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A Summary of Shorthand Notations Used in the Appendix

In this appendix, we simplify the notation Q̄r as Q̄, and (Q̄r)SrSr
as Q̄SS , since the reference node r is

used throughout the analysis and should be understood implicitly. We follow the same practice for similar
shorthand notations in most part of the appendix to lighten the notations a little bit. This should not cause
confusion since the elements in S are pairs of nodes (two dimensional), while those in Sr are individual nodes
(one dimensional). Simlarly, we also write Q̄(K+1)

r as Q̄(K+1), and (Q̄(K+1)
r )

S(K+1)
r S(K+1)

r
as Q̄(K+1)

S(K+1)S(K+1) .
Finally, we write Q̄(K+1)

([S(K+1)]cflS)S(K+1) as Q̄(K+1),S
[S(K+1)]cS(K+1) .

B Details of Experiments

B.1 Synthetic Experiments

Given fixed values of p and d, we simulate sparse random graphs by first randomly choosing whether an
edge exists or not with a probability of d

p≠1 . At the end we check if the maximum neighborhood size d
is satisfied; if not, we redo the generating process until we get a random graph with maximum degree
d. For the non-zero edge values, we use mixed couplings (Ravikumar et al., 2010), that is, each existent
edge (edge in the true support union in our case) has value ◊̄st = ±0.5 with equal probability. Then, to
generate the random parameter of each task: for 1 Æ k Æ K + 1 and (s, t) œ S, we set ◊̄(k)

st = ◊̄stX
(k)
st with

X(k)
st

i.i.d.≥ Bernoulli(0.9). For the samples, we use Gibbs sampling (Casella & George, 1992) with 10 iterations
to generate each p-dimensional data sample for the binary node values according to the specific distributions
of Ising models (see (7)) using our simulated parameter values. Under each setting of the (p, C) pair, we
run the experiment 100 times to record whether or not it successfully recovers the neighborhood sets, and
take the average of these 100 repetitions to calculate the success rate P̂[N̂ (r) = N (r)]. The regularization
parameter ⁄ in the improper estimation (10) is set to be a constant factor of

Ò
log p
nK as suggested by Theorem

4.7. Here the constant factor is set to 1 by default, which works well. With ⁄(K+1) a constant factor (i.e.,
1) of

Ò
log d

n(K+1) in the restricted estimation (12), we then estimate the novel task parameter 100 times for
n(K+1) = C Õd3 log(d) with di�erent values for C Õ, where the success rate for the novel task include sign
information, i.e., it is calculated as P̂[N̂ (K+1)

± (r) = N (K+1)
± (r)] over the 100 repetitions.

More on Comparison. For learning the support union, we tried multi-task method of (Guo et al., 2015).
We then joined all supports from each task. We show the results on Figure 3. Compared with our Figure 1 in
our paper, we observe that multi-task learning fails to estimate the support union, with such few samples per
task.

Figure 3: The success rates (over 100 repetitions) support union recovery vs. the choice of C for multi-task
learning (Guo et al., 2015) as a comparison to our method in Figure 1.

For estimating the novel task parameter, we evaluated the single-task method of (Ravikumar et al., 2010) on
the novel task data only, using the same number of samples as in our experiments, and produced a resulting
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plot here in Figure 4(left). Compared with our Figure 2 in our paper, we can see that given such few samples,
the alternative method cannot succeed at learning, giving near zero success rates. We also tried pooling all
data from auxiliary tasks together with the novel task, and using the single-task method of (Ravikumar et al.,
2010). We report the results on Figure 4(right). While this method might be reasonably good for estimating
the support union, it fails for estimating the correct signs and support of the novel task. This is due to the
fact that the support of the novel task is a subset of the support union.

Figure 4: The success rates (over 100 repetitions) for signed edge recovery for novel task vs. the choice C Õ for
the single-task method of (Ravikumar et al., 2010) using novel task data only (left) and using all data from
auxiliary tasks and novel task (right). Both serve as a comparison to our method in Figure 2.

B.2 Real-world Data Experiments

For the real-world data experiment, the sample sizes for each individual task range from 300 to 4374, with an
average size of around 1553 and standard deviation 914. We have an independent set with 68259 samples to
retrieve the “true” support union as well as the “true” novel task support. When running the algorithm for
support union recovery, we used 40 tasks. We used task 41 as the novel task. The constant factor in ⁄ was
tuned to be 2 to get reasonably sparse graphs d = 19 compared to the number of nodes p = 157.

More on Comparison. We validated our results with comparison methods. For learning the support
union, we tried multi-task method of (Guo et al., 2015). We then joined all supports from each task. This
method obtained a precision 0.3916, recall 0.9938 and F1-score 0.5619, versus our F1-score of 0.8869. For the
novel task, we tried the single-task method of (Ravikumar et al., 2010). This method obtained a precision
0.8170, recall 0.3472 and F1-score 0.4873, versus our F1-score of 0.6228. We also tried pooling all data from
auxiliary tasks together with the novel task, and using the method of (Ravikumar et al., 2010). This method
obtained a precision 0.2402, recall 0.9889 and F1-score 0.3865, versus our F1-score of 0.6228.

Interpretation of Support Union. In the data of Functional Connectomes for our real data experiments,
we found that the support union shows some nice inter and intra symmetry between the left and right side
of the brain. For inter symmetry, Broadmann areas in the left side of the brain interact similarly as the
Broadmann areas in the right side of the brain (see Figure 5). For intra symmetry: One Broadmann area in
the left is most likely to interact with its corresponding Broadmann area in the right (see Figure 6). This
shows that estimating the support union is important as it reduces the search space for the novel task graph
a lot in the real-world case.

C Illustrative Example

To verify that Assumption 4.3 can be satisfied for a large family of distributions, we provide an illustrative
example to demonstrate its viability. The infinity norm in the assumption can be written explicitly as

ÎE�≥P

#
EX≥◊̄+�

#
X\r(EX≥◊̄[Xr|X\r] ≠ EX≥◊̄+�[Xr|X\r])|�

$$
ÎŒ. (31)
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Figure 5: Inter symmetry

Figure 6: Intra symmetry

For a simple undirected graph with 3 nodes and 3 potential edges, we let the latent underlying graph have
the parameter vector ◊̄ = (◊̄12, ◊̄13, ◊̄23) = (1, 1, 1). See Figure 7 for a graph illustration. Then we let the
randomness in the parameter for the observable graphs to have the following pattern

� =

Y
_]

_[

(a ≠ 1, a ≠ 1, ≠1), with probability 1
3

(a ≠ 1, ≠1, a ≠ 1), with probability 1
3

(≠1, a ≠ 1, a ≠ 1), with probability 1
3 ,

resulting in potentially 3 kinds of graphs, each with 2 edges with the same edge value a (see Figure 8).

Figure 7: Latent common graph with deterministic edge vector ◊̄ = (◊̄12, ◊̄13, ◊̄23) = (1, 1, 1).
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Figure 8: Observable graphs with edge vector ◊̄ + �, each with 2 edges with the same value a.

Next, we need to find a value of a that can fulfill our condition. Notice that the condition involves the
expectation over both � and X, and thus we need to find out explicitly the probabilities of all combinations
of the 3 binary states under each of the three graph settings.

In the following, we use P(x1, x2, x3) to denote P(X1 = x1, X2 = x2, X3 = x3) for simplicity. Now consider
node r = 1. In particular we will need the conditional distribution of X1 given X2 and X3. For the first
setting (the graph on the left in Figure 8), we have the joint distributions

P(1, 1, 1) = P(≠1, ≠1, ≠1) = e2a

Z
,

P(1, 1, ≠1) = P(1, ≠1, 1) = P(≠1, 1, ≠1) = P(≠1, ≠1, 1) = 1
Z

,

P(1, ≠1, ≠1) = P(≠1, 1, 1) = e≠2a

Z
,

where
Z = 1

4 + 2(e2ae≠2a)

is the normalizing term. The joint distribution of X2 and X3 can be found to be

PX2,X3(1, 1) = PX2,X3(≠1, ≠1) = e2a + e≠2a

Z
,

PX2,X3(1, ≠1) = PX2,X3(≠1, 1) = 2
Z

.

Then we can derive that the conditional expectation of X1 given X2 and X3 are

E[X1|X2 = 1, X3 = 1] = e2a ≠ e≠2a

e2a + e≠2a
,

E[X1|X2 = 1, X3 = ≠1] = E[X1|X2 = ≠1, X3 = 1] = 0,

E[X1|X2 = ≠1, X3 = ≠1] = e≠2a ≠ e2a

e2a + e≠2a
.

For the other 3 graph structures (middle and right in Figure 8), we can derive the probabilities and expectations
similarly. Also note that for node r = 1, these two graph structures are symmetric to X1. Finally with all
these values we have, plugging them into the infinity norm in (31) and setting it to be small (e.g., 0 in this
illustrative example), we have that a ¥ 1.75. Since our setting design is symmetric for all X1, X2, X3, the
same result hold when r = 2 or 3.
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D Proof of Theorem 4.7

D.1 Primal-dual Witness for Recovery of the Latent Common Graph

The main technique we use throughout the theoretical proof is the primal-dual witness approach (Wainwright,
2009; Ravikumar et al., 2010) that relies on the Karush-Kuhn Tucker conditions in optimization and
concentration inequalities in learning theory. Essentially, it constructs a primal-dual pair, i.e., a primal
solution ◊̂ œ Rp≠1 and an associated sub-gradient vector ẑ œ Rp≠1 as a dual solution so that the sub-gradient
optimality conditions in the convex program (10) are satisfied. We show that under the conditions on
(n, p, d, K) stated in the theorem, the primal-dual pair (◊̂, ẑ) can be constructed to act as a witness that
guarantees the method correctly recovers the structure of the graph parametrized by the true common
parameter ◊̄.

For the convex program (10), the zero sub-gradient optimality condition (Rockafellar, 2015) has the form of

Ò¸(◊̂) + ⁄ẑ = 0, (32)

where the dual (the sub-gradient vector) ẑ œ Rp≠1 must satisfy

sign(ẑrt) = sign(◊̂rt) if ◊̂rt ”= 0 and |ẑrt| Æ 1 otherwise. (33)

By convexity, a pair (◊̂, ẑ) œ Rp≠1 ◊ Rp≠1 is a primal-dual optimal solution to the convex program if and
only if the two conditions (32) and (33) are satisfied. Furthermore, this optimal primal-dual pair correctly
specifies the signed neighborhood of node r if and only if

sign(ẑrt) = sign(◊̄rt) ’(r, t) œ S, (34)

and
◊̂rt = 0 ’(r, t) œ Sc. (35)

The ¸1-regularized logistic regression problem (10) is convex. The following lemma provides su�cient
conditions for it to be strictly convex and hence the uniqueness of the optimal solution, as well as the shared
sparsity among optimal solutions.
Lemma D.1 (A generalization of Lemma 1 in Ravikumar et al. (2010)). Suppose that there exists an optimal
primal solution ◊̂ with associated optimal dual vector ẑ such that ÎẑScÎŒ < 1. Then any optimal primal
solution ◊̃ must have ◊̃Sc = 0. Moreover, if the Hessian sub-matrix [Ò2¸(◊̂; {Xn

1 }K
1 )]SS is strictly positive

definite for the loss function defined in the paper, then ◊̂ is the unique optimal solution.

Proof. The proof follows exactly the same logic as that for Lemma 1 in Ravikumar et al. (2010), except that
the loss function in our case is one more generalized — the average of the losses in each task, which does
not change the property of strict convexity when it is present. To see this, note that the loss function in
Ravikumar et al. (2010) corresponds to ¸(k)(◊) we defined in the paper, the loss for each task in our case.

Based on Lemma D.1, we construct a primal-dual witness pair (◊̂, ẑ) with the following steps.

Step 1. We set ◊̂S as the minimizer of the ¸1-penalized likelihood

◊̂S = arg min
(◊̂S ,0)

{¸(◊; {Xn
1 }K

1 ) + ⁄Î◊SÎ1}, (36)

and set ẑS = sign(◊̂S).

Step 2. We set ◊̂Sc = 0 so that condition (35) holds.

Step 3. We obtain ẑSc from (32) by substituting in the values of ◊̂S and ẑS . At this point, our construction
satisfies conditions (32) and (35).
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Step 4. We need to show that the stated scaling of (n, p, d, K) in Theorem 4.7 implies that, with high
probability, the remaining conditions (33) and (34) are satisfied.

The last step is most challenging and is the goal of the majority of our proof. Our analysis guarantees that
ÎẑScÎŒ < 1 with high probability. Another condition to be satisfied is the positive definiteness stated in
Lemma D.1, for which by Assumptions 4.1 and 4.2, we prove that the sub-matrix of the sample Fisher
information matrix is strictly positive definite with high probability, so that the primal solution ◊̂ is guaranteed
to be unique. The next two subsections contribute exactly to these two parts of the proof.

D.2 Uniform Convergence of Sample Information Matrices in Auxiliary Tasks

To satisfy the condition of positive definiteness in Lemma D.1 and to lay the foundation for the analysis
under the assumptions of the sample information matrix of having bounded eigenvalues in the next subsection
D.3, we aim to prove here that if the dependency and incoherence conditions from Assumptions 4.1 and
4.2 are imposed on the population Fisher information matrix then under the specified scaling of (n, p, d, K),
analogous bounds hold for the sample Fisher information matrix with probability converging to one.

Recall the definition of the population Fisher information matrix (dropping the subscript r) from Section
4.1.1, we have (see (14)):

Q̄ = 1
K

Kÿ

k=1
E[÷(X(k); ◊̄)X(k)

\r (X(k)
\r )

T
], (37)

and its sample counterpart, i.e., the sample Fisher information matrix is defined as

QN := Ê[≠Ò2¸(◊̄\r; {Xn
1 }K

1 )] = 1
K

Kÿ

k=1

1
n

nÿ

i=1
÷(x(k)

i ; ◊̄)x(k)
i,\r(x(k)

i,\r)
T

. (38)

Here the E in Q̄ is the population expectation under the joint distribution of the randomness in the model
parameters {�(k)}K

k=1 and the random samples {Xn
1 }K

1 for the K auxiliary tasks, while Ê in QN denotes the
empirical expectation, and the variance function is defined in (14).

D.2.1 Uniform Convergence for Dependence Assumption

For the dependence assumption, we show that the eigenvalue bounds in Assumptions 4.1 hold with high
probability for sample Fisher information matrix and sample covariance matrices in the following two lemmas:
Lemma D.2. Suppose that Assumption 4.1 holds for the population Fisher information matrix Q̄ and the
pooled population covariance matrix E( 1

K

qK
k=1 X(k)(X(k))T ). For any ” > 0 and some fixed constants A

and B, we have

P[�min(QN
SS) Æ Cmin ≠ ”] Æ 2 exp

3
≠A

”2nK

d2 + B log(d)
4

, (39)

and

P
C

�max

C
1
K

Kÿ

k=1

1
n

nÿ

i=1
x(k)

i,\r(x(k)
i,\r)

T
D

Ø Dmax ≠ ”

D
Æ 2 exp

3
≠A

”2nK

d2 + B log(d)
4

. (40)

The proof of this lemma is in Section H.1.1.

D.2.2 Uniform Convergence for Incoherence Assumption

The following lemma is the analog for the incoherence assumption in Assumption 4.2 showing that the scaling
of (n, p, d, K) given in Theorem 4.7 guarantees that population incoherence implies sample incoherence.
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Lemma D.3. If the pooled population covariance satisfies
------Q̄ScS(Q̄SS)≠1------

Œ Æ 1 ≠ – with parameter
– œ (0, 1], then the sample matrix satisfies an analogous version, with high probability in the sense that

P
Ë---

---
---QN

ScS(QN
SS)≠1---

---
---
Œ

Ø 1 ≠ –

2

È
Æ exp

3
≠B

nK

d3 + log(p)
4

, (41)

for some fixed constant B.

The proof of this lemma is in Section H.1.2.

D.3 Analysis under Assumptions of Sample Information Matrices in Auxiliary Tasks

With the incoherence and dependence conditions guaranteed with high probability (proved in Section D.2),
we then begin to establish model selection consistency when assumptions are imposed directly on the sample
Fisher information matrix QN as opposed to Q̄. Recalling the definition (38) of the sample Fisher information
matrix QN , we define the "good event"

M({Xn
1 }K

1 ) := {{Xn
1 }K

1 œ {≠1, +1}K◊n◊p|QN satisfies Assumptions 4.1 and 4.2}. (42)

As in the statement of Theorem 4.7, the quantities L and c1 refer to constants independent of (n, p, d, K).
With this notation, we have the following:
Proposition D.4 (Fixed design for auxiliary tasks). If the event M({Xn

1 }K
1 ) holds, the sample size per task

and number of tasks satisfy nK > Ld2 log p, and the regularization parameter is chosen such that ⁄ Ø —
Ò

log p
nK

for some fixed constant — > 0, then for recovering the true common parameter vector ◊̄ of the latent common
graph, with probability at least 1 ≠ 6 exp(≠c2

⁄nK) æ 1 for some constant c > 0, the following properties hold,

(a) For each node r œ V , the ¸1-regularized logistic regression for the improper estimation of ◊̄ has a unique
solution, and so uniquely specifies a signed neighborhood N̂±(r).

(b) For each r œ V , the estimated signed neighborhood N̂±(r) correctly excludes all edges not in the true
support union. Moreover, it correctly includes all edges with |◊̄rt| Ø 10

Cmin

Ô
d⁄, along with their correct sign.

Intuitively, this result guarantees that if the sample Fisher information matrix is "good", then the probability
of success for the recovery of the underlying latent graph parametrized by the true common parameter ◊̄
converges to 1 at the specified rate. The following subsection is devoted to the proof of Proposition D.4.

D.3.1 Key Technical Results in the Proof of Proposition D.4

We follow the steps of primal-dual witness as stated at the beginning of Section D. Since the key is to
guarantee the strict dual feasibility ÎẑScÎŒ < 1 with high probability in Step 4, we make a series of deliberate
constructions to find out the explicit expression of ÎẑScÎŒ and try to bound it.

Starting from the stationarity condition in (32): Ò¸(◊̂; {Xn
1 }K

1 ) + ⁄ẑ = 0, adding to both sides

W N := ≠Ò¸(◊̄; {Xn
1 }K

1 ), (43)

we get
Ò¸(◊̂; {Xn

1 }K
1 ) ≠ Ò¸(◊̄; {Xn

1 }K
1 ) = W N ≠ ⁄ẑ. (44)

Note that W N is just a shorthand notation for the (p ≠ 1)-dimensional score function. Then, applying the
mean-value theorem coordinate-wise to the expansion (44) gives

Ò2¸(◊̄; {Xn
1 }K

1 )[◊̂ ≠ ◊̄] = W N ≠ ⁄ẑ + RN , (45)

where the remainder term takes the form

RN
j = ≠[Ò2¸(◊(j); {Xn

1 }K
1 ) ≠ Ò2¸(◊̄; {Xn

1 }K
1 )]Tj (◊̂ ≠ ◊̄), (46)
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with ◊(j) being a parameter vector on the line between ◊̄ and ◊̂, and with [·]Tj denoting the j-th row of the
matrix.

Recalling our shorthand notation QN = ≠Ò2¸(◊̄; {Xn
1 }K

1 ) and the fact that we have set ◊̂Sc = 0 in our
primal-dual construction: I

≠QN
ScS [◊̂S ≠ ◊̄S ] = W N

Sc ≠ ⁄ẑSc + RN
Sc

≠QN
SS [◊̂S ≠ ◊̄S ] = W N

S ≠ ⁄ẑS + RN
S

. (47)

Since the matrix QN
SS is invertible by assumption, it can be re-written as

QN
ScS(QN

SS)≠1[W N
S ≠ ⁄ẑS + RN

S ] = W N
Sc ≠ ⁄ẑSc + RN

Sc , (48)

by using the common parts ◊̂S ≠ ◊̄S in the equations. Rearranging yields:

ẑSc = 1
⁄

[W N
Sc + RN

Sc ] ≠ 1
⁄

QN
ScS(QN

SS)≠1[W N
S + RN

S ] + QN
ScS(QN

SS)≠1ẑS (49)

By the assumptions
------QN

ScS(QN
SS)≠1------

Œ Æ 1 ≠ –, and the fact that ÎẑSÎŒ = 1, we have

ÎẑScÎŒ Æ (1 ≠ –) + (2 ≠ –)
5

ÎRN ÎŒ
⁄

+ ÎW N ÎŒ
⁄

6
. (50)

Strict Dual Feasibility. Now, to satisfy the strict dual feasibility ÎẑScÎŒ < 1, we need to bound ÎW N ÎŒ
⁄

and ÎRN ÎŒ
⁄ . The following two lemmas show that ÎW N ÎŒ

⁄ decays to 0 at an exponential rate and ÎRN ÎŒ
can be bounded deterministically accordingly under some conditions.
Lemma D.5 (Decaying behavior of W N ). For the specified mutual incoherence parameter – œ (0, 1] and a
fixed constant c, we have

P
3

2 ≠ –

⁄
ÎW N ÎŒ >

–

4

4
Æ 6 exp

3
≠ –2⁄2

c(2 ≠ –)2 nK + log(p)
4

, (51)

which converges to 0 at rate exp(≠cÕ⁄2nK) for some fixed constant cÕ, as long as ⁄ Ø
Ô

2c(2≠–)
–

Ò
log p
nK .

The proof of this lemma is in Section H.2.1

Lemma D.6 (Control on the remainder term RN ). If ⁄d Æ C2
min

100Dmax
–

2≠– and ÎW N ÎŒ Æ ⁄
4 , then

ÎRN ÎŒ
⁄

Æ 25Dmax
C2

min
⁄d Æ –

4(2 ≠ –) . (52)

The proof of this lemma is in Section H.2.2.

Next, applying Lemmas D.5 and D.6, we have the strict dual feasibility as

ÎẑScÎŒ Æ (1 ≠ –) + –

4 + –

4 = 1 ≠ –

2 ,

with probability converging to one.

Correct Sign Recovery. For the statement of correct sign recovery in Proposition D.4, we show here that
our primal sub-vector ◊̂S defined by (36) satisfies sign consistency sign(◊̂S) = sign(◊̄S), which su�ces to show
that

Î◊̂S ≠ ◊̄SÎŒ Æ ◊̄min
2 ,

where ◊̄min := min(r,t)œS |◊̄rt|. The following lemma is used in the proof here, which establishes that the
sub-vector ◊̂S is an ¸2-consistent estimate of the true common sub-vector ◊̄S .
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Lemma D.7 (¸2-consistency of primal sub-vector). If ⁄d Æ C2
min

10Dmax
and ÎW N ÎŒ Æ ⁄

4 , then

Î◊̂S ≠ ◊̄SÎ2 Æ 5
Cmin

Ô
d⁄ (53)

The proof of this lemma is in Section H.2.3.

By Lemma D.7, we can write
2

◊̄min
Î◊̂S ≠ ◊̄SÎŒ Æ 2

◊̄min
Î◊̂S ≠ ◊̄SÎ2

Æ 2
◊̄min

5
Cmin

Ô
d⁄,

which is less than 1 as long as |◊̄rt| Ø 10
Cmin

Ô
d⁄.

Now it is clear that the uniform convergence of sample information matrices (in Section D.2) together with
Proposition D.4 (from Section D.3) completes the proof of Theorem 4.7.

E Proof of Theorem 4.8

For � = {�(k)}K
k=1, we know that there is a bijection between E and the set of all circular permutations

of nodes V = {1, . . . , p}. Thus |E|, i.e., the size of E , is the total number of circular permutations of p
elements, which is CE := (p ≠ 1)!/2. Since E is uniformly distributed on E , the entropy of E given � is
H(E|�) = log CE .

Consider a family of p-dimensional Ising models of size K with parameters {◊̄(k)}K
k=1 generated according to

Theorem 4.8. We use X := {X(k)
t }1ÆtÆn,1ÆkÆK to denote the collection of n samples from each of the K

tasks. Then for the mutual information I(X; E|�). We have the following bound:

I(X; E|�) Æ 1
C2

E

ÿ

E

ÿ

EÕ

KL(PX|E,�ÎPX|EÕ,�)

= 1
C2

E

ÿ

E

ÿ

EÕ

Kÿ

k=1

nÿ

t=1
KL(P

X(k)
t |E,�(k)ÎP

X(k)
t |EÕ,�(k))

(54)

According to Lemma 19 in (Honorio, 2011), P
X(k)

t |E,�(k) is (¸Œ, 2)-Lipschitz continuous for ’E œ E and
1 Æ k Æ K. Then by Theorem 7 in (Honorio, 2011), we have

KL
1

P
X(k)

t |E,�(k)

...P
X(k)

t |EÕ,�(k)

2
Æ 2Î◊̄(k) ≠ ◊̄Õ(k)Î1 Æ 2p/d3, (55)

where the second inequality follows by the definition of ◊̄(k) and �(k) œ [≠1/d4, 1/d4]p◊p in Theorem 4.8.
Putting (55) back to (54) gives

I(X; E|�) Æ 1
C2

E

ÿ

E

ÿ

EÕ

Kÿ

k=1

nÿ

t=1
2p/d3 = 2npK/d3 (56)

For any estimate Ŝ of S, define Ê = {(i, j) : (i, j) œ Ŝ, i ”= j}. Since E ™ S, we have P{S ”= Ŝ} Ø P{E ”= Ê}.
Then by applying Theorem 1 in (Ghoshal & Honorio, 2017), we get

P{S ”= Ŝ} Ø P{E ”= Ê}

Ø 1 ≠ I(X; S|�) + log 2
H(S|�)

Ø 1 ≠ 2npK/d3 + log 2
log[(p ≠ 1)!/2]
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For log((p ≠ 1)!), we have:

log((p ≠ 1)!) =
p≠1ÿ

i=1
log i

Ø
⁄ p≠1

1
log xdx

= (p ≠ 1) log(p ≠ 1) ≠ p + 2

= (p ≠ 1) log p + (p ≠ 1) log p ≠ 1
p

+ 2 ≠ p

Since
(p ≠ 1) log p ≠ 1

p
+ 2 = 2 ≠ (p ≠ 1) log

3
1 + 1

p ≠ 1

4
Ø 2 ≠ 1 > 0

we have
log((p ≠ 1)!) Ø (p ≠ 1) log p ≠ p = p log p ≠ p ≠ log p

log((p ≠ 1)!/2) = log((p ≠ 1)!) ≠ log 2 Ø p log p ≠ p ≠ log 2p

For p Ø 5, p log p ≠ p ≠ log 2p > 0, thus we have

P{S ”= Ŝ} Ø 1 ≠ npK/d3 + log 2
log[(p ≠ 1)!/2] Ø 1 ≠ 2npK/d3 + log 2

p log p ≠ p ≠ log 2p

which completes our proof of Theorem 4.8.

F Proof of Theorem 4.9

We have supposed that we have recovered the true support union S from our estimate for the true common
parameter, ◊̂. The constraint in (12) then enables us to convert the problem into one without the restriction
and with a parameter of dimension |Sr| with |Sr| Æ d for all r œ V , for we can combine the constraint
straightforward into the minimization problem. With some abuse of notation using S to denote Sr as before,
we can write

◊̂(K+1)
S = arg min

◊SœRp≠1

Ó
¸(K+1)(◊S ; {Xn(K+1)

1,S }(K+1)) + ⁄(K+1)Î◊SÎ1

Ô
, (57)

and ◊̂(K+1)
Sc = 0, since we know that

S(K+1) ™ S. (58)

This simplifies the problem to a great extent, and our proof henceforth takes on a similar pattern as the proof
without restriction in Ravikumar et al. (2010), but with reduced dimensions.

F.1 Primal-dual Witness for Graph Recovery in the Novel Task

We again use the primal-dual witness approach (Wainwright, 2009; Ravikumar et al., 2010) as stated in the
proof of Theorem 4.7. See Section D. With the loss function, parameter and data changed for only one task —
the novel task.

For the convex program (57), the zero sub-gradient optimality condition (Rockafellar, 2015) has the form of

Ò¸(K+1)(◊̂(K+1)
S ) + ⁄(K+1)ẑ(K+1)

S = 0, (59)

where the dual (the sub-gradient vector) ẑ(K+1)
S œ R|Sr| must satisfy

sign(ẑ(K+1)
rt ) = sign(◊̂(K+1)

rt ) if ◊̂rt ”= 0 and |ẑrt| Æ 1 otherwise. (60)
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By convexity, a pair (◊̂(K+1)
S , ẑ(K+1)

S ) œ R|Sr| ◊ R|Sr| is a primal-dual optimal solution to the convex program
if and only if the two conditions (59) and (60) are satisfied. Furthermore, this optimal primal-dual pair
correctly specifies the signed neighborhood of node r if and only if

sign(ẑ(K+1)
rt ) = sign(◊̄(K+1)

rt ) ’(r, t) œ S(K+1), (61)

and
◊̂(K+1)

rt = 0 ’(r, t) œ [S(K+1)]c. (62)

For this restricted problem, we have a similar lemma as D.1 to for the uniqueness of the solution and shared
sparsity.
Lemma F.1 (Lemma 1 in Ravikumar et al. (2010) with reduced dimensions). Suppose that there exists
an optimal primal solution ◊̂(K+1)

S with associated optimal dual vector ẑ(K+1)
S such that Îẑ(K+1)

[S(K+1)]cÎŒ < 1.
Then any optimal primal solution ◊̃(K+1)

S must have ◊̃(K+1)
[S(K+1)]c = 0. Moreover, if the Hessian sub-matrix

[Ò2¸(K+1)(◊̂(K+1)
S ; {Xn(K+1)

1,S }(K+1))]S(K+1)S(K+1) is strictly positive definite, then ◊̂(K+1)
S is the unique optimal

solution.

Proof. See proof of Lemma 1 in Ravikumar et al. (2010). The case in this convex program has a loss function
¸(K+1) carrying the same meaning as those in Ravikumar et al. (2010)), only with the dimensions of the
parameter vector and our samples reduced since they are restricted to the true support union S (see (58)).

Based on Lemma F.1, we construct a primal-dual witness pair (◊̂(K+1)
S , ẑ(K+1)

S ) with the following steps.

Step 1. We set ◊̂(K+1)
S(K+1) as the minimizer of the ¸1-penalized likelihood

◊̂S(K+1) = arg min
(◊̂

S(K+1) ,0)
{¸(◊S ; {Xn

1,S}K
1 ) + ⁄(K+1)Î◊S(K+1)Î1}, (63)

and set ẑ(K+1)
S(K+1) = sign(◊̂(K+1)

S(K+1)).

Step 2. We set ◊̂(K+1)
[S(K+1)]c = 0 so that condition (62) holds.

Step 3. We obtain ẑ(K+1)
[S(K+1)]c from (32) by substituting in the values of ◊̂(K+1)

S(K+1) and ẑ(K+1)
S(K+1) so that our

construction satisfies conditions (59) and (62).

Step 4. We need to show that the stated scaling of (n(K+1), d) in Theorem 4.7 implies that, with high
probability, the remaining conditions (60) and (61) are satisfied.

Our analysis in the last step guarantees that Îẑ(K+1)
[S(K+1)]cÎŒ < 1 with high probability. Another condition to

be satisfied is the positive definiteness stated in Lemma F.1, for which by Assumptions 4.5 and 4.6, we prove
that the sub-matrix of the sample Fisher information matrix is strictly positive definite with high probability,
so that the primal solution ◊̂(K+1)

S is guaranteed to be unique. The next two subsections contribute to these
two parts of the proof.

F.2 Uniform Convergence of Sample Information Matrices in Novel Task

To satisfy the condition of positive definiteness in Lemma F.1 and to prepare for the analysis under the
assumptions of the sample information matrix of having bounded eigenvalues in the next subsection F.3, we
will prove in this subsection that if the dependency and incoherence conditions from Assumptions 4.5 and
4.6 are imposed on the population Fisher information matrix then under the specified scaling of (n(K+1), d),
analogous bounds hold for the sample Fisher information matrix with probability converging to one.
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Recall the definition of the population Fisher information matrix (dropping the subscript r) from (4.1.2), we
have (see (20):

Q̄(K+1) = E[÷(X(K+1)
S ; ◊̄(K+1)

S )X(K+1)
S (X(K+1)

S )
T

]. (64)

and its sample counterpart, i.e., the sample Fisher information matrix is defined as

Q(K+1) := Ê[≠Ò2¸(K+1)(◊̄(K+1)
S ; {Xn

1,S}K
1 )] = 1

n(K+1)

n(K+1)ÿ

i=1
÷(x(K+1)

i,S ; ◊̄(K+1)
S )x(K+1)

i,S (x(K+1)
i,S )

T
. (65)

Here the E in Q̄(K+1) is the population expectation under the joint distribution of the randomness in the
model parameter �(K+1) and the random samples {Xn

1 }(K+1) for the the novel task. Ê in Q(K+1) denotes
the empirical expectation, and the variance function is defined in (14).

F.2.1 Uniform Convergence for Dependence Assumption

For the dependence assumption, we show that the eigenvalue bounds in Assumptions 4.5 hold with high
probability for sample Fisher information matrix and sample covariance matrices in the following two lemmas:
Lemma F.2. Suppose that Assumption 4.5 holds for the population Fisher information matrix Q̄(K+1) and
population covariance matrix E(X(K+1)

S (X((K+1)
S )

T
). For any ” > 0 and some fixed constants A and B, we

have
P

Ë
�min(Q(K+1)

S(K+1)S(K+1)) Æ C(K+1)
min ≠ ”

È
Æ 2 exp

3
≠A

”2n(K+1)

d2 + B log(d)
4

, (66)

and

P

S

U�max( 1
n(K+1)

n(K+1)ÿ

i=1
x(K+1)

i,S (x(K+1)
i,S )

T
) Ø D(K+1)

max ≠ ”

T

V Æ 2 exp
3

≠A
”2n(K+1)

d2 + B log(d)
4

(67)

The proof of this lemma is in Section I.1.1.

F.2.2 Uniform Convergence for Incoherence Assumption

The following lemma is the analog for the incoherence assumption in Assumption 4.2 showing that the scaling
of (n, p, d, K) given in Theorem 4.7 guarantees that population incoherence implies sample incoherence.

Lemma F.3. If the population covariance satisfies
---
---
---Q̄(K+1),S

[S(K+1)]cS(K+1)(Q̄
(K+1)
S(K+1)S(K+1))≠1

---
---
---
Œ

Æ 1 ≠ – with
parameter – œ (0, 1], then the sample matrix satisfies an analogous version, with high probability in the sense
that

P[
---
---
---Q(K+1),S

[S(K+1)]cS(K+1)(Q
(K+1)
S(K+1)S(K+1))

≠1---
---
---
Œ

Ø 1 ≠ –(K+1)/2] Æ exp
3

≠B
n(K+1)

d3 + log(d)
4

(68)

for some fixed constant B.

The proof of this lemma is in Section I.1.2.

F.3 Analysis under Assumptions of Sample Information Matrices

With the incoherence and dependence conditions guaranteed with high probability (proved in Section F.2),
we can begin to establish model selection consistency when assumptions are imposed directly on the sample
Fisher information matrix Q(K+1) as opposed to Q̄(K+1). Recalling the definition (20) of the sample Fisher
information matrix Q(K+1), we define a "good event" for the novel task

M(K+1)({Xn(K+1)

1,S }(K+1))

:= {{Xn(K+1)

1,S }(K+1) œ {≠1, +1}n(K+1)◊|Sr||Q(K+1) satisfies Assumptions 4.5 and 4.6}. (69)
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As in the statement of Theorem 4.7, the quantities L and c2 refer to constants independent of (n(K+1), p, d).
With this notation, we have the following proposition:
Proposition F.4 (Fixed design for novel task). Suppose we have recovered the true support union S. If
the event M(K+1)({Xn(K+1)

1,S }(K+1)) holds, the sample size satisfy n(K+1) > Ld2 log d, and the regularization

parameter is chosen such that ⁄ Ø 16 (2≠–)
–

Ò
log d

n(K+1) , then for recovering the true common parameter vector
◊̄(K+1) of the latent common graph, with probability at least 1 ≠ 2 exp(≠c⁄2n(K+1)) æ 1 for some constant
c > 0, the following properties hold,

(a) For each node r œ V , the ¸1-regularized logistic regression for estimating ◊̄(K+1)
S in the novel task,

given data {Xn(K+1)
1 }(K+1)has a unique solution ◊̂(K+1)

S , and so uniquely specifies a signed neighborhood
N̂ (K+1)

± (r) := {sign(◊̂(K+1)
ru )u|u œ V \ r, ◊̂(K+1)

ru ”= 0}

(b) For each r œ V , the estimated signed neighborhood N̂ (K+1)
± (r) correctly excludes all edges not in the true

neighborhood N (K+1)
± (r) := {sign(◊̄(K+1)

ru )u|u œ V \ r, ◊̄(K+1)
ru ”= 0}. Moreover, it correctly includes all edges

with |◊̄(K+1)
rt | Ø 10

C(K+1)
min

Ô
d⁄(K+1), along with their correct sign.

Loosely stated, this result guarantees that if the sample Fisher information matrix is "good", then the
probability of success for the recovery graph by converges to 1 at the specified rate. The following subsection
is devoted to the proof of Proposition F.4.

F.3.1 Key Technical Results in the Proof of Proposition F.4

We follow the steps of primal-dual witness as stated at the beginning of Section F. Since the key is to
guarantee the strict dual feasibility Îẑ(K+1),S

[S(K+1)]cÎŒ < 1 with high probability in Step 4, we first try to find
out the explicit expression of Îẑ(K+1),S

[S(K+1)]cÎŒ and try to bound it.

Starting from the stationarity condition in (32): Ò¸(◊̂(K+1)
S ) + ⁄ẑ(K+1)

S = 0, adding to both sides

W (K+1) := ≠Ò¸(K+1)(◊̄(K+1)
S ), (70)

noticing that E[W (K+1)] = 0, and skipping writing down the sample {Xn(K+1)

1,S }(K+1) in the loss function, we
get

Ò¸(K+1)(◊̂(K+1)
S ) ≠ Ò¸(K+1)(◊̄(K+1)

S ) = W (K+1) ≠ ⁄(K+1)ẑ(K+1)
S . (71)

Note that W (K+1) is just a shorthand notation for the |Sr|-dimensional score function. Then, applying the
mean-value theorem coordinate-wise to the expansion (71) gives

Ò2¸(K+1)(◊̄(K+1)
S )[◊̂(K+1)

S ≠ ◊̄(K+1)
S ] = W (K+1) ≠ ⁄(K+1)ẑ(K+1)

S + R(K+1), (72)

where the remainder term takes the form

R(K+1)
j = ≠[Ò2¸(K+1)(◊(K+1)j

S ) ≠ Ò2¸(K+1)(◊̄(K+1)
S )]Tj (◊̂(K+1)

S ≠ ◊̄(K+1)
S ), (73)

with ◊(K+1)j
S a parameter vector on the line between ◊̄(K+1)

S and ◊̂(K+1)
S , and with [·]Tj denoting the j-th row

of the matrix.

Recalling our shorthand notation Q(K+1) = ≠Ò2¸(K+1)(◊̄(K+1)
S ; {Xn(K+1)

1 }(K+1)) and the fact that we have
set ◊̂(K+1),S

[S(K+1)]c = 0 in our primal-dual construction:

I
≠Q(K+1)

[S(K+1)]cS(K+1) [◊̂S(K+1) ≠ ◊̄S(K+1) ] = W (K+1)
[S(K+1)]c ≠ ⁄(K+1)ẑ(K+1),S

[S(K+1)]c + R(K+1)
[S(K+1)]c

≠Q(K+1)
S(K+1)S(K+1) [◊̂S(K+1) ≠ ◊̄S(K+1) ] = W (K+1)

S(K+1) ≠ ⁄(K+1)ẑ(K+1)
S(K+1) + R(K+1)

S(K+1)

(74)
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Since the matrix Q(K+1)
S(K+1)S(K+1) is invertible by assumption, it can be re-written as

Q(K+1)
[S(K+1)]cS(K+1)(Q

(K+1)
S(K+1)S(K+1))≠1[W (K+1)

S(K+1) ≠ ⁄(K+1)ẑ(K+1)
S(K+1) + R(K+1)

S(K+1) ]

= W (K+1)
[S(K+1)]c ≠ ⁄(K+1)ẑ(K+1),S

[S(K+1)]c + R(K+1)
[S(K+1)]c ,

(75)

by using the common parts ◊̂(K+1)
S(K+1) ≠ ◊̄(K+1)

S(K+1) in the equations. Rearranging yields:

ẑ(K+1),S
[S(K+1)]c = 1

⁄(K+1) [W (K+1)
[S(K+1)]c + R(K+1)

[S(K+1)]c ] (76)

≠ 1
⁄(K+1) Q(K+1)

[S(K+1)]cS(K+1)(Q
(K+1)
S(K+1)S(K+1))≠1[W (K+1)

S(K+1) + R(K+1)
S(K+1) ] (77)

+ Q(K+1)
[S(K+1)]cS(K+1)(Q

(K+1)
S(K+1)S(K+1))≠1ẑ(K+1)

S(K+1) . (78)

By the assumptions
---
---
---Q(K+1)

[S(K+1)]cS(K+1)(Q
(K+1)
S(K+1)S(K+1))≠1

---
---
---
Œ

Æ 1 ≠ –(K+1), and using the fact that

Îẑ(K+1)
S(K+1)ÎŒ = 1, we have

Îẑ(K+1),S
[S(K+1)]cÎŒ Æ (1 ≠ –(K+1)) + (2 ≠ –(K+1))

5
ÎR(K+1)ÎŒ

⁄(K+1) + ÎW (K+1)ÎŒ

⁄(K+1)

6
. (79)

Strict Dual Feasibility. Now, to satisfy the strict dual feasibility Îẑ(K+1),S
[S(K+1)]cÎŒ < 1, we need to bound

ÎW (K+1)ÎŒ
⁄(K+1) and ÎR(K+1)ÎŒ

⁄(K+1) . The following two lemmas show that ÎW (K+1)ÎŒ
⁄(K+1) decays to 0 at an exponential

rate and ÎR(K+1)ÎŒ
⁄(K+1) can be bounded deterministically accordingly under some conditions.

Lemma F.5 (Decaying behavior of W (K+1)). For the specified mutual incoherence parameter –(K+1) œ (0, 1],
we have

P
5

2 ≠ –(K+1)

⁄n
ÎW (K+1)ÎŒ >

–(K+1)

4

6
Æ 2 exp

A
≠ (–(K+1))2(⁄(K+1))2

128(2 ≠ –(K+1))2 n(K+1) + log(d)
B

, (80)

which converges to 0 at rate exp(≠c(⁄(K+1))2
n(K+1)) for some constant c, as long as ⁄(K+1) Ø

16(2≠–(K+1))
–(K+1)

Ò
log(d)

n(K+1) .

The proof of this lemma is in Section I.2.1

Lemma F.6 (Control on the remainder term R(K+1)). If ⁄(K+1)d Æ (C(K+1)
min )2

100D(K+1)
max

–(K+1)

2≠–(K+1) and ÎW (K+1)ÎŒ Æ
⁄(K+1)

4 , then
ÎR(K+1)ÎŒ

⁄(K+1) Æ 25D(K+1)
max

(C(K+1)
min )

2 ⁄(K+1)d Æ –(K+1)

4(2 ≠ –(K+1))
(81)

The proof of this lemma is in Section I.2.2.

Next, applying Lemmas F.5 and F.6, we have the strict dual feasibility as

Îẑ(K+1),S
[S(K+1)]cÎŒ Æ (1 ≠ –(K+1)) + –(K+1)

4 + –(K+1)

4

= 1 ≠ –(K+1)

2 ,

with probability converging to one.
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Correct Sign Recovery. For the statement of correct sign recovery in Proposition F.4, we show here that
our primal sub-vector ◊̂(K+1)

S(K+1) defined by (63) satisfies sign consistency sign(◊̂(K+1)
S(K+1)) = sign(◊̄(K+1)

S(K+1)), which
su�ces to show that

Î◊̂(K+1)
S(K+1) ≠ ◊̄(K+1)

S(K+1)ÎŒ Æ ◊̄(K+1)
min

2 ,

where ◊̄(K+1)
min := min(r,t)œS(K+1) |◊̄(K+1)

rt |. The following lemma is used in the proof here, which establishes
that the sub-vector ◊̂(K+1)

S(K+1) is an ¸2-consistent estimate of the true common sub-vector ◊̄(K+1)
S(K+1) .

Lemma F.7 (¸2-consistency of primal sub-vector). If ⁄(K+1)d Æ C2
min

10D(K+1)
max

and ÎW (K+1)ÎŒ Æ ⁄(K+1)

4 , then

Î◊̂(K+1)
S(K+1) ≠ ◊̄(K+1)

S(K+1)Î2 Æ 5C(K+1)
min

Ô
d⁄(K+1) (82)

The proof of this lemma is in Section I.2.3.

By Lemma F.7, we can write

2
◊̄(K+1)

min
Î◊̂(K+1)

S(K+1) ≠ ◊̄(K+1)
S(K+1)ÎŒ Æ 2

◊̄(K+1)
min

Î◊̂(K+1)
S(K+1) ≠ ◊̄(K+1)

S(K+1)Î2

Æ 2
◊̄(K+1)

min

5
C(K+1)

min

Ô
d⁄(K+1),

which is less than 1 as long as |◊̄(K+1)
rt | Ø 10

C(K+1)
min

Ô
d⁄(K+1).

Then we can use the uniform convergence of sample information matrices (in Section F.2) and Proposition
F.4 (from Section F.3) to finish the proof of Theorem 4.9.

G Proof of Theorem 4.11

For simplicity, assume |S| = d. (A similar proof can be carried out with |S| = C1d and � œ
[≠ 1

C1d3 log d , 1
C1d3 log d ]p◊p instead.) According to the definition of E , we know that |E| = 2|S|/2 = 2d/2.

Since E(K+1) is uniformly distributed on E , the entropy of E(K+1) given � is

H(E(K+1)|�) = log |E| Ø d

2 log 2 (83)

Now let X := {Xt}1ÆtÆn be the samples from a p-dimensional Ising models with parameters ◊̄ generated
according to Theorem 4.11. For the mutual information I(X; E(K+1)|�), we have the following bound:

I(X; E(K+1)|�) Æ 1
|E|2

ÿ

E(K+1)

ÿ

Ẽ(K+1)

KL(PX|E(K+1),�ÎPX|Ẽ(K+1),�)

= 1
|E|2

ÿ

E(K+1)

ÿ

Ẽ(K+1)

nÿ

t=1
KL(PXt|E(K+1),�ÎPXt|Ẽ(K+1),�)

(84)

According to Lemma 19 in (Honorio, 2011), PXt|E(K+1),� is (¸Œ, 2)-Lipschitz continuous for ’E(K+1) œ E .
Then by Theorem 7 in (Honorio, 2011), we have

KL
1

PXt|E(K+1),�

...PXt|Ẽ(K+1),�

2
Æ 2Î◊̄S ≠ ◊̄Õ

SÎ1 Æ 2
d2 log d

, (85)

where the second inequality follows by the definition of ◊̄ and � œ [≠ 1
d3 log d , 1

d3 log d ]p◊p in Theorem 4.11.
Putting (85) back to (84) gives
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I(X; E(K+1)|�) Æ 1
|E|2

ÿ

E

ÿ

EÕ

nÿ

t=1

2
d2 log d

= 2n

d2 log d
(86)

Define Ê(K+1) := {(i, j) œ Ŝ(K+1) : i ”= j}. By applying Theorem 1 in (Ghoshal & Honorio, 2017), we get

P{S(K+1) ”= Ŝ(K+1)} ØP{E(K+1) ”= Ê(K+1)}

Ø1 ≠ I(X; E(K+1)|�) + log 2
H(E(K+1)|�)

Ø1 ≠
2n

d2 log d + log 2
log |E|

=1 ≠
2n

d2 log d + log 2
d
2 log 2

=1 ≠ 4n

(log 2)(d3 log d) ≠ 2
d

.

H Proof of Lemmas for Theorem 4.7

H.1 Proof of Lemmas for Uniform Convergence of Sample Information Matrices in Auxiliary Tasks

H.1.1 Proof of Lemma D.2

Proof. The (j, l)th element of the di�erence matrix QN (◊̄) ≠ Q̄(◊̄) can be written as an i.i.d. sum of the form
Zjl = 1

K

qK
k=1

1
n

qn
i=1 Z(k)

jl,i, where each Z(k)
jl,i is zero-mean and bounded (in particular, |Z(k)

jl,i| Æ 4). By the
Azuma-Hoe�ding’s bound (Hoe�ding, 1994), for any indices j, l = 1, . . . , d and for any Á > 0, we have

P[(Zjl)2 Ø Á2] = P
#
| 1
K

Kÿ

k=1

1
n

nÿ

i=1
Z(k)

jl,i| Ø Á
$

Æ 2 exp
3

≠Á2nK

32

4
. (87)

By the Courant-Fischer variational representation (Horn & Johnson, 2012),

�min(Q̄SS) = min
ÎxÎ2=1

xT Q̄SSx

= min
ÎxÎ2=1

{xT QN
SSx + xT (Q̄SS ≠ QN

SS)x}

Æ yT QN
SSy + yT (Q̄SS ≠ QN

SS)y,

where y œ Rd is a unit-norm minimal eigenvector of QN
SS . Therefore, we have

�min(QN
SS) Ø �min(Q̄SS) ≠

------Q̄SS ≠ QN
SS

------
2 Ø Cmin ≠

------Q̄SS ≠ QN
SS

------
2.

Observe that
------QN

SS ≠ Q̄SS

------
2 Æ

Q

a
dÿ

j=1

dÿ

l=1
(Zjl)2

R

b
1/2

.

Setting Á2 = ”2/d2 in (87) and applying the union bound over the d2 index pairs (j, l) then yields

P[
------QN

SS ≠ Q̄SS

------
2 Ø ”] Æ 2 exp

3
≠”2nK

32d2 + 2 log(d)
4

. (88)

So, we have the first concentration inequality in Lemma H.1.1:

P[�min(QN
SS) Æ Cmin ≠ ”] Æ 2 exp

3
≠”2nK

32d2 + 2 log(d)
4

. (89)
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Now, for the second concentration inequality about maximum eigenvalue of the sample covariance matrix,
with the same reasoning from the Courant-Fischer variational representation (Horn & Johnson, 2012), we
have, for 1 Æ k Æ K,

�max(E[ 1
K

Kÿ

k=1
X(k)

\r (X(k)
\r )

T
]) = max

ÎvÎ2=1
vTE[ 1

K

Kÿ

k=1
X(k)

\r (X(k)
\r )

T
]v

= max
ÎvÎ2=1

{vT ( 1
K

Kÿ

k=1

1
n

nÿ

i=1
x(k)

i,\r(x(k)
i,\r)T )v

+ vT (E[ 1
K

Kÿ

k=1
X(k)

\r (X(k)
\r )

T
] ≠ 1

K

Kÿ

k=1

1
n

nÿ

i=1
x(k)

i,\r(x(k)
i,\r)T )v}

Ø uT ( 1
K

Kÿ

k=1

1
n

nÿ

i=1
x(k)

i,\r(x(k)
i,\r)T )u

+ uT (E[ 1
K

Kÿ

k=1
X(k)

\r (X(k)
\r )

T
] ≠ 1

K

Kÿ

k=1

1
n

nÿ

i=1
x(k)

i,\r(x(k)
i,\r)T )u,

where u œ Rd is a unit-norm maximal eigenvector of 1
K

qK
k=1

1
n

qn
i=1 x(k)

i,\r(x(k)
i,\r)T . Therefore, we have

�max( 1
K

Kÿ

k=1

1
n

nÿ

i=1
x(k)

i,\r(x(k)
i,\r)T )

Æ �max(E[ 1
K

Kÿ

k=1
X(k)

\r (X(k)
\r )

T
]) + uT ( 1

K

Kÿ

k=1

1
n

nÿ

i=1
x(k)

i,\r(x(k)
i,\r)T ≠ E[ 1

K

Kÿ

k=1
X(k)

\r (X(k)
\r )

T
])u

Æ Dmax +

-----

-----

-----(
1
K

Kÿ

k=1

1
n

nÿ

i=1
x(k)

i,\r(x(k)
i,\r)T ≠ E[ 1

K

Kÿ

k=1
X(k)

\r (X(k)
\r )

T
])

-----

-----

-----
2

.

The di�erence matrix 1
K

qK
k=1

1
n

qn
i=1 x(k)

i,\r(x(k)
i,\r)T ≠E[ 1

K

qK
k=1 X(k)

\r (X(k)
\r )

T
] can be written as an i.i.d. sum

of the form Yjl = 1
K

qK
k=1

1
n

qn
i=1 Y (k)

jl,i , where each Y (k)
jl,i is zero-mean and bounded (in particular, |Y (k)

jl,i | Æ 4).
By the Azuma-Hoe�ding’s bound (Hoe�ding, 1994), for any indices j, l = 1, . . . , d and for any Á > 0, we have

P[(Yjl)2 Ø Á2] = P
#
| 1
K

Kÿ

k=1

1
n

nÿ

i=1
Yjl,i| Ø Á

$
Æ 2 exp

3
≠Á2nK

32

4
. (90)

Observe that
-----

-----

-----
1
K

Kÿ

k=1

1
n

nÿ

i=1
x(k)

i,\r(x(k)
i,\r)T ≠ E[ 1

K

Kÿ

k=1
X(k)

\r (X(k)
\r )

T
]

-----

-----

-----
2

Æ

Q

a
dÿ

j=1

dÿ

l=1
(Yjl)2

R

b
1/2

.

Setting Á2 = ”2/d2 in (90), and applying the union bound over the d2 index pairs (j, l) then yields

P
C-----

-----

-----
1
K

Kÿ

k=1

1
n

nÿ

i=1
x(k)

i,\r(x(k)
i,\r)T ≠ E[ 1

K

Kÿ

k=1
X(k)

\r (X(k)
\r )

T
]

-----

-----

-----
2

Ø ”

D
Æ 2 exp

3
≠”2nK

32d2 + 2 log(d)
4

.

So we have

P
#
�max

# 1
n

nÿ

i=1
x(k)

i,\r(x(k)
i,\r)T )

$
Ø Dmax + ”

$
Æ 2 exp

3
≠”2nK

32d2 + 2 log(d)
4

as stated in the lemma.
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H.1.2 Proof of Lemma D.3

We begin the proof of this lemma by decomposing the sample matrix as the sum QN
ScS(QN

SS)≠1 = T1 + T2 +
T3 + T4, where we define

T1 := Q̄ScS [(QN
SS)≠1 ≠ (Q̄SS)≠1], (91a)

T2 := [QN
ScS ≠ Q̄ScS ](Q̄SS)≠1

, (91b)

T3 := [QN
ScS ≠ Q̄ScS ][(QN

SS)≠1 ≠ (Q̄SS)≠1], (91c)

T4 := Q̄ScS(Q̄SS)≠1
. (91d)

The fourth term is controlled by the incoherence assumption in Assumption 4.1:

|||T4|||Œ =
---
---
---Q̄ScS(Q̄SS)≠1---

---
---
Œ

Æ 1 ≠ –.

If we can show that |||Ti|||Œ Æ –
6 for the remaining indices i = 1, 2, 3, then by our four-term decomposition and

the triangle inequality, the sample version can satisfy the desired bound (41). To deal with these remaining
terms, we make use of the following lemma:
Lemma H.1. For any ” > 0, and constants B, B1, B2, the following bounds hold

P[
------QN

ScS ≠ Q̄ScS

------
Œ Ø ”] Æ 2 exp

3
≠B

”2nK

d2 + log(d) + log(p)
4

, (92a)

P[
------QN

SS ≠ Q̄SS

------
Œ Ø ”] Æ 2 exp

3
≠B

”2nK

d2 + 2 log(d)
4

, (92b)

P[
---
---
---(QN

SS)≠1 ≠ (Q̄SS)≠1---
---
---
Œ

Ø ”] Æ 4 exp
3

≠B1
nK”2

d3 + B2 log(d)
4

. (92c)

See Section J.1 for the proof of these claims.

Control of the first term. For the first term, we re-factorize it as

T1 = Q̄ScS(Q̄SS)≠1[Q̄SS ≠ QN
SS ](QN

SS)≠1
.

Then,

|||T1|||Œ Æ
---
---
---Q̄ScS(Q̄SS)≠1---

---
---
Œ

------Q̄SS ≠ QN
SS

------
Œ

---
---
---(QN

SS)≠1---
---
---
Œ

Æ (1 ≠ –)
------Q̄SS ≠ QN

SS

------
Œ{

Ô
d
---
---
---(QN

SS)≠1---
---
---
2
},

where we have used the incoherence assumption in Assumption 4.1. Using the bound (40) from Lemma
(D.2) with ” = Cmin/2, we have

---
---
---(QN

SS)≠1
---
---
---
2

= [�min(QN
SS)]≠1 Æ 2

Cmin
with probability greater than

1 ≠ 2 exp(≠BnK/d2 + 2 log(d)). Next, applying the bound (92b) with ” = c/
Ô

d, we conclude that with
probability greater than 1 ≠ 2 exp(≠BnKc2/d3 + 2 log(d)), we have

------Q̄SS ≠ QN
SS

------
Œ Æ c/

Ô
d.

By choosing the constant c > 0 su�ciently small, we are guaranteed that

P[|||T1|||Œ Ø –/6] Æ 2 exp
3

≠B
nKc2

d3 + log(d)
4

.
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Control of the second term. To bound T2, we first write

|||T2|||Œ Æ
Ô

d
---
---
---(Q̄SS)≠1---

---
---
2

------QN
ScS ≠ Q̄ScS

------
Œ

Æ
Ô

d

Cmin

------QN
ScS ≠ Q̄ScS

------
Œ.

Then apply the bound (92a) with ” = –
6

CminÔ
d

to conclude that

P[|||T2|||Œ Ø –/6] Æ 2 exp
3

≠B
nK

d3 + log(p)
4

.

Control of the third term. Finally, in order to bound the third term T3, we apply the bounds (92a) and
(92c), both with ” =


–/6 and use the fact that log d Æ log p to conclude that

P[|||T3|||Œ Ø –/6] Æ 4 exp
3

≠B
nK

d3 + log(p)
4

. (93)

Putting together the four pieces, we conclude that

P
Ë---

---
---QN

ScS(QN
SS)≠1---

---
---
Œ

Ø 1 ≠ –/2
È

= O

3
exp

3
≠B

nK

d3 + log(p)
44

H.2 Proof of Lemmas for Proposition D.4

H.2.1 Proof of Lemma D.5

Proof. By definition of W N (see (43)), we have

ÎW N ÎŒ = ÎÒ¸(◊̄; {Xn
1 }K

1 )ÎŒ = Î 1
K

Kÿ

k=1
Ò¸(k)(◊̄; {Xn

1 }K
1 )ÎŒ. (94)

which can be decompose into two parts as follows

ÎÒ¸(◊̄;Xn
1 }K

1 )ÎŒ

Æ Î 1
K

Kÿ

k=1

Ó
Ò¸(k)(◊̄; {Xn

1 }(k)) ≠ Ò¸(k)(◊̄(k); {Xn
1 }(k))

Ô

¸ ˚˙ ˝
Y1

ÎŒ + Î 1
K

Kÿ

k=1
Ò¸(k)(◊̄(k); {Xn

1 }(k))
¸ ˚˙ ˝

Y2

ÎŒ. (95)

We then bound the two terms ÎY1ÎŒ and ÎY2ÎŒ respectively.

Bounding ÎY2ÎŒ .

Note that the conditional expectation of Y2 given {�(k)}K
1 is

E[Y2|{�(k)}K
1 ] = E[ 1

K

Kÿ

k=1
Ò¸(k)(◊̄(k); {Xn

1 }(k))|{�(k)}K
1 ]

= 1
K

Kÿ

k=1
E[Ò¸(k)(◊̄(k); {Xn

1 }(k))|�(k)]

= 1
K

Kÿ

k=1
0

= 0,
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where the second to last line comes from the fact that the expected gradient at the true parameter of each
task is 0. This property can also be checked by expanding the expression of Y2. Each entry of Y2, denoted by
Y2,u, for 1 Æ u Æ p ≠ 1, can be expressed as a sum of random variables Z(k)

i,u :

Y2,u = 1
K

Kÿ

k=1

1
n

nÿ

i=1
Z(k)

i,u , (96)

where

Z(k)
i,u = x(k)

i,u {x(k)
i,r ≠

exp(
q

tœV \r ◊̄(k)
rt x(k)

i,t ) ≠ exp(≠
q

tœV \r ◊̄(k)
rt x(k)

i,t )

exp(
q

tœV \r ◊̄(k)
rt x(k)

i,t ) + exp(≠
q

tœV \r ◊̄(k)
rt x(k)

i,t )
}

= x(k)
i,u {x(k)

i,r ≠ P◊̄(k) [X(k)
r = 1|x(k)

i,\r] + P◊̄(k) [X(k)
r = ≠1|x(k)

i,\r]}.

We have the conditional expectation E[Z(k)
i,u |�(k)] = 0 by applying another law of total expectation (Weiss

et al., 2005) with the inner conditional expectation of X(k)
r given X(k)

\r and the outer total expectation being
the marginal joint expectation of X(k)

\r . So we have the total expectation

E[Z(k)
i,u ] = E[E[Z(k)

i,u |�(k)]] = E[0] = 0. (97)

Also, from the expression of Z(k)
i,u , since all samples are either ≠1 or +1, it is easy to see that |Z(k)

i,u | Æ 2.
On the other hand, note that the total nK samples {X(k)

i }1ÆiÆn,1ÆkÆK are conditionally independent given
{�(k)}K

1 ( {�(k)}K
1 are the latent random variables). We can then apply the Hoe�ding’s Inequality with

latent conditional independence (LCI), Corollary 1 in Ke & Honorio (2019) by conditioning on the latent
random variables {�k}K

k=1 to get

P[
Kÿ

k=1

nÿ

i=1
(Z(k)

i,u ≠ 0) Ø ”] Æ exp
1

≠ ”2

8nK

2
, (98)

for any ” > 0. Substituting Y2,u in (96) and by the symmetry of it (resulting from the symmetry of the binary
random variables {X(k)

i }1ÆiÆn,1ÆkÆK), we have

P[|Y2,u| Ø ”] = P[Y2,u Ø ” or Y2,u Æ ≠”]
Æ P[Y2,u Ø ”] + P[Y2,u Æ ≠”]
= 2P[Y2,u Ø ”]

= 2P[ 1
nK

Kÿ

k=1

nÿ

i=1
(Z(k)

i,u ≠ 0) Ø ”]

Æ 2 exp
1

≠ ”2

8nK

2
.

After that, applying union bound over the indices u of Y2 yields

P[ÎY2ÎŒ Ø ”] Æ 2 exp
1

≠ ”2

8nK
+ log p

2
. (99)

Bounding ÎY1ÎŒ .

Note that Y1 = Ò¸(◊̄\r) ≠ 1
K

qK
k=1 Ò¸(k)(◊̄(k)

\r ) using the shorthand notations in (19). We can bound ÎY2ÎŒ
by writing

ÎY1ÎŒ = ÎY1 ≠ E(Y1) + E(Y1)ÎŒ

Æ ÎY1 ≠ E(Y1)ÎŒ + ÎE(Y1)ÎŒ.
(100)
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Using Assumption 4.3 by setting ” =
Ò

8 log(2p/Á)
nK , we have

P(ÎE(Y1)ÎŒ Ø ”) Æ 2 exp
3

≠”2nK

8 + log p

4
. (101)

Notice that for Y1, we can also decompose it into a sum of random variables Z Õ(k)
i,u

Y1,u = 1
K

Kÿ

k=1

1
n

nÿ

i=1
Z Õ(k)

i,u , (102)

where

Z Õ(k)
i,u = x(k)

i,u {x(k)
i,r ≠

exp(
q

tœV \r ◊̄rtx
(k)
i,t ) ≠ exp(≠

q
tœV \r ◊̄rtx

(k)
i,t )

exp(
q

tœV \r ◊̄rtx
(k)
i,t ) + exp(≠

q
tœV \r ◊̄rtx

(k)
i,t )

}

= x(k)
i,u {x(k)

i,r ≠ P◊̄[Xr = 1|x(k)
i,\r] + P◊̄[Xr = ≠1|x(k)

i,\r]}.

Here P◊̄ denotes the conditional probability of the random variable associated with node r taking on ≠1 or
+1 given a (p ≠ 1)-dimensional data vector values x(k)

i,\r, supposing the true parameter is ◊̄\r. In this way, we
can write each entry of Y1 ≠ E(Y1) as

Y1,u ≠ E(Y1,u) = 1
K

Kÿ

k=1

1
n

nÿ

i=1
Z Õ(k)

i,u ≠ E[ 1
K

Kÿ

k=1

1
n

nÿ

i=1
Z Õ(k)

i,u ]

= 1
K

Kÿ

k=1

1
n

nÿ

i=1
Z Õ(k)

i,u ≠ E[Z Õ(k)
i,u ].

Then we define random variable
H(k)

i,u := Z Õ(k)
i,u ≠ E[Z Õ(k)

i,u ] (103)
for all 1 Æ i Æ n, 1 Æ k Æ K, 1 Æ u Æ p ≠ 1. We have

E[H(k)
i,u ] = E[Z Õ(k)

i,u ≠ E[Z Õ(k)
i,u ]] = E[Z Õ(k)

i,u ] ≠ E[Z Õ(k)
i,u ] = 0. (104)

Since the expected value E[Z Õ(k)
i,u ] is deterministic, the randomness of H(k)

i,u takes on the same pattern as
Z Õ(k)

i,u , so they are conditionally independent given {�(k)}K
1 . In addition, H(k)

i,u is bounded in the sense that
|H(k)

i,u | Æ 6. By using LCI Hoe�ding’s inequality (Ke & Honorio, 2019) again, we get

P[
Kÿ

k=1

nÿ

i=1
(H(k)

i,u ≠ 0) Ø ”] Æ exp
1

≠ ”2

72nK

2
. (105)

Using the same reasoning (symmetry and union bound) in proving the bound for ÎY2ÎŒ, we get

P[ÎY1 ≠ E[Y1]ÎŒ Ø ”] Æ 2 exp
1

≠ ”2

72nK
+ log p

2
. (106)

Next, putting the terms ÎE[Y1]ÎŒ and ÎY1 ≠ E[Y1]ÎŒ together, we have

P(ÎY1ÎŒ > 2”) = 1 ≠ P(ÎY1ÎŒ < 2”)
Æ 1 ≠ P(ÎE[Y1]ÎŒ + ÎY1 ≠ E[Y1]ÎŒ < 2”)
Æ 1 ≠ P(ÎE[Y1]ÎŒ < ” and ÎY1 ≠ E[Y1]ÎŒ < ”)
= P(ÎE[Y1]ÎŒ Ø ” or ÎY1 ≠ E[Y1]ÎŒ Ø ”)
Æ P(ÎE[Y1]ÎŒ Ø ”) + ÎY1 ≠ E[Y1]ÎŒ Ø ”).
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By the same token, we get

P(ÎW N ÎŒ > 3”) Æ P(ÎY2ÎŒ > ”) + P(ÎE[Y1]ÎŒ Ø ”) + ÎY1 ≠ E[Y1]ÎŒ Ø ”) (107)

Æ 4 exp
1

≠ ”2

8nK
+ log p

2
) + 2 exp

1
≠ ”2

72nK
+ log p

2
(108)

Æ 6 exp
1

≠ ”2

72nK
+ log p

2
. (109)

Finally, setting 3” = –⁄
4(2≠–) , we obtain

P
3

2 ≠ –

⁄
ÎW N ÎŒ >

–

4

4
Æ 6 exp

3
≠ –2⁄2

c(2 ≠ –)2 nK + log(p)
4

, (110)

for some fixed constant c as in Lemma D.5.

H.2.2 Proof of Lemma D.6

Proof. We first show that the remainder term RN satisfies the bound ÎRN ÎŒ Æ DmaxÎ◊̂S ≠ ◊̄SÎ2
2. Then the

result of Lemma D.7, namely Î◊̂S ≠ ◊̄SÎ2 Æ 5
Cmin

Ô
d⁄, can be used to conclude that

ÎRN ÎŒ
⁄

Æ 25Dmax
C2

min
⁄d

as claimed in Lemma D.6.

Focusing on element RN
j for some index j œ {1, . . . , p}, we have

RN
j = ≠[Ò2¸(◊(j);X) ≠ Ò2¸(◊̄;X)]Tj (◊̂ ≠ ◊̄)

= 1
K

Kÿ

k=1

1
n

nÿ

i=1
[÷(x(k)

i ; ◊(j)) ≠ ÷(x(k)
i ; ◊̄))](◊̂ ≠ ◊̄),

for some point ◊(j) = µj ◊̂ + (1 ≠ µj)◊̄ and µj œ [0, 1]. Then we set g(t) = 4e2t

(e2t+1)2 by noting that
÷(◊, x) = g(xr

q
tœV \r ◊rtxt). By the chain rule and another application of the mean value theorem, we then

have

RN
j = 1

K

Kÿ

k=1

1
n

nÿ

i=1
gÕ((◊Õ(j))T

x(k)
i )(x(k)

i )
T

[◊(j) ≠ ◊̄]{x(k)
i,j (x(k)

i )
T

[◊̂ ≠ ◊̄]}

= 1
K

Kÿ

k=1

1
n

nÿ

i=1
{gÕ((◊Õ(j))T

x(k)
i )x(k)

i,j }{[◊(j) ≠ ◊̄]T x(k)
i,j (x(k)

i )
T

[◊̂ ≠ ◊̄]},

where ◊Õ(j) is another point on the line joining ◊̂ and ◊̄. Setting a(k)
i := {gÕ((◊Õ(j))T

x(k)
i )x(k)

i,j } and b(k)
i :=

{[◊(j) ≠ ◊̄]T x(k)
i,j (x(k)

i )
T

[◊̂ ≠ ◊̄]}, and treating a, b both as nK-dimensional vectors, we have

|RN
j | = 1

nK
|

Kÿ

k=1

nÿ

i=1
a(k)

i b(k)
i | Æ 1

nK
ÎaÎŒÎbÎ1.

A calculation shows that ÎaÎŒ Æ 1, and

1
nK

ÎbÎ1 = 1
K

Kÿ

k=1
µj [◊̂ ≠ ◊̄]

T

I
1
n

nÿ

i=1
x(k)

i (x(k)
i )

T
J

[◊̂ ≠ ◊̄]

= 1
K

Kÿ

k=1
µj [◊̂S ≠ ◊̄S ]

T

I
1
K

Kÿ

k=1

1
n

nÿ

i=1
x(k)

i,S(x(k)
i,S)

T
J

[◊̂S ≠ ◊̄S ]

Æ DmaxÎ◊̂S ≠ ◊̄SÎ2
2,
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where the second line uses the fact that ◊̂Sc = ◊̄Sc = 0. Therefore, we have

ÎRN ÎŒ Æ DmaxÎ◊̂S ≠ ◊̄SÎ2
2

H.2.3 Proof of Lemma D.7

Proof. Following the method of proof in Ravikumar et al. (2010) which was also previously used in another
context (Rothman et al., 2008), we define the function G : Rd æ R by

G(uS) := ¸(◊̄S + uS ; {Xn
1 }K

1 ) ≠ ¸(◊̄S ; {Xn
1 }K

1 ) + ⁄n(Î◊̄S + uSÎ1 ≠ Î◊̄SÎ1). (111)

It can be seen that û = ◊̂S ≠ ◊̄S minimizes G. Moreover, G(0) = 0 by construction; therefore, we must have
G(û) Æ 0. Note that G is convex. Suppose we show for some radius B > 0, and for u œ Rd with ÎuÎ2 = B, we
have G(u) > 0, . we then claim that ÎûÎ2 Æ B. In fact, if û lay outside the ball of radius B, then the convex
combination tû + (1 ≠ t)(0) would lie on the boundary of the ball, for an appropriately chosen t œ (0, 1). By
convexity,

G(tû + (1 ≠ t)(0)) Æ tG(û) + (1 ≠ t)G(0) Æ 0,

which contradicts the assumed strict positivity of G on the boundary. It thus su�ces to establish strict
positivity of G on the boundary of the ball with radius B = M⁄

Ô
d, where M > 0 is a parameter to

be chosen later in the proof. Let u œ Rd be an arbitrary vector with ÎuÎ2 = B. Recalling the notation
W N := ≠Ò¸(◊̄; {Xn

1 }K
1 ), by a Taylor series expansion of the log likelihood component of G, we have

G(u) = ≠(W N
S )T u + uT [Ò2¸(◊̄S + –u; {Xn

1 }K
1 )]u + ⁄n(Î◊̄S + uSÎ1 ≠ Î◊̄SÎ1)

for some – œ [0, 1]. For the first term, we have the bound

|(W N
S )T u| Æ ÎW N

S ÎŒÎuÎ1 Æ ÎW N
S ÎŒ

Ô
dÎuÎ2 Æ (⁄n

Ô
d)2 M

4 , (112)

since ÎW N
S ÎŒ Æ ⁄n

4 by assumption. For the last term, applying triangle inequality yields

⁄n(Î◊̄S + uSÎ1 ≠ Î◊̄SÎ1) Ø ≠⁄nÎuSÎ1.

Since ÎuSÎ1 Æ
Ô

dÎuSÎ2, we have

⁄n(Î◊̄S + uSÎ1 ≠ Î◊̄SÎ1) Ø ≠⁄n

Ô
dÎuSÎ2 = ≠M(

Ô
d⁄n)

2
. (113)

Finally, turning to the middle Hessian term, we have

qú := �min(Ò2¸(◊̄S + –u); {Xn
1 }K

1 ))
Ø min

–œ[0,1]
�min(Ò2¸(◊̄S + –uS); {Xn

1 }K
1 ))

= min
–œ[0,1]

�min

C
1
K

Kÿ

k=1

1
n

nÿ

i=1
÷(x(k)

i ; ◊̄S + –uS)x(k)
i,S(x(k)

i,S)
T

D
.

By a Taylor series expansion of ÷(x(k)
i ; ·), we have, for some –0 œ [0, –], a lower bound of qú:

min
–œ[0,1]

�min{ 1
nK

Kÿ

k=1

nÿ

i=1
[÷(x(k)

i ; ◊̄S)x(k)
i,S(x(k)

i,S)
T

+ –gÕ(x(k)
i,r

ÿ

tœS\r

(◊̄rt + –0urt)x(k)
i,t )x(k)

i,r (uT
S x(k)

i,S)x(k)
i,S(x(k)

i,S)
T

]}
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Ø �min

C
1
K

Kÿ

k=1

1
n

nÿ

i=1
÷(x(k)

i ; ◊̄S)x(k)
i,S(x(k)

i,S)
T

D

+ min
–œ[0,1]

–�min

C
1
K

Kÿ

k=1

1
n

nÿ

i=1
gÕ

1
x(k)

i,r (◊̄S + –0uS)T
x(k)

i,S

2
x(k)

i,r (uT
S x(k)

i,S)x(k)
i,S(x(k)

i,S)
T

D

Ø �min(QN
SS) ≠ max

–œ[0,1]
– max

–0œ[0,–]

-----

-----

-----
1
K

Kÿ

k=1

1
n

nÿ

i=1
gÕ

1
x(k)

i,r (◊̄S + –0uS)T
x(k)

i,S

2
(uT

S x(k)
i,S)x(k)

i,S(x(k)
i,S)

T

-----

-----

-----
2

Ø �min(QN
SS) ≠ max

–œ[0,1]

-----

-----

-----
1
K

Kÿ

k=1

1
n

nÿ

i=1
gÕ

1
x(k)

i,r (◊̄S + –uS)T
x(k)

i,S

2
(uT

S x(k)
i,S)x(k)

i,S(x(k)
i,S)

T

-----

-----

-----
2

Ø Cmin ≠ max
–œ[0,1]

----------

----------

----------

1
K

Kÿ

k=1

1
n

nÿ

i=1
gÕ

1
x(k)

i,r (◊̄S + –uS)T
x(k)

i,S

2
(ÈuS , x(k)

i,SÍ)x(k)
i,S(x(k)

i,S)
T

¸ ˚˙ ˝
A(–)

----------

----------

----------
2

It remains to control the spectral norm of the matrix A(–), for – œ [0, 1]. For any fixed – œ [0, 1], and y œ R
with ÎyÎ2 = 1, we have

Èy, A(–)yÍ = 1
K

Kÿ

k=1

1
n

nÿ

i=1
gÕ

1
x(k)

i,r (◊̄S + –uS)T
x(k)

i,S

2
[ÈuS , x(k)

i,SÍ][Èx(k)
i,S , yÍ]

2

Æ 1
K

Kÿ

k=1

1
n

nÿ

i=1

---gÕ
1

x(k)
i,r (◊̄S + –uS)T

x(k)
i,S

2--- |ÈuS , x(k)
i,SÍ|[Èx(k)

i,S , yÍ]
2

Note that
---gÕ

1
x(k)

i,r (◊̄S + –uS)T
x(k)

i,S

2--- Æ 1, and

|ÈuS , x(k)
i,SÍ| Æ ÎuSÎ1 Æ

Ô
dÎuSÎ2 = M⁄nd.

Moreover, we have

1
K

Kÿ

k=1

1
n

nÿ

i=1
(Èx(k)

i,S , yÍ)
2

Æ

-----

-----

-----
1
K

Kÿ

k=1

1
n

nÿ

i=1
x(k)

i,S(x(k)
i,S)T

-----

-----

-----
2

Æ Dmax

by assumption.We then obtain

max
–œ[0,1]

|||A(–)|||2 Æ DmaxM⁄nd Æ Cmin/2,

assuming that ⁄n Æ Cmin
2MDmaxd . Under this condition, we have shown that

qú := �min(Ò2¸(◊̄S + –u); {Xn
1 }K

1 )) Ø Cmin/2. (114)

Finally, combining the three terms in G(u), we conclude that

G(uS) Ø (⁄n

Ô
d)2

;
≠1

4M + Cmin
2 M2 ≠ M

<
,

which is strictly positive for M = 5/Cmin. Therefore, as long as

⁄n Æ Cmin
2MDmaxd

= C2
min

10Dmaxd
,

we are guaranteed that
ÎûSÎ2 Æ M⁄n

Ô
d = 5

Cmin
⁄n

Ô
d.

39



Published in Transactions on Machine Learning Research (08/2024)

I Proof of Lemmas for Theorem 4.9

I.1 Proof of Lemmas for Uniform Convergence of Sample Information Matrices in Novel Task

I.1.1 Proof of Lemma F.2

Proof. The (j, l)th element of the di�erence matrix Q(K+1)(◊̄(K+1)
S ) ≠ Q̄(K+1)(◊̄(K+1)

S ) can be written as an
i.i.d. sum of the form Z(K+1)

jl = 1
n(K+1)

qn(K+1)

i=1 Z(K+1)
jl,i , where each Z(K+1)

jl,i is zero-mean and bounded (in
particular, |Z(K+1)

jl,i | Æ 4) By the Azuma-Hoe�ding’s bound (Hoe�ding, 1994), for any indices j, l = 1, . . . , d
and for any Á > 0, we have

P[(Z(K+1)
jl )2 Ø Á2] = P

#
| 1
n(K+1)

n(K+1)ÿ

i=1
Z(K+1)

jl,i | Ø Á
$

Æ 2 exp
3

≠Á2n(K+1)

32

4
. (115)

By the Courant-Fischer variational representation (Horn & Johnson, 2012),

�min(Q̄(K+1)
S(K+1)S(K+1)) = min

ÎxÎ2=1
xT Q̄(K+1)

S(K+1)S(K+1)x

= min
ÎxÎ2=1

{xT Q(K+1)
S(K+1)S(K+1)x + xT (Q̄(K+1)

S(K+1)S(K+1) ≠ Q(K+1)
S(K+1)S(K+1))x}

Æ yT Q(K+1)
S(K+1)S(K+1)y + yT (Q̄(K+1)

S(K+1)S(K+1) ≠ Q(K+1)
S(K+1)S(K+1))y,

where y œ Rd is a unit-norm minimal eigenvector of Q(K+1)
S(K+1)S(K+1) . Therefore, we have

�min(Q(K+1)
S(K+1)S(K+1)) Ø �min(Q̄(K+1)

S(K+1)S(K+1)) ≠
---
---
---Q̄(K+1)

S(K+1)S(K+1) ≠ Q(K+1)
S(K+1)S(K+1)

---
---
---
2

Ø C(K+1)
min ≠

---
---
---Q̄(K+1)

S(K+1)S(K+1) ≠ Q(K+1)
S(K+1)S(K+1)

---
---
---
2
.

Observe that

---
---
---Q̄(K+1)

S(K+1)S(K+1) ≠ Q(K+1)
S(K+1)S(K+1)

---
---
---
2

Æ

Q

a
dÿ

j=1

dÿ

l=1
(Z(K+1)

jl )
2
R

b
1/2

Setting Á2 = ”2/d2 in (115) and applying the union bound over the d2 index pairs (j, l) then yields

P[
---
---
---Q̄(K+1)

S(K+1)S(K+1) ≠ Q(K+1)
S(K+1)S(K+1)

---
---
---
2

Ø ”] Æ 2 exp
3

≠”2n(K+1)

32d2 + 2 log(d)
4

(116)

So, we have the first concentration inequality in Lemma F.2:

P[�min(Q(K+1)
S(K+1)S(K+1)) Æ C(K+1)

min ≠ ”] Æ 2 exp
3

≠”2n(K+1)

32d2 + 2 log(d)
4

. (117)

This proves the first part of the lemma. For the second concentration inequality about maximum eigenvalue
of the sample covariance matrix, with the same reasoning from the Courant-Fischer variational representation
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(Horn & Johnson, 2012), we have,

�max(E[X(K+1)
S (X(K+1)

S )
T

]) = max
ÎvÎ2=1

vTE[X(K+1)
S (X(K+1)

S )
T

]v

= max
ÎvÎ2=1

{vT ( 1
n(K+1)

n(K+1)ÿ

i=1
x(K+1)

i,S (x(K+1)
i,S )T )v

+ vT (E[X(K+1)
S (X(K+1)

S )
T

] ≠ 1
n(K+1)

n(K+1)ÿ

i=1
x(K+1)

i,S (x(K+1)
i,S )T )v}

Ø uT ( 1
n(K+1)

n(K+1)ÿ

i=1
x(K+1)

i,S (x(K+1)
i,S )T )u

+ uT (E[X(K+1)
S (X(K+1)

S )
T

] ≠ 1
n(K+1)

n(K+1)ÿ

i=1
x(K+1)

i,S (x(K+1)
i,S )T )u,

where u œ Rd is a unit-norm maximal eigenvector of 1
n(K+1)

qn(K+1)

i=1 x(K+1)
i,S (x(K+1)

i,S )T . Therefore, we have

�max( 1
n(K+1)

n(K+1)ÿ

i=1
x(K+1)

i,S (x(K+1)
i,S )T )

Æ �max(E[X(K+1)
S (X(K+1)

S )
T

]) + uT ( 1
n(K+1)

n(K+1)ÿ

i=1
x(K+1)

i,S (x(K+1)
i,S )T ≠ E[X(K+1)

S (X(K+1)
S )

T
])u

Æ D(K+1)
max +

------

------

------
( 1
n(K+1)

n(K+1)ÿ

i=1
x(K+1)

i,S (x(K+1)
i,S )T ≠ E[X(K+1)

S (X(K+1)
S )

T
])

------

------

------
2

The di�erence matrix 1
n(K+1)

qn(K+1)

i=1 x(K+1)
i,S (x(K+1)

i,S )T ≠E[X(K+1)
S (X(K+1)

S )
T

] can be written as an i.i.d. sum
of the form Y (K+1)

jl = 1
n(K+1)

qn(K+1)

i=1 Y (K+1)
jl,i , where each Y (K+1)

jl,i is zero-mean and bounded (in particular,
|Y (K+1)

jl,i | Æ 4). By the Azuma-Hoe�ding’s bound (Hoe�ding, 1994), for any indices j, l = 1, . . . , d and for any
Á > 0, we have

P[(Y (K+1)
jl )2 Ø Á2] = P

#
| 1
n(K+1)

n(K+1)ÿ

i=1
Y (K+1)

jl,i | Ø Á
$

Æ 2 exp
3

≠Á2n(K+1)

32

4
. (118)

Observe that
------

------

------
1

n(K+1)

n(K+1)ÿ

i=1
x(K+1)

i,S (x(K+1)
i,S )T ≠ E[X(K+1)

S (X(K+1)
S )

T
]

------

------

------
2

Æ

Q

a
dÿ

j=1

dÿ

l=1
(Y (K+1)

jl )2

R

b
1/2

.

Setting Á2 = ”2/d2 in (118) and applying the union bound over the d2 index pairs (j, l) then yields

P[

------

------

------
1

n(K+1)

n(K+1)ÿ

i=1
x(K+1)

i,S (x(K+1)
i,S )T ≠ E[X(K+1)

S (X(K+1)
S )

T
]

------

------

------
2

Ø ”]

Æ 2 exp
3

≠”2n(K+1)

32d2 + 2 log(d)
4
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So we have the second part of the lemma

P
#
�max

# 1
n(K+1)

n(K+1)ÿ

i=1
x(K+1)

i,S (x(K+1)
i,S )T )

$
Ø D(K+1)

max + ”
$

Æ 2 exp
3

≠”2n(K+1)

32d2 + 2 log(d)
4

I.1.2 Proof of Lemma F.3

Proof. Decomposing the sample matrix as the sum Q(K+1),S
[S(K+1)]cS(K+1)(Q

(K+1)
S(K+1)S(K+1))

≠1
= T (K+1)

1 + T (K+1)
2 +

T (K+1)
3 + T (K+1)

4 , where we define

T (K+1)
1 := Q̄(K+1),S

[S(K+1)]cS(K+1) [(Q
(K+1)
S(K+1)S(K+1))

≠1
≠ (Q̄(K+1)

S(K+1)S(K+1))
≠1

], (119a)

T (K+1)
2 := [Q(K+1),S

[S(K+1)]cS(K+1) ≠ Q̄(K+1),S
[S(K+1)]cS(K+1) ](Q̄

(K+1)
S(K+1)S(K+1))

≠1
, (119b)

T (K+1)
3 := [Q(K+1),S

[S(K+1)]cS(K+1) ≠ Q̄(K+1),S
[S(K+1)]cS(K+1) ][(Q

(K+1)
S(K+1)S(K+1))

≠1
≠ (Q̄(K+1)

S(K+1)S(K+1))
≠1

], (119c)

T (K+1)
4 := Q̄(K+1),S

[S(K+1)]cS(K+1)(Q̄
(K+1)
S(K+1)S(K+1))

≠1
. (119d)

The fourth term is controlled by the incoherence assumption (A2)
---
---
---T (K+1)

4

---
---
---
Œ

=
---
---
---Q̄(K+1),S

[S(K+1)]cS(K+1)(Q̄
(K+1)
S(K+1)S(K+1))

≠1---
---
---
Œ

Æ 1 ≠ –(K+1).

If we can show that
---
---
---T (K+1)

i

---
---
---
Œ

Æ –(K+1)

6 for the remaining indices i = 1, 2, 3, then by our four term
decomposition and the triangle inequality, the sample version satisfies the desired bound (68). For the
remaining three terms, the following lemma is useful in the proof:

Lemma I.1. For any ” > 0, and constants B, B1, B2, the following bounds hold,

P
Ë---

---
---Q(K+1),S

[S(K+1)]cS(K+1) ≠ Q̄(K+1),S
[S(K+1)]cS(K+1)

---
---
---
Œ

Ø ”
È

Æ 2 exp
3

≠B
Á2n(K+1)

d2 + 2 log(d)
4

, (120a)

P
Ë---

---
---Q(K+1)

S(K+1)S(K+1) ≠ Q̄(K+1)
S(K+1)S(K+1)

---
---
---
Œ

Ø ”
È

Æ 2 exp
3

≠B
Á2n(K+1)

d2 + 2 log(d)
4

, (120b)

P
Ë---

---
---(Q(K+1)

S(K+1)S(K+1))
≠1

≠ (Q̄(K+1)
S(K+1)S(K+1))

≠1---
---
---
Œ

Ø ”
È

Æ 4 exp
3

≠B1
n(K+1)”2

d3 + B2 log(d)
4

. (120c)

See Section J.2 for the proof of these claims.

Control of the first term. Turning to the first term, we re-factorize it as

T (K+1)
1 = Q̄(K+1),S

[S(K+1)]cS(K+1)(Q̄
(K+1)
S(K+1)S(K+1))

≠1
[Q̄(K+1)

S(K+1)S(K+1) ≠ Q(K+1)
S(K+1)S(K+1) ](Q

(K+1)
S(K+1)S(K+1))

≠1
.

Then, we can upper bound
---
---
---T (K+1)

1

---
---
---
Œ

by

---
---
---Q̄(K+1),S

[S(K+1)]cS(K+1)(Q̄
(K+1)
S(K+1)S(K+1))

≠1---
---
---
Œ

---
---
---Q̄(K+1)

S(K+1)S(K+1) ≠ Q(K+1)
S(K+1)S(K+1)

---
---
---
Œ

---
---
---(Q(K+1)

S(K+1)S(K+1))
≠1---

---
---
Œ

Æ (1 ≠ –)
---
---
---Q̄(K+1)

S(K+1)S(K+1) ≠ Q(K+1)
S(K+1)S(K+1)

---
---
---
Œ

{
Ô

d
---
---
---(Q(K+1)

S(K+1)S(K+1))
≠1---

---
---
2
},

where we have used the incoherence assumption in Assumption 4.6. Using the bound (67) in Lemma F.2
with ” = Cmin/2, we have

---
---
---(Q(K+1)

S(K+1)S(K+1))
≠1---

---
---
2

= [�min(Q(K+1)
S(K+1)S(K+1))]

≠1
Æ 2

Cmin
with probability greater
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than 1 ≠ 2 exp(≠Bn(K+1)/d2 + 2 log(d)). Next, applying the bound (120b) with ” = c/
Ô

d, we conclude that
with probability greater than 1 ≠ 2 exp(≠Bn(K+1)c2/d3 + 2 log(d)), we have

---
---
---Q̄(K+1)

S(K+1)S(K+1) ≠ Q(K+1)
S(K+1)S(K+1)

---
---
---
Œ

Æ c/
Ô

d.

By choosing the constant c > 0 su�ciently small, we are guaranteed that

P[
---
---
---T (K+1)

1

---
---
---
Œ

Ø –(K+1)/6] Æ 2 exp
3

≠B
n(K+1)c2

d3 + log(d)
4

.

Control of the second term. To bound T (K+1)
2 , we first write

---
---
---T (K+1)

2

---
---
---
Œ

Æ
Ô

d
---
---
---(Q̄(K+1)

S(K+1)S(K+1))
≠1---

---
---
2

---
---
---Q(K+1),S

[S(K+1)]cS(K+1) ≠ Q̄(K+1),S
[S(K+1)]cS(K+1)

---
---
---
Œ

Æ
Ô

d

Cmin

---
---
---Q(K+1),S

[S(K+1)]cS(K+1) ≠ Q̄(K+1),S
[S(K+1)]cS(K+1)

---
---
---
Œ

.

Then we apply the bound (120a) with ” = –(K+1)

6
CminÔ

d
to conclude that

P[
---
---
---T (K+1)

2

---
---
---
Œ

Ø –(K+1)/6] Æ 2 exp
3

≠B
n(K+1)

d3 + log(d)
4

.

Control of the third term. We set ” =


–(K+1)/6 in the bounds (120a) and (120c) to conclude that

P[
---
---
---T (K+1)

3

---
---
---
Œ

Ø –(K+1)/6] Æ 4 exp
3

≠B
n(K+1)

d3 + log(d)
4

.

Putting together, we conclude that

P[
---
---
---Q(K+1),S

[S(K+1)]cS(K+1)(Q
(K+1)
S(K+1)S(K+1))

≠1---
---
---
Œ

Ø 1 ≠ –(K+1)/2] = O

3
exp

3
≠B

n(K+1)

d3 + log(d)
44

I.2 Proof of Lemmas for Proposition F.4

I.2.1 Proof of Lemma F.5

Proof. Each entry of W (K+1), denoted by W (K+1)
u , for 1 Æ u Æ |S(r)| Æ d, can be expressed as a sum of

independent random variables Z(K+1)
i,u :

W (K+1)
u = 1

n(K+1)

n(K+1)ÿ

i=1
Z(K+1)

i,u ,

where

Z(K+1)
i,u = x(K+1)

i,u {x(K+1)
i,r ≠

exp(
q

tœS\r ◊̄(K+1)
rt x(K+1)

i,t ) ≠ exp(≠
q

tœS\r ◊̄(K+1)
rt x(K+1)

i,t )

exp(
q

tœS\r ◊̄(K+1)
rt x(K+1)

i,t ) + exp(≠
q

tœS\r ◊̄(K+1)
rt x(K+1)

i,t )
}

= x(K+1)
i,u {x(K+1)

i,r ≠ P
◊̄(K+1)

S
[X(K+1)

r = 1|x(K+1)
i,S ] + P

◊̄(K+1)
S

[X(K+1)
r = ≠1|x(K+1)

i,S ]}.

Notice that the conditional expectation given the values of �(K+1) has mean zero:

E[Z(K+1)
i,u |�(K+1)] = 0.
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Then by law of total expectation (Weiss et al., 2005) we have

E[Z(K+1)
i,u ] = E[E[Z(K+1)

i,u |�(K+1)]] = E[0] = 0. (121)

(See the same logic in the proof in Section H.2.1). Also, since all the samples are either ≠1 or +1, we have
|Z(K+1)

i,u | Æ 2. Then by Azuma-Hoe�ding’s inequality (Hoe�ding, 1994), we have, for any ” > 0,

P[|W (K+1)
u | > ”] Æ 2 exp(≠n(K+1)”2

8 ).

Setting ” = –(K+1)⁄(K+1)

4(2≠–(K+1)) , we obtain

P[ 2 ≠ –(K+1)

⁄(K+1) |W (K+1)
u | >

–(K+1)

4 ] Æ 2 exp
A

≠ (–(K+1))2(⁄(K+1))2

128(2 ≠ –(K+1))2 n(K+1)

B

Applying a union bound over the indices u of W (K+1) yields

P[ 2 ≠ –(K+1)

⁄(K+1) ÎW (K+1)ÎŒ >
–(K+1)

4 ] Æ 2 exp
A

≠ (–(K+1))2(⁄(K+1))2

128(2 ≠ –(K+1))2 n(K+1) + log d

B
,

which converges to zero at rate exp(≠c(⁄(K+1))2
n(K+1)) as long as ⁄(K+1) Ø 16(2≠–(K+1))

–(K+1)

Ò
log d

n(K+1)

I.2.2 Proof of Lemma F.6

Proof. Similar to the proof for Lemma D.6. We first show that the remainder term R(K+1) satisfies the bound
ÎR(K+1)ÎŒ Æ D(K+1)

max Î◊̂(K+1)
S(K+1) ≠ ◊̄(K+1)

S(K+1)Î2
2. Then the result of Lemma F.7, namely Î◊̂(K+1)

S(K+1) ≠ ◊̄(K+1)
S(K+1)Î2 Æ

5
C(K+1)

min

Ô
d⁄(K+1), can be used to conclude that

ÎR(K+1)ÎŒ

⁄(K+1) Æ 25D(K+1)
max

C(K+1)
min

2 ⁄(K+1)d,

as claimed in Lemma D.6. Focusing on element R(K+1)
j for some index j œ {1, . . . , |Sr|}, we have

R(K+1)
j

= ≠[Ò2¸(K+1)(◊(K+1)j
S ; {Xn(K+1)

1,S }(K+1)) ≠ Ò2¸(K+1)(◊̄(K+1)
S ; {Xn(K+1)

1,S }(K+1))]Tj (◊̂(K+1)
S ≠ ◊̄(K+1)

S )

= 1
n(K+1)

n(K+1)ÿ

i=1
[÷(x(K+1)

i ; ◊(K+1)(j)
S ) ≠ ÷(x(K+1)

i ; ◊̄(K+1)
S ))](◊̂(K+1)

S ≠ ◊̄(K+1)
S )

for some point ◊(K+1)(j)
S = µj ◊̂(K+1)

S + (1 ≠ µj)◊̄(K+1)
S with µj œ [0, 1]. Setting g(t) = 4e2t

(e2t+1)2 by noting that
that ÷(◊S , x) = g(xr

q
tœS\r ◊rtxt). By the chain rule and another application of the mean value theorem, we

write

R(K+1)
j = 1

n(K+1)

n(K+1)ÿ

i=1
{gÕ((◊Õ(K+1)(j)

S )
T

x(K+1)
i,S )x(K+1)

i,j }{[◊(K+1)(j)
S ≠ ◊̄(K+1)

S ]
T

x(K+1)
i,j (x(K+1)

i,S )
T

[◊̂(K+1)
S ≠ ◊̄(K+1)

S ]},

where ◊Õ(K+1)(j)
S is another point on the line joining ◊̂(K+1)

S and ◊̄(K+1)
S .
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Setting a(K+1)
i := {gÕ((◊Õ(j)

S )
T

x(K+1)
i,S )x(K+1)

i,j } and b(K+1)
i := {[◊(j)

S ≠ ◊̄S ]
T

x(K+1)
i,j (x(K+1)

i,S )
T

[◊̂S ≠ ◊̄S ]},

|R(K+1)
j | = 1

n(K+1)

------

n(K+1)ÿ

i=1
a(K+1)

i b(K+1)
i

------
Æ 1

n(K+1) Îa(K+1)ÎŒÎb(K+1)Î1.

We have Îa(K+1)ÎŒ Æ 1, and

1
n(K+1) Îb(K+1)Î1 = µj [◊̂(K+1)

S ≠ ◊̄(K+1)
S ]

T

Y
]

[
1

n(K+1)

n(K+1)ÿ

i=1
x(K+1)

i,S (x(K+1)
i,S )

T

Z
^

\ [◊̂(K+1)
S ≠ ◊̄(K+1)

S ]

= µj [◊̂(K+1)
S ≠ ◊̄(K+1)

S ]
T

I
1
n

nÿ

i=1
x(K+1)

i,S (x(K+1)
i,S )

T
J

[◊̂(K+1)
S ≠ ◊̄(K+1)

S ]

Æ D(K+1)
max Î◊̂(K+1)

S ≠ ◊̄(K+1)
S Î2

2

= D(K+1)
max Î◊̂(K+1)

S(K+1) ≠ ◊̄(K+1)
S(K+1)Î2

2,

where the last line uses the fact that ◊̂(K+1)
[S(K+1)]c = ◊̄(K+1)

[S(K+1)]c = 0 Therefore, we have

ÎR(K+1)ÎŒ Æ D(K+1)
max Î◊̂(K+1)

S(K+1) ≠ ◊̄(K+1)
S(K+1)Î2

2

I.2.3 Proof of Lemma F.7

Proof. As in the proof for Lemma D.7, following the method of proof in Ravikumar et al. (2010) which was
also previously used in another context (Rothman et al., 2008), we define the function G(K+1) : Rd æ R by

G(K+1)(uS(K+1)) := ¸(K+1)(◊̄(K+1)
S(K+1) + uS(K+1))

≠ ¸(K+1)(◊̄(K+1)
S(K+1)) + ⁄(K+1)(Î◊̄(K+1)

S(K+1) + uS(K+1)Î1 ≠ Î◊̄(K+1)
S(K+1)Î1). (122)

It can be seen that ûS(K+1) = ◊̂(K+1)
S(K+1) ≠ ◊̄(K+1)

S(K+1) minimizes G(K+1). Moreover, G(K+1)(0) = 0 by construction;
therefore, we must have G(K+1)(ûS(K+1)) Æ 0. Note also that G(K+1) is convex. Suppose that we show for
some radius B > 0, and for u œ Rd with ÎuÎ2 = B, we have G(K+1)(u) > 0. We then claim that ÎûÎ2 Æ B.
Indeed, if û lay outside the ball of radius B, then the convex combination tû + (1 ≠ t)(0) would lie on the
boundary of the ball, for an appropriately chosen t œ (0, 1). By convexity,

G(K+1)(tû + (1 ≠ t)(0)) Æ tG(K+1)(û) + (1 ≠ t)G(K+1)(0) Æ 0,

contradicting the assumed strict positivity of G(K+1) on the boundary. It thus su�ces to establish strict
positivity of G(K+1) on the boundary of the ball with radius B = M⁄(K+1)Ôd, where M > 0 is a parameter
to be chosen later in the proof. Let u œ Rd be an arbitrary vector with ÎuÎ2 = B. Recalling the notation
W (K+1) := ≠Ò¸(K+1)(◊̄(K+1)

S ; {Xn(K+1)

1,S }(K+1)), by a Taylor series expansion of the log likelihood component
of G(K+1), we have

G(u) = ≠(W (K+1)
S(K+1))T u + uT [Ò2¸(◊̄(K+1)

S(K+1) + –uS(K+1) ; {Xn(K+1)

1,S }(K+1))]u

+ ⁄(K+1)(Î◊̄(K+1)
S(K+1) + uS(K+1)Î1 ≠ Î◊̄(K+1)

S(K+1)Î1)

for some – œ [0, 1]. For the first term, we have the bound

|(W (K+1)
S(K+1))T u| Æ ÎW (K+1)

S(K+1)ÎŒÎuÎ1 Æ ÎW (K+1)
S(K+1)ÎŒ

Ô
dÎuÎ2 Æ (⁄(K+1)Ôd)2 M

4 ,
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since ÎW (K+1)
S(K+1)ÎŒ Æ ⁄(K+1)

4 by assumption. For the last term, applying triangle inequality yields

⁄(K+1)(Î◊̄(K+1)
S(K+1) + uS(K+1)Î1 ≠ Î◊̄(K+1)

S(K+1)Î1) Ø ≠⁄(K+1)ÎuS(K+1)Î1.

Since ÎuS(K+1)Î1 Æ
Ô

dÎuS(K+1)Î2, we have

⁄(K+1)(Î◊̄(K+1)
S(K+1) + uS(K+1)Î1 ≠ Î◊̄(K+1)

S(K+1)Î1) Ø ≠⁄(K+1)ÔdÎuS(K+1)Î2 = ≠M(
Ô

d⁄(K+1))
2
.

Finally, turning to the middle Hessian term, we have

qú := �min(Ò2¸(◊̄(K+1)
S(K+1) + –(K+1)uS(K+1) ; {Xn(K+1)

1,S }(K+1)))

Ø min
–(K+1)œ[0,1]

�min(Ò2¸(◊̄(K+1)
S(K+1) + –(K+1)uS(K+1) ; {Xn(K+1)

1,S }(K+1)))

= min
–(K+1)œ[0,1]

�min

S

U 1
n(K+1)

n(K+1)ÿ

i=1
÷(x(K+1)

i ; ◊̄(K+1)
S(K+1) + –(K+1)uS(K+1))x(K+1)

i,S(K+1)(x
(K+1)
i,S(K+1))

T

T

V .

By a Taylor series expansion of ÷(x(K+1)
i ; ·), we have, for some –0 œ [0, –(K+1)],

qú Ø min
–(K+1)œ[0,1]

�min

Y
]

[
1

n(K+1)

n(K+1)ÿ

i=1

5
÷(x(K+1)

i ; ◊̄(K+1)
S(K+1))x

(K+1)
i,S(K+1)(x

(K+1)
i,S(K+1))

T
6Z
^

\

+ –(K+1)gÕ

Q

ax(K+1)
i,r

ÿ

tœS(K+1)\r

(◊̄(K+1)
rt + –0urt)x(K+1)

i,t

R

b x(K+1)
i,r (uT

S(K+1)x
(K+1)
i,S(K+1))x

(K+1)
i,S(K+1)(x

(K+1)
i,S(K+1))

T

Ø �min
Ë 1

n(K+1)

n(K+1)ÿ

i=1
÷(x(K+1)

i ; ◊̄S(K+1))x(K+1)
i,S(K+1)(x

(K+1)
i,S(K+1))

T È

+ min
–(K+1)œ[0,1]

–(K+1)�min
Ë 1

n(K+1)

n(K+1)ÿ

i=1
gÕ

3
x(K+1)

i,r (◊̄(K+1)
S(K+1) + –0uS(K+1))

T
x(K+1)

i,S(K+1)

4

x(K+1)
i,r (uT

S(K+1)x
(K+1)
i,S(K+1))x

(K+1)
i,S(K+1)(x

(K+1)
i,S(K+1))

T È

Ø �min(Q(K+1)
S(K+1)S(K+1)) ≠ max

–(K+1)œ[0,1]------

------

------
1

n(K+1)

n(K+1)ÿ

i=1
gÕ(x(K+1)

i,r (◊̄(K+1)
S(K+1) + –0uS(K+1))

T
x(K+1)

i,S(K+1))(uT
S(K+1)x

(K+1)
i,S(K+1))x

(K+1)
i,S(K+1)(x

(K+1)
i,S(K+1))

T

------

------

------
2

Ø Cmin ≠ max
–(K+1)œ[0,1]------

------

------
1

n(K+1)

n(K+1)ÿ

i=1
gÕ(x(K+1)

i,r (◊̄(K+1)
S(K+1) + –0uS(K+1))

T
x(K+1)

i,S(K+1))(ÈuS(K+1) , x(K+1)
i,S(K+1)Í)x

(K+1)
i,S(K+1)(x

(K+1)
i,S(K+1))

T

------

------

------
2

It remains to control the spectral norm of the matrix , denoted as A(–(K+1)) here, for –(K+1) œ [0, 1]. For
any fixed –(K+1) œ [0, 1], and y œ R with ÎyÎ2 = 1, we have

Èy, A(–(K+1))yÍ = 1
n(K+1)

n(K+1)ÿ

i=1
gÕ

1
◊̄(K+1)

S(K+1) + –0uS(K+1)

2
[ÈuS(K+1) , x(K+1)

i,S(K+1)Í][Èx
(K+1)
i,S(K+1) , yÍ]

2

Æ 1
n(K+1)

n(K+1)ÿ

i=1

---gÕ
1

◊̄(K+1)
S(K+1) + –0uS(K+1)

2--- |ÈuS(K+1) , x(K+1)
i,S(K+1)Í|[Èx

(K+1)
i,S(K+1) , yÍ]

2
.
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Note that
---gÕ

1
◊̄(K+1)

S(K+1) + –0uS(K+1)

2--- Æ 1, and

|ÈuS(K+1) , x(K+1)
i,S(K+1)Í| Æ ÎuS(K+1)Î1 Æ

Ô
dÎuS(K+1)Î2 = M⁄(K+1)d.

Moreover, we have

1
n(K+1)

n(K+1)ÿ

i=1
(Èx(K+1)

i,S(K+1) , yÍ)
2

Æ

------

------

------
1

n(K+1)

n(K+1)ÿ

i=1
x(K+1)

i,S(K+1)(x
(K+1)
i,S(K+1))T

------

------

------
2

Æ D(K+1)
max

by assumption. We then obtain

max
–(K+1)œ[0,1]

---
---
---A(–(K+1))

---
---
---
2

Æ D(K+1)
max M⁄(K+1)d Æ C(K+1)

min /2,

assuming that ⁄(K+1) Æ C(K+1)
min

2MD(K+1)
max d

.

Under this condition, we have shown that

qú := �min(Ò2¸(◊̄(K+1)
S(K+1) + –(K+1)uS(K+1))) Ø C(K+1)

min /2.

Finally, combining the three terms in G(K+1)(u), we conclude that

G(K+1)(uS(K+1)) Ø (⁄(K+1)Ôd)2

I
≠1

4M + C(K+1)
min

2 M2 ≠ M

J
,

which is strictly positive for M = 5/C(K+1)
min . So as long as

⁄(K+1) Æ C(K+1)
min

2MD(K+1)
max d

= (C(K+1)
min )

2

10D(K+1)
max d

,

we are guaranteed that

ÎûS(K+1)Î2 Æ M⁄(K+1)Ôd = 5
C(K+1) ⁄(K+1)Ôd.

J Proof of Lemmas Used in Proving Other Lemmas

J.1 Proof of Lemma H.1

Proof. By the definition of the ¸Œ-matrix norm, and using Zjl defined in Section H.1.1 we have

P[
------QN

ScS ≠ Q̄ScS

------
Œ Ø ”] = P

#
max
jœSc

ÿ

lœS

|Zjl| Ø ”
$

Æ pP
# ÿ

lœS

|Zjl| Ø ”
$
,

where the final inequality uses a union bound and the fact that |Sc| Æ p.

P
# ÿ

kœS

|Zjl| Ø ”
$

Æ P[÷k œ S||Zjl| Ø ”/d]

Æ dP[|Zjl| Ø ”/d].
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We then obtain (92a) by setting Á = ”/d in the Hoe�ding bound (87):

P[
------QN

ScS ≠ Q̄ScS

------
Œ Ø ”] Æ pdP[|Zjl| Ø ”/d]

Æ 2 exp
3

≠Á2nK

32d2 + log(d) + log(p)
4

Analogously, for (92b), we have

P[
------QN

SS ≠ Q̄SS

------
Œ Ø ”] = P

#
max
jœS

ÿ

kœS

|Zjl| Ø ”
$

Æ dP
# ÿ

lœS

|Zjl| Ø ”
$

Æ dP[÷l œ S||Zjl| Ø ”/d]
Æ d2P[|Zjl| Ø ”/d]

Æ 2 exp
3

≠Á2nK

32d2 + 2 log(d)
4

.

To prove (92c), we can write
---
---
---(QN

SS)≠1 ≠ (Q̄SS)≠1---
---
---
Œ

=
---
---
---(Q̄SS)≠1[Q̄SS ≠ QN

SS ](QN
SS)≠1---

---
---
Œ

Æ
Ô

d
---
---
---(Q̄SS)≠1[Q̄SS ≠ QN

SS ](QN
SS)≠1---

---
---
2

Æ
Ô

d
---
---
---(Q̄SS)≠1---

---
---
2

------Q̄SS ≠ QN
SS

------
2

---
---
---(QN

SS)≠1---
---
---
2

Æ
Ô

d

Cmin

------Q̄SS ≠ QN
SS

------
2

---
---
---(QN

SS)≠1---
---
---
2

Using the bound (88) in the proof of Lemma D.2, we get

P[
---
---
---(QN

SS)≠1---
---
---
2

Ø 2
Cmin

] Æ 2 exp
3

≠”2nK

32d2 + 2 log(d)
4

,

and

P[
------QN

SS ≠ Q̄SS

------
2 Ø ”/

Ô
d] Æ 2 exp

3
≠”2nK

32d3 + 2 log(d)
4

.

So finally we have

P
1---

---
---(QN

SS)≠1 ≠ (Q̄SS)≠1---
---
---
Œ

Ø ”
2

Æ 4 exp
3

≠B1
nK”2

d3 + B2 log(d)
4

,

where B1, B2 are some positive constants.

J.2 Proof of Lemma I.1

Proof. By the definition of the ¸Œ-matrix norm, and using the Z(K+1)
jl defined in Section I.1.1, we have

P[
---
---
---Q(K+1),S

[S(K+1)]cS(K+1) ≠ Q̄(K+1),S
[S(K+1)]cS(K+1)

---
---
---
Œ

Ø ”] = P
#

max
jœ([S(K+1)]cflS)

ÿ

kœS(K+1)

|Z(K+1)
jl | Ø ”

$

Æ dP
# ÿ

lœS(K+1)

|Z(K+1)
jl | Ø ”

$
,
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where the final inequality uses a union bound and the fact that |([S(K+1)]c fl S)| Æ d.

P
# ÿ

lœS(K+1)

|Z(K+1)
jl | Ø ”

$
Æ P[÷k œ S(K+1)||Z(K+1)

jl | Ø ”/d]

Æ P[÷k œ |S(K+1)|||Z(K+1)
jl | Ø ”/d]

Æ |S(K+1)|P[|Z(K+1)
jl | Ø ”/d]

Æ dP[|Z(K+1)
jl | Ø ”/d].

We then obtain (120a) by setting Á = ”/d in the Hoe�ding’s bound (115),

P[
---
---
---Q(K+1),S

[S(K+1)]cS(K+1) ≠ Q̄(K+1),S
[S(K+1)]cS(K+1)

---
---
---
Œ

Ø ”] Æ d2P[|Z(K+1)
jl | Ø ”/d]

Æ 2 exp
3

≠Á2n(K+1)

32d2 + 2 log(d)
4

.

Analogously for (120b), we have

P[
---
---
---Q(K+1)

S(K+1)S(K+1) ≠ Q̄(K+1)
S(K+1)S(K+1)

---
---
---
Œ

Ø ”] = P
#

max
jœS(K+1)

ÿ

kœS(K+1)

|Z(K+1)
jl | Ø ”

$

Æ dP
# ÿ

kœS(K+1)

|Z(K+1)
jl | Ø ”

$

Æ dP[÷k œ S(K+1)||Z(K+1)
jl | Ø ”/d]

Æ d2P[|Z(K+1)
jl | Ø ”/d]

Æ 2 exp
3

≠”2n(K+1)

32d2 + 2 log(d)
4

.

To prove (120c), we have

---
---
---(Q(K+1)

S(K+1)S(K+1))
≠1

≠ (Q̄(K+1)
S(K+1)S(K+1))

≠1---
---
---
Œ

=
---
---
---(Q̄(K+1)

S(K+1)S(K+1))
≠1

[Q̄(K+1)
S(K+1)S(K+1) ≠ Q(K+1)

S(K+1)S(K+1) ](Q
(K+1)
S(K+1)S(K+1))

≠1---
---
---
Œ

Æ
Ô

d
---
---
---(Q̄(K+1)

S(K+1)S(K+1))
≠1

[Q̄(K+1)
S(K+1)S(K+1) ≠ Q(K+1)

S(K+1)S(K+1) ](Q
(K+1)
S(K+1)S(K+1))

≠1---
---
---
2

Æ
Ô

d

C(K+1)
min

---
---
---Q̄(K+1)

S(K+1)S(K+1) ≠ Q(K+1)
S(K+1)S(K+1)

---
---
---
2

---
---
---(Q(K+1)

S(K+1)S(K+1))
≠1---

---
---
2
,

where the sub-multiplicative property |||AB|||2 Æ |||A|||2|||B|||2 for matrices A, B is used for the last line, and
Assumption 4.5 is also applied.Then using the bound (116) in the proof of Lemma F.2, we get

P[
---
---
---(Q(K+1)

S(K+1)S(K+1))
≠1---

---
---
2

Ø 2
C(K+1)

min
] Æ 2 exp

3
≠”2n(K+1)

32d2 + 2 log(d)
4

,

and
P[

---
---
---Q(K+1)

S(K+1)S(K+1) ≠ Q̄(K+1)
S(K+1)S(K+1)

---
---
---
2

Ø ”/
Ô

d] Æ 2 exp
3

≠”2n(K+1)

32d3 + 2 log(d)
4

So we have

P
1---

---
---(Q(K+1)

S(K+1)S(K+1))
≠1

≠ (Q̄(K+1)
S(K+1)S(K+1))

≠1---
---
---
Œ

Ø ”
2

Æ 4 exp
3

≠B1
n(K+1)”2

d3 + B2 log(d)
4

,

where B1, B2 are some positive constants.
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