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A Summary of Shorthand Notations Used in the Appendix

In this appendix, we simplify the notation &, as @, and (@r)Sr s, as @ss, since the reference node is
used throughout the analysis and should be understood implicitly. We follow the same practice for similar
shorthand notations in most part of the appendix to lighten the notations a little bit. This should not cause
confusion since the elements ir§ are pairs of nodes (two dimensional), while those ir5, are individual nodes

. . . . (K +1) K +1 (K +1) (K +1)
(one dimensional). Simlarly, we also write @; as @K+ and (& )SSK @ gk as G s -

(K +1) (K +1) ,S
Finally, we write @[S(K o) 191 $)S(K +D as(?s(K W sk -

B Details of Experiments

B.1 Synthetic Experiments

Given bxed values ofp and d, we simulate sparse random graphs by brst randomly choosing whether an
edge exists or not with a probability of d . At the end we check if the maximum neighborhood sized

is satisbed; if not, we redo the generatlng process until we get a random graph with maximum degree
d. For the non-zero edge values, we usmixed couplings(Ravikumar et al.; 2010), that is, each existent
edge (edge in the true support union in our case) has valué; = + 0.5 with equal probability. Then, to
generate the random parameter of each task: fol! k! K +1 and(s,t) " S, we set dsf) = .ﬂstx;k) with

Xétk) g Bernoulli(0.9). For the samples, we use Gibbs sampling (Casella & George, 1992) with 10 iterations
to generate eachp-dimensional data sample for the binary node values according to the specibc distributions
of Ising models (see@) using our simulated parameter values. Under each setting of th€p, C) pair, we
run the experiment 100 times to record whether or not it successfully recovers the neighborhood sets, and
take the average of these 100 repetitions to calculate the success rafgd (r) = N(r)]. The regularization

parameter" in the improper estimation is set to be a constant factor of 'ﬁﬂp as suggested by Theorem

. I-ﬂe% constant factor is set to 1 by default, which works well. With" (K*1) a constant factor (i.e.,
1) of n{‘;% in the restricted estimation (12), we then estimate the novel task parameter 100 times for
n<+D) = C#d®log(d) with dilerent values for C¥ where the success rate for the novel task include sign
information, i.e., it is calculated as B[N ™" (r) = N*? (r)] over the 100 repetitions.

More on Comparison. For learning the support union, we tried multi-task method of (Guo et al.| 2015).
We then joined all supports from each task. We show the results on Figurg]3. Compared with our Figurg]1 in
our paper, we observe that multi-task learning fails to estimate the support union, with such few samples per
task.
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Figure 3: The success rates (over 100 repetitions) support union recovery vs. the choice Gffor multi-task
learning (Guo et al,,|2015) as a comparison to our method in Figur{]l.

For estimating the novel task parameter, we evaluated the single-task method of (Ravikumar et al,, 2010) on
the novel task data only, using the same number of samples as in our experiments, and produced a resulting
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plot here in Figure @(Ieft). Compared with our Figure E]in our paper, we can see that given such few samples,
the alternative method cannot succeed at learning, giving near zero success rates. We also tried pooling all
data from auxiliary tasks together with the novel task, and using the single-task method of ((Ravikumar et al,
2010). We report the results on FigureBl(right). While this method might be reasonably good for estimating
the support union, it fails for estimating the correct signs and support of the novel task. This is due to the
fact that the support of the novel task is a subset of the support union.
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Figure 4: The success rates (over 100 repetitions) for signed edge recovery for novel task vs. the cha@&for
the single-task method of (Ravikumar et al!,|2010) using novel task data only (left) and using all data from
auxiliary tasks and novel task (right). Both serve as a comparison to our method in Figur{?.

B.2 Real-world Data Experiments

For the real-world data experiment, the sample sizes for each individual task range fron300to 4374 with an
average size of aroundl553and standard deviation 914 We have an independent set with68259samples to
retrieve the OtrueO support union as well as the OtrueO novel task support. When running the algorithm for
support union recovery, we use40 tasks. We used task41 as the novel task. The constant factor in" was
tuned to be 2 to get reasonably sparse graphd = 19 compared to the number of nodesgp = 157.

More on Comparison. We validated our results with comparison methods. For learning the support
union, we tried multi-task method of (Guo et al.| 2015). We then joined all supports from each task. This
method obtained a precision 0.3916, recall 0.9938 and F1-score 0.5619, versus our F1-score of 0.8869. For the
novel task, we tried the single-task method of (Ravikumar et all,| 2010). This method obtained a precision
0.8170, recall 0.3472 and F1-score 0.4873, versus our F1l-score of 0.6228. We also tried pooling all data from
auxiliary tasks together with the novel task, and using the method of (Ravikumar et al.,|2010). This method
obtained a precision 0.2402, recall 0.9889 and F1-score 0.3865, versus our F1-score of 0.6228.

Interpretation of Support Union. In the data of Functional Connectomes for our real data experiments,
we found that the support union shows some nice inter and intra symmetry between the left and right side
of the brain. For inter symmetry, Broadmann areas in the left side of the brain interact similarly as the
Broadmann areas in the right side of the brain (see Figuré:]S). For intra symmetry: One Broadmann area in
the left is most likely to interact with its corresponding Broadmann area in the right (see Figure @). This
shows that estimating the support union is important as it reduces the search space for the novel task graph
a lot in the real-world case.

C lllustrative Example

To verify that Assumption £.3]can be satisbed for a large family of distributions, we provide an illustrative
example to demonstrate its viability. The inPnity norm in the assumption can be written explicitly as

#Ht
$Ei sp Exgon Xur(ExgelXi X\ 1%Eyxga [Xe X DM $op. (31)
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For a simple undirected graph with 3 nodes and 3 potential edges, we let the latent underlying graph have
the parameter vector P= (¥,, 93, %3) = (1,1,1). See Figure ¥ for a graph illustration. Then we let the
randomness in the parameter for the observable graphs to have the following pattern

$
W(a%l,a%l,%]l), with probability
= %(a%l, %1,a%1), with probability
(%1,a%1,a%1), with probability

Wik Wik Wi

resulting in potentially 3 kinds of graphs, each with 2 edges with the same edge valua (see Figure@).

Figure 7: Latent common graph with deterministic edge vector®= (95, 93, %3) = (1,1, 1).
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Figure 8: Observable graphs with edge vecto®+! |, each with 2 edges with the same value.

Next, we need to bnd a value ofa that can fulbll our condition. Notice that the condition involves the
expectation over both! and X, and thus we need to bnd out explicitly the probabilities of all combinations
of the 3 binary states under each of the three graph settings.

In the following, we useP(x1, X2, X3) to denote P(X1 = X1, X, = X, X3 = X3) for simplicity. Now consider
noder = 1. In particular we will need the conditional distribution of X given X, and X3. For the brst
setting (the graph on the left in Figure [8), we have the joint distributions

a

P(1,1,1) = P(%l1, %1, %1) = e;

1
P(L,1,%L) = P(1, %L 1) = P(%L,1,9%1) = PO%L %L 1) = =,

e" 2a

P(L,9%1,9%1) = P(%1,1,1) = ——,

where
1

2= 4ro(eae )

is the normalizing term. The joint distribution of X, and X3 can be found to be

a4 g 2a

szvxs(lvl) = PXz,Xz(o/Olv %1) = T!
2
Px,.x5(1,%1) = Px, x4(%1,1) = >

Then we can derive that the conditional expectation of X; given X, and X3 are

e?2 %e 22
E[X1|X2 = 1,X3 = 1]: W,

E[X1|X2=1,X3= %l]= E[X1|X, = %1, X3=1]=0,

& 22 gpe?2
E[X1|X2 = %1,)(3 = 0/01] = e2£:l+7;"2a

For the other 3 graph structures (middle and right in Figure @ we can derive the probabilities and expectations
similarly. Also note that for node r = 1, these two graph structures are symmetric toX ;. Finally with all
these values we have, plugging them into the inbnity norm in(31) and setting it to be small (e.g., 0 in this
illustrative example), we have that a & 1.75. Since our setting design is symmetric for allX 1, X, X3, the
same result hold whenr =2 or 3.
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D Proof of Theorem 4.7]

D.1 Primal-dual Witness for Recovery of the Latent Common Graph

The main technique we use throughout the theoretical proof is the primal-dual witness approach (Wainwright,
2009; Ravikumar et al|,|2010) that relies on the Karush-Kuhn Tucker conditions in optimization and
concentration inequalities in learning theory. Essentially, it constructs a primal-dual pair, i.e., a primal
solution O" RP" 1 and an associated sub-gradient vectop" RP" ! as a dual solution so that the sub-gradient
optimality conditions in the convex program are satisbed. We show that under the conditions on
(n,p,d,K) stated in the theorem, the primal-dual pair (ﬁ? p) can be constructed to act as awitness that
guarantees the method correctly recovers the structure of the graph parametrized by the true common
parameter @

For the convex program ([L0), the zero sub-gradient optimality condition (Rockafellar, 2015) has the form of
" #H9+ "p=0, (32)

where the dual (the sub-gradient vector)®" RP" ! must satisfy
sign(@; ) = sign(Py) if O, €0 and |B¢|! 1 otherwise (33)

By convexity, a pair (0 %) " RP"1) RP"!is a primal-dual optimal solution to the convex program if and
only if the two conditions and are satisbed. Furthermore, this optimal primal-dual pair correctly
specibes the signed neighborhood of nodeif and only if

sign(zy ) = sign(%;) *(r,t)" S, (34)
and )
6, =0 *(rt)" S (35)

The #-regularized logistic regression problem(]@) is convex. The following lemma provides su“cient
conditions for it to be strictly convex and hence the uniqueness of the optimal solution, as well as the shared
sparsity among optimal solutions.

Lemma D.1 (A generalization of Lemma 1 in|Ravikumar et al| (2010)). Suppose that there exists an optimal
primal solution © with associated optimal dual vectord such that $#s:$5, < 1. Then any optimal primal
solution I must havelsc = 0. Moreover, if the Hessian sub-matrix[' Z#(Q{XE}T )]ss is strictly positive
debnite for the loss function debned in the paper, theR is the unique optimal solution.

Proof. The proof follows exactly the same logic as that for Lemma 1 in Ravikumar et al.|(2010), except that
the loss function in our case is one more generalized N the average of the losses in each task, which does
not change the property of strict convexity when it is present. To see this, note that the loss function in
Ravikumar et al.| (2010) corresponds to#¥) (1) we debned in the paper, the loss for each task in our case]

Based on Lemm, we construct a primal-dual witness pai(© ») with the following steps.

Step 1. We set ?js as the minimizer of the #-penalized likelihood

O = argmin {#! ;{X7}X) + "$l 5%}, (36)
(% ,0)

and set #s = sign(s).
Step 2. We setfs: =0 so that condition (B5) holds.

Step 3. We obtain Bsc from by substituting in the values of O5 and #s. At this point, our construction
satispes conditions[(3R) and[(35).
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Step 4. We need to show that the stated scaling of(n, p,d,K) in Theorem implies that, with high
probability, the remaining conditions (83) and (B4) are satisbed.

The last step is most challenging and is the goal of the majority of our proof. Our analysis guarantees that
$8s5c B, < 1 with high probability. Another condition to be satisbed is the positive debniteness stated in

Lemma|[D.]], for which by Assumptions[4.] and 4.2, we prove that the sub-matrix of the sample Fisher
information matrix is strictly positive depnite with high probability, so that the primal solution  Ois guaranteed

to be unique. The next two subsections contribute exactly to these two parts of the proof.

D.2 Uniform Convergence of Sample Information Matrices in Auxiliary Tasks

To satisfy the condition of positive dePniteness in Lemmd D.Jl and to lay the foundation for the analysis
under the assumptions of the sample information matrix of having bounded eigenvalues in the next subsection
[B.3] we aim to prove here that if the dependency and incoherence conditions from Assumptioris 4.1 and
are imposed on thepopulation Fisher information matrix then under the specibed scaling of(n, p,d,K),
analogous bounds hold for thesample Fisher information matrix with probability converging to one.

Recall the debnition of the population Fisher information matrix (dropping the subscript r) from Section

[4.1.1, we have (see] (14)):
@= o EBXO:Ex ) (37)

and its sample counterpart, i.e., the sample Fisher information matrix is debPned as

K
O 1l gm0 x0T (38)

QY = B[%' *#A,;{X1}1)]=

Here the E in @ is the population expectation under the joint distribution of the randomness in the model
parameters{! (V}¥_ and the random samples{X}} for the K auxiliary tasks, while B in Q" denotes the
empirical expectation, and the variance function is debned |n)

D.2.1 Uniform Convergence for Dependence Assumption
For the dependence assumption, we show that the eigenvalue bounds in Assumptiohs 4.1 hold with high
probability for sample Fisher information matrix and sample covariance matrices in the following two lemmas:

Lemma D.2. Suppose that Assumptio holds for the population Fisher information matrixd and the

pooled population covariance matrix E(&~ (., X (X 7. For any % >0 and some bxed constants A
and B, we have

* +
%nK
Pl min (QYS) ! Crnin % %! 2exp %A 4+ Blog(d) | (39)
and } ) . .
’ (g (m 98nK
P 'max o - U (xH) 4 Dy %% 1 2exp %A ’6(;'2 + B log(d) . (40)
k=1 i=1

The proof of this lemma is in Section[H.1.1.

D.2.2 Uniform Convergence for Incoherence Assumption

The following lemma is the analog for the incoherence assumption in Assumptioh 4.2 showing that the scaling
of (n,p,d,K) given in Theorem guarantees that population incoherence implies sample incoherence.
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Lemma D.3. If the pooled population covariance satisPes-@scs(@ss) 1, | 1%& with parameter
&" (0,1], then the sample matrix satisbes an analogous version, with high probability in the sense that

/.. 0 * +
"1l & nK
P QN5 (QYs) D, T 1%5 ! exp %B- - +log(p) (41)
for some bxed constanB.

The proof of this lemma is in Section[H.1.2.

D.3 Analysis under Assumptions of Sample Information Matrices in Auxiliary Tasks

With the incoherence and dependence conditions guaranteed with high probability (proved in Sectio@Z),
we then begin to establish model selection consistency when assumptions are imposed directly on the sample
Fisher information matrix QN as opposed tod. Recalling the dePnition of the sample Fisher information
matrix QN , we debne the "good event"

M ({XI35) = {{XTIE "{% 1,+1}K&n&P|QN satispes Assumption.1 and[4.2} . (42)
As in the statement of Theorem, the quantitiesL and ¢, refer to constants independent of(n, p, d, K).
With this notation, we have the following:
Proposition D.4  (Fixed design for auxiliary tasks). If the eventM ({X]}X) holds, the sample size per task

and number of tasks satisfynK > Ld ?logp, and the regularization parameter is chosen such that + 'ﬂ%

for some bxed constant > 0, then for recovering the true common parameter vector® of the latent common
graph, with probability at least1%6exp(%c?nK ), 1 for some constantc > 0, the following properties hold,

(a) For each noder " V, the #-regularized logistic regression for the improper estimation of? has a unique
solution, and so uniquely specibes a signed neighborhotél (r).

(b) For eachr " V, the estimated signed neighborhoot¥. (r) correctly_excludes all edges not in the true

support union. Moreover, it correctly includes all edges with|9; | + % d", along with their correct sign.

in

Intuitively, this result guarantees that if the sample Fisher information matrix is "good", then the probability
of success for the recovery of the underlying latent graph parametrized by the true common paramete?
converges to 1 at the specibPed rate. The following subsection is devoted to the proof of Propositipn I.4.

D.3.1 Key Technical Results in the Proof of Proposition 0.4 ]

We follow the steps of primal-dual witness as stated at the beginning of Sectiofi P. Since the key is to
guarantee the strict dual feasibility $8sc$y, < 1 with high probability in Step 4, we make a series of deliberate
constructions to bnd out the explicit expression of$ss. $y, and try to bound it.

Starting from the stationarity condition in (32)] ' #©{X]}¥)+ "5=0, adding to both sides
WN = %" #B{X]}T), (43)

we get
CHO{XIIN) % HBIXIYE) = WM %" B, (44)

Note that WN is just a shorthand notation for the (p % 1)-dimensional score function. Then, applying the
mean-value theorem coordinate-wise to the expansio4) gives

C2HB{XIH)0% Y = WN %" p+ RV, (45)
where the remainder term takes the form

RN = o 2410 {X]}%) %" 2HB{XT}O)]T (B%1), (46)
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with 1 () being a parameter vector on the line betweer and 6, and with [éijT denoting the j -th row of the
matrix.

Recalling our shorthand notation Q¥ = %' 2#@ {X"}X) and the fact that we have setf. = 0 in our
primal-dual construction: 1

0hQY. 5[0 9685] = WAL 96" B + RY.

) 47
%Q8s[% % %] = WY %" s + RY #7)
Since the matrix QY is invertible by assumption, it can be re-written as
Q5es(Q8s)  '[WS' %" Bs + R§1= W& %" Bse + RS, (48)
by using the common partsPs %% in the equations. Rearranging yields:
y 1 1 " w1
Bse = F[WS + RS:] % +Q8es(Q8s) WS + RS 1+ Q5es(QSs) ‘s (49)
By the assumptions QY. (QYs)" 1+, ! 1%&, and the fact that $&s%, =1, we have
2 3
RN (] N (]
eS| (L%8)+ (2 %&) oo W S (50)
Strict Dual Feasibility. Now, to satisfy the strict dual feasibility $8sc$, < 1, we need to bound Y.
and 22 The following two lemmas show that Y-~ decays to0 at an exponential rate and $RN $y;

can be bounded deterministically accordingly under some conditions.

Lemma D.5 (Decaying behavior of WN). For the specibed mutual incoherence paramete& " (0,1] and a
bxed constantc, we have

* + * +
2%& & &2

N bl | 0
P ——W" & > 7 6 exp /00(2%&)2nK + log(p) |, (51)

|
Comn " T
which converges to 0 at rateexp(%c™ 2nK ) for some bxed constant? as long as" + y bop,

The proof of this lemma is in Section[H.2.1

Lemma D.6 (Control on the remainder term RN). If "d ! 1og§'nmax s and $WN Sy, | 7, then
RN $o, 25D &
$ . | Xy | . (52)
cz. 42%8&)

The proof of this lemma is in Section[H.2.2.
Next, applying Lemmas[D.5 and[D.8, we have thestrict dual feasibility as

$"C$0 | %0W&)+ —+ — = 0 —
Ds c Doy (1/0 ) 1A)2,

with probability converging to one.

Correct Sign Recovery. For the statement of correct sign recoveryin Proposition we show here that
our primal sub-vector B debned by(36) satisbes sign consistencgign(®s) = sign(%), which su"ces to show
that

N a .
$05 % B o, ! 'r;” ,

where B, = MiN(t)) s |4, |. The following lemma is used in the proof here, which establishes that the
sub-vector O is an #-consistent estimate of the true common sub-vector;.
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Lemma D.7 (#-consistency of primal sub-vector) If "d ! & m'" and $WN $, ! Z then

o 0688, 1 > dr (53)
Cmin
The proof of this lemma is in Section[H.2.3.
By Lemma[D.7, we can write
2 $05 % 2 o, | 2 $05 % 4 $,
“min ~min
2 5 -
! d",
pmin Cmin

which is less than 1 as long a$®; | + &> d".

min

Now it is clear that the uniform convergence of sample information matrices (in Sectio) together with
Proposition (from Section[D.3) completes the proof of Theorenj 4]7.

E Proof of Theorem 4.8]

For ! = {#W}K_ , we know that there is a bijection betweenE and the set of all circular permutations
of nodesV = {1,...,p}. Thus |E]|, i.e., the size ofE, is the total number of circular permutations of p
elements, which isCg = (p%1)!/ 2. SinceE is uniformly distributed on E, the entropy of E given! is
H(E|')=log Cg.

Consider a family of p-dimensional Ising models of siz&K with parameters { @<}K_, generated according to

Theorem . We useX = {Xt(k)}l* t* n1* k* k t0 denote the collection ofn samples from each of theK
tasks. Then for the mutual information 1(X;E|! ). We have the following bound:

1 ( (
I(X;EN)! @ KL (Px g1 $Px je",1)
E E
54)
L (
— CZ KL (Pxfk)IE," (k)$Pka)|E","(k))

E E" k=1 t=1
According to Lemma 19 in (Honorig, |2011), Px(k)lE o 1S (#% , 2)-Lipschitz continuous for *E " E and
1! k! K. Then by Theorem 7 in (Honorio, |2011), we have

X (k)|E (k)gp

where the second inequality follows by the depnition of®X) and #() " [%1/d*, 1/d ]P4P in Theorem [4.8.
Putting (55) back to (§4] gives

KL P ! 234K 0680 g 1 2p/d3, (55)

X (1B " (6)

( ¢
[(X;E')! Ciz 2p/d® = 2npK/d 3 (56)
E E E" k=1t=1

For any estimate 9 of S, debne® = {(i,j): (i,j )" S,i € j}. SinceE . S, we haveP{S € S} + P{E € ©}.
Then by applying Theorem 1 in (Ghoshal & Honorio, |2017), we get

P{SE 8§+ P{E € B}
[(X;S]!)+log2
H(S|!)
2npK/d 2 +log 2
log[(p % 1)Y/ 2]

+ 1%

+ 1%
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For log((p %1)!), we have:

"1
log((p%1)!) = logi
i=1
7 o1
+ log xdx
1

=(p%1)log(p%1)%p+2

=(p%1)logp+(p%1)log

0,
p§1+2%p

Since %1 * 1 +
(p%1)log 22> +2=2 %(p%1)log L+ Sy +2%1> 0
0

we have
log((p%1)!) + (p%1)logp%p = plogp %p %logp
log((p% 1)/ 2) =log((p%1)!) %log2+ plogp%p%log 2p
For p+ 5, plogp%p %log 2p > 0, thus we have

npK/d°+log2 . 2npK/d ®+log2
log[(p % 1)!/ 2] plogp %p %log 2p

which completes our proof of Theorenj 4.B.

P{SE S+ 1%

F Proof of Theorem £.9]

We have supposed that we have recovered the true support unio from our estimate for the true common
parameter, © The constraint in then enables us to convert the problem into one without the restriction
and with a parameter of dimension|S;| with |S;|! dfor all r " V, for we can combine the constraint
straightforward into the minimization problem. With some abuse of notation using S to denote S; as before,
we can write ) 8 9

05 =argmin #K*D (1g:{X]g " KW )4 KD g g (57)

lg) RP# 1

and 85 =0, since we know that
sk g, (58)

This simplibes the problem to a great extent, and our proof henceforth takes on a similar pattern as the proof
without restriction in Ravikumar et al. (2010), but with reduced dimensions.

F.1 Primal-dual Witness for Graph Recovery in the Novel Task

We again use the primal-dual witness approach|(Wainwright,| 2009; Ravikumar et al.| 2010) as stated in the
proof of Theorem[4.7. See Sectiop D. With the loss function, parameter and data changed for only one task N
the novel task.

For the convex program @ the zero sub-gradient optimality condition (Rockafellar, 2015) has the form of
AR (G )4 (D g =0, (59)
where the dual (the sub-gradient vector) ﬁ(SK ) n RIS must satisfy

sign@ ™ ) =sign( ) it B, €0 and & |! 1 otherwise (60)
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By convexity, a pair (9", & *Y) " RISI) RISl s a primal-dual optimal solution to the convex program
if and only if the two conditions (59) and (60) are satisped. Furthermore, this optimal primal-dual pair
correctly specibes the signed neighborhood of nodeif and only if

sign@ ") = sign( & V) *(rt) " sK, (61)

and
BED =0 *(rt) " [ (62)

For this restricted problem, we have a similar lemma ag D.]L to for the uniqueness of the solution and shared
sparsity.
Lemma F.1 (Lemma 1 in|Ravikumar et al.| (2010) with reduced dimensions) Suppose that there exists

an optimal primal solution ﬁ(K " with associated optimal dual vectom(sK *D such that$"(§(:1+)l) ]c$% < 1.
= 0. Moreover, if the Hessian sub-matrix

Then any optimal primal solution "(K "D must have "f;ill)l) I

[ 2K D (81D ;{X’l‘fsK YK Y sy s strictly positive debnite, then 8™ is the unique optimal
solution.

Proof. See proof of Lemma 1 in Ravikumar et al. |(2010). The case in this convex program has a loss function
#X+1D carrying the same meaning as those in Ravikumar et al. (2010)), only with the dimensions of the
parameter vector and our samples reduced since they are restricted to the true support unio8 (see(8)). O

Based on Lemm, we construct a primal-dual witness pail(.f>(sK = %(K = ) with the following steps.

Step 1. We set ds'fK 11)) as the minimizer of the # -penalized likelihood

Oy = argmin {#!s; {X]s})+ " K $ g 1}, (63)

(D (k +1) ,0)

K +1 ; K +1
and set D(S(K ﬂ)) = 5|gn(0(s(K 1)) ).

Step 2. We set Og(:l)l) =0 so that condition (62) holds.

Step 3. We obtain n[(g(:l)l) . from (@2) by substituting in the values of d’f;}f) and D('((Ktll)) so that our
construction satispes condltlons) and|[(6R).

Step 4. We need to show that the stated scaling of(n® *1)  d) in Theorem implies that, with high
probability, the remaining conditions (@ and ( are satisbed.

Our analysis in the last step guarantees that$n[(§<:1+)1) <%, < 1 with high probability. Another condition to

be satisPed is the positive debniteness stated in Lemn@ 1, for which by Assumptiofs #.5 ahd 4.6, we prove
that the sub-matrix of the sample Fisher information matrix is strictly positive debnite with high probability,

so that the primal solution D(SK D s guaranteed to be unique. The next two subsections contribute to these
two parts of the proof.

F.2 Uniform Convergence of Sample Information Matrices in Novel Task

To satisfy the condition of positive dePniteness in Lemma F.JL and to prepare for the analysis under the
assumptions of the sample information matrix of having bounded eigenvalues in the next subsectidn H.3, we
will prove in this subsection that if the dependency and incoherence conditions from Assumptions 4.5 and
are imposed on thepopulation Fisher information matrix then under the specibed scaling of(n(K *1)  d),
analogous bounds hold for thesample Fisher information matrix with probability converging to one.
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Recall the debnition of the population Fisher information matrix (dropping the subscript r) from (| ) we

have (see[(2D):
N
@(K +1) — E[$(XéK +1) ; .dSK +1) )XéK +1) (X éK +1) ) ] (64)

and its sample counterpart, i.e., the sample Fisher information matrix is debned as

+1)

$( (K +1) ,dK +1) ) (K +1) ( (K +1) ) ) (65)

n

1
(K +1)

Q(K+1) = E[% 2#(K+1) (¢K+l) {X S} )]

Here the E in &X *1 s the population expectation under the joint distribution of the randomness in the
model parameter! KX+ and the random samples{ X7} *1 for the the novel task. B in QK *Y denotes
the empirical expectation, and the variance function is debned in[(14).

F.2.1 Uniform Convergence for Dependence Assumption
For the dependence assumption, we show that the eigenvalue bounds in Assumptiohs 4.5 hold with high
probability for sample Fisher information matrix and sample covariance matrices in the following two lemmas:
Lemma F.2. Suppose that Assumptior} 45 holds for the population Fisher information matrix@ 1 and

T
population covariance matrix E(X &P (X {**)"). For any % >0 and some bxed constants A and B, we

have * +
/ (K +1) (K +1) 0 %Bn(K 1)
P " min (Qgic+) gk +n ) ! Cmin ~ %% ! 2exp %AT + B log(d) , (66)
and
1 < * +
L G 9Bn(K +D

P XD (x84 DI 0405 | 2exp WA + Blog(d) (67

max (W

d?

i=1
The proof of this lemma is in Section[T.1.].

F.2.2 Uniform Convergence for Incoherence Assumption

The following lemma is the analog for the incoherence assumption in Assumptioh 4.2 showing that the scaling
of (n,p,d,K) given in Theorem- guarantees that populatlon incoherence implies sample incoherence.

Lemma F.3. If the population covariance satispes; (9{;:1)1)5] eaern (AU G ) B 1 1%& with
parameter & " (0, 1], then the sample matrix satisbes an analogous version, with high probab|l|ty in the sense
that * (K D) +
(K1) S K +1 R ’
PLIQlg o St QS sacn ) I, t 1% 2]1 exp %B—— +log(d) (68)

for some bxed constanB.

The proof of this lemma is in Section[T.1.2.

F.3 Analysis under Assumptions of Sample Information Matrices

With the incoherence and dependence conditions guaranteed with high probability (proved in Secti02),
we can begin to establish model selection consistency when assumptions are imposed directly on the sample
Fisher information matrix Q(X*) as opposed to@K *1) | Recalling the dePnition of the sample Fisher
information matrix QK *1)  we debne a "good event" for the novel task
(K +1)
M (K +1) ({X?_S }(K +1) )

= X’l‘fSK P yKAD wrgh 1 4130 ESHIQIKHD gatispes Assumption@ and. (69)
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As in the statement of Theorem , the quantitiesL and c, refer to constants independent of(nK *1) | p, d).

With this notation, we have the foIIowmg proposition:

Proposition F.4  (Fixed design for novel task) Suppose we have recovered the true support unich If

the eventM (K+1) ({X”(K W 1K+ ) holds, the sample size satisfp® ") > Ld 2logd, and the regularization

parameter is chosen such that + 164 ##) % then for recovering the true common parameter vector

@K+ of the latent common graph, with probability at leastl %2exp(%c"2n(K 1)) = 1 for some constant
¢ > 0, the following properties hold,

(a) For each noder " V, the #-regularized logistic regression for estimating!‘gK " in the novel task,

given data{X”(M) }(K+D) has a unique solution.f)(sK " and so uniquely specibes a signed neighborhood
NED (1) = {sign@E D yuu v 85 g0y

(b) For eachr " V, the estimated signed neighborhood!ii"i(K 1 (r) correctly excludes all edges not in the true
neighborhoodNi(K = (r):= {sign(.’?&'f ) Julu™ V\r, N € 0}. Moreover, it correctly includes all edges
with [BF D |+ C(Kloﬂ) d"(K+1) along with their correct sign.

min

Loosely stated, this result guarantees that if the sample Fisher information matrix is "good", then the
probability of success for the recovery graph by converges to 1 at the specibed rate. The following subsection
is devoted to the proof of Proposition[F.4.

F.3.1 Key Technical Results in the Proof of Proposition

We follow the steps of primal-dual witness as stated at the beginning of Sectiofi |F. Since the key is to

guarantee the strict dual feasibility $z (g(:{)l) Sy < 1 with high probability in Step 4, we prst try to bnd

(K +1) ,S

out the explicit expression of:’;Si}S(K ) ]c$% and try to bound it.

Starting from the stationarity condition in ( ' #(O(SK = )+ " f)éK =, adding to both sides
WK+ .= g fK+D) (%K +1) ), (70)

noticing that E[W (X1 ]1=0, and skipping writing down the sample{xgg 1K) i the loss function, we
get

' #K +1) (dSK +1) ) %" #K +1) (dSK +1) ) — W(K +1) %--(K +1) D(SK +1) (71)

Note that W(K*1 is just a shorthand notation for the |S; |-dimensional score function. Then, applying the
mean-value theorem coordinate-wise to the expansiorf (T1) gives

124K +1) (dSK +1) )[D(SK +1) %.ﬂsK +1) ] = WK+ gpn (K+1) b(SK +1) + R(K+D) ' (72)

where the remainder term takes the form

RJ_(K +1) _ o’ 24K +1) € (SK +1) ) %" 24K +1) (_ngK +1) )]Jj'(p(SK +1) %%K +1) ), (73)

with !(SK i g parameter vector on the line between!?‘sK D and O(SK "1 and with [ajT denoting the j -th row
of the matrix.

Recalling our shorthand notation Q(K*1) = 9¢' 24K +1) (K *1) . (xn™ ™ 1(K+1) ) and the fact that we have

set 8K S =0 in our primal-dual construction:

[S(K +1) ]C

K +1 0 K +1 " K+1) ,S K +1
U g B Wl 1 WE 00 R

(K +1) _ (K +1) w (K +1) (K +1) (K +1)
O/@ (K +1) S(K +1) [ S(K +1) %ps(K +1) ]— WS(K +1) 0/ ( )D (K+1) + R (K+1)
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Since the matrix Q(S'f[fl)) sy IS invertible by assumption, it can be re-written as
K +1 K +1 " K +1 " K +1 K +1
Qfs(:)l) ]Cs(K +1) (Q(S(K++J?) S(K +1) ) 1[Vvé(l<++13 0/ (K+1) (S(K++1)) R(8(I<++1)) ] (75)
_ (K +1) w (K +1) #(K+1),S (K +1)
W[s(K +1) ] % ( ¥ ) D[s(K +1) ] + R S(K +1) ]
by using the common parts ds'f;}l)) % fgf;}f) in the equations. Rearranging yields:
(K +1) ,S _ (K +1) (K +1)
Z1S(K +1) ]C n (K +1) [VV[S(K +1) ] S(K +1) ] ] (76)
1 K +1 K +1 " K +1 K +1
% s Qo pswcn (QT g ) WS + RESD (77)
K +1 K +1 K +1
+ QES(K +)1) ]Cs(K +1) (Q(S(K +1)) S(K +1) ) 1y (S(K +1)) . (78)
By the assumptions QESK(Z{)” Pk (Q(S'f[}l)) s ) TT 1 19%&K*D and using the fact that
%
$80 1) $% =1, we have
(K +1) ,S K +1 K +1 2$R(K 1) $0/ $W(K +1) $0/ 3
+ + ( 0
$ S(K+1) ] c$% . (1%&( ) )+(2 %&( ) ) " (K +1) " (K +1) (79)
Strict Dual Feasibility. Now, to satisfy the strict dual feasibility $n[(§Kl+)1, S] $ < 1, we need to bound
f (K +1) P p (K +1) o K +1) .
W s and . The following two lemmas show that % W decays to0O at an exponential

' (K +1) ..
rate and R(Kil) can be bounded deterministically accordingly under some conditions.

Lemma F.5 (Decaying behavior of W (K *1) ) For the specibed mutual incoherence paramete&(X *1 " (0, 1],
we have

2 3 > 2 ) ?
2%&(K +1) &(K +1) (&(K +1) ) (-- (K +1) )

(K +1) (K +1)
- W o > y I 2exp % 1282% (<1 )2 n +log(d) (80)

which converges to 0 at rateexp(%c(" < *D)?n(<+1 ) for some constant ¢, as long as " *D +

162" #*V )" Tlog(d)
# (K +1) n(K+1) -

The proof of this lemma is in Section[1.2.1

(K +1) +
Lemma F.6 (Control on the remainder term R(K D) |f " (K+1) ¢ 1 i(():omc';“ J) S and SW (KD g, 1

n (K +1)

, then
K 41 (K +1) K +1
BRED $ | 2DH Ly g, 8K (81)
u(K +1) (K +]_) 4(2 %&(K +1) )
(Crin )

The proof of this lemma is in Section[1.2.2.
Next, applying Lemmas[F.§ and[F.g, we have thestrict dual feasibility as

&(K +1) &(K +1)
+
4

| S
Y TS | Q%K)+

&(K +1)
=1 % ,
°T 2

with probability converging to one.
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Correct Sign Recovery. For the statement of correct sign recoveryin Proposition we show here that

our primal sub-vector &,"%) depned by(E3) satisPes sign consistencgign(% 5 ) = sign(7) ), which

su"ces to show that

K+1 K +1 dK -

AK + + “mi

LD BT S |

where -demﬂ) = Mingiy) sk |-‘thK = |. The following lemma is used in the proof here, which establishes

K +1)

that the sub-vector & is an #-consistent estimate of the true common sub-vectoﬂ‘s'f;ff) :

" S(K +1)
2 " +
Lemma F.7 (#-consistency of primal sub-vector) If " (K+1 d1 10;% and $W(K+D g, 1 (K4 2 then
K +1 K +1 K+1) = =
SO 068D g1 5O dr kD (82)

The proof of this lemma is in Section[T.2.3.

By LemmalF.7, we can write

2 (XK +1) K +1) 2 (KK +1) K +1)
oS WY s 2 e
*min *'min
| Kiﬂ)%' ar K+
'dmin Cmin
which is less than 1 as long ag@ ™ | + C(Klql) dr

Then we can use the uniform convergence of sample information matrices (in Secti@.Z) and Proposition

(from Section[F.3) to Pnish the proof of Theoren{ 4.9.

G Proof of Theorem £.11]

For simplicity, assume |S| = d. (A similar proof can be carried out with |[S| = C;d and # "
[%cld}mgd, C1d31|ogd]p&p instead.) According to the dePnition of E, we know that |E| = 2ISI/2 = 2d/2,
Since E(K*1) s uniformly distributed on E, the entropy of E(X*1) given # is

H(EX ™ [#) =log [E| + § log2 (83)

Now let X := {X{}1+ = n be the samples from ap-dimensional Ising models with parameters® generated
according to Theorem. For the mutual information 1(X ; E(K*1 |#), we have the following bound:

1 ( (
|(X ' E(K +1) |#) ' ﬁ KL (PXIE(K 1) $PX|E(K +1) ’")
E(K+1) E(K +1)
1 ( « (84)
=ﬁ KL (th|E(K+1) $PX1|E'(K+1) )

E (K +1) E (K +1) t=1
According to Lemma 19 in (Honorig, |2011),Px g« ~ is (#,,2)-Lipschitz continuous for *p(K+) » g
Then by Theorem 7 in (Honorio, |2011), we have

4 g 6 2
KL Py ey »BPy pce o | 2585 %S ! d?logd’

where the second inequality follows by the depnition of? and # " [%grssg. grsgqlP*P in Theorem .
Putting (85) back to (84] gives

(85)
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1 C € ( 2 2n
. (K +1) | | —
(X E ) - d?logd d?logd (86)

DebnePK D = {(jj)" 9K+ :j & j}. By applying Theorem 1 in (Ghoshal & Honorio, [2017), we get

P{S(K +1) é Q(K +1)}+ P{E(K +1) F @(K +1)}
[(X; EK*D |#) +log 2
H(E(K +1) |#)
+log 2

og|E|
+log 2

+1%

+1% dzlogd

d?2 Iog d
glog2
4n
- 0@ 0ph—
(log 2)(d® logd) & d

=1 %
=1 %

H Proof of Lemmas for Theorem 4.7

H.1 Proof of Lemmas for Uniform Convergence of Sample Information Matrices in Auxiliary Tasks

H.1.1 Proof of Lemma D.2]

Proof. T?e >, I)th element of the dilerence matrix QN (¥ % @&(9 can be written as an i.i.d. sum of the form

Zi =g (i ~ Z(lkl), where eacth(“) is zero-mean and bounded (in particular, |Z](|'f)| ! 4). By the
Azuma-Hoe'dlngOs bound (Hoe!ding/ 1994), for any indiceg, | .,d and for any (> 0, we have
n (K (n # * 2
PIZ; )%+ (2] = P |i 5 2000 (1 2exp ot QZK . 87)

k=1 i=1

By the Courant-Fischer variational representation (Horn & Johnson, [2012),
" min (@ss) = ,'T]in_l xT @ssx

= ,mm {xTQ¥sx + X" (@ss %Q8s)x}

X' 2=

I yTQYsy + ¥y (@ss %QYs)y,

wherey " RY is a unit-norm minimal eigenvector of QY. Therefore, we have
" min (Q8s) + " min (@ss) %~@ss %QSs, + Crin %-+@ss %Q8s -

Observe that B
d d 1/ 2

(¢ (
Q¥ %@ss -, ! A (zy)*C
j=1 1=1
Setting (? = %/d 2 in (B7) and applying the union bound over the d? index pairs (j,|) then yields
* +
P[QYs %@ss, + %! 2exp %de +2log(d) . (88)
So, we have the Prst concentration inequality in LemmefFIl]l:

+
P i (QUs) ! Con %31 26xp s+ 2l0g(c) (89
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Now, for the second concentration inequality about maximum eigenvalue of the sample covariance matrix,
with the same reasoning from the Courant-Fischer variational representation |((Horn & Johnson| 2012), we

have, for1! k! K,

" 1 (¢ 9 (x (9 1 (¢ 9 (x ()
max (B[~ X{, (X, ) D= max, vr E[K Xy (Xyy ) v
k=1 k=1
1 1 (™
= max (Vi(g o XLV
2= k=1 = i=1
1 (¢ 1 1
FVEG XP) 1% xR )T
k=1 k=1 i=1
(- = V()
K - n - I r L\r
1 (K 1 (¢ ("
P EL XPx T S X )N
k=1 k=1 i=1

whereu " RY is a unit-norm maximal eigenvector of =° K., 27 " x"0 (x!))T. Therefore, we have

1 (10 () (5 ()
n |\r( |\r)T)

" max (K n
k=1 i=1
) 1 (¢ AOEENG 1 (¢
max Bl XX DT 1 (x fk\)r)T %EL; XX Du
K K n_ K
k=1 k=1 i=1 k=1
OEENG 1 (¢
| D+ S = X TREL T X)) D
n K
k=1 i=1 k=1 "y
The dilerence matrix Ki) K %) o xl(k\)r (xl(k\)r)T %E[F ) L X (k)(X (k)) ] can be written as an i.i.d. sum
) k) (k) (k)
of the form Y = * E—;L 151 Y”(I , Where eachy;;;" is zero-mean and bounded (in particular,|Y;;;’| ! 4).
By the Azuma-Hoe!dingOs bo und (Hoe!ding, 1994), for any indiceg,l =1,...,d and for any (> 0O, we have
* +
n 1 (K 1(n # 2 K
PIOG)? + (1= P S0 Y1+ (1 2ep %o (90)
K n_ 32
k=1 i=1
Observe that
T 4 x @(d (¢ B2
ol 1 1
Do X)) %ELS x“)(x‘k’) DA ()%
k=1 ' i=1 k=1 "o j=1 1=1
Setting (* = %/d? in (B0), and applying the union bound over the d* index pairs (j,|) then yields
y wen = * +
=1 (K (" 1 (K %BnK
e o x0T WE[ (k’(x(k>) ] + %1 2exp Yoo +2log(d)
k=1 =L k=1 )
So we have (n * " +
S | K) (k) T F # %nK
P max N (xV)T)" + Dimax + %! 2exp Yogar +2109(c)
i=1
[

as stated in the lemma.
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H.1.2 Proof of Lemma D.3]

We begin the proof of this lemma by decomposing the sample matrix as the su@g‘cS(Qgs)" L T+ T+
T3 + T4, where we debne

Ty = @ses[(QYs) ~ %(@ss) 1, (91a)
T2 = [QYes % @ses](@ss) (91b)
T = [Qls % @sesl(QNs) ~ %(Bss) 1, (91c)
Ty = @ses(@ss) (91d)

The fourth term is controlled by the incoherence assumption in Assumption| 4.1L:
- "1l
Tallgg = = @ses(@ss) 2 1 1%&.

If we can show that || T; ||, ! % for the remaining indicesi = 1, 2, 3, then by our four-term decomposition and
the triangle inequality, the sample version can satisfy the desired boun@. To deal with these remaining
terms, we make use of the following lemma:

Lemma H.1. For any % >0, and constantsB, B 1, B,, the following bounds hold

* +
%nK
P[-QSes % @sesy, + %! 2exp 9B = +log(d)+log(p) (922)
* +
. %nK
Pl Qss %@ss,, + %! 2exp %B 7 +2log(d) |, (92Db)
* KO/(; +
Pl (QYs) l%((955) 12220/ + %! 4dexp %Bln 37—+ B2log(d) . (92¢c)
See Sectiorf J]L for the proof of these claims.
Control of the brst term. For the brst term, we re-factorize it as

T, = @scs(@ss)" 1[@55 %Qgs](Qgs)" g

Then,
. mA e LR "l
MTllo, ! 2 Fses(Bss) ---%'"@ss %Qgs"'%---(Qgs) -
T
I (1%&)@ss %Q5s,, { dI(QSs) ---2},

where we have used the incoherence assumption in Assumpti¢n 4.1. Using the bouf0) from Lemma
(D.2) with %= Cpin/2, we have ;(QYs) 12222 = [" min (QY5)] b == with probability greater than

1% 2exp(%BnK/d 2 + 2 log(d)). Next, applying the bound with %= ¢/ d, we conclude that with
probability greater than 1 %2 exp@BnKc 2/d 3 + 2log(d)), we have

+@ss %QYs,, ! ¢ d.

(]

By choosing the constantc > 0 su“ciently small, we are guaranteed that
* +

nKc?
PIITlo, + &/ 6]! 2exp 9%B P +log(d)
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Control of the second term. To bound T,, we Prst write

TS mL e
ITally | 6(@0) 5 Qs %05,

d -
| o ---Q§c5 %@scsm%-
Then apply the bound (92d) with %~ %9(% to conclude that
* +
nK
PIT2lly, + &/6]! 2exp %8 - +log(p)
Control of the third tgsm. Finally, in order to bound the third term T3, we apply the bounds) and
©2d), both with %= &/ 6 and use the fact thatlogd ! logp to conclude that
* K +
Pl Tsll,, + &/ 6]! 4exp %Br:j—3 +log(p) . (93)
Putting together the four pieces, we conclude that
/ o * 7 +t
: nK

P EEEQECS(QQ‘S)”EE:% +19%8&/2 = 0 exp %B L +log(p)

H.2 Proof of Lemmas for Proposition

H.2.1 Proof of Lemma D.5]
Proof. By debnition of WN (see [43)), we have

K
WS = & HEOQN S = ST K@ (XS, (94
k=1

which can be decompose into two parts as follows

$ #HEXI}T)Bw

1 (¢ 8 9 1 (¢
's K CHR(BIXTTE) 96 # (R IXT1W)) G, + $f CHO (B0 {X110)) . (95)
E_X1 FG H E_K71 FG H
Y1 YZ
We then bound the two terms $Y1$, and $Y,%, respectively.
Bounding $Y,>%y
Note that the conditional expectation of Y, given {! (V1K is
(K)1 K 1 (¢ v oK) (@K . fyeny (K) (K)1 K
E[Y2{! "}1]= E[f #10 (@) 1R KT
k=1
1 00 oy (Y (0
=K B[ #K(@R; (X730 (]
k=1
(K
= Ki 0
k=1
:O,
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where the second to last line comes from the fact that the expected gradient at the true parameter of each
task is 0. This property can also be checked by expanding the expression ¥%. Each entry of Y,, denoted by
You,for 1! u! p%1, can be expressed as a sum of random variabl@f:j):

1 (¢ (n
You = K n Zi(,h)’ (96)
k=1 =1
where
) k) ) gy
X %ex %
Zi(,l.lj)_ (k){X(k)O/ p( t) Vir -t |t) P v )}

k), (k gk (k
exp( t)V\rqt) ())+exp(% t) Vir ® rt) ())

= X ({7 %P [X ) = 111+ Paw [X ) = %1ix]) ).

We have the conditional expectation E[Zifl'j)|! (k)] =0 by applying another law of total expectation (Weiss
et al., [2005) with the inner conditional expectation of Xr(k) given X\('r‘) and the outer total expectation being
the marginal joint expectation of X\“r‘). So we have the total expectation

Elz{] = E[EZ{0)r 1) = E[0] = 0. ®7

Also, from the expression onIu , since all samples are eitheftl or +1, it is easy to see that|Z(k)| I 2

On the other hand, note that the total nK samples{xi( }1+ i* n, 1 k* kare conditionally independent given
{1 (K ({1 (1K are the latent random variables. We can then apply the Hoe!dingOs Inequality with
latent conditional independence (LCI), Corollary 1 in Ke & Honorio|(2019) by conditioning on the latent
random variables{! }K_, to get

x (n ” 4 g 6
Pl (Z;,) %0)+ %! exp % ,
k=1 i=1 8nK

(98)
for any % >0. Substituting Yz, in @) and by the symmetry of it (resulting from the symmetry of the binary
random variables{Xi(k)}l* i* n, 1% k* K ), We have

P[Youl + %= P[You + % OF Yo, !% %
I P[Yau + %+ P[Y2, '% %

= ZP[YZU + %
< (n
= 2P[% 2% %0) + %
4 k=1 i=1 5
%
| 0,
I 2exp % 8K
After that, applying union bound over the indices u of Y yields
4 0 6

%
04| 0,
P[$Y>$, + %! 2exp /o8nK +logp . (99)

Bounding $Y1$

Note that Y1 = ' #&,) % & ) K #(k)(ﬂ(k)) using the shorthand notations in (19). We can bound $Y,$,
by writing
BY1$, = BY1 WE(Y1) + E(Y1)S

100
'$ Y1 YE(Y1)$o + SE(Y1)$os . (100
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NP
. . o Blog2ps
Using Assumption|4.3 by setting %= 2%%2P%) '\e have
* +
%nK
P(SE(Y1)S + %! 2exp % +logp . (101)

Notice that for Y;, we can also decompose it into a sum of random vanabl@“k)

(102)

where

) K ) K
Xp(\ t) V\r 2 Xi(,t))%exp(%\ t) V\r 2 Xi(,t))

) Kk )) Kk
exp(’ ) v grtxi(t))"'eXp(% t) Vir -grtxi(,t))

xU X1 % Pg[X, = 1|x|(k\)r] + Pg[X, = %1|xfk\),]}.

Zf(uk) Xl(k){x(k) %

u

Here Py denotes the conditional probability of the random variable associated with noder taking on %l or
+1 given a (p % 1)-dimensional data vector valuesxl( \)r, supposing the true parameter is€ . In this way, we
can write each entry of Y; % E(Y1) as

1 1 1 o
Yiw %E(Yin)= o = ZOwER- T =z
K . : K n.
k=1 i=1 k=1 i=1
11 (™ ‘
= - Zi ) %EZ)
k=1 =1
Then we debne random variable
HE = 289 %E[Z ] (103)
forall 1! i! n, 1! k! K, 1! u! p%1 We have
EH1= EZ %Ez 1 = ElZXY1%EZ 1= 0. (104)

Since the expected vaIueE[Zf(k)] is deterministic, the randomness ofH; (k) takes on the same pattern as

Zf(uk), so they are conditionally independent given{! ()}X In addition, H( ) is bounded in the sense that

[H (k)l I 6. By using LCI Hoe!dingOs inequality (Ke & Honorio, 2019) again, we get

P[(K ¢ (HY) %0) + %! exp4 % ° (105)
. Lu ' 72nK
k=1 i=1
Using the same reasoning (symmetry and union bound) in proving the bound fo$Y,%y, , we get
4 % 6
P[$Y1 %E[Y1]%, + %! 2exp %72nK +logp . (106)

Next, putting the terms $E[Y1]%, and $Y; % E[Y1]$, together, we have

P($Y1$5, > 299 =1 %P($Y:$, < 2%
| 19%P($E[Ya]$y + $Y2 %E[Y1]%06 < 2%
| 1%P(SE[Y1]$% <% and $Yi %E[Y1]$e <%
= P(SE[Y1]$% + % or $Y1 %E[Y1]$s + %
| P(SE[YVa]$y + %+ $Y1 %E[Y1]Ss + %.
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By the same token, we get

P($WN Sy, > 3% ! P(SY25 > % + P(SE[Y1]S, + D+ BY1 YE[Y1]S + %D (207)
4 0 6 4 0 6
| 0 0
I 4dexp /OSnK +logp )+2exp A)YZnK +log p (108)
0
| 0,
I 6exp A’?%K +logp . (109)
Finally, setting 3%= zZ+y, we obtain
* + ¥ 202 +
2%& N & &"
> — 1 %—— +
P ———$W" &, 7 6 exp /00(2 %&)an log(p) . (110)
for some bxed constant as in Lemmal[D.5. O

H.2.2 Proof of Lemma D.6]

Proof. We brst show that the re__mainder term RN §atisbes the boundbRN $o, | D max 05 %% $3. Then the
result of Lemma, namely$9 % % $, ! % d", can be used to conclude that

SR $os | 25D max
" " CZ

min

d

as claimed in Lemma[D.6.

Focusing on eIementRjN for some indexj "{ 1,...,p}, we have
RY = o 211 D)%) %" *#E X)]] (P%P)
1 (¢ . iy
s B0 0) % 9))(P%8,
k=1 i=1

for some poir)mt 1) = O+ (1 %y)?and p " [0,1] Then we setg(t) = % by noting that
$(1,x) = g(x, Hvir bt Xt). By the chain rule and another application of the mean value theorem, we then
have

Ry = 1O L0 g0y 00 oo ) 0%

J
K k=1 n i=1
1 (¥ 1 (" AT ; T T .
= = ) PR %8 (P () 0%},
k=1 i=1

i) i ; ; i " ; (k) .— iNT Ky (k) (k) .—
where ! 1) is another point on the line joining P and @ Setting &’ := {g*((! %)) x;’)x;;’} and B’ :=

. T .
{nm %.’Z]Txi(j()(xi(k)) [P%#9}, and treating a, b both as nK -dimensional vectors, we have

1 OO g, 1
RN = | a1 sasy, $b8;.
nK Vo1 o1 nK
A calculation shows that $a$, ! 1, and
|

1 1 (¢ 7 (" T
oS = o wP%a S xx®y " [Py
k=1 1 i=1 |
1 (K D T 1 (K 1 (n (k) (k) T D
—k M (s % %] K n KNis (xis)  [B %%]
k=1 k=1 i=1

! Dmax$p3 %gS$§1
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where the second line uses the fact thafs. = %. = 0. Therefore, we have

SRN Sy, | Dimax $9% %% $3

H.2.3 Proof of Lemma D.7]

Proof. Following the method of proof in |Ravikumar et al.| (2010) which was also previously used in another
context (Rothman et al.| 2008), we debne the functionG : R, R by

G(us) := #(% + us; {X1}) %HE; {X1}T )+ "n($% + us$: % $5$). (111)

It can be seen thatd = Ps %% minimizes G. Moreover, G(0) = 0 by construction; therefore, we must have
G(6) ! 0. Note that G is convex. Suppose we show for some radii > 0, and for u" RY with $u$, = B, we
have G(u) > 0O,. we then claim that $6%, ! B. In fact, if 0 lay outside the ball of radius B, then the convex
combination td + (1 %t)(0) would lie on the boundary of the ball, for an appropriately chosent " (0, 1). By
convexity,

G(to+ (1 %t)(0)) ! tG(8)+ (1 %t)G(0)! O,

which contradicts the assumed strict positivity of G on the boundary. It thus su”ces to establish strict

positivity of G on the boundary of the ball with radius B = M" d, where M > 0 is a parameter to
be chosen later in the proof. Letu " RY be an arbitrary vector with $u$, = B. Recalling the notation
WN = 9" #B {X]}K), by a Taylor series expansion of the log likelihood component o6, we have

G(u) = %W )Tu+ uT[ 2#% + &u; { XTI} u+ "0 ($% + us$: % $%$1)
for some& " [0, 1]. For the brst term, we have the bound
— - -5>M

I(WE)Tul IS WE S, $u$y 1S WS S, dSus, ! ("n d)2z, (112)

since WY $y, ! "T" by assumption. For the last term, applying triangle inequality yields
"n($% + us$ % FES) + %" Sus$.
Since$us$; ! ) d$us$,, we have
“n($F5 + UsS; % %) + %", dSUsS, = WM ( d') . (113)

Finally, turning to the middle Hessian term, we have

= " min (' 2#(ﬂ5+&u) {X }1))
+ min " min ( #(% + &us); {Xl}ﬁ )

#) [0,1]
L (k). (k) (K) _
=min "mn o = 80 B+ &Us)Xg (Xig )
#) [0,1] Koo Mgy

(k).

By a Taylor series expansion of§(x;"’;§, we have, for some&q " [0, &], a lower bound ofq*:

1 (¢

k=1 i=1

- x () (k) (k)
min X
in (e [

(
+ g (B + &oun XX WIx xR (x) ]
t) S\r
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NG K K)o (k
+ " min K $(X( ). ﬂS)X( ) ( ))
k=1 i=1
’ 1 ( 1 (" 4 K k 6 k k k k -
+ min & mn — <+ # ( )(ﬂs + &Us) X( ) ( )(USX( ))X( )(X( ))
#) [0,1] K ‘o1 n._,
w1 (6 1(n 2 x( <k>6 x(9)x( (k)T
+ % max & max I— — + &ou Xj ul Xis (X
min (st) 0#) 01 #0) l0#] o K - n - (gs s) ( sX ) ( )
= 2
- 1 l(n #4 (k) (k)6 (k) (K) (KT
+ " min (QSs) % max 1> = (% + &us)' Xis (USXig)Xig (Xig )
#) [0,1] .- K n . _
k=1 i=1 "2
1 (0 A4 . 08 O ) LT
+ Cmin % max K on g* ( )(ﬂs + &uUs) X( ) (/Us,X( )O)X( )(X( )) -
R FG H:
A ) -

It remains to control the spectral norm of the matrix A(&), for &" [0, 1]. For any bxed&" [0,1], andy " R
with $y$, = 1, we have

1 (¢ 2(m 4 (k) )6 (k) (k) 2
/ylA(&)yo: K ﬁ # (%‘F&U ) XS [/uSlX q[/X|S!yq
k=1 = i=1
1 (¢ 1 (n : 6. 2
= # x() (% + &us) x% : us, xQopx{,yo
k=1 n i=1
6

Note that g# x(k)(ﬂs+ &Us) x(k) ;! 1, and

Vus, x0[ 1S us$, | dSus$, = M" d.

Moreover, we have

K - K n -
L0 007 210 20 06075 1 D
K. . n - K eer Mo )
by assumption.We then obtain
mg)i] "lA(&)"lz ! Dmax M" nd! Cminlzu
assuming that" , ! m%”m Under this condition, we have shown that
q =" min (" *#% + &U); {X1}1)) + Crin/2. (114)
Finally, combining the three terms in G(u), we conclude that
K
w2 1 Cmin 2
G(us)+ ("n d) %ZM + TM %M

which is strictly positive for M =5/C i, . Therefore, as long as
Cmin _ Cr%ﬂn

"o =
2MD maxd 10Dmaxd,

n -

we are guaranteed that .
$is$, ! M", d= "nod.
Cmin
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| Proof of Lemmas for Theorem 4.9]

I.1  Proof of Lemmas for Uniform Convergence of Sample Information Matrices in Novel Task
1.1.1 Proof of Lemma E2]

Proof. The (j,1 )™ element of the dilerence matrix Q(< * (B *1) ) o5 @ +1) (BX*V) ) can be written as an

L. (K +1) .
i.i.d. sum of the form Z]-(,K W= ﬁ) -1 ZJ-(L}? D, where eachz{ ™V is zero-mean and bounded (in

jli
particular, |ZJ(,'|< = | ! 4) By the Azuma-Hoe!dingOs bound (Hoe!ding, 1994), for any indiceg,| =1,...,d

and for any (> 0O, we have

" n{f +D +
K +1 l K +1 # (Zn(K+l)
P[(Z( W24 (= Pln(K+1) ZJ(|I+)|+ (! 2exp %T
i=1

(115)

By the Courant-Fischer variational representation (Horn & Johnson, [2012),
n K 1 H K 1
min (@(S(K++1)) S(K +1) ) = ‘r)pln—]_ XT @(S(K++1)) S(K +1) X
)=

— K+1 T K +1 K +1)
- ‘r;(nm {X Q(S(K +1)) S(K +1) X+ X (@(S(K +1)) S(K +1) /OQ(S(K +1) S(K +1) )X}
=1

(K +1) T (K +1) (K +1)
! y Qs(K +1) g(K +1) y+ y (GS(K +1) G(K +1) %Qs(K +1) g(K +1) )yr

wherey " RY is a unit-norm minimal eigenvector of Q(S*f;}f) s+ - Therefore, we have

(K +1) " (K +1) o (K +1) (K +1)
min (QS(K +1) g(K +1) )+ " min (@S(KH.) S(K +1) )%"'@S(K +1) S(K +1) A)QS(K+1) Stk =y

(K +1) (K +1) (K +1)
+ len 0/ (gs(K +1) G(K +1) /on(K +1) S(K +1) ...2.

Observe that

By

@(d (¢
A (Z(K+1)) C

j=1 I1=1

(K +1) (K +1) -
'"@S(K +1) g(K +1) %QS(K +1) g(K +1) y

Setting (? = %/d 2 in ({L15) and applying the union bound over the d® index pairs (j,|) then yields

* +

" " n(<+D)
PLIGG socn %QEW sy &)+ %! 2€XD %—ap o + 2log(d) (116)

So, we have the brst concentration inequality in Lemmg F.P:

+
+2log(d) . (117)

(K +1)

%n
P[" min (Q(SIEK+}1)) S(K +1) ) ! Crgnlfnﬂ) % %! 2exp %W

This proves the prst part of the lemma. For the second concentration inequality about maximum eigenvalue
of the sample covariance matrix, with the same reasoning from the Courant-Fischer variational representation
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(Horn & Johnson, 2012), we have,

T T
" max (EX S (XST) D = max VIEXS (X)) v
X

n +1)

(K +1)( (K +1)) )V

1
-3
Q
1 X
—~~
<
_‘

1 n((( +1)

n(K +1)

T
VT (E[X éK +1) (X éK +1) ) ] %

1 n{ +1)

+

(K +1)( (K+1)) )V}

i=1

T (K +1) (K +1) \T
+u (W X (X ) u
i=1
1 n% +1)
+u (E[X (K +1) (X (K +1) ) ]0/ (K 5 (K +1) ( (K +1) )T)U
i=
. . . . (K +1)
whereu " RY is a unit-norm maximal eigenvector ofﬁ) L xS ()T, Therefore, we have

+1)
1 " (K +1) (K +1)
max (W (X ")

i=1

n{ v

]
" max (EIX S (X EP )+ uT(

1 n%( +1)

K +1 K +1 K +1 K+1) T
D x{§ Y (s )T BEX Y (X)) Du
i=1

I DﬁnKa;l) + o

K 1 K +1 K +1 K +1
___(n(K+1) +)(( +))T(yE[X( +)(x( "‘))])
i=1
"2
. . (K +1) T . .
The dilerence matrix ﬁ) m x,('; = (xi(g T oEX D (X E ) ] can be written as an i.i.d. sum
(K+D) . .

of the form Y-,(K = — n Jl(lK D where eachY,* *? is zero-mean and bounded (in particular,

jLi
|YJ|(:< D |1 4). By the Azuma-Hoe!dingOs bound |(Hoe!ding, 1994), for any indiceg,| =1,...,d and for any

(> 0, we have

(K +1) SR (K +1) # (2n(K+D) +
PO )2+ (1= Pl Y 1+ (CF 280 %o — (118)
i=1
Observe that
W - @ Buo2
1 " d (d
e (K +1) (X(K +1) )T %E[X { (K +1) (x§ (K +1) ) ] 1A (le(K = )2C
.._n i=1 ...2 j=1 1=1
Setting (2 = %/d 2 in (L18) and applying the union bound over the d? index pairs (j, 1) then yields
1 n((( +1)
K+1 K +1 K +1] K +1]
e ST 90X ()T op
i=1
E +

oBn(K +1)
I 2exp %W+2Iog(d)
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So we have the second part of the lemma

+1) * +
n " 1 nY‘ # # %n(K +1)
P o (K +1) (! (K T+ DKM 4 oh1 2exp %732(]‘2 +2log(d)
i=
O]
[.1.2 Proof of Lemma E.3]
"1
Proof. Decomposing the sample matrix as the surTQE;:l)l)’S]cs(K o QU ) =TI T 4
TS 4+ 7D where we debne
K +1 K +1) ,S K +1 "1 K +1 "1
TJS = @(s(:+)1) ©S(K +1) [(Q(S(K++1)> S(K +1) ) %(@(S(K+*1)) S(K +1) ) (1192)
K+1) ._ K +1) ,S K +1) .S K +1 "1
T2( = e [QEs(:)l) ]Cs(K +1) %@Es(:}l) ]Cs(K +1) ](@(S(K++1)) S(K +1) ) ’ (119b)
K+1) ._ K +1) ,S K +1) ,S K +1 K +1 1
Té * ) - [QEs(:)l) ]Cs(K +1) %Gfs(:)l) ]Cs(K +1) ][(Q(S(K++1)) S(K +1) 0/ ((g( (K++1)) S(K +1) ) ]7 (1190)
K +1 K +1) S (K +1 "1
ng Y @(S(:*)l) Cg(K +1) (@S(K++1)) S(K +1) ) . (119d)
The fourth term is controlled by the incoherence assumption (A2)
i (K #1) i _ ol (K +1) .S (K +1) B K +1
Ty Sy T TG s (Fgic s ) = I 1%&KD

If we can show that ZZZTi(K o #(Kﬂ) for the remaining indicesi = 1,2, 3, then by our four term
%

decomposition and the triangle inequahty, the sample version satisbes the desired boun@®8). For the
remaining three terms, the following lemma is useful in the proof:

Lemma I.1. For any % >0, and constantsB, B 1, B, the following bounds hold,

(K +1) ,S (K +1) ,S 0 ’ (2 (K+D) *
QS(M) ek 1 %@[S(M)’ sk D 2220/ + %! 2exp %B " +2log(d) |, (120a)
(]
/o (K +1) (K +1) 0 ) (3nt+D) *
P Qg+ sy WTgicn i ZZZO/ + %! 2exp %B " +2log(d) |, (120b)
(] % "
Tk "1 (K ) 0 o MK
P ---(Qs(K +1) S(K +1) ) A)(@S(K +1) (K +1) ) ---% + /0 I 4eXp /OBlT + leog(d) . (1200)
See Sectiorf J for the proof of these claims.
Control of the brst term. Turning to the brst term, we re-factorize it as
(K+1) _ m(K+1) S (K +1) "Ll (K +1) (K +1) (K +1) "1
T1 - @[S(K +1) 1°S(K +1) (@S(K +1) G(K +1) [@S(K +1) g(K +1) %QS(K +1) §(K +1) ](QS(K +1) (K +1) )
(K1) L
Then, we can upper bound:T; o by
%
(K +1) .S (K +1) LT (K +) (K +1) e (K FD) B
'"@[S(K 1) 1°S(K +D) (@S(K +1) S(K +1) ) "o "'@S(K +1) S(K +1) %QS(K +1) g(K +1) "o "'(QS(K +1) S(K +1) ) "o
(K +1 K +1 o T (K #L ta
! (1%&)®(S(K++B) S(K +1) %Q(S(K++]?) S(K +1) --'%{ d--'(Q(S(K++l)) S(K +1) ) -"2}1

where we have used the incoherence assumpt|on in Assumptin 4.6. Usmg the boud@l?) in Lemma|F.2
K +1 " K +1
with %= Cpin/ 2, We have (Q(S(K++1)) swen ) T = [ QU e ' &2 with probability greater
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than 1%2exp(%Bn K *D /d? + 2 log(d)). Next, applying the bound (L20H) with %= ¢/ d, we conclude that
with probability greater than 1% 2 exp@Bn(K*D ¢2/d 3 + 2log(d)), we have

(K +1) (K +1) - =
---@S(K +1) g(K +1) /OQS(K +1) G(K +1) ey I'c/ d.
(]

By choosing the constantc > 0 su"ciently small, we are guaranteed that

* +
(K+1) n(K +1)
PL:T, ' + &K /6]l 2exp B —5— +log(d)
Control of the second term. To bound T2(K D we brst write
i (K +1) TSl (K 1) LTI A(K 1) S (K +1) S
---T2 "o ! d"'(@S(K +1) (K +1) ) '"2"'Q[S(K +1) 1°S(K +1) /OQS(K +1) 1°S(K +1) "o

Q(K +1) ,S %@(K +1) ,S

Cmm [S(K +1) ] S(K +1) [S(K +1) ]CS(K +1) :::% .

Then we apply the bound {120&) with %= %9% to conclude that

T ke *
ane . +
PLTD 5 + &K+ /6]l 2exp %B +log(d)
. D AW 21 7 ~ -
Control of the third term. We set%= &K +*1) /6 in the bounds (120a) and ) to conclude that
ke n(K +1) +
PLiT Lt &K+ /6]1 dexp %B & *log(d)
Putting together, we conclude that
(K +1) ,S (K +1) B (K +1) ) " (K +1) ++
P[ Q S(K +1) S(K +1) (Qs(K +1) S(K +1) ) + 1%& /2] O exp 0/£ + |Og( d)

%

1.2 Proof of Lemmas for Proposition H.4 |

[.2.1 Proof of Lemma E5]

Proof. Each entry of W(K*1 denoted by W for 11 u! | S(r)|! d, can be expressed as a sum of
independent random variablesZi(’L< .

+1)
1 " 2(K+D)

(K+1) _—
Wi N CE

i=1
where
K +1) (K +1) ) K +1) (K )
Z(K+1) _ (K+l){ (K+1) % p( t) Sir 2 i )%exp(%\ 9 str 2 )}
* KrD) (K41 K+1) o (K1
exp( t)S\rd+) (+))+exp(% t)sudﬂ (+))

= xfy D {Xir " %P XK = 11x(S T T+ Py XKD = 9aix(s ™ ).

Notice that the conditional expectation given the values of! (*1) has mean zero:

Ez{E™ | D 1=0

43



Published in Transactions on Machine Learning Research (08/2024)

Then by law of total expectation (Weiss et al/, [200%) we have
Elz{S ™ 1= E[EZE ™ 1 ®D 1= E[0] = 0. (121)

(See the same logic in the proof in Sectioh H.2]1). Also, since all the samples are eithi#l or +1, we have
|Z(K = |! 2. Then by Azuma-Hoe!dingOs inequality (Hoe!ding, 1994), we have, for any >0,

r1(K +1) %
PIWK D | >0q1 2 exp(%T).

#(K +1) w (K +1)

Setting %= gy, We obtain
> ?
205 &K +1) &K +1) &K +1) )2 (K +1) )2
["0K7+1|WLSK +1) | S 7] I 2€Xp %( ) ( 3 n(K +1)
(K+1) 4 128(2% &K 1))

Applying a union bound over the indicesu of W *1 yields

> ?
K +1 K +1 K +1 n (K +1
M&N(K”)&/ > & )]! 2exp o'& &) )) nK*D +]og d
" () ’ 4 128(2%&(K 1) )2 '
r_
. w4 (K +1)
which converges to zero at rateexp(%c(” K *) )°n(K+1) ) as long as” (KD + e r—1 -l O

[.2.2 Proof of Lemma E6]

Proof. Similar to the proof for Lemma|D.6| We brst show that the remainder term R(K *1) satisbes the bound
SR g, 1 DY $95Y % BI"Y $2. Then the result of Lemma, namely $80." % %810 3, |

c“% d"(K+1) can be used to conclude that

min

SRED $ | 25D ko

m(K+) (K +1) 2
len

as claimed in Lemm. Focusing on eIemeer(K+l) for some indexj "{ 1,...,|S/|}, we have

R(K+D)
i
= of 244K +1) (!(SK +1) j ;{XQ,(Q ) }(K +1) ) %" 244K +1) (_;z(SK +1) ;{X?.,(SK 1) }(K +1) )]jT(p'(SK +1) %_déK +l))
+1)
1" K+1) .y (K +1)( K +1) . gfK +1 AK +1 K +1
= i S0 D) 0p (Y LD Y 06 )

i=1

for some point ! & D) = 1 8D 4 (1 06 ) B with " [0, 1]. Setting g(t) = W by noting that
that $(!s,x) = g(x, fysir i xt). By the chain rule and another application of the mean value theorem, we
write

+1)

T i T
{ #(('#(K D0y (K +1) X (K Dy (SK +1)( ) %F;SK 4

Rk _ 1 "
' e
i=1

K +1 K +1 A(K +1 K +1
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+ + + + + T .
Setting a(K 1) . {g#((ﬁ'(J)) X(K 1) )X(K 1)} and h(K 1. ={[ (l)o/ﬂs] X(K 1 (g 1)) [05 % &)},

(<

|Rj(K | = n(K1+1) : ai(K +1) q(K +1) | n(K1+l) $aK D ¢, oKD ¢,
N :
We have $ak 1) ¢, 1 1, and
L
W b(K +1)$ = [dK +1) O/QjK +1)] . (K1+l) n{E v (K +1)( (K+1)) [O(K +1) O/dKH_)]
i=1
= [_dSK +1) %_,Z;SK +1) ]T 1r1](n (K+1) (X(K +1)) | [-dsK +1) %-dsK +1)]

i=1
D(K +1) $dK +1) % ! dK +1) $§
= D(K+1) $dK +1) 0% ! dK +1) $§,

max S(K +1) S(K +1)

where the last line uses the fact that&X 1 = @K+

s e = Fswo p = 0 Therefore, we have

K +1 K +1
SRICD g 1 DY 80D 0681

S(K +1)

[.2.3 Proof of Lemma E7]

Proof. As in the proof for Lemma, following the method of proof in|Ravikumar et al. (2010) which was
also previously used in another context (Rothman et al., 2008), we dePne the functio ) : R4, R by

G(K +1) (US(K+1) ):: #(K +1) (ds}fKtll)) + Ug(k + )

% D (LT )+ KD ST+ use %D 8). (122)

It can be seen thatbg -y = 8,5 %25 minimizes G *1 . Moreover, G * (0) = 0 by construction;

therefore, we must haveG(K *1) (65« .+ ) ! 0. Note also that G *Y is convex. Suppose that we show for
some radiusB > 0, and for u" RY with $u$, = B, we haveGX *D (u) > 0. We then claim that $6$, ! B.
Indeed, if 6 lay outside the ball of radius B, then the convex combinationté + (1 %t)(0) would lie on the
boundary of the ball, for an appropriately chosent " (0, 1). By convexity,

GK*D (to+ (1 %t)(0) ! tGK™ (&) + (1 %t)GK*™D (0!

contradicting the assumed strict positivity of G(K*1 on the boundary. It thus su"ces to establish strict
positivity of G(K*1 on the boundary of the ball with radius B = M" (K*1)  d, whereM > 0 is a parameter
to be chosen later in the proof. Letu" RY be an arbitrary vector with $u$, = B. Recalling the notation

WK o= g K1) (4K ;{XQ’(;< ™ 1(K+D)y by a Taylor series expansion of the log likelihood component
of GKK*D we have

' . (K +1)
G(u) = MWW ) Tu+ U PHELT + &usew {XTs T 1)y
+ v (K+1) ($ds|?'<++ll)) + Ugk +) $1 /O@T;}l)) $1)
for some& " [0, 1]. For the brst term, we have the bound
- - ,M
(Wgt) )Tul 1S W) S0 8uSy 18 WL’ $op dbusy | ("D d)? =,

S(K +1)
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n (K +1)

since$Wé'(<K++13 $o ! by assumption. For the last term, applying triangle inequality yields

n (K +1) ($dslfr<++11)) + Ugk+n $1 /Oﬂﬁlfrj}l)) $1) + %" (K $usic $1.

Since$ug .y $1 ! dSugi « $2, we have

- - - = 2
D) (B + ugien $1% BT 1) + %" K dSugien S = wM ( d" K7

S(K +1)

Finally, turning to the middle Hessian term, we have

K 1 (K +1)
q ="' mln( 2#( s<|<++1)) + &(K ) Us(k + ;{Xn }(K D ))
H " K +1 (K +1)
* #(K H)";][O 1 min( 2#(d(|<++1)) + &(K 1) US(K +1) y{Xn }(K+1) ))
' <
1 Y
. " . K +1) | gfK +1 +1 K +1 -
= #(KT)”')] 0.1] min * ) $(X|( ) ,?‘S(Kﬂ) + &K Ug(x +1) )X|S(K)+1) (x |(S(K)+1) )
' i=1
By a Taylor series expansion O$(Xi(K ) : 8, we have, for some8&g " [0, &K D ],
L
& 1 n{ﬂ) 2 K1) < 1) (K N K1) 3M
+ . " + + + +
q * #(K ml?[o 1] min n(K +1) $(Xi "dS(K +1) ) i,S (K +1) (Xi,S(K +1) N
, -
@ B
(
K +1 K +1 (K +1 K+l K +1 (K +1 K +1
+ &K+D) g#Axi(’r ) (B 4+ gouy )x ) C >(USM) X.(s<K)+n )X|s<l<)+1> (vas(&n
t) S(K+D) \r
/ ni{
" 1 K+1 (K +1 K+1) 1
T " min KD $(x; x{ sk )X S(K)+1) (Xi(,sw)u; )
i=
1 " o X +
i " K +1 K +1 (K +1
* #<KT>”;[O 1 & i n(K+1) g’ X'(r )(ds('“l)) + &Usx ) ) X|S(K)+1)
, o
K+1) T K +1 K +1 K +1 T
X|(r )(US(K +1) Xi('S(K)»fl) )X|(S(K)+1) ( i(‘s(K)-v-l) )
wo (K +1)
+ " min (QS(K +1) (K +1) ) %#(K ma)x[o,l]
1 " ) T
K +1 K +1 (K +1 K +1 K +1 K +1
(K D) g% ( )(ds(“l)) * &oUsix ) X|s<K)+1) [(TP Xl(S(K)ﬂ) )X.(s<K)+n (Xl(S(K)+1) )
i=1 ...2
+ Cmin %

max
# (K +1) ) [O,l]

+1)
1 " (K +1) K +1) (K +1) K +1) (K +1) (K+1) T
n(K +1) ( (ds(K o t &OUS(K”) ) X|5(K +1) )(/US(K"U ) |S(K +1) 0)X|5(K +1) (X|S(K +1) )

i=1 -,

It remains to control the spectral norm of the matrix , denoted as A(&K *1 ) here, for &**Y " [0, 1]. For
any bxed&X*) " [0,1], andy " R with $y$, =1, we have

+1)
1 " 4 K +1 6 1 K +1 2
Iy AR 0= ST g B+ Gouseen Dusicn xS, AUX(S I, L ya
i=1
1 nﬁ(*“ : #4dK +1) 6: (K +1) (K +1) 2
W g TQK +1) + &OUS(K +1) . |/US(K +1) ’Xi,S(K +1) 0[/XIS(K +1) ,yq .
i=1
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. 4 6.
Note that :g* B/') + &usww ! 1, and

Vusacsn X\§ oy O 1§ Usacon 11 dBUgicony $2= M K+ d.

Moreover, we have

+1) +1)

n n

(K +1) -1 W(KHD) (K4 T K +1
(/X|S(K+l)!y0) W |S(K+1)( |S(K+l)) ! Dr(’na;)

1

by assumption. We then obtain

o TR DA L DR M d ) clk 2o,

C(K +1)

H n (K +1
assuming that " (K*+ 1 b (Ko g+

Under this condition, we have shown that

(K +1) /2.

min

Q=" i (IS + &5 Ui ) + C
Finally, combining the three terms in G (u), we conclude that

1 1 (K +1) I

G(K+l) (US(K +1) )+ ("(K = - 8)2 %ZM * %M i %M '

which is strictly positive for M =5/C r(n'fn”) So as long as

K +1 K +1
n (K +1) I Cr(nln+ : — (Cr(mn+ : )

oMD &P g 100K ¢’

we are guaranteed that

5 y -~ 5 L iken” =
$DS(K+1)$2! M" (KD g = D (K+D) 4.

J Proof of Lemmas Used in Proving Other Lemmas

J.1 Proof of Lemma H.I]

Proof. By the debnition of the #; -matrix norm, and using Z; debned in Sectiorf H.I]l we have

" ( #
P["'Qgcs %@SCS'"% + %=P Jrg]%)c( |Zj | + %
I)s
s
LpP o Zy ]+ %,
s

where the bnal inequality uses a union bound and the fact thaS¢|! p.
: #
P |Zj| | + %! P[lk " S”Z“ | + %/q
k) S
! dP[lZ“ | + %/q
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We then obtain (924) by setting ( = %/din the Hoe!ding bound (87):

Pl Q8cs %@ses -y + %! pdPl|Z;i | + %/d

(2
I 2exp %32d

+

+1log(d) +log( p)

Analogously, for (92), we have

( #
P[~QSs %@ss,, + %= P max  |Zj|+ %
s

#
I dP |Zj| | + %
DS
L dP[Ll " S||Z; | + %/d
! d2P[|Z-||+ %/d
+

CrK o og(d)

I 2exp %32d

To prove (92d), we can write
Z(QYs) 96(@ss) T = K(@ss) '[@ss %QYs)QLs)
| d(®ss) '[@ss %QQS](QESX' '
- aEEE(@ss)" s %QYs ™ (st)

Cmm ~@ss %QYs g (st)

Using the bound (8§) in the proof of Lemma[D.2, we get
e o 2 * /6 K +
ANy L | 0
Pl (Qss) ) + c 1! 2exp % 3P +2log(d) ,

and * +

PIQYs %@ss™, + %1 ! 2exp Yoo +2lo0g(d)

So bnally we have

4... 6 * K/GZ +
P (QYs) "%(@ss) '+ % | dexp B, + B log(d)

where B, B, are some positive constants.

J.2  Proof of Lemma [1]

Proof. By the depnition of the #, -matrix norm, and using the Z(K "D debned in Sectio, we have

. ' n ( #
T (K+1) S (K +1) ,S _ (K +1)
PL-Qsoc oswn B s s =y + A= P max i %
. ( C k) sk "
I dP 1§ |+ o,
1) S(K+1)
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where the bnal inequality uses a union bound and the fact thaf([S(K*V |° 2 S)| !

" ( #
P 1Z8 D+ %t Pk sKIZE |+ /g
1) S(K+1)
Pk | SKDNZEC |+ %l
L SUCD IPLZ Y | + 9%/

Pz | + %/
We then obtain (L204) by setting ( = %/din the Hoe'dmgOs bound [(115),

K +1) ,S K +1) ,S K +1
PLEQME St BB Sesue 1, + B! EPIZI Y |+ %00
*

(2n(<+D) +

I 2exp %W+2Iog(d)

Analogously for (1208), we have

n ( #_
K +1 K +1 K +1
P["'Q(S(K++1)) S(K +1) %@(S(K++1)) S(K +1) ---0 % P rs?(?)fl) |Z( ’ ) I + %
. DI e
I dP 12 |+ %
k) S(K +1)
L dP{ik " S 1z |+ o/

L dP[IZ{ ™ | + %/d
*
(K +1)

0,
I 2exp %/ﬁniz

2 +2log(d)

To prove ((120g), we have

- -
K +1 K +1 -
QSR s ) W@ s )
0
o (K 1) "l o(K +1) (K +1) (K +1) "1
- "(@S(K +1) S(K +1) ) [@S(K +1) g(K +1) %Qs(K +1) S(K +1) ](Qs(K +1) g(K +1) ) ---0/
0

o . Y
K +1 K +1 K +1 K +1
! d...(@g(K D s ) [8E o %QULDE qw QYD qiw )

e
(K +1) 0 (K+1) (K +1)
C(K +1) @S(K +1) g(K +1) /OQS(K +1) S(K +1) ---2'--(QS(K +1) S(K +1) ) E)

min

where the sub-multiplicative property [|AB |, !l All,lIB|l, for matrices A, B is used for the last line, and
Assumption is also applied.Then using the bound[(116) in the proof of LemmA F|2, we get
*

oD a2 o Bn(<+D *
PLI(Qsik +) gk +p ) R + W] I 2exp /OW +2log(d) ,
min
and * +
A (K ) (K +1) T o) T o 2en(K D
P["'QS(K +1) §(K +1) /[)@S(K +1) (K +1) "y + %/ d] L2 exp /OW +2 IOg(d)
So we have
* +
4::: (K +1) "1 (K ) m 06 . n(K+1) g
P ---(Qs(K +1) (K +1) ) /()(Gs(K +1) S(K +1) ) ---0/ + /0 | 4exp /OB].T + 82 IOQ(d) ’

where B, B, are some positive constants. O
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