
A Appendix1

A.1 Details about Benchmarks2

We introduce four types of testing environments as shown in Fig. 1 in our paper, including Hallway [6],3

Level-Based Foraging (LBF) [2], Traffic Junction (TJ) [1], and two maps named 1o2r_vs_4r and4

1o10b_vs_1r requiring communication from StarCraft Multi-Agent Challenge (SMAC) [6]. In this5

part, we will describe the details of these environments used.
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Figure 1: Multiple benchmarks used in our experiments.
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Hallway We design two instances of the Hallway environment. In the first instance, we apply three7

hallways with lengths of 4, 6, and 10, respectively. That means we let three agents a, b, c respectively8

initialized randomly at states a1 to a4, b1 to b6, and c1 to c10, and require them to arrive at state9

g simultaneously. In the second instance, we divide 5 agents into two groups. The first group has10

hallways with lengths of 3 and 5, and the second group has hallways with lengths of 4, 6, and 10. A11

reward of 1 will be given if one group arrives at the goal g simultaneously. However, if both groups12

reach the goal simultaneously, a penalty of −0.5 will be given.13

Level-Based Foraging (LBF) We use a variant version of the original environment used in [2],14

where we define the state to be a data structure that can represent the true global state instead of15

concatenating the observations of all agents directly. On this basis, we use two environment instances16

with different configurations, of which one is an 11× 11 grid world with 6 agents, 4 foods, and the17

other is a 20× 20 grid world with 10 agents, 6 foods. In both instances, the observation of agents is a18

3× 3 field of view around it.19

Traffic Junction (TJ) We use the medium and hard versions of the Traffic Junction environments.20

The medium version has an agent number limit of 10, and the road dimension is 14, while the hard21

version has an agent number limit of 20, and the road dimension is 18. In both of these two instances,22

the sight of the agent is limited to 0, which means each agent can only observe a 1× 1 field of view23

around it.24

StarCraft Multi-Agent Challenge (SMAC) We use two maps named 1o2r_vs_4r and 1o10b_vs_1r25

in SMAC, which are introduced in NDQ [6]. In 1o2r_vs_4r, an Overseer finds 4 Reapers, and the ally26

units, 2 Roaches, need to reach enemies and kill them. Similarly, 1o10b_vs_1r is a map full of cliffs,27

where an Overseer detects a Roach, and the randomly spawned ally units, 10 Banelings, are required28

to reach and kill the enemy.29

A.2 Details about the algorithms involved in paper30

Several algorithms are involved in our work, including Full-Comm, NDQ [6], TarMAC [1], TMC [8]31

and QMIX [3]. All these methods follow the setting of Dec-POMDP in our experiments, which32

means that each agent can only have access to its individual partial observation at each timestep.33

Some algorithms among them (Full-Comm, NDQ, TarMAC, TMC) will do communication to base34

each agent’s decision-making on richer information, while QMIX has no communication and always35
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let agents make decisions based on their local observations (or observation histories). In Table 1, we36

offer a comparison between these baselines and our method from different dimensions.37

Table 1: Comparison of various algorithms used in this paper

Name Type of communication Where to process the information
(the Sender/Receiver) Matched scenarios

MASIA(ours) Full Receiver No Restrictions
Full-Comm Full No Without redundant information

NDQ Full Sender Value function is nearly decomposable
TarMAC+QMIX Full Receiver Message with relative importance

TMC Time-Partial Sender & Receiver Message with transmission loss
QMIX No No Full observation or easy coordination

A.3 Implementation Details38

A.3.1 Network Architecture and Hyper-parameters39

Integration Network The Information Aggregation Encoder (IAE) in our approach consists of a40

Self-Attention Network and an Integration Network. Here we describe the details of the Integration41

Network. We introduce 3 different kinds of integration networks as shown in Fig. 2.42
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Figure 2: Three versions of implementation for integration network. The dotted lines in (c) indicate
that these GRU networks share the same parameters.

Among these three versions of integration networks, (a) and (b) apply mean and sum pooling43

operations, respectively, on the output vectors of the self-attention network, while in the third44

version (c), we let the self-attention network’s output vectors pass through a shared GRU network45

separately and finally flatten them as the obtained aggregation representation. In (a) and (b), no46

matter how we permute the agents, we will always obtain the same aggregation representation. In47

(c), the permutation of the agents will only affect the order of some dimensions of the aggregation48

representation instead of obtaining a totally different representation in some vanilla designs, such49

as networks with Multi-Layer Perceptions. In practice, we find that design (c) achieves the best50

performance among these three integration networks, and all the experiment results shown in our51

paper are based on this implementation.52

Hyper-parameters Our implementation of MASIA is based on the EPyMARL1 [4] with StarCraft53

2.4.6.2.69232 and uses its default hyper-parameter settings. For example, we apply the default54

ϵ-greedy action selection algorithm to each method, which means ϵ decays from 1 to 0.05 in 50K55

timesteps. The selection of the additional parameters introduced in our approach is listed in Table 2.56

We use this set of parameters in all experiments shown in this paper except for the ablations.57

A.3.2 Experimental Details58

Our experiments were performed on a desktop machine with 4 NVIDIA GTX 3090 GPUs. For all the59

performance curves in our paper, we pause training every M timesteps and evaluate for N episodes60

with decentralized greedy action selection. The (M,N) in Hallway [6], Level-Based Foraging [2],61

Traffic Junction [1] and SMAC [6], are (10K, 100), (50K, 100), (10K, 40) and (50K, 100), respec-62

1https://github.com/uoe-agents/epymarl
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Table 2: Hyper-parameters in experiments

name value

hidden dimension for query and key in self-attention module 16
output dimension of self-attention module 32
λ2 (coefficient of latent model learning loss) 1

λ1 (coefficient of encoder-decoder learning loss) 1
action embedding dimension in latent model 8

dimension for each agent in the aggregation representation 8
observation embedding dimension before concatenated with z 32

whether to predict the residuals of the next state True
prediction length K in latent model 2

hidden dimension for hidden states in latent model 64

tively. We evaluate the test win rate, the percentage of episodes in which the agents win the game63

within the time limit in N testing episodes for all tasks.64

A.4 Sensibility of Prediction Length K65
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Figure 3: Ablation study for the
prediction length K.

To study the function of the second self-supervised objective we66

designed, we apply different latent model prediction lengths K67

in the task of TJ (medium). The learning results of the beginning68

0.3M samples are shown in Fig. 3. From the learning curves of69

different K, we can find that algorithms applying a latent model70

learning objective (K > 0) can learn faster than that without this71

objective (K = 0). Besides, although our experiments in the main72

text uniformly set the prediction length K to 2, we find that the73

algorithm learns fastest when K is set to 4, which indicates that74

fine-tuning the hyper-parameters of the self-supervised learning75

can further advance the performance of MASIA.76

A.5 Ablation for Representation Objectives77

In our work, we propose two representation objectives to make the aggregated information repre-78

sentation compact and sufficient. To further justify the effectiveness of these two objectives, we79

conduct ablations for the hyper-parameter λ1 and λ2. Specifically, we compare with three ablations:80

(1)λ1 = 1, λ2 = 0; (2)λ1 = 0, λ2 = 1; (3)λ1 = 0, λ2 = 0, which respectively correspond to (1)81

only use encoder-decoder learning loss; (2) only use latent model learning loss; (3) neither loss82

is used. While our method (MASIA) corresponds to λ0 = 1, λ1 = 1. We conduct the ablation83

experiments in the tasks of Hallway and medium level TJ, and run each ablation for 5 random seeds.84

The experimental results for Hallway are illustrated in Fig. 4 and those for TJ (medium) are listed in85

Table 3. From both of these experimental results, we can see that MASIA with two representation

Table 3: Ablation experiments in the task of TJ (medium).
1M 2M 4M

λ1 = 0, λ2 = 1 0.8125 ± 0.0473 0.8667 ± 0.0514 0.8950 ± 0.0292
λ1 = 1, λ2 = 0 0.7750 ± 0.0652 0.8550 ± 0.0534 0.9200 ± 0.0430
λ1 = 0, λ2 = 0 0.8000 ± 0.0204 0.8583 ± 0.0624 0.9167 ± 0.0312
λ1 = 1, λ2 = 1 0.8938 ± 0.0480 0.9000 ± 0.0637 0.9225 ± 0.0375

86

objectives outperforms all ablations. In the task of Hallway, MASIA can learn to solve the task faster87

in both settings of 4x6x10 and 3x5-4x6x10. Especially, some random seeds of the third ablation fail88

to solve the task 3x5-4x6x10 within 2M samples, which shows the indispensable roles of these two89
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(a) Hallway: 4x6x10 (b) Hallway: 3x5-4x6x10
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Figure 4: Ablation experiments in the tasks of Hallway.

representation objectives. Similarly, in the task of TJ (medium), we compare the ablations’ average90

test won rate performance at 1M, 2M, and 4M timesteps, respectively. Although three ablations show91

similar convergence performance to MASIA, MASIA achieves the best performance when at 1M92

timestep. This demonstrates that the proposed two representation objectives offer good guides and93

accelerate the task learning.94

Algorithm 1 Overall Training Framework

1: Initialize replay buffer D.
2: Initialize information aggregation encoder with random parameters θ and state prediction decoder

with random parameters η.
3: Initialize Q network with random parameters ϕ and latent model with random parameters ψ.
4: Initialize parameters of target encoder θ− = θ, and target Q network ϕ− = ϕ.
5: for episode = 1 to M do
6: Roll out one trajectory τ with ϵ-greedy policy in the environment.
7: Store the trajectory τ in D.
8: if |D| is larger than batch size m then
9: Sample a minibatch B of m trajectories from D.

10: Compute the encoder-decoder loss:

Lae(θ, η) =
∑

traj∈B

T∑
t=1

∥gη(zt)− st∥22, zt = fθ(o
t).

11: Compute the latent model loss:

Lm(θ, ψ) =
∑

traj∈B

T−K∑
t=1

K∑
k=1

∥ẑt+k − zt+k∥22,

ẑk+1 = hψ(z
t,at), ẑt+k = hψ(ẑ

t+k−1,at+k−1), k = 2, . . . ,K,

zt+k = fθ−(o
t+k), k = 0, . . . ,K,

12: Compute the reinforcement learning loss:

Lrl(θ, ϕ) =
∑

traj∈B

T−1∑
t=1

(
r + γmax

a′
Qtot(τ

t+1,a′; θ−, ϕ−)−Qtot(τ
t,at; θ, ϕ)

)2

.

13: Update θ, η, ϕ, ψ by minimizing Lrl(θ, ϕ) + λ1Lae(θ, η) + λ2Lm(θ, ψ).
14: end if
15: Update target network parameters θ−, ϕ− with the EMA method.
16: end for
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A.6 The Overall Flow of MASIA for Training and Testing95

Firstly, to offer a direct impression of our work, we first talk about how agents behave differently96

during decentralized execution vs. centralized training in our method (MASIA). The main differences97

are that we would use state information to help compute the auto-encoder loss and estimate the98

Qtot (if there is a mixing network in the Q-network, e.g. MASIA+QMIX) during training phase.99

Besides, multi-step prediction loss is also only computed and optimized in the training phase. During100

decentralized execution, the state decoder, the latent model and the possible mixing network are all101

thrown away. We remain the Information Aggregation Encoder, the focusing network and individual102

Q-networks to ensure the decentralized execution process. The representation loss terms we designed103

are aimed at training the encoder network well.104

To illustrate the process of training, the overall training flow of MASIA is shown in Alg. 1. Lines105

5∼16 express the whole training process, where we apply an off-policy learning algorithm and106

iteratively update the parameters of the model. Specifically, we compute encoder-decoder loss, latent107

model loss and temporal difference loss in Lines 10, 11 and 12, respectively, and do parameter108

updating together in Line 13.109

Besides, the execution flow of MASIA is shown in Alg. 2. In the execution phase, the agents first110

broadcast their observations to each other, and then each agent calculates its own action ati by applying111

the focusing network and individual Q network learned during training, which is described in Lines 4112

and 5.

Algorithm 2 Overall Execution Flow

Require: information aggregation encoder with parameters θ, individual Q network with parameters
ϕi for each Qi, focusing networks with parameter ωi for each agent and agent number n.

1: for step = 0 to episode_limit do
2: Each agent broadcasts its observational information oti at timestep t, and then each agent

feed collected observations ot = {oti}n into the information aggregation network, obtaining
zt = fθ(o

t).
3: for i = 1 to n do
4: Agent i calculates wti = Fwi(o

t
i) by using the focusing network, and obtains extracted

information z̄ti = wti · zt.
5: The oti and z̄ti are fed into the individual Q network to calculate Qi(τ ti , ·), and agent i gets

action ati = argmaxaQi(τ
t
i , a).

6: end for
7: The agent system interacts with the environment by executing actions {ati}n.
8: end for

113

A.7 Limitations and Possible Negative Societal Impacts114

In our work, the agents need to full-communicate their individual observational information first115

before doing further information aggregation. This may be vulnerable when facing communication116

attacks among agents. There exist some recent research works [5, 7] concerning adversarial attacks,117

but the discussions about the problem in multi-agent communication reinforcement learning are still118

limited. How to obtain a robust and efficient communication protocol is of great value. In short,119

broader negative societal impacts have not been found at this stage, and how to handle the possible120

problems we believe will be an interesting direction for research.121
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