1)(9(K+1))] (9(K+1 égK+1))7 (73)

with QgKH)j a parameter vector on the line between ég{“) and é(SK+1), and with []]T denoting the j-th row
of the matrix.

Recalling our shorthand notation QX +1) = w2+ (gl +1, (n™ 1 (K+1)) and the fact that we have
set H(é((j;ﬂ)? = 0 in our primal-dual construction:

_QUE+D) WEHD) )\ (1) s+ K+1) (74)

K+1 A A K+1 ~(K+1),S K+1
_QES(K+)1)]C5(K+1) Ogxiny —Ogxin] = W[(S(KJrz)r —\E+D) 2 [(S(K+)1)]C + RES(K+)1)]C
S(K+1) §(K+1) [0S(K+1> - 95(K+1)] SE+1) SE+1) + R( S(K+1)
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. . K+1 . . . . .
Since the matrix Qg( K+ +1)> g(r+1) 18 invertible by assumption, it can be re-written as

K41 (K+1) K41 K+1 (K+1
QES(K+)1>]CS(K+1>(QS<K+1>S<K+1)) [W((K+1)) AEFD 2 ((K+1)) +R (K+1))] (75)
(K+1) K+1) 5(K+1), (K+1)
- W[S<K+1>] — AU )Z[s<x+1>] R[S<K+1)]°v
by using the common parts 9;1((; +11) Qg((; Jrll)) in the equations. Rearranging yields:
K+1),8 K+1 K+1
[(S(K+)1)] = )\(K+1 [W[(S(K+2) et RES(KJr)l)]"] (76)
1 K+1 K41 _ K+1 K+1
B WQES(KJr)l)]CS(KJrI)(Qg(K+1))S(K+1)) 1[Wé(x+1)> + ng(K+1))] (77)
K+1 K+1 —1 (K41
+QES(K+)1> s(K+1>(Q(s<K+1)>s<K+1>) é(x+1)> (78)
By the assumptions ’HQE;((:PU]CS“{“) (Q(Slflj_jl)smﬂ)) IHLO < 1 — aB*Y and using the fact that
A(K+1)
[ é(Ktl) lloo = 1, we have
K+1) [RUEHD| WD
25 e < (1= alFHD) 4 (2 — alK+D) [ XTI T (79)
Strict Dual Feasibility. Now, to satisfy the strict dual feasibility |2 ;((;Llr)l)‘]g < 1, we need to bound
(K+1) (K+1) (
HW)\(K“ loo anq LE KKJr +1>H°° The following two lemmas show that % decays to 0 at an exponential
)
rate and HR(TK%% can be bounded deterministically accordingly under some conditions.

Lemma F.5 (Decaying behavior of W(E+1). For the specified mutual incoherence parameter o5+ € (0,1],
we have

9 _ o(K+1) Q(K+1) (a(K+1))2(/\(K+1))2

ST K+ B (K+1)

IP’{ " 124 lloo > 1 ] < 2exp 1282 a(KFD)2 n +log(d) | , (80)
which converges to 0 at rate exp(—c()\(K+1))2n(K+1)) for some constant ¢, as long as \E+D >

16(2—aF+D) [ log(d)
(BE+1) (K1) -

The proof of this lemma is in Section [[.2.1

L ~ (K+1) (K+1) g < (CUD)" qucsn (K+1)|| <
emma F.6 (Control on the remainder term R ). If A d< Lo T 22 e and |[W lloo <
)‘(KH) , then
K+1
| RE+D)| o _ 95D EFD (1) < Q(E+1) (&1)
)\(K+1) - (C(K+1))2 — 4(2 _ a(K+1))

The proof of this lemma is in Section [[.2.2.
Next, applying Lemmas [F.5 and [F.6, we have the strict dual feasibility as

QK+ (K+1)

A(K+1),S K41
[ [SE+D]° elloo < (1 - alft )) + 4 + 1
B aE+1)
= 5

with probability converging to one.
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Correct Sign Recovery. For the statement of correct sign recovery in Proposition we show here that

our primal sub-vector 9;5; +11) defined by (63]) satisfies sign consistency 51gn(9§;( o fl))) = sign(@f;f; +11))) which

suffices to show that

F(K+1
PUHD g+ | sy
|| S(K+1) 5(K+1)||oo = 5

The following lemma is used in the proof here, which establishes

that the sub-vector §U< s +1) is an fo-consistent estimate of the true common sub-vector GSI((; fl))

K+1 K+1
where Gr(nm )= = min,, t)esuo,l) \F)rt )|

Lemma F.7 ({;-consistency of primal sub-vector). If A\(K+1 g < W and |[WEHD | < A5 then
185662 = Bt 12 < SOV (82)

The proof of this lemma is in Section [I.2.3.
By Lemma |F.7] we can write

2 (K+1) _ p(K+1) 2 K41 K+1
A(K+1) ||95(K+1) 05(K+1) ”OO < —(].(4_1) ||9§5‘(K+1)) 059(K+1)) HQ
min min

| /\

2 5
v (K+1)
9(K+1 oK+ v )

min min

which is less than 1 as long as |65 "] > (K+1> VAXE+D,

m in

Then we can use the uniform convergence of sample information matrices (in Section [F.2) and Proposition
[F4 (from Section to finish the proof of Theorem

G Proof of Theorem [4.11

For simplicity, assume |S| = d. (A similar proof can be carried out with |S| = Cid and T' €
[— Cld3110gd’ Cld3llogd]p><p instead.) According to the definition of £, we know that || = 2I5I/2 = 24/2,

Since EK+1D) s uniformly distributed on &, the entropy of E+1 given I is

H(EEFD|D) =log || > glogQ (83)

Now let X := {X;}1</<n be the samples from a p-dimensional Ising models with parameters 6 generated
according to Theorem For the mutual information I(X; E+D|T), we have the following bound:

1
H(X;E<K“>|F>SW > Y KL(Pxjpucsn pl Py r)

E(EK+1) B(K+1)

Z Z ZKL th\E<K+1) F||PXt|E(K+1) r)

E(K+l) E(K+1) t=1

(84)

According to Lemma 19 in (Honorio, 2011), Py, puc+n) p 18 (£, 2)-Lipschitz continuous for VEE+D) ¢ g,
Then by Theorem 7 in (Honorio, [2011]), we have

= ~ 2
KL (PXt\E”‘“),I‘HPXt\E<K+1>,F> < 2)0s — 05l < Elogd’
where the second inequality follows by the definition of § and I' € [fﬁogd, ﬁogd]p *P in Theorem }4.11.

Putting back to gives

(85)
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1 m
I(X; EEFIID) < — 86
( i) |EI? XE:%:Z 2logd d?logd (86)

t=1
Define EE+D .= {(4,5) € SE+1) ;£ j}. By applying Theorem 1 in (Ghoshal & Honorio, [2017), we get

P{s(K+1) # Sv(K+1)} ZP{E(KJrl) # E(K+1)}
- I(X; EE+D|T) 4 log 2
- H(E(K+1)|1")
~1_ #ggd +10g2
B log €]
_ Tiogd T 1082
%logQ
4dn 2
(log2)(d3logd) d’

H Proof of Lemmas for Theorem [4.7]

H.1 Proof of Lemmas for Uniform Convergence of Sample Information Matrices in Auxiliary Tasks

H.1.1 Proof of Lemma

Proof. The (j 1)t element of the difference matrix Q™ () — Q(6) can be written as an i.i.d. sum of the form

Zj = 3 Zk D Z](l Z, where each Z( Z is zero-mean and bounded (in particular, \Z | < 4). By the

Azuma-Hoeffding’s bound (Hoeffding], 1994) for any indices j,l = 1,...,d and for any ¢ > O we have

K n
1 1 k e2nK
P[(zjl)2252]:p[|?§:ﬁ§: Zi) > €] <2exp( - > (87)
k=1 i=1

By the Courant-Fischer variational representation (Horn & Johnsonl 2012)),

Amin(Qss) = Hrann 2 Qss
z2

= min {x Q5sr + 2" (Qss — Qfs)x}

lzll2=

<y"QYsy +y" (Qss — QYs)y,

where y € R? is a unit-norm minimal eigenvector of QY. Therefore, we have

Amin(Q{S'VS) > Amin(QSS) - H|QSS - Q]SVSH|2 > Chin — H|QSS - Q]SVSH|2

Observe that
1/2

d d
llQ8s = Qsslll, < { DD (Zw)”
j=11=1
Setting ¢2 = 6%/d? in and applying the union bound over the d? index pairs (j,1) then yields

ki + 210g(d)) (88)

_ )
Pl - Qssll, > 8 < 2exp (217

So, we have the first concentration inequality in Lemma |H.1.1

2

P[Amin(Qé\fS) < Ciin — 0] < 2exp < K + 210g(d)) (89)

n
32d2
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Now, for the second concentration inequality about maximum eigenvalue of the sample covariance matrix,
with the same reasoning from the Courant-Fischer variational representation (Horn & Johnsonl 2012), we
have, for 1 <k < K,

K K
1 k: T T 1 (k:) (k)T
max X = max v E[l— X X v
; \r  Jolla= [K]; v (X0 ]
L1~ ), )
T k k
_ BRSSO )
lolla=1 (K;n; (@) ")
Tl $ x® x0T - LSS 0
ol Bl Y XX 1= 30 -3 al @) e
k=1 k=1 i=1
Lyl L) ()
T k k
Z’U/ (EZE z\r( 1\7«) )

k k
E\)T( (,\)T) )u,

where u € R? is a unit-norm maximal eigenvector of Zk D xik\)r( Ek\)r) Therefore, we have

k=1 =1
LS ) Ty o7 LN LN 0 0y pr L N )y (0T
< Amax (Bl DX (X)) D+ ul (52 D0 =D ail ()T —El Y X (X) Du
k=1 k=1 i=1 k=1

K n K
<D + (izlzx(k) (:L,(k) )T_E[iz (k)( (k)) )
S max K n - i, \r \i\r K \7“ \T

k=1 i=1 k=1 2

1 (k) (k) T . ..
The difference matrix & "p Ly (g \r) E[L Y5, X ( \) ] can be written as an i.i.d. sum

of the form Yj; = + Zk:l IS Y7(z ), where each YJ( ) is zero-mean and bounded (in particular, |Y \ <4).
By the Azuma-Hoeffding’s bound (Hoeffding, (1994), for any indices j,l = 1,...,d and for any € > 0, we have

1 &1 e2nK
P(Y;)2 > =P[|l=) = Yy, >e|l <2 - ) 90
(0507 2= Pl 5205 vl 24 < exp( ) (90)
Observe that
K 1 K T d 1/2
k k
‘ > - Z Tl Y XPE) < | >0’
Pl k=1 2 j=11=1

Setting €2 = 6%/d? in (90), and applying the union bound over the d? index pairs (j,1) then yields

Pl s St - o x

So we have

5*nK
2 > 51 < 2exp ( Tyl + 2log(d)>

max l (k) (k) > Dyax + 6] < 2exp
’I’L Z; \r Ty \r —

nK
4 BTy + 210g(d)>

as stated in the lemma. O
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H.1.2 Proof of Lemma [D.3

We begin the proof of this lemma by decomposing the sample matrix as the sum Qch(QgVS)fl =T +T5+
T3 + T4, where we define

T = Qsesl(@Ys) ' — (Qss) ], (91a)
Ty = [QY.g — Qses](Qss) ', (91b)
Ty = [QY.5 — Qses][(Q%s) ' — (@ss) '], (91c)
Ty = Qses(Qss) - (91d)

The fourth term is controlled by the incoherence assumption in Assumption [4.1

T4l oo = ’HQSCS(QSS)_lm <1l-—o.

o0

If we can show that |7}, < § for the remaining indices i = 1,2, 3, then by our four-term decomposition and

the triangle inequality, the sample version can satisfy the desired bound . To deal with these remaining
terms, we make use of the following lemma:

Lemma H.1. For any 6 > 0, and constants B, By, Bs, the following bounds hold

_ §?nK
P[|@%:s — Qsesll, = 0] < 2exp (B;; +log(d) + 1og<p>) : (92a)
B 2
PlJ|Q3s - Qssll.. 81 < 2exp (-5 + 210u(a) ). (920)
_ _ 2
IP’[’H(Q?SY1 —(Qss) 1‘”00 > 0] < 4exp (—31? + By 10g(d)> . (92c)

See Section for the proof of these claims.
Control of the first term. For the first term, we re-factorize it as

T = Qscs(@ss)il@ss - QSNS](QQIs)_l-

Then,

T3l < | @ses(@ss) ™| _IllQss — @l [ @) 7|
< (1- )| @ss — Qs v @) )

where we have used the incoherence assumption in Assumption Using the bound from Lemma

(D.2) with § = Chin/2, we have )H(Qgs)_ll , = [Amin(Qgs)]_l < % with probability greater than

1 — 2exp(—BnkK/d?> + 2log(d)). Next, applying the bound (92b) with § = ¢/v/d, we conclude that with
probability greater than 1 — 2exp(—BnKc?/d® + 2log(d)), we have

|@ss — QS5 < c¢/Vd.

By choosing the constant ¢ > 0 sufficiently small, we are guaranteed that

2

nKc
PlITill, = /6] < 2exp (B0 + log(@) )
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Control of the second term. To bound T5, we first write

172l < V| (@ss) ™| NlQ%-s - @ses
I

I
d _
< Qi - @ses

Then apply the bound (92a) with § = %% to conclude that
nkK
P[||T2(| o > /6] < 2exp d3 + log(p)

Control of the third term. Finally, in order to bound the third term T3, we apply the bounds (92a)) and
(192¢), both with 6 = \/a/6 and use the fact that logd < logp to conclude that

PlITall. > /6] < tesp (~B +106(s)) (93)

Putting together the four pieces, we conclude that

P [[ltsts ™| 2 1-ar2) =0 (exw (-85 +1050) )

H.2 Proof of Lemmas for Proposition [D.4]

H.2.1 Proof of Lemma [D.5]
Proof. By definition of W (see (43])), we have

W loe = IVE0; {273 oo = Il ZW(’“) (05 {27 1) oo (94)

which can be decompose into two parts as follows
GESS N )Hoo

K

1 0 n 0 n 1 0 n

<= {w“ﬂ (0427 }) = TEO @D {27} O) oo + 1| 12 D V@D HTHD) . (95)
k=1 k=1

Yl Y2

We then bound the two terms ||Y1]|« and [|Y2|lo respectively.

Bounding ||Y2|oo
Note that the conditional expectation of Y5 given { AR} ig

E[{A®)] = B[ iw(k)(éw; (O AW
k=1

Z D {x11)A®)]
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where the second to last line comes from the fact that the expected gradient at the true parameter of each

task is 0. This property can also be checked by expanding the expression of Y5. Each entry of Y5, denoted by

Y5, for 1 <u < p—1, can be expressed as a sum of random variables Zi(,];):

Vou= L3 L0 (96)
, K n 4 RV

where

n(k k k k
eXp(Ztev\r egt)xg,t)) — exp(— EtGV\r 575)1‘5 t))

gk o, ( k) (k
eXp(ZtEV\r it)ggl(,t))—l—exp(— Ztev\rg() (t))

B al) — Py XD = 1z ®) ] + Poon (X = —1128) 1},

209 — 5 () _

i,u iU

We have the conditional expectation IE[ZZ(];) |A()] = 0 by applying another law of total expectation (Weiss

et al.| 2005) with the inner conditional expectation of Xr(k) given X{]:) and the outer total expectation being

the marginal joint expectation of X{f). So we have the total expectation

E[z*)] = EE[Zz*)|A®]] = E[0] = 0. (97)

7,U

(k)

, since all samples are either —1 or +1, it is easy to see that Z(k < 2.
7, u

Also, from the expression of Z

On the other hand, note that the total nK samples {Xi(k)}lgign,lgkg i are conditionally independent given
{AFRE (AP are the latent random variables). We can then apply the Hoeffding’s Inequality with
latent conditional independence (LCI), Corollary 1 in [Ke & Honorio| (2019) by conditioning on the latent
random variables {AF}HE | to get

K n 2
B2 -0 2 d <o (- o) (98)

for any 0 > 0. Substituting Y5 ,, in and by the symmetry of it (resulting from the symmetry of the binary
random variables {Xi(k)hgign@gkg}(), we have

P[|Y2,u‘ > 6] = P[YQ,u > o or l/Q,u < _6]
< P[Yau > 0]+ P[Ya, < —0]
= 2P[Ys,, > 6]

nKZZ (k) =yl

k=11:=1
52

SnK)‘

§2exp<—

After that, applying union bound over the indices u of Y5 yields
2

P[||Y2]|oc > 0] < 2exp ( e

+ log p) . (99)

Bounding ||Y1|leo

Note that Y7 = VE(G\T) L k 1 Vé(k)(ﬁ( )) using the shorthand notations in . We can bound [|Y3]|co
by writing
Yilloo = [[Y1 = E(Y1) + E(Y1) o0

<Y1 = E(Y1)lloo + [IE(Y1)]loo- (100)
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Using Assumption by setting § = %, we have

2

P(IE(Y)) e > 6) < 2exp (— K +1ogp) | (101)

Notice that for Y7, we can also decompose it into a sum of random variables Z; /(k)

1 K 1 < (k)
1(k
Viw= 2 > ” Zzu , (102)

where

5 (k) (k)

Z/(k) (k){ (k) exp(ZteV\r artfrz(‘,t ) —exp(— ZteV\r rtLy ¢ )
> (k RO

exp(ZtEV\r Ttxz(',t)) + exp(— Zte\/\r Ttxz t )

k k k
w2 ) — g X, = 12 ] + P[X, = —1]{V ]

Here P5 denotes the conditional probability of the random variable associated with node r taking on —1 or
+1 given a (p — 1)-dimensional data vector values acg \)w supposing the true parameter is 9_\7.. In this way, we

can write each entry of Y7 — E(Y}) as

Vi - E(Yi) = — i Ly z® gl i YA
9 El K n 7,U K n ‘ i,u

k=1 i=1 k=1 =1
K n
S i S L)
- K n T, T,U
k=1 i=1
Then we define random variable
Y = 2 B2 (109
forall 1<i<n,1<k<K,1<u<p-—1. We have
E[H.Y) = B[z - E[Z()]) = ElZ\)) - E[Z()] = 0. (104)

)

Since the expected value E[Z:(Zf)] is deterministic, the randomness of Hz(ku)

7/(F)

zu7

|HZUZ)\ < 6. By using LCI Hoeffding’s inequality (Ke & Honorio, |2019) again, we get

Z Z H® —0) > 5] < exp ( 72(:[(). (105)

k=11i=1

takes on the same pattern as

so they are conditionally independent given {A®)}X. In addition, Hz(’;) is bounded in the sense that

Using the same reasoning (symmetry and union bound) in proving the bound for ||Y3] o, we get
52

2nK

Next, putting the terms ||E[Y1]|loo and ||Y7 — E[Y1]||c together, we have

P[|Y1 ~ EYi]lloc = 0] < 2exp ( — +logp). (106)

P(|[Y1]loo > 20) =1 = P(|[Y1][cc < 20)

< 1=P(EY1][leo + Y1 — E[Y1][leo < 26)
<S1=P(EM]llc <6 and [[Y1 - E[Y1][lec < 9)
=P(|EM][loc =26 or Y1 —E[1][lec =)
SP(EM oo = 6) + Y1 — E[V][loc > 6).
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By the same token, we get

P(|[WN o > 30) < ]P’(||Y2||oo > 6) + P([E[Y1][loc > 0) + [Y1 — E[Y3]|lec = 9) (107)
2
( ) +2exp ( - 72nK+1ogp) (108)
(5
< .
< Gexp ( 720K ) (109)
Finally, setting 3§ = 4(5‘7_)‘(1), we obtain
2—« « a?)\?
P — 1 < - nK +1 11
( 5 > 4> GeXP( c@_ap it Og(p)>, (110)
for some fixed constant ¢ as in Lemma [D.5] O

H.2.2 Proof of Lemma

Proof. We first show that the remainder term RV satisfies the bound ||RY ||so < Dimax||0s — 0s||2. Then the
result of Lemma namely [|0s — Og||2 <

N
||R ||C>O < Dmax
A - C2,

min

Ad

as claimed in Lemma [D.6]

Focusing on element R;V for some index j € {1,...,p}, we have

RY = —[V20(09); ) — V*0(6; %) T (6 - 0)
K n
= 0> inGe00) (e 0)1(0 - ),
k=1 =1

for some point §U) = ujé + (1 — ;)0 and p; € [0,1]. Then we set g(t) = % by noting that

:M—‘

n(0,2) = g(xr >,cy, Oree). By the chain rule and another application of the mean value theorem, we then
have

K n
1 1 T (k k T . — k k T « _
?Z ﬁzg/ 9/(]) 20 ))(IE )) [9(1) _ 9]{1,5])(:105 )) 16— a)}
k=1 i=1
K n
1 1 T (k k T JATZARN _
?ZEZ{QI ((0'D) 2¢ )) ( )}{[0(] 9] xEJ)(I( )) 10— a)},
k=1 i=1
where 6’) is another point on the line joining § and 6. Setting a ={J'((¢ 3))T (k)) (k)} and b(k)

{[6Y) — 6] xl(»’j) (chk)) [0 — 0]}, and treating a, b both as nK-dimensional vectors, we have

1
N
= § j§ b < — allolIb]11-
| ‘ a; nKHaH H Hl

k=11i=1

A calculation shows that ||a||~ < 1, and

L~ w7
7”b”1 = KZMJ {nz_:xz (z;") ¢[00
K K n
1 1 k k T ~ _
e 3ol {1 322SR s -0

k:
~ DmaxHGS - 95“27
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where the second line uses the fact that és’c =fge = 0. Therefore, we have

”RNHOO < Dmaxnés - éSH%

H.2.3 Proof of Lemma [D.7]

Proof. Following the method of proof in |[Ravikumar et al. (2010) which was also previously used in another
context (Rothman et al. [2008), we define the function G : R? — R by

G(us) := U85 +us; {XT ) — €05 {XTH) + M85 +uslls — [8s]l)- (111)

It can be seen that 4 = és — O minimizes G. Moreover, G(0) = 0 by construction; therefore, we must have
G(@) < 0. Note that G is convex. Suppose we show for some radius B > 0, and for v € R? with ||Juls = B, we
have G(u) > 0,. we then claim that ||4||2 < B. In fact, if @ lay outside the ball of radius B, then the convex
combination ¢4 + (1 — ¢)(0) would lie on the boundary of the ball, for an appropriately chosen ¢ € (0,1). By
convexity,

G(ti+ (1 —1)(0)) < tG (i) + (1 — )G(0) < 0,

which contradicts the assumed strict positivity of G on the boundary. It thus suffices to establish strict
positivity of G on the boundary of the ball with radius B = MAVd, where M > 0 is a parameter to
be chosen later in the proof. Let u € R? be an arbitrary vector with ||ulls = B. Recalling the notation
W = —Ve(0; {X7}), by a Taylor series expansion of the log likelihood component of G, we have

G(u) = (W) u+ul [V2(Bs + au; {X7 1 )]u + X (|05 + uslh — [10s]1)

for some « € [0, 1]. For the first term, we have the bound

(WD Tul < [WE oollulls < W lloo Vdlulla < (A \f) (112)
since ||[W oo < )jT" by assumption. For the last term, applying triangle inequality yields

Ma([16s + uslls = 118s]l) = =Anllus]:-
Since |Jug|y < vd|us||2, we have
_ _ 2
M0 +usl = 10s]1) = =AnVdllus|ls = =M (VdA,)". (113)

Finally, turning to the middle Hessian term, we have

0" = Ain (V05 + au); {X7}EY)
> min Anin(V20(0s + aug); {X715)

a€l0,1]
R QU (k) (k)T
k k
= min Awin |52 > > 0@ 05 + aug)e3(wl3)

k=1 i=1

By a Taylor series expansion of n(xgk); -), we have, for some ag € [0, a], a lower bound of ¢*:

1 K n
k k k)T
min Amln Ik E E ( ) 5752(335752)

0,1)
o€l k=1 i=1

T
+ag' (@) 3" (Bre + agur)z))el (ke e (5 )
teS\r
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> Amin(QYs) — max a max
a€l0,1]  ap€0,a]

k=1 i=1 2
> Amin(QY5) — max L S li ’( *) (gg + )T (.k))( Ta k) (k))T
min(@ss) — max || 20 i:1g i, (05 + aus) xg ) (ugz; o)z, (g 2
> Clpin — Max iil Y ’(x(k)(é + aug) ! )) ((u x(k)>)x(k)(m(k))T
= Cmin = THEX, Kk:1”z:1g i \US S S 87)0,8\Li 8
A(a) 2

It remains to control the spectral norm of the matrix A(«a), for o € [0,1]. For any fixed « € [0,1], and y € R
with [|y|l2 = 1, we have

K n
151 *) (g T (k) OISTMEO NG
W A@) = 2> - >0 (o) (Bs + aus) 213 [(us. 2 (). )]
k=1 =1
< L5 LS|y (w820 + ) a8) s #0000
=x n i,r i,5 » i, S 1,57

Note that

g (xg? (Bs + aug) xEé)’ <1, and

Moreover, we have

n

11 ) 02 | LS LS w0y
It ; - ; (zig:y) < I ; o 2 z; (@ s) 2 < Diax
by assumption.We then obtain
max [ A(@)lly < Dmax MAnd < Crnin /2,
assuming that A, < ZM%HW' Under this condition, we have shown that
¢ = Amin (V205 + au); {X7}5)) > Chuin/2. (114)
Finally, combining the three terms in G(u), we conclude that
Glus) > (nv/d)? {iM + %W - M} ,

which is strictly positive for M = 5/Ciin. Therefore, as long as

< Cmin _ C?nin
"7 2MDyaxd  10Dyaxd’

A

we are guaranteed that

lislla < MAVd = 05. AnVd.
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I Proof of Lemmas for Theorem 4.9

.1 Proof of Lemmas for Uniform Convergence of Sample Information Matrices in Novel Task

1.1.1 Proof of Lemma

Proof. The (j,1)" clement of the difference matrix QX +1 (8Y Ty — QU+ (91 can be written as an

(k1) _ nFHD (K 41)
- (K+1) Zz 1 jll

particular, |Z§{fi+1)| < 4) By the Azuma-Hoeffding’s bound (Hoeffdlng, 1994), for any indices j,l =1,...,d
and for any € > 0, we have

Lid. sum of the form Z; ; where each 7 (K + ) is zero-mean and bounded (in

P (E+1)

2, (K+1)
(K+1)y2 21 _ 1 (K+1) en
Pl(Z;; 7)Y > €% = P[\m >z =] <2exp <—32> : (115)
i=1
By the Courant-Fischer variational representation (Horn & Johnsonl 2012)),
(K+1 K+1
Amin( S(K+1))5(K+l)) = HnﬂunleQEg(Kﬂ))S(Kﬂ)x
2
T H(K+1) S(K+1 K+1)
= Hﬂcl\znl{x QS(K+1)S(K+1)$ +x (Qg(K+3)S(K+1) Qfg(K+1)S(K+1)) }
K+1) T/ AK+1 (K+1
Qg(K+1)S(K+1)y +y (Q(S(K+1))S(K+1) QS(K+1))S(K+1) )y
where y € R? is a unit-norm minimal eigenvector of Q(SI((; Jrll)) g(x+1)- Therefore, we have
K+1 ~(K+1 S(K+1 K+1
min( é‘(K+3)S(K+1)) 2 Amin(Qfg(K+1))5(K+1)) - "’Qé‘(K+3)S(K+1) - ng(K+1))S(K+1) ’2
K+1 ~A(K+1 K+1
= C(I(mn ) - ‘ Qfg(K+l))S(K+1) - Q,(S‘(K+1))S(K+1) ‘2'
Observe that
(K+1) kS ( ) v
S(K+1 (K+1) K+1
H‘QS(KH)S(KH) Qgix+i) gx+1) ’ = Z Z
j=11=1
Setting €2 = 62/d? in (115 and applying the union bound over the d? index pairs (j,1) then yields
2, (K+1)
~(K+1 K+1) o“n
HD[H)QEq(KH))S(KH) Qg(K+1)S(K+1) ‘ 2 5} < 2exp (_32612 + 210g(d)) (116)
So, we have the first concentration inequality in Lemma [F.2:
2, (K+1)
K+1 K+1 o n
P[Amin(Qé’(K+l))5’(K+l)) < CI(Ilin - 6] < 2exp <_32d2 + 210g(d)) . (117)

This proves the first part of the lemma. For the second concentration inequality about maximum eigenvalue
of the sample covariance matrix, with the same reasoning from the Courant-Fischer variational representation
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(Horn & Johnson| 2012)), we have,

T T
A ELX SV (X)) = max o BIXED (X 0D)

llv]l2=1
] n(E+D)
_ T (K+1)  (K+1)\T
= max {v* ey ; s (@is 1))
" 1 n(E+1D)
K+1 K+1 K+1 K+1
T EIXGT XS ) - g Y el @)
=1
n(K+1)
po X s s
1 n(K+1)
K+1 K+1 (K+1 K+1
Ful EXEVEE) ) - s S e ) e,
=1

nl (K ()T, Therefore, we have

where u € R? is a unit-norm maximal eigenvector of —z5 > 1, Tig i

n(K+1)
(K+1) (K+1)
max (K+1) Z x 15‘ ) )

P (K+1)

K41 K+ T K+1), (K+1 K+1 K+1)\ T
< Amax BXGVXET) D+l (g D0 wls TP e - EXSXEY) Du
i=1
n(K+1) .

K+1), (K+1 K41 K41
< DU + || ey D wils (s )T — BV
i=1

2

n(K+1) T
The difference matrix (K+1) S I;H Efgjrl)( Eg"’l))T—E[XéKH)(XéKH)) | can be written as an i.i.d. sum

<K+1>
of the form Y(K+1) = n(K+1) > Y-(K—H), where each Yj(lﬁ.“) is zero-mean and bounded (in particular,

gl
|Yj(llf+1 | < 4). By the Azuma—Hoeffding’s bound (Hoeffding;, (1994), for any indices j,{ = 1,...,d and for any

€ > 0, we have

(K+1)
1" 2 (K+1)
PV )2 > ) =Pl ey D Vi e <2exp (_ 32 ) ' (118)
n i=1
Observe that
1 n(K+D T d d 1/2
K+1), (K+1 K+1 K+1 K+1)
T Z ZE,S+ )(xz(',S+ ))T —E[Xé + )(Xé + )) ] < ZZ Y( +1)
=1 j=11=1

2
Setting €2 = 6%/d? in (118 and applying the union bound over the d? index pairs (j,) then yields

K+
K+1), (K+1 K+1 K+1)\ T
ey Z w5 @) B (x| > a)

2
52n(K+1)
< 2exp <_32dQ + 210g(d)>
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So we have the second part of the lemma

1 n(E+1D) (A1), (KA (1) 52n(K+1)
P[Amax[m > aiy g ™)T)] = DU + 6] < 2exp o +2los(d)

i=1

O
1.1.2  Proof of Lemma[E3]
Proof. Decomposing the sample matrix as the sum Qféﬁ;?{ﬁaSmH) (Q(Sif;fl)w(xﬂ))_l = Tl(KH) + T2(K+1) +
TPSKH) + T4(K+1), where we define
T(KH) : Qféf(zt}r)l)] S(K+1)[(Qg((l<++11)s(f(+l)) (QSISIﬁUS(KH))_l]’ (119a)
T = Qg s — @f;iiiiﬁcsw]@gffif&sw)‘1, (119D)
T(KH) [Qfﬁii)lﬁ e+ T Qfﬁiﬂﬁ s(K+1>][(Q(I<{;jl))s<K+1)) (Q([((z:rll)s(wrl))_l}, (119¢)
T = Qg @Y ) (1199)
The fourth term is controlled by the incoherence assumption (A2)
H’TA‘(KH)HLO = H‘Qg:ﬂﬁcsmﬂ)(Q(sif;+11)>s<f<+1>)7lwoo <1-alfh,
(KH H) < O‘(I;H) for the remaining indices ¢ = 1,2,3, then by our four term

decomposition and the trlangle inequality, the sample version satisfies the deswed bound ( . For the
remaining three terms, the following lemma is useful in the proof:

Lemma I.1. For any § > 0, and constants B, By, Bs, the following bounds hold,

HHQ(?(:L)? e Q(K+1) Q(é((j;il)] et ||| > (5} < 2exp (—BE n;K+1) +2log(d)) (120a)
HHQSI&QS(KH) QU e 2 6} < 2exp (—B”‘;m n 2log(d)) (120D)
P [[| @D suen) = QU o) || 2 0] < 4ex0 (—Bl (K;)éz + B, log(d)> (120c)
See Section for the proof of these claims.
Control of the first term. Turning to the first term, we re-factorize it as
T = QU s (QUSED o) 1QUS) sty = QU s J QYD )
Then, we can upper bound H‘Tl(KH) HLO b
H‘Qfé((;t}r)lﬁcsmH) (Q5§;:1>5<K+1> ‘H ‘HQ Iffirll)sww Qslf;jﬂswﬂ) ‘ m Q(If’:“l”s(w’”)_lmoo

Q(K+1) . Q(K+1)
S(K+1) G(K+1) S(K+1) §(K+1)

G
@ e[

where we have used the incoherence assumption in Assumption Usmg the bound ( in Lemma

. K
with 6 = Chyin/2, we have ’H(Q(S(;JEB)S(KH)

K+1 -
H Amin( Q(S(;H))S(KH))] < ﬁ with probablhty greater
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than 1 — 2exp(—BnE+Y /d? + 2log(d)). Next, applying the bound (T20b) with § = ¢/v/d, we conclude that
with probability greater than 1 — 2 exp(— Bn(K+1) c2/d® + 210g(d)) we have

’HQ(KJrl) Q (K+1) ’OO < c/\/ﬁ

S(K+1) G(K+1) s<K+1>s(K+1>

By choosing the constant ¢ > 0 sufficiently small, we are guaranteed that

(K+1) 02

P[H‘Tl(K“)HLO > oK+ /6] < 2exp (—B”d3 + 1og(d)> .

Control of the second term. To bound T(K+1) we first write
(K+1) (K+1) K+1),8 S(K+1),8
H‘T ‘H < \fm QS(K+1>S(K+1> ’H H’Q[suwn CS(K+1) _Q[S(K+1>]CS(K+1> ’OO
< Vd (K+1),8 (K+1),8
=0 Q[S<K+1>]Cs<x+1> Q[S<K+1> esuct |||
min

Then we apply the bound (120a]) with 6 = a(?l) C\'/né“ to conclude that

(K+1)
IP’[H’TQ(KH)HLO > o+ /6] < 2exp (—Bnd3 + 10g(d)> .

Control of the third term. We set § = \/a®X+1) /6 in the bounds (120a]) and (120c) to conclude that

(K+1) (K+1) ntE+D
]P’[‘HT?) )HOO > o /6] < 4dexp B pE + log(d)

Putting together, we conclude that

—1 n(KJ"l)
H‘Q e st QU i) HLO 51— a9~ 0 <exp (—B -+ log(d))>

1.2 Proof of Lemmas for Proposition
1.2.1 Proof of Lemma [E5]

Proof. Each entry of W&+ denoted by WISKH), for 1 < u < |S(r)| < d, can be expressed as a sum of
independent random variables ZZ-(5+1):

n(K+1)

1
(K+1) _ (K+1)
W T pE+) > Zin

i=1

where

A(K+1) (K41) AEK+1) (K+1)
Z(K+1) _ K+1 { (K+1) eXp(ZteS\r Ot Ty ) —exp(— ZteS\re Lit )
(A0 A(K+1) (K+1 K+1) (K+1

eXp(Zth\r ‘9£t )xz(',t )) + exp(— ZteS\r Qit )xz(',t ))

xgﬁf“){ngf*” = Byueen [XFD = 1] + Byoern (X = —12 (5T,

}

Notice that the conditional expectation given the values of A+ has mean zero:

]E[Zi(?“l) |AKHD) = 0.
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Then by law of total expectation (Weiss et al., [2005) we have
K+1 K+1
E[Z{ ] = E[E[Z{; T |AU) = E[o] = 0. (121)

(See the same logic in the proof in Section [H.2.1). Also, since all the samples are either —1 or +1, we have
|Zi(§+1)\ < 2. Then by Azuma-Hoeffding’s inequality (Hoeffding), |1994)), we have, for any § > 0,

(K+1) 52
B > 8] < 2exp(~

Q(E+1) \(K+1)
I2—a(KFD)

_ (K41 K+1 K+1)\2(y (K+1)2
2 — o )|W(K+1)| - al )] < 2exp (@ FED) (D) (K+D)
AEFD) 4 - 128(2 — a(K+1))?

Setting § = we obtain

Applying a union bound over the indices u of W+ yields

— o(K+1) (K+1) (K+1)\2(\ (K+1))2
2%||I/Vv(}<+l)”oo > a ] < 2ex — (a ) ()\ 2) n(K+l) + logd s
AU 128(2 — a(K+1)
which converges to zero at rate exp(—c(AETD)2n(E+D)Y as long as AE+D > 16(2;(?(:;“)) \/ mEILy O

1.2.2 Proof of Lemma

Proof. Similar to the proof for Lemma [D.6. We first show that the remainder term R5*+1) satisfies the bound
K+1) | A(K+1 F(K+1 A(K+1 S(K+1
|[REFD| o < DY )||9f9(;+1)) - 9;(};:1)) |2. Then the result of Lemma namely ||9§,(;+1)) - 059(;“)) II2 <

ﬁ\/ﬁ)\(fﬂrl)’ can be used to conclude that

min

||R(K+1)||oo _ 25Dr(n[§il)
MNE+D) = C(K+1)2

min

)\(K'H)d,

as claimed in Lemma Focusing on element R;KH) for some index j € {1,...,]S,|}, we have

R(K+1)

J
= [V (T, ey TR - gD (G Ly T IS T QD — 6
1 n(K+1)
= 2 T8I 008 — 0g)

i=1

for some point 9;K+1)(j) = ,ujéngH) +(1- uj)égKH) with p; € [0,1]. Setting g(t) = % by noting that
that 7(0s, ) = g(xr 3 e\, Orewe). By the chain rule and another application of the mean value theorem, we
write

K+

(k+1) _ 1 (E+D) G (K+1)\, (K+1)q fp(B+1)(G) _ p(k+1)T
R; T pE+D PORUA(CE ) wis Dwig HIOs T =057
=1

T A _
e () YD — g

)

where H;SKH)('“

is another point on the line joining égKH) and 5%K+1).
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N T . _ T T ~ _
Setting af* ™ .= {g/((057) 22V} and oY = ([0 — 0] 25TV (25 [0s — 0s]),

% 2

P (K+1)

(k+1), 1 (K+1), (K+1) 1 (K+1 Kol
R = oty | 3 ) < oS e o
We have ||a®E*V ||, < 1, and
) . ) D) .
_a(EED)  a(K+1) (1), (K43 T | a1 s
(K+1) oy = 110 —bs ] LKD) Z zs (T ) l0s -0 ]
i=1
sk+1) 2k D ] U (k1) (k40T | ak+1)  a(k41
= 05 = 05 {nZwE,s* (@s™) }wg )
i=1
AK (K
< DUSEVN0 Y — 053
A +1 S(K+1
= DSOS — 056 13,
where the last line uses the fact that HA[(;((:PU]F = é[(é((ii)n]c = 0 Therefore, we have

A(K+1 A(K+1
IREFD | < DEFDGUHY — 6y |12

1.2.3 Proof of Lemma [E.7]

Proof. As in the proof for Lemma @, following the method of proof in Ravikumar et al. (2010) which was
also previously used in another context (Rothman et al.,[2008), we define the function G+ : R? — R by

G(K+1)(’LLS(K+1)) = f(K—i_l)(ég((;:l)) + US(K+1))
(K41 (K41 (K41
— (DGR ) + A (I0SEE, + usocen | — 1056 ). (122)
It can be seen that fgr1) = ég({;fl)) — O_Egi(;fl)) minimizes G+, Moreover, G+ (0) = 0 by construction;

therefore, we must have G+ (Ggx+1)) < 0. Note also that G+ is convex. Suppose that we show for
some radius B > 0, and for v € R? with ||ul|s = B, we have GE+Y (4) > 0. We then claim that |4 < B.
Indeed, if 4 lay outside the ball of radius B, then the convex combination ¢4 + (1 — ¢)(0) would lie on the
boundary of the ball, for an appropriately chosen ¢ € (0,1). By convexity,

GED (1 + (1 —1)(0)) < tGEFD(a) + (1 — )GEFD(0) < 0,

contradicting the assumed strict positivity of G+ on the boundary. It thus suffices to establish strict
positivity of G+D on the boundary of the ball with radius B = MAF+)\/d, where M > 0 is a parameter
to be chosen later in the proof. Let u € R? be an arbitrary vector with ||ul|2 = B. Recalling the notation
WEHD = fVE(KH)(égKH); {x?gﬂ)}(K“)), by a Taylor series expansion of the log likelihood component
of GFE+D) | we have

K+ H(K+ (K+1)
G(u) = —(W g((K 11)))Tu + uT[ng(GéU( 11)) + augx+1); {:{EL,S ' }(K 1))]u
)‘( 1)(||6_(9(K+11)) Ug(K+1) ||1 ||6.(§I((K+11))||1)

for some « € [0,1]. For the first term, we have the bound

M
K+1 K+1 K+1
(WEEED T ul < IWEEED scllull < WD lsoVdllull: < WDV,
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since ||W(K+1)||oo g AK+D)

(K1) +— by assumption. For the last term, applying triangle inequality yields
(K +1 (K +1
A0 +usacen [ = 10560 1) = =A% flugacn .

Since ||’LLS(K+1)H1 é \/E||U3(K+1) ||2, we have

_ _ 2
AEED(9EEY +ugoern |l — 10550 1) = —AEDVd|uguesn |2 = —M(VAXETD)",

Finally, turning to the middle Hessian term, we have
" (K P (K1)
0" = Amin( VOG0 + o Duguern: {2751 0D))

> in Amin(v2£(é(s~l<(x++l1)) + CV(K+1)US(K+1>; {f{?mﬂ) }(K+1)))

T alE+Del0,1] S
) n(K+D)
_ , (K+1), g(K+1) | (K+1) (K+1) ( (K+1) \T
_amfll)lg[oﬂAmin (E+1) > @ g + o Usran )2 g (T garcin)
’ i=1
. . K+1
By a Taylor series expansion of r](xg * ); -), we have, for some aq € [0, aK+1)],
p(K+1)
* . (K+1), g(K+1)\_(K+1)  (K+1) T
¢ Za<f<£][1l>1][el[o1]Amin n(E+1) Z n(z; ’93<K+1>)xi,s<K+1>(xz‘,suwl))
' i=1
_ T
K+1) 1 (K+1) (K+1) (K+1) (K+1), T (K+1) (K+1) (K+1)
+al )g Lir E (07 +a0u7‘t)xi,t L (”s(KH)%’S(Kﬂ)) i,s<K+1)( i,s<z<+1>)
teSE+D\p
p(K+1)
(K+1). 5 (K+1) (K+1) T
ZAmin[n(KJrl) E , n(xi 798(K+1>)xi,5(1<+1)($i7s(K+1))
i=1
n(K+1)
5 T (k+1)
- K+, [ L 1 (K+1) 5(K+1)
+a(KJrrrll)H€1[0 i Awin (K+1) Z g\ @i Ogiern +aousucn) T gicin
’ i=1
(K+1)( T (K+1) ) (K+1) ( (K+1) )T
T Ugrtn) Ty gre+1) )Ty g +1) Ty g(rt1)
K+1)
> A ( —  max
= mln(QS(K+1)S(K+1)) a1 2[0,1]
K+
_ T T
1o (K+1) p(K+1) (K+1) T (K+1) (K+1) (K+1)
W(E+1) E g (xi,r (95(K+1) + apugsn) $i7S(K+1))(us(K+1>xi7S(K+1))171-7S(K+1)(xi,S(KH))
i=1
2
Z Cmin - max
aK+1)g[0,1]
P (K+D)
_ T T
2 : 1 (K41)  p(K+1) (K+1) (K+1) (K+1) (K+1)
n(E+D) g (xi,r (95(K+1) +O‘O'ng(i‘“'l)) xi,S(K+1))(<uS(K+1>axivs(K+1>>)xi,5<K+1)($i75(K+1))
i=1

2

It remains to control the spectral norm of the matrix , denoted as A(a®+1) here, for a5+1) € [0, 1]. For
any fixed oK+ € [0,1], and y € R with ||y||z = 1, we have

(K+1)
" S(K+1 K+1 K+1 2
W, AETD)y) = —s 37 g7 (565 + aougoenn ) oo, a5 )il S )
=1
1 n(E+1) )
~(K+1 K+1 K-+1
< 2 |9 (05 + aousoen )| lusoesn oS ) eS80 ol
=1
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K
(9(5<K++1) + OZO'LLS(K+1)>’ <1, and

[{usoesn, §S<K+1)>| < ugacan |1 < Vd|lugsn |l = MAEFD G,

Moreover, we have

(KD , ) (KD

(K+1) (K+1) (K+1) \T K41

(K1) Z (<xi7s(K+1)7y>) < n(K+1) Z xi7s(K+1>(33i,s<K+1>) Dfndx )
i=1 i=1

2

by assumption. We then obtain

max H‘A (aKF1) H‘ < DUEFD ppAEFD d<C(K+1)/27

atHE0,1] min

(K oK+
assuming that AK+1) < ey
Under this condition, we have shown that
* K+1 (K+1
q" = Anin(V 25(959(;“)) —|—04(K+1)usu<+1))) > oK+ )/2.

min
Finally, combining the three terms in G**Y (u), we conclude that

1 cE+D
GE D (ugaern) = WEFDVA)? § —2M + =20 —M* — M o,

which is strictly positive for M = 5/C(K+1). So as long as

min

K+1 K+1
)\(K+1) < C(r(anr : (C(I(nlnjL ))

oM DE g 10pED

we are guaranteed that

[tigresn [l < MAEHD VG = AE+D /g

C(K-H)
J  Proof of Lemmas Used in Proving Other Lemmas
J.1 Proof of Lemma [H.I

Proof. By the definition of the {,-matrix norm, and using Z; defined in Section we have

P[|||@8s — Qses

HOO > 4] = maXZ|Z]l| > 4]
les

<pP[ > |Zu| > 4],

les

where the final inequality uses a union bound and the fact that |S¢| < p.
Z\ 1| = 6] <P[Fk € 5||Z;| > 6/d]

kes
< dP[|Z;i| = é/d].
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We then obtain (92a)) by setting e = §/d in the Hoeffding bound (87):

P[[|Q§es — Qses

|, = 0] < pdP[|Z;| > 6/d]

e2nK
< 2exp ( e + log(d) + log(p)>
Analogously, for , we have
Pll|Qss — Qsslll. = 3] = P[max > 2l = 9]
keS
<dP[ > | Zj| > 4]
les

< dP[3l € S||Zu| > 5/d

< d*P(|Z;1| > 6/d)
2

< 2exp ( 83;;2( + 210g(d))
To prove (92¢), we can write
@)™ = @so)7"||_ = || @s9)" 1@ss — @8sl@3) |

< \[‘H Qss) [Qss — QN(QYs)” ’H
< V| @ss) 7 l1@ss - @2l o)™

2

< 2 ass - @l @t

Using the bound in the proof of Lemma we get

el o) ], 2 o) < 2o (G +2108(@)

and

_ 52
PlllQ3s - Qssl, 2 /vl < 2exp (150 +2100(d)).

So finally we have

nk§?

P (‘H(Qgs)il - (Q_SS)_IHLO > 5) < 4exp (-B B

+ By log(d)>
where By, By are some positive constants.

J.2  Proof of Lemma [l

Proof. By the definition of the £,,-matrix norm, and using the Zj(.lK'H) defined in Section |[.1.1, we have

(K+1),8 (K+1),8 ‘ S5l =P a Z(K+1) > 5
H‘Q[S“{“)J CSUEFD Q[S<K“> S| o = ] [je([S}Eﬁ%]CmS) kes‘(ZK+1>| 7 = ]
<dP[ Y |z =4,

leS(K+1)
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where the final inequality uses a union bound and the fact that [([SE+TD]° N )| < d.

Pl S 1Z 2 0] <Pk e SEHD||ZEY | > 6/d)
leS(K+1)

< P[3k € |SEHV)|| 2| > 6/d]
< [SEDP) 2| > 6/d]
< dP(|Z; V) > §/d].

We then obtain (120a)) by setting e = §/d in the Hoeffding’s bound ([115)),

K+1) K+1) K+1
H‘Q(S(ZJH)] ¢ G(K+1) Q(5(:+1)] ¢ G(K+1) ‘ > 5] < dQPHZJ(‘l * )| 2 5/d}

22, (K+1)
< 2exp <_32dQ + 210g(d)> .
Analogously for (120b]), we have
H‘Q(KH Q(K-H)

S(E+1) G(K+1) SUK+1) G(K+1)

| zel=P[ max Y 12TV 2]

e (K41
Jes keSE+D)

<ap[ > 1z =]
keS(K+1)

< dP[3k € SEHV )| 2| > 5/d]
< d*Pl|ZV| > 6/d)

52n(K+1)
< 2exp (32d2 + 210g(d)> .

To prove (120c), we have

K+1 -l A+ -1
[[Crutymmsty —(ngsw» [

o0
(K+1) (K+1) (K+1) (K+1) -1
- H‘ QS(K+1)S(K+1)) [QS(K+1)S(K+1) QS(K+1>S(K+1)KQS(KH)S(KH)) ‘H
(K+1) S(K+1) (K+1) (K+1) -1
< \f‘H S(K+1)S(K+1)) [QS(K+1)S(K+1) QS(K+1)S(K+1)](Q5(K+1)S<K+1) H‘

(K+1) (K+1)
= K+1 QS(K+1>S<K+1> QS<K+1>S<K+1>

IIlll'l

)

2

(K+1) -1
@S s ||

where the sub-multiplicative property [|AB||, < || All5]|B]ll, for matrices A, B is used for the last line, and
Assumption is also applied.Then using the bound (116)) in the proof of Lemma @, we get

QUeH . 9 2, (K+1)
H‘ Qg(x+1 g(x+1) ‘HQ > W] < 2exp <_32d2 +210g(d)> ;

and
2, (K+1)

5
‘HQ(K+1 Q(K+1) ‘2 > 5/\/ﬁ] < 2exp (—32(13 + 210g(d)>

S(K+1) §(K+1) S(K+1) §(K+1)

So we have

1 _ 1 n(K+1)(52
P (@Y soen) = @R ) | 2 0) < dem (B ¢ Baton(@)

where Bj, By are some positive constants.
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