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Abstract1

Extended persistence is a technique from topological data analysis to obtain global2

multiscale topological information from a graph. This includes information about3

connected components and cycles that are captured by the so-called persistence4

barcodes. We introduce extended persistence into a supervised learning frame-5

work for graph classification. Global topological information, in the form of a6

barcode with four different types of bars and their explicit cycle representatives, is7

combined into the model by the readout function which is computed by extended8

persistence.The entire model is end-to-end differentiable. We use a link-cut tree9

data structure and parallelism to lower the complexity of computing extended10

persistence, obtaining a speedup of more than 60x over the state-of-the-art for11

extended persistence computation. This makes extended persistence feasible for12

machine learning. We show that, under certain conditions, extended persistence13

surpasses both the WL[1] graph isomorphism test and 0-dimensional barcodes in14

terms of expressivity because it adds more global (topological) information. In15

particular, arbitrarily long cycles can be represented, which is difficult for finite16

receptive field message passing graph neural networks. Furthermore, we show17

the effectiveness of our method on real world datasets compared to many existing18

recent graph representation learning methods.119

1 Introduction20

Graph classification is an important task in machine learning. Applications range from classifying21

social networks to chemical compounds. These applications require global as well as local topological22

information of a graph to achieve high performance. Message passing graph neural networks (GNNs)23

are an effective and popular method to achieve this task.24

These existing methods crucially lack quantifiable information about the relative prominence of25

cycles and connected component to make predictions. Extended persistence is an unsupervised26

technique from topological data analysis that provides this information through a generalization of27

hierarchical clustering on graphs. It obtains both 1- and 0-dimensional multiscale global homological28

information.29

Existing end-to-end filtration learning methods [1, 2] that use persistent homology do not compute30

extended persistence because of its high computational cost at scale. A general matrix reduction31

approach [3] has time complexity of O((n+m)ω) for graphs with n nodes and m edges where ω32

is the exponent for matrix multiplication. We address this by improving upon the work of [4] and33

introducing a link-cut tree data structure and a parallelism for computation. This allows for O(log n)34

update and query operations on a spanning forest with n nodes.35

We consider the expressiveness of our model in terms of extended persistence barcodes and the36

cycle representatives. We characterize the barcodes in terms of size, what they measure, and their37

expressivity in comparison to WL[1] [2]. We show that it is possible to find a filtration where one of38

its cycle’s length can be measured as well as a filtration where the size of each connected component39

can be measured. We also consider the case of barcodes when no learning of the filtration occurs.40
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Figure 1: Lower and upper filtrations for extended persistence and the resulting barcode for a graph.
The green bar comes from a pairing of a green edge with a vertex in the lower filtration. Similarily
the blue bar in the upper filtration comes from a vertex-edge pairing in the upper filtration. The two
dark blue bars count connected components and come from pairs of two vertices. The two red bars
count cycles and come from pairs of edges. Both Bext0 and Bext1 bars cross from the lower filtration to
the upper filtration. The multiset of bars forms the barcode. Cycle reps. are shown in both filtrations.

We consider several simple examples where our model can perfectly distinguish two classes of41

graphs that no GNN with expressivity at most that of WL[1] (henceforth called WL[1] bounded42

GNN) can. Furthermore, we present a case where experimentally 0-dimensional standard persistence43

[2, 5], the only kind of persistence considered in learning persistence so far, are insufficient for graph44

classification.45

Our contributions are as follows:46

1. We introduce extended persistence and its cycle representatives into the supervised learning47

framework in an end-to-end differentiable manner, for graph classification.48

2. For a graph with m edges and n vertices, we introduce the link-cut tree data structure into the49

computation of extended persistence, resulting in an O(m log n) depth and O(mn) work parallel50

algorithm, achieving more than 60x speedup over the state-of-the-art for extended persistence51

computation, making extended persistence amenable for machine learning tasks.52

3. We analyze conditions and examples upon which extended persistence can surpass the WL[1]53

graph isomorphism test [6] and 0-dimensional standard persistence and characterize what extended54

persistence can measure from additional topological information.55

4. We perform experiments to demonstrate the feasibility of our approach against standard baseline56

models and datasets as well as an ablation study on the readout function for a learned filtration.57

2 Background58

2.1 Computational Topology for Graphs59

Let G = (V,E) be a graph where V is the set of vertices and E ⊂ V × V is the set of edges. Let60

n = |V | and m = |E| be the number of nodes and edges of G, respectively. Graphs in our case are61

undirected and simple, containing at most a single edge between any two vertices. Define a filtration62

function F : G→ R where F has a value in R on each vertex and edge, denoted by F (u) or F (e) for63

u ∈ V or e ∈ E. Given such a graph G = (V,E), we define the λ-sublevel graph as Gλ = (Vλ, Eλ)64

w.r.t. F and a λ ∈ R where Vλ = {v ∈ V : F (v) ≤ λ} and Eλ = {e ∈ E : F (e) ≤ λ}. Sublevel65

graphs of G are subgraphs of G. If we change λ from -∞ to +∞ we obtain an increasing sequence66

of sublevel graphs {Gλ}λ∈R which we call a sublevel set filtration. Such a filtration can always be67

converted into a sequence of subgraphs of G: ∅ = G0 ⊂ G1 ⊂ ... ⊂ Gn+m = G (See [7, Page68

102]) s.t. σi = Gi+1\Gi is a single edge or vertex and Fi := F (σi). The sequence of vertices69

and edges σ0, σ1, . . . , σn+m−1 thus obtained is called the index filtration. Define a vertex-induced70

lower filtration for a vertex function fG : V → R as an index filtration where a vertex v has a value71

F (v) := fG(v) and any edge (u, v) has the value F (u, v) := max(F (u), F (v)) and Fi ≤ Fi+1.72

Similarly define an upper filtration for fG as an index filtration where F (v) := fG(v) and the edge73

(u, v) has value F (u, v) := min(fG(u), fG(v)) and Fi ≥ Fi+1.74

Persistent homology(PH) tracks changes in homological features of a topological space as the75

sublevel set for a given function grows; see books [7, 8]. For graphs, these features are given by76

evolution of components and cycles over the intervals determined by pairs of vertices and edges.77

A vertex vi = Gi+1 \Gi begins a connected component (CC) signalling a birth at filtration value78

F (vi) in zeroth homology group H0. An edge ej = Gj+1 \Gj may join two components signalling79
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a death of a class in H0 at filtration value F (ej), or it may create a cycle signalling a birth in the 1st80

homology group H1 at filtration value F (ej). When a death occurs in H0 by an edge ej , the youngest81

of the two components being merged is said to die giving a birth-death pair (b, d) = (F (vi), F (ej))82

if the dying component was created by vertex vi. For cycles, there is no death and thus they have83

death at ∞. The multiset of birth death pairs B = {{(b, d)}} given by the persistent homology84

is called the barcode. Each pair (b, d) provides a closed-open interval [b, d), which is called a bar.85

The persistence of each bar [b, d) in a barcode is defined as |d − b|. Notice that, both in 0- and86

1-dimensional persistence, some bars may have infinite persistence since some components (H087

features) and cycles (H1 features) never die, equivalently, have death at∞.88

Extended persistence(PHext) takes an extended filtration FfG as input, which is obtained by89

concatenating lower filtration of the graph G and an upper filtration of the coned space of G induced90

by a vertex filtration function fG. Concatenation here simply means concatenating two index filtration91

sequences. More specifically, let α be an additional vertex for the graph G. Define an extended92

function fG∪{α} whose value is equal to fG on all vertices except α on which it has a value larger93

than any other vertices. The cone of a vertex u is given by the edge (α, u) and the cone of an edge94

(u, v) is given by the triangle (α, u, v). As a result, in extended persistence all 0- and 1-dimensional95

features die (bars are finite; see [3] for details). Four different persistence pairings or bars result from96

PHext. The barcode Blow0 results from the vertex-edge pairs within the lower filtration, the barcode97

Bup0 results from the vertex-edge pairs within the upper filtration, the barcode Bext0 results from the98

vertex-vertex pairs that represent the persistence of connected components born in the lower filtration99

and die in the upper filtration, and the barcode Bext1 results from edge-edge pairs that represent the100

persistence of cycles that are born in the lower filtration and die in the upper filtration. The barcodes101

Blow0 , Bup0 , and Bext0 represent persistence in the 0th homology H0. The barcode Bext1 represents102

persistence in the 1st homology H1. In the TDA literature, Blow0 , Bup0 , Bext0 , and Bext1 also go by the103

names of Ord0, Rel1, Ext0, Ext1 respectively.104

See Figure 1 for an illustration of the filtration and barcode one obtains for a simple graph with105

vertices taking on values from 0...6 denoted by the variable t. In particular, at each t, we have the106

filtration subgraph Gt of all vertices and edges of filtration function value less than or equal to t.107

Each line indicates the values 0...6 from the bottom to top. Repetition in the bar endpoints across all108

bars which appear on the right of Figure 1 is highly likely in general due to the fact that there are109

only O(n) filtration values but O(m) possible bars.110

2.2 Message Passing Graph Neural Networks (MPGNN)111

A message passing GNN (MPGNN) convolutional layer takes a vertex embedding hu in a finite112

dimensional Euclidean space and an adjacency matrix AG as input and outputs a vertex embedding113

h′
u for some u ∈ V . The kth layer is defined generally as114

hk+1
u ← AGG({MSG(hk

v)|v ∈ NAG
(u)},hk

u), u ∈ V

where NAG
(u) is the neighborhood of u. The functions MSG and AGG have different implementa-115

tions and depend on the type of GNN.116

Since there should not be a canonical ordering to the nodes of a GNN in graph classification, a GNN117

for graph classification should be permutation invariant with respect to node indices. To achieve118

permutation invariance [9], as well as achieve a global view of the graph, there must exist a readout119

function or pooling layer in a GNN. The readout function is crucial to achieving power for graph120

classification. With a sufficiently powerful readout function, a simple 1-layer MPGNN with O(∆)121

number of attributes [10] can compute any Turing computable function, ∆ being the max degree of122

the graph. Examples of simple readout functions include aggregating the node embeddings, or taking123

the element-wise maximum of node embeddings [11]. See Section 3 for various message passing124

GNNs and readout functions from the literature.125

3 Related Work126

Graph Neural Networks (GNN)s have achieved state of the art performance on graph classification127

tasks in recent years. For a comprehensive introduction to GNNs, see the survey [12]. In terms of the128

Weisfeler Lehman (WL) hierarchy, there has been much success and efficiency in GNNs [11, 13, 14]129

bounded by the WL[1] [15] graph isomorphism test. In recent years, the WL[1] bound has been130
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Figure 2: The extended persistence architecture (bars+cycles) for graph representation learning. The
negative log likelihood (NLL) loss is used for supervised classification. The yellow arrow denotes
extended persistence computation, which can compute both barcodes and cycle representatives.

broken by heterogenous message passing [16], high order GNNs [17], and put into the framework of131

cellular message passing networks [18]. Furthermore, a sampling based pooling layer is designed in132

[19]. It has no theoretical guarantees and its code is not publicly available for comparison. Other133

readout functions include [20], [21] [22]. For a full survey on global pooling, see [23].134

Topological Data Analysis (TDA) based methods [2, 5, 24–28] that use learning with persistent135

homology have achieved favorable performance with many conventional GNNs in recent years. All136

existing methods have been based on 0-dimensional standard persistent homology on separated lower137

and upper filtrations [5]. We sidestep these known limitations by introducing extended persistence138

into supervised learning while keeping computation efficient.139

A TDA inspired cycle representation learning method in [29] learns the task of knowledge graph140

completion. It keeps track of cycle bases from shortest path trees and has a O(|V | · |E| · k), k a141

constant, computational complexity per graph. This high computational cost is addressed in our142

method by a more efficient algorithm for keeping track of a cycle basis.143

On the computational side, fast methods to compute higher dimensional PH using GPUs, a necessity144

for modern deep learning, have been introduced in [30]. In [27, 31] neural networks have been145

shown to successfully approximate the persistence diagrams with learning based approach. However,146

differentiability and parallel extended persistence computation has not been implemented. Given147

the expected future use of extended persistence in graph data, a parallel differentiable extended148

persistence algorithm is an advance on its own.149

4 Method150

Our method as illustrated in Figure 2 introduces extended persistence as the readout function for151

graph classification. In our method, an upper and lower filtration, represented by a filtration function,152

coincides with a set of scalar vertex representations from standard message passing GNNs. This153

filtration function is thus learnable by MPGNN convolutional layers. Learning filtrations was154

originally introduced in [5] with standard persistence. As we show in Section 6 and Section 5155

arbitrary cycle lengths are hard to distinguish by both standard GNN readout functions [32] as well as156

standard persistence due to the lack of explicitly tracking paths or cycles. Extended persistence, on the157

other hand, explicitly computes learned displacements on cycles of some cycle basis as determined158

by the filtration function as well as explicit cycle representatives.159

We represent the map from graphs to learnable filtrations by any message passing GNN layer such as160

GIN, GCN or GraphSAGE followed by a multi layer perceptron (MLP) as a Jumping Knowledge161

(JK) [33] layer. The JK layer with concatenation is used since we want to preserve the higher162

frequencies from the earlier layers [34]. Our experiments demonstrate that fewer MPGNN layers163

perform better than more MPGNN layers. This prevents oversmoothing [35, 36], which is exacerbated164

by the necessity of scalar representations.165

The readout function, the function that consolidates a filtration into a global graph representation,166

is determined by computing four types of bars for the extended persistence on the concatenation of167

the lower and upper filtrations followed by compositions with four rational hat functions r̂ as used168

in [1, 2, 5]. To each of the four types of bars in barcode B, we apply the hat function r̂ to obtain a169
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k-dimensional vector. The function r̂ is defined as:170

r̂(B) :=

∑
p∈B

1

1 + |p− ci|1
− 1

1 + ||ri| − |p− ci|1|


k

i=1

(1)

where ri ∈ R and ci ∈ R2 are learnable parameters. The intent of Equation 1 is to have controlled171

gradients. It is derived from a monotonic function, see [1]. This representation is then passed through172

MLP layers followed by a softmax to obtain prediction probability vector p̂G for each graph G. The173

negative log likelihood loss from standard graph classification is then used on these vectors p̂G.174

If the filtration values on the nodes and edges are distinct, the extended persistence barcode repre-175

sentation is permutation invariant with respect to node indices. Isomorphic graphs with permuted176

indices and an index filtration with distinct filtration values will have a unique sorted index filtration.177

Node filtration values are usually distinct since computed floating points rarely coincide. However to178

break ties and eliminate any dependence on node indices for edges, implement edge filtration values179

for lower filtration as F (u, v) = max(F (u), F (v)) + ϵ ·min(F (u), F (v)) and for upper filtration as180

F (u, v) = min(F (u), F (v)) + ϵ ·max(F (u), F (v)), ϵ very small.181

Cycle Representatives: Because computing extended persistence results in computing a cycle basis,182

we can explicitly store the cycle representatives, or sequences of filtration scalars, along with the183

barcode on graph data. This slightly improves the performance in practice and guarantees cycle184

length classification for arbitrary lengths. After the cycle representatives are stored, we pass them185

through a bidirectional LSTM then aggregate these LSTM representation per graph and then sum this186

graph representation by cycles with the vectorization of the graph barcode by the rational hat function187

of Equation 1, see Figure 2. The aggregation of the cycle representations is permutation invariant188

due to the composition of aggregations [9]. In particular, the sum of the barcode vectorization and189

the mean of cycle representatives, our method’s graph representation, must be permutation invariant.190

What makes keeping track of cycle representatives unique to standard message passing GNNs is that191

a finite receptive field message passing GNN would never be able to obtain such cycle representations192

and certainly not from a well formed cycle basis.193

4.1 Efficient Computation of Extended Persistence194

The computation for extended persistence can be reduced to applying a matrix reduction algorithm195

to a coned matrix as detailed in [8]. In [4], this computation was found to be equivalent to a graph196

algorithm, which we improve upon.197

4.1.1 Algorithm198

Our algorithm is as follows and written in Algorithm 1. We perform the 0-dimensional persistence199

algorithm, PH0, using the union find data structure in O(m log n) time and O(n) memory for the200

upper and lower filtrations in lines 1 and 2. See the Appendix Section D.1 for a description of this201

algorithm. These two lines generate the vertex-edge pairs for Blow0 and Bup0 . We then measure the202

minimum lower filtration value and maximum upper filtration value of each vertex in the union-find203

data structure found from the PH0 algorithm as in lines 3 and 4 using the roots of the union-find data204

structure Uup formed by the algorithm. These produce the vertex-vertex pairs in Bext0 .205

For computing edge-edge pairs in Bext1 with cycle representatives, we implement the algorithm in [4]206

with a link-cut tree data structure that facilitates deleting and inserting edges in a spanning tree and207

employ a parallel algorithm to enumerate the edges in a cycle. See the Appendix Section D.2 for a208

more thorough explanation of the link-cut tree implementation and the operations we use on it. We209

collect the max spanning forest T of negative edges, edges that join components, from the upper210

filtration by repeatedly applying the link operation n− 1 times in lines 6-8 in decreasing order of Fup211

values and sort the list of the remaining positive edges, which create cycles in line 9. Then, for each212

positive edge e = (u, v), in order of the upper filtration (line 10), we find the least common ancestor213

(lca) of u and v in the spanning forest T we are maintaining as in line 11. Next, we apply the parallel214

primitive [37] of list ranking twice, once on the path u to lca and the other on the path v to lca in215

line 12. List ranking allows a list to populate an array in parallel in logarithmic time. The tensor216

concatenation of the two arrays is appended to a list of cycle representatives as in line 13. This is so217

that the cycle maintains order from u to v. We then apply an ARGMAXREDUCECYCLE(T, u, v, lca)218

which finds the edge having a maximum filtration value on it over the cycle formed by u, v and lca.219
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Algorithm 1 Efficient Computation of PHext

Input: G = (V,E), Flow: lower filtration function, Fup: upper filtration function
Output: Blow0 ,Bup0 ,Bext0 ,Bext1 , C: cycle reps.

1: Blow0 , Elow
pos , E

low
neg , Ulow ← PH0(G,Flow, lower)

2: Bup0 Eup
pos, E

up
neg, Uup ← PH0(G,Fup, upper)

3: roots← {GET_UNION-FIND_ROOTS(Uup, v), v ∈ V }
4: Bext0 ← {min(roots[v]),max(roots[v]), v ∈ V }
5: T← {} empty link-cut tree; Bext1 ← {{}}; C ← {} empty list of cycle representatives

/* Eup
neg is sorted by PH0 in decreasing order of Fup values (desc. filtr. values)*/

6: for e = (u, v) ∈ Eup
neg do

7: T← LINK(T, e, {w}) /* w /∈ T, w = u or v∗/
8: end for
9: /* Eup

pos is sorted by PH0 with respect to Fup (descending filtration values) */
10: for e = (u, v) ∈ Eup

pos do
11: lca← LCA(T, u, v) (Get the least common ancestor of u and v to form a cycle)
12: P1 ← LISTRANK(PATH(u, lca)); P2 ← LISTRANK(PATH(v, lca))
13: C ← C ⊔ {Fup(P1)⊔Fup(Reverse(P2))} (Keep track of the scalar activations on the cycle)
14: (u′, v′)← ARGMAXREDUCECYCLE(T, u, v, lca)
15: T1,T2 ← CUT(T,(u′, v′)); T← LINK(T1,(u, v),T2)
16: Bext1 ← Bext1 ∪ {(Flow(u

′, v′), Fup(u, v))}
17: end for
18: return (Blow0 ,Bup0 ,Bext0 ,Bext1 , C)

We then cut the spanning forest at the edge (u′, v′), forming two forests as in line 15. These two220

forests are then linked together at (u, v) as in line 15. The bar (Flow(u
′, v′), Fup(u, v)) is now found221

and added to the multiset Bext1 . The final output of the algorithm is four types of bars and a list of222

cycle representatives: ((Blow0 ,Bup0 ,Bext0 ,Bext1 ), C).223

4.1.2 Complexity224

We improve upon the complexity of [4] by obtaining a O(mn) work O(m log n) depth algorithm225

on O(n) processors using O(n) memory. Here m and n are the number of edges and vertices in226

the input graph. We introduce two ingredients for lowering the complexity, the first is the link-cut227

dynamic connectivity data structure and the second is the parallel primitives of list ranking. The228

link-cut tree data structure is a dynamic connectivity data structure that can keep track of the spanning229

forest with O(log n) amortized time for LINK, CUT, PATH, LCA, ARGMAXREDUCE. Furthermore,230

list ranking [38] is an O(log n) depth and O(n) work parallel algorithm on O( n
logn ) processors that231

determines the distance of each vertex from the start of the path or linked list it is on. In other words,232

list ranking turns a linked list into an array in parallel. Sorting can be performed in parallel using233

O(n log n) work and O(log n) depth.234

Notice that if we do not keep track of cycle representatives (remove lines 12 and 13 from Algorithm235

1), then we have an O(m log n) time sequential algorithm. The repeated calling of the supporting236

operation EXPOSE() dominates the complexity, see Appendix Section D.2.237

5 Expressivity of Extended Persistence238

We prove some properties of extended persistence barcodes. We also find a case where extended239

persistence with supervised learning can give high performance for graph classification. WL[1]240

bounded GNNs, on the other hand, are guaranteed to not perform well. Certainly all such results also241

apply for the explicit cycle representatives since the min and max on the scalar activations on the242

cycle form the corresponding bar.243

5.1 Some Properties244

The following Theorem 5.1 states some properties of extended persistence. This should be compared245

with the 0- and 1-dimensional persistence barcodes in the standard persistence. Every vertex and246
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edge is associated with some bar in the standard persistence though they can be both finite or infinite.247

However, in extended persistence all bars are finite and we form barcodes from an extended filtration248

of 2m+ 2n edges and vertices instead of the standard (m+ n)-lengthed filtration.249

Theorem 5.1. (Extended Barcode Properties)250

PHext(G) produces four multisets of bars: Bext1 ,Bext0 ,Blow0 ,Bup0 , s.t.251

|Bext1 | = dimH1 = m− n+ C,252

|Bext0 | = dimH0 = C,253

|Blow0 | = |B
upper
0 | = n− C,254

where there are C connected components and dimHk is the dimension of the kth homology group255

s.t.:256

1. the H1 bars comes from a cycle basis of G which also constitutes a basis of its fundamental group,257

2. dimH1 counts the number of chordless cycles when G is outer-planar, and258

3. there exists an injective filtration function where the union of the resulting barcodes is strictly more259

expressive than the histogram produced by the WL[1] graph isomorphism test.260

The barcodes found by extended persistence thus have more degrees of freedom than those obtained261

from standard persistence. For example, a cycle is now represented by two filtration values rather than262

just one. Furthermore, the persistence |d− b| of a pair (b, d) ∈ Bext1 or Bext0 can measure topological263

significance of a cycle or a connected component respectively through persistence. Thus, extended264

persistence encodes more information than standard persistence. In Theorem 5.1, property 1 says that265

extended persistence actually computes pairs of edges of cycles in a cycle basis. A modification of266

the extended persistence algorithm could generate all or count certain kinds of important cycles, see267

[39]. Property 2 characterizes what extended persistence can count.268

We makes some observations on the expressivity of PHext.269

Observation 5.2. (Cycle Lengths) For any graph G and a cycle C ⊂ G, there exists an injective270

filtration function where PHext of that filtration function can measure the number of edges along C.271

Such a result cannot hold for learning of the filtration by local message passing from constant node272

attributes. Thus, for the challenging 2CYCLE graphs dataset in Section B.2, it is a necessity to use273

the cycle representatives C for each graph to distinguish pairs of cycles of arbitrary length. This274

should be compared with Top-K methods, K being a constant hyper parameter such as in [19, 40].275

The constant hyper parameter K prevents learning an arbitrarily long cycle length when the node276

attributes are all the same. Furthermore, a readout function like SUM is agnostic to graph topology277

and also struggles with learning when presented with an arbitrarily long cycle. This struggle for278

distinguishing cycles in standard MPGNNs is also reported in [41]. An observation similar to the279

previous Observation 5.2 can also be made for paths measured by Bext0 .280

Observation 5.3. (Connected Component Sizes) For any graph G and all connected components281

CC ⊂ G, there exists an injective filtration function where PHext of that filtration can measure the282

number of vertices in CC.283

We investigate the case where no learning takes place, namely when the filtration values come from284

a random noise. We observe that even in such a situation some information is still encoded in the285

extended persistence barcodes with a probability that depends on the graph.286

Observation 5.4. For any graph G where every edge belongs to some cycle and an extended287

filtration on it induced by randomly sampled vertex values xi ∼ U([0, 1]), PHext has a H1 bar288

[maxi(xi),mini(xi)] with probability
∑

v∈V
1
n

deg(v)
n−1 .289

Notice that for a clique, the probability of finding the bar with maximum possible persistence is 1. It290

becomes lower for sparser graphs.291

Corollary 5.5. In Observation 5.4, the expected persistence E[|maxi(xi) − mini(xi)|] of bar292

[maxi(xi),mini(xi)] goes to 1 as n→∞.293

What Corollary 5.5 implies is that, for certain graphs, even when nothing is learned by the GNN294

filtration learning layers, the longest Bext1 bar indicates that n is large. This happens for graphs that295

are randomly initialized with vertex labels from the unit interval and occurs with high probability296
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for dense graphs by Observation 5.4. For large n, the empirical mean of the longest bar will have297

persistence near 1. Notice that Bext1 can measure this even though the number of H1 bars, m−n+C,298

could tell us nothing about n.299

6 Experiments300

We perform experiments of our method on standard GNN datasets. We also perform timing experi-301

ments for our extended persistence algorithm, showing impressive scaling. Finally, we investigate302

cases where experimentally our method distinguishes graphs that other methods cannot, demonstrating303

how our method learns to surpass the WL[1] bound.304

6.1 Experimental Setup305

We perform experiments on a 48 core Intel Xeon Gold CPU machine with 1 TB DRAM equipped306

with a Quadro RTX 6000 NVIDIA GPU with 24 GB of GPU DRAM.307

Hyper parameter information can be found in Table 3. For all baseline comparisons, the hyperpa-308

rameters were set to their repository’s standard values. In particular, all training were stopped at 100309

epochs using a learning rate of 0.01 with the Adam optimizer. Vertex attributes were used along310

with vertex degree information as initial vertex labels if offered by the dataset. We perform a fair311

performance evaluation by performing standard 10-fold cross validation on our datasets. The lowest312

validation loss is used to determined a test score on a test partition. An average±standard deviation313

test score over all partitions determines the final evaluation score.314

The specific layers of our architecture for the neural network for our filtration function fG is given by315

one or two GIN convolutional layers, with the number of layers as determined by an ablation study.316

Experimental Evaluation
avg. acc. ± std. DD PROTEINS IMDB-

MULTI
MUTAG PINWHEELS 2CYCLES

GFL 75.2 ± 3.5 73.0 ± 3.0 46.7 ± 5.0 87.2 ± 4.6 100 ±0.0 50.0 ±0.0

Ours+Bars 75.5 ± 2.9 74.9 ± 4.1 50.3 ± 4.7 88.3 ± 7.1 100 ±0.0 50 ± 0.0

Ours+Bars+Cycles 75.9 ± 2.0 75.2 ± 4.1 51.0 ± 4.6 86.8 ± 7.1 100 ±0.0 100 ± 0.0
GIN 72.6± 4.2 66.5 ± 3.8 49.8 ± 3.0 84.6 ± 7.9 50.0 ±0.0 50.0 ±0.0

GIN0 72.3 ± 3.6 67.5 ± 4.7 48.7 ± 3.7 83.5 ± 7.4 50.0 ±0.0 50.0 ±0.0

GraphSAGE 72.6 ± 3.7 59.6 ± 0.2 50.0 ± 3.0 72.4 ± 8.1 50.0 ±0.0 50.0 ±0.0

GCN 72.7 ± 1.6 59.6 ± 0.2 50.0 ± 2.0 73.9 ± 9.3 50.0 ±0.0 50.0 ±0.0

GraphCL 65.4 ±12 62.5 ± 1.5 49.6± 0.4 76.6 ± 26 49.0 ±8.0 50.5± 10

InfoGraph 61.5 ± 10 65.5 ± 12 40.0 ± 8.9 89.1 ± 1.0 50.0 ± 0.0 50.0 ± 0.0

ADGCL 74.8± 0.7 73.2± 0.3 47.4 ± 0.8 63.3± 31 42.5 ± 19 52.5 ± 21

TOGL 74.7 ± 2.4 66.5 ± 2.5 44.7 ± 6.5 - 47.0 ± 3 54.4 ± 5.8
Filt.+SUM 75.0 ± 3.2 73.5± 2.8 48.0 ± 2.9 86.7± 8.0 51.0 ± 11 50.0 ± 0.0

Filt.+MAX 67.6± 3.9 68.6± 4.3 45.5 ± 3.1 70.3± 5.4 48.0 ± 4.2 50.0 ± 0.0

Filt.+AVG 69.5± 2.9 67.2± 4.2 46.7 ± 3.8 81.4± 7.9 50.0 ± 13 50.0 ± 0.0

Filt.+SORT 76.9± 2.6 72.6 ± 4.6 49.0± 3.6 85.6± 9.2 51.0 ± 16 50.0 ± 0.0

Filt.+S2S 69.0 ± 3.3 67.8 ± 4.6 48.7 ± 4.2 86.8 ± 7.1 51.0 ± 13 50.0 ± 0.0

Table 1: Average accuracy ± std. dev. of our approach (EGFL) with and without explicit cycle repre-
sentations, Graph Filtration Learning (GFL), GIN0, GIN, GraphSAGE, GCN, ADGCL, GraphCL
and TOGL and a readout ablation study on the four TUDatasets: DD, PROTEINS, IMDB-MULTI,
MUTAG as well as the two Synthetic WL[1] bound and Cycle length distinguishing datasets. Num-
bers in bold are highest in performance; bold-gray numbers show the second highest. The symbol −
denotes that the dataset was not compatible with software at the time.

6.2 Performance on Real World and Synthetic Datasets317

We perform experiments with the TUDatasets [42], a standard GNN benchmark. We compare with318

WL[1] bounded GNNs (GIN, GIN0, GraphSAGE, GCN) from the PyTorch Geometric [43, 44]319

benchmark baseline commonly used in practice as well as GFL[5], ADGCL [45], and InfoGraph [46],320
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10-fold cross validation ablation study on OGBG-MOL datasets by ROC-AUC
avg. score
± std.

Ours+Bars Ours+Bars
+Cycles

Filt.+SUM Filt.+MAX Filt.+AVG Filt.+SORT Filt.+Set2Set

molbace 80.0 ± 3.6 81.6 ± 3.9 79.7 ± 4.6 71.9 ± 4.8 78.0 ± 3.0 78.4 ± 3.3 78.2 ± 3.6

molbbbp 78.0 ± 4.3 81.9 ± 3.3 76.7 ± 4.9 69.8 ± 8.7 78.5 ± 4.6 76.3 ± 4.3 78.0 ± 5.0

Table 2: Ablation study on readout functions. The average ROC-AUC ± std. dev. on the ogbg-mol
datasets is shown for each readout function. Number coloring is as in Table 1

self-supervised methods. Self supervised methods are promising but should not surpass the perfor-321

mance of supervised methods since they do not use the label during representation learning. We also322

compare with existing topology based methods TOGL [2] and GFL [5]. We also perform an ablation323

study on the readout function, comparing extended persistence as the readout function with the SUM,324

AVERAGE, MAX, SORT, and SET2SET [47] readout functions. The hyper parameter k is set to the325

10th percentile of all datasets when sorting for the top-k nodes activations. We do not compare with326

[19] since its code is not available online. The performance numbers are listed in Table 1. We are able327

to improve upon other approaches for almost all cases. The real world datasets include DD, MUTAG,328

PROTEINS and IMDB-MULTI. DD, PROTEINS, and MUTAG are molecular biology datasets,329

which emphasize cycles, while IMDB-MULTI is a social network, which emphasize cliques and330

their connections. We use accuracy as our performance score since it is the standard for the TU331

datasets.332

We also verify that our method surpasses the WL[1] bound, a theoretical property which can be333

proven, as well as can count cycle lengths when the graph is sparse enough, e.g. when the set of334

cycles is equal to the cycle basis. This is achieved by the two datasets PINWHEELS and 2CYCLES.335

See the Appendix Sections B for the related experimental and dataset details. Both datasets are336

particularly hard to classify since they contain spurious constant node attributes, with the labels337

depending completely on the graph connectivity. This removal of node attributes is in simulation of338

the WL[1] graph isomorphism test, see [6]. Furthermore, doing so is a case considered in [48]. It is339

known that WL[1], in particular WL[2], cannot determine the existence of cycles of length greater340

than seven [49, 50].341

Table 2 shows the ablation study of extended filtration learning on the ogbg datasets [51] OGBG342

MOLBACE and MOLBBBP. We perform a 10 fold cross validation with the test ROC-AUC score of the343

lowest validation loss used as the test score. This is performed instead of using the train/val/test split344

offered by the OGBG dataset in order to keep our evaluation methods consistent with the evaluation345

of the TUDATASETS and synthetic datasets.346

From Section B, we know that there are special cases where extended persistence can distinguish347

graphs where WL[1] bounded GNNs cannot. We perform experiments to show that our method can348

surpass random guessing whereas other methods achieve only ∼ 50% accuracy on average, which349

is no better than random guessing. Our high accuracy is guaranteed on PINWHEELS since such350

graphs are distinguished by counting bars through 0-dim standard persistence. Similarly, 2CYCLES351

is guaranteed high accuracy when keeping track of cycles and comparing the variance of cycle352

representations since cycle lengths can be distinguished by a LSTM on different lengthed cycle inputs.353

Of course, a barcode representation alone will not distinguish cycle lengths.354

7 Conclusion355

We introduce extended persistence into the supervised learning framework, bringing in crucial global356

connected component and cycle measurement information into the graph representations. We address357

a fundamental limitation of MPGNNs, which is their inability to measure cycles lengths. Our method358

hinges on an efficient algorithm for computing extended persistence. This is a parallel differentiable359

algorithm with an O(m log n) depth O(mn) work complexity and scales impressively over the360

state-of-the-art. The speed with which we can compute extended persistence makes it feasible for361

machine learning. Our end-to-end model obtains favorable performance on real world datasets. We362

also construct cases where our method can distinguish graphs that existing methods struggle with.363
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A Proofs519

Theorem A.1. (Theorem 5.1)520

PHext(G) produces four types of bars: Bext1 ,Bext0 ,Blow0 ,Bup0 , s.t.521

|Bext1 | = dimH1 = m− n+ C,522

|Bext0 | = dimH0 = C,523

|Blow0 | = |B
upper
0 | = n− C,524

where there are C connected components and dimHk is the dimension of the kth homology group525

s.t.:526

1. the H1 barcode comes from a cycle basis of G which also constitutes a basis of its fundamental527

group,528

2. dimH1 counts the number of chordless cycles when G is outer-planar, and529

3. there exists an injective filtration function where the union of the resulting barcodes is strictly more530

expressive than the histogram produced by the WL[1] graph isomorphism test.531

Proof. There are n bars with vertex births since every vertex creates exactly one connected component.532

The number of these bars which are in Bext0 is C, which counts the number of global connected533

components. In other words, Bext0 = dim(H0) = C. Thus, we have n− C = |Blow0 | = |B
upper
0 |.534

Considering all 2m edges on the extended filtration, every edge gets paired. Furthermore, n− C of535

the edges in the lower filtration are negative edges paired with vertices that give birth to connected536

components. Similarly there are n−C edges paired with vertices in the upper filtration. We thus have537
2m−2(n−C)

2 edge-edge pairings in Bext1 because every edge gets paired. Thus, |Bext1 | = m− n+ C.538

Since each bar in Bext1 counts a birth of a 1-dimensional homological class which together span the539

1-dimensional homological classes in H1, we have that dimH1 = |Bext1 |.540

1. This follows from the discussion above.541

2. By Euler’s formula, we have n−m+ F = C + 1 for planar graphs where F is the number of542

faces of the planar graph as embedded in S2. For outer planar graphs, since F − 1 interior faces lie543

on one hemisphere of S2 and one exterior face covers the opposite hemisphere, each interior face544

must be a chordless cycle.545

3. This follows directly by the result in [2] stating that 0-dimensional barcodes are more expressive546

than the WL[1] graph isomorphism test. In extended persistence, Blow0 and Bext0 are computed. Since547

all bars in Bext0 correspond to infinite bars denoted B∞0 in the 0-dimensional standard persistence, we548

have that Blow0 and Bext0 carry at least the same amount of information as a 0-dimensional barcode as549

determined by Blow0 and B∞0 .550

551

Observation A.2. (Observation 5.2) For any graph G and a cycle C ⊂ G, there exists an injective552

filtration function where PHext of the induced filtration can measure the number of edges along C.553

Proof. Number the vertices of the cycle C of length k in descending order and counter clockwise as554

n− 1...n− k. For each vertex u ∈ C, set fG(u) to be the index of u. For the other vertices, assign555

arbitrary different values less than n− k and then apply ε-perturbation to make the filtration injective.556

For example, for vertex u and all its incident edges of same filtration value, one can subtract different557

ε ∈ R+ from each edge to impose injectivity on the induced filtration of fG. We then get that every558

edge on the cycle C except one: (n− 1, n− k) becomes negative and thus belongs to the negative559

spanning forest of the upper filtration. The positive edge of smallest value in the upper filtration is560

edge (n− 1, n− k). The extended persistence algorithm, after computing Blow0 and Bup0 , pairs the561

edge e = (n − 1, n − k) with the edge having maximum value in the lower filtration in the cycle562

C that e forms with the spanning forest. This paired edge is (n− 1, n− 2) and has lower filtration563

value n− 1. We thus have the bar [n− 1, n− k] which encodes the length k of the cycle C.564

565
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Observation A.3. (Observation 5.3) For any graph G and all connected components CC ⊂ G,566

there exists an injective filtration function where PHext of that filtration can measure the number of567

vertices in CC.568

Proof. For each connected component CC in G, index the vertices in CC in consecutive order569

where indices in each connected component remain distinct. Then define fG(u) equal to the index of570

u in G. By ε-perturbation, we can make this an injective filtration function. Since Bext0 has each bar571

[minu∈CC fG(u),maxu∈CC fG(u)] and since all indices are consecutive, each bar’s persistence in572

Bext0 measures how many vertices are in the connected component they constitute.573

574

Observation A.4. (Observation 5.4) For any graph G where every edge belongs to some cycle and575

an extended filtration on it is induced by randomly sampling vertex values xi ∼ U([0, 1]), PHext576

has the H1 bar [maxi(xi),mini(xi)] with probability
∑

v∈V
1
n

deg(v)
n−1 .577

Proof. Since the probability of finding a given permutation on n vertices sampled uniformly at578

random without replacement is equivalent to the probability of a given order on the vertices sampled579

uniformly at randomly n times, it suffices to find the probability of sampling uniformly at random580

without replacement two vertices that are connected with an edge in G.581

For a fixed σ ∈ Sn, a permutation from the group Sn of permutations on n vertices, we have:582

1

n!
= P (xn < xn−1 < ... < x1, xi ∼ U([0, 1]))

=

∫ 1

0

∫ x1

0

...

∫ xn−1

0

dxndxn−1...dx1 = P (σ ∼ U(Sn))

Let G = (V,E) be the graph with vertex values sampled from a uniform distribution. Let G′ =583

(V ′, E′) be the same graph with vertex values in {0, 1, . . . , n − 1} sampled uniformly without584

replacement. We know that the probability for a given order on these vertices is the same for both585

graphs. By the law of total probability:586

P ((min
i

xi,max
i

xi) ∈ E, xi ∼ U([0, 1]))

=
∑
v∈V

(P (v = max
i

xi, xi ∼ U([0, 1])) · P (min
i

xi ∈ Nbr(v)|v = max
i

xi, xi ∼ U([0, 1])))

=
∑
v∈V

(n− 1)!

∫ 1

0

∫ x1

0

...

∫ xn−1

0

dxndxn−1...dx1 · deg(v)(n− 2)!

∫ 1

0

∫ x2

0

...

∫ xn−1

0

dxndxn−1...dx2

= P ((n− 1, 0) ∈ E′) =
∑
v∈V ′

(P (v = n− 1) · P (0 ∈ Nbr(v)|v = n− 1))

=
∑
v∈V ′

1

n

deg(v)

n− 1

We now show that if (mini xi,maxi xi) occurs as an edge in G = (V,E), where every edge belongs587

to some cycle, then the bar [maxi xi,mini xi] is guaranteed to occur.588

The spanning tree comprised of negative edges that begins the computation for Bext1 as in line 6589

of Algorithm 1 for the H1 barcode computation is a maximum spanning tree. This is because590

the negative edges are just those found by the Kruskal’s algorithm for the 0-dimensional standard591

persistence applied to an upper filtration. Since e = (mini xi,maxi xi) has value mini xi in the592

upper filtration and since every edge belongs to at least one cycle, it cannot be in the maximum593

spanning tree. Thus e is a positive edge.594
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Since e is positive in the upper filtration, it will be considered at some iteration of the for loop in line595

10 of Algorithm 1. When we consider it, it will form a cycle C with the dynamically maintained596

spanning forest. To form a persistence H1 bar for e, we pair it with the maximum edge in the cycle597

C in the lower filtration. This forms a bar [maxi xi,mini xi].598

599

Corollary A.5. In Observation 5.4, the expected persistence of bar [maxi(xi),mini(xi)],600

E[|maxi(xi)−mini(xi)|], goes to 1 as n→∞.601

Proof. Define the random variable Xn = |maxi xi −mini xi| for n random points drawn uniformly602

from [0, 1]. We find limn→∞ E[Xn]. The following sequence of equations follow by repeated603

substitution.604

E[Xn] = n!

∫ 1

0

∫ x1

0

...

∫ xn−1

0

(x1 − xn)dxn...dx1

= n!

∫ 1

0

(
xn
1

(n− 1)!
− xn

1

n!
)dx1 =

n− 1

n+ 1

where the n! comes from symmetry.605

Therefore: limn→∞ E[Xn] = 1.606

B Demonstrating the Expressivity of Learned Extended Persistence607

We present some cases where the classification performance of our method excels. We look for608

graphs that cannot be distinguished by WL[1] bounded GNNs. We find that pinwheeled cycle graphs609

and varied length cycle graphs can be perfectly distinguished by learned extended persistence and, in610

practice, with much better performance than random guessing using our model. See the experiments611

Section 6 to see the empirical results for our method against other methods on this synthetic data.612

B.1 Pinwheeled Cycle Graphs (The PINWHEELS Dataset)613

Figure 3: Class 0: 2 triangles with pinwheel
at each vertex.

Figure 4: Class 1: A hexagon with pinwheel
at each vertex.

We consider pinwheeled cycle graphs. To form the base skeleton of these graphs, we take the standard614

counter example to the WL[1] test of 2 triangles and 1 hexagon. We then append pinwheels of a615

constant number of vertices to the vertices of these base skeletons. The node attributes are set to a616

spurious constant noise vector. They have no effect on the labels.617

It is easy to check that both Class 0 and Class 1 graphs are indistinguishable by WL[1]; see Figures 3618

and 4. Notice that if there are 6 core vertices and edges in the base skeleton and if there are pinwheels619

of size k, then with edge deletions and vertex deletions composed, we have a 1− ( 6
6k+6 )

2 probability620

of only deleting a pinwheel edge or vertex and thus not affecting H1. This probability converges to 1621

as k →∞. According to Theorem 5.1, dimH1 measures the number of cycles and dimH0 measures622

the number of connected components. If neither of these counts are affected by training during623

supervised learning, our method is guaranteed to distinguish the two classes simply by counting624

according to Theorem 5.1.625

Certainly the pinwheeled cycle graphs, are distinguishable by counts of bars. We check this experi-626

mentally by constructing a dataset of 1000 graphs of two classes of graph evenly split. Class 0 is as627

in Figure 3 and involves two triangles with pinwheels of random sizes. Class 1 is as in Figure 4 with628
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a hexagon and pinwheels of random sizes attached. We obtain on average 100% accuracy. This is629

confirmed experimentally in Table 1. This matches the performance of GFL, since counting bars, or630

Betti numbers, can also be done through 0-dim. standard persistence. Interestingly TOGL does not631

achieve a score of 100 accuracy on this dataset. We conjecture this is because their layers are not able632

to ignore the spurious and in fact misleading constant node attributes.633

B.2 Regular Varied Length Cycle Graphs (The 2CYCLES dataset)634

Figure 5: Class 0: A 15 node cycle and an 85 node
cycle.

Figure 6: Class 1: A 50 node cycle with a 50 node
cycle.

We further consider varied length cycle graphs. These are graphs that involve two cycles. Class 0 has635

one short and one long cycle while Class 1 has two near even lengthed cycles. The node attributes are636

all the same and spurious in this dataset. Extended persistence should do well to distinguish these637

two classes. We conjecture this based on Observation 5.2, which states that there is some filtration638

that can measure the length of certain cycles.639

It is the path length, coming from Observation 5.3, which is being measured. The 0-dimensional640

standard persistence is insufficient for this purpose. The infinite bars of 0-dimensional standard641

persistence are determined only by a birth time. Furthermore, extended persistence without cycle642

representatives is also insufficient since a message passing GNN learns a constant filtration function643

over the nodes. However, with cycle representatives, or a list of scalar node activations per cycle for644

each graph, we can easily distinguish the average sequence representation since the pair of sequence645

lengths are different. In class 0, a short cycle and a long cycle are paired while in class 1, two cycles646

of medium lengths are paired.647

A similar but more challenging dataset to the PINWHEELS dataset, the 2CYCLES dataset, is similar648

to the necklaces dataset from [2] and is illustrated in Section B.2 but with more misleading node649

attributes and simplified to two cycles. It involves 400 graphs consisting of two cycles. There are two650

classes as shown in Figures 5 and 6.651

The experimental performance on 2CYCLES surpasses random guessing while all other methods652

just randomly guess as stated in Section B.2. Certainly WL[1] bounded GNNs cannot distinguish653

the two classes in 2CYCLES since they are all regular. As discussed, because GFL and TOGL use654

learned 0-dimensional standard persistence, these approaches do no better than random guessing on655

this dataset.656

B.2.1 Number of Convolutional Layers Experiment657

We also perform an experiment to determine the number of layers in the MPGNN of the filtration658

function that has the highest performance. Due to oversmoothing [52], which is exacerbated by the659

required scalar-dimensional vertex embeddings, as we increase the number of layers for the filtration660

function the performance drops. See Figure 7 for an illustration of this phenomenon on the PROTEINS661

and MUTAG dataset. For these two datasets, two layers perform the best.662

C Timing of Extended Persistence Algorithm (without storing cycle663

representations)664

Since the persistence computation, especially extended persistence computation, is the bottleneck to665

any machine learning algorithm that uses it, it is imperative to have a fast algorithm to compute it.666

We perform timing experiments with a C++ torch implementation of our fast extended persistence667

algorithm. In our implementation each graph in the batch has a single thread assigned to it.668
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Figure 7: An exhibit of oversmoothing in the filtration convolutional layers. Plot of the average
accuracy with std. dev. as a function of the number of convolutional layers before the Jumping
Knowledge MLP and the extended persistence readout. The Proteins and Mutag datasets were used
in (a) and (b) respectively.

Our experiment involves two parameters, the sparsity, or probability, p for the edges of an Erdos-669

Renyi graph and the number of vertices of such a graph n. We plot our speedup over GUDHI, the670

state of the art software for computing extended persistence, as a function of p with n held fixed. We671

run GUDHI and our algorithm 5 times and take the average and standard deviation of each run’s672

speedup. Since our algorithm has lower complexity, our speedup is theoretically unbounded. We673

obtain up to 62x speedup before surpassing 12 hours of computation time for experimentation. The674

plot is shown in Figure 8. The speedup is up to 2.8x, 9x, 24x, and 62x for n = 200, 500, 1000, 2000675

respectively.676
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Figure 8: Average speedup with std. dev. as a function of sparsity p and number of vertices n on
Erdos Renyi graphs.

D Algorithm and Data Structure Details677

Here we detail the algorithmic details of computing extended persistence.678

D.1 The PH0 Algorithm679

Here is the union-find algorithm that computes 0 dimensional persistent homology. The algorithm680

is a single-linkage clustering algorithm [53]. It starts with n nodes, 0 edges, and a union-find data681

structure [54] on n nodes. The edges are sorted in ascending order if a lower filtration function682

is given. Otherwise, the edges are sorted in descending order. It then proceeds to connect nearest683

neighbor clusters, or connected components, in a sequential fashion by introducing edges in order one684

at a time. Two connected components are nearest to each other if they have two nodes closer to each685
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Algorithm 2 PH0 Algorithm

Input: G = (V,E), F : filtration function, order: flag to denote an upper or lower filtration
Output: B0, Epos, Eneg, U : H0 bars, pos. edges, neg. edges, and union-find data structure

1: U ← V /* a union-find data structure populated by n unlinked nodes*/
2: B0 ← {} /*A multiset */
3: if order = lower then
4: SORTincr(E) /*increasing w.r.t. F;*/
5: else
6: SORTdecr(E) /*decreasing w.r.t F;*/
7: end if
8: for e = (u, v) ∈ E do
9: rootu ← U.FIND(u)

10: rootv ← U.FIND(v)
11: if rootu = rootv then
12: Epos ← Epos ∪ {e}
13: else
14: Eneg ← Eneg ∪ {e}
15: end if
16: if order = lower then
17: b← max(F (rootu), F (rootv)
18: else
19: b← min(F (rootu), F (rootv))
20: end if
21: d← F (e)
22: B0 ← B0 ∪ {{(b, d)}}
23: U.LINK(rootu, rootv)
24: end for
25: return (B0, Epos, Eneg, U )

other than any other pair of connected components. This is achieved by iterating through the edges in686

sorted order and merging the connected components that they connect. When given a lower filtration687

function, when a connected component merges with another connected component, the connected688

component with the larger connected component root value has its root filtration function value a689

birth time. This birth time is paired with the current edge’s filtration value and form a birth death690

pair. The smaller of the two connected component root values is used as birth time when an upper691

filtration function is given. The two connected components are subsequently merged in a union-find692

data structure by the LINK operation.693

D.2 A Brief Overview of the Link-Cut Tree Data Structure694

The link-cut tree data structure [55] is a well known dynamic connectivity data structure. For695

modifying the tree of n nodes, it takes O(log n) amortized time for deleting an edge (cut) and joining696

two trees (link). Furthermore, it takes O(log n) amortized time for the composition of associative697

reductions, such as max, min, sum, on some path from any node to its root. We may view the698

link-cut tree data structure as a collection of trees and thus as a forest as well. Details of this forest699

implementation are omitted.700

The link-cut tree decomposes a tree T into a disjoint union of preferred paths, or sequences of nodes701

that strictly decreasing in depth (distance from the root of T ) on T . A path has each consecutive node702

connected by a single edge. In particular, each node in T has a preferred child, forming a preferred703

edge. The maximally connected sequence of preferred edges forms a preferred path. The preferred704

path decomposition will change as the link-cut tree gets operated on. Each preferred path is in one to705

one correspondence with a splay tree [56] called an auxiliary tree on the set of nodes in the preferred706

path. For any node v in a preferred path’s auxiliary tree, its left subtree is made up of nodes higher up707

(closer to the root in T ) than v and its right subtree is made up of nodes lower (farther from the root708

in T ) than v. Each auxiliary tree contains a pointer, termed the auxiliary tree’s parent-pointer, from709

its root to the parent of the highest (closest to the root) node in the preferred path associated with the710

auxiliary tree.711
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The most important supporting operation to a link-cut tree T is the EXPOSE() operation. The result712

of EXPOSE(v) for v ∈ T is the formation of a unique preferred path from the root of T to v with this713

preferred path’s set of nodes forming an auxiliary tree. Furthermore, it results in v to be the root714

of the auxiliary tree it belongs to. The complexity of EXPOSE(v) is O(log n). For implementation715

details, see [55].716

Let T1, T2 be two link-cut trees and u ∈ T1, v ∈ T2. Define the operation LINK(T1, (u, v), T2) as717

the operation that joins T1 to T2 by connecting u with v by an edge and outputs the resulting tree.718

This is achieved by simply calling EXPOSE(u) then EXPOSE(v), which makes u and v the roots of719

their respective auxiliary trees, then in the auxiliary tree of u, set the left child of u to v.720

Let T be a link-cut tree and u, v ∈ T connected by an edge. Define the operation CUT(T, (u, v)) as721

the operation that disconnects T by deleting the edge between u and v. This is achieved by simply722

calling EXPOSE(u) and then making u a root by making the left child of v point to null.723

Let T be a link-cut tree and u, v ∈ T . Define the operation LCA(T, (u, v)) as the operation that finds724

the least common ancestor of u and v in T . This is achieved by calling EXPOSE(u) then EXPOSE(v)725

and then taking the node pointed to by the parent-pointer of the auxiliary tree of which u is root.726

Let T be a link-cut tree and u, v ∈ T . Define the operation PATH(u, v) as the operation that returns a727

linked list of the path from u to v in T . This is achieved by obtaining the parent v′ of v first. The728

parent of v can be obtained by calling EXPOSE(v) then traversing the splay tree it is a root of for its729

parent in T . Call EXPOSE(u) to form a preferred path from u to the root of T then EXPOSE(v′) to730

detach v′ from this preferred path. Let SPLAY(u) be the operation that rotates the unique splay tree,731

or preferred path, containing u so that u becomes the root of its splay tree. After calling SPLAY(u),732

u becomes the root of a linked-list splay tree. It is a linked-list since u is the lowest (farthest from the733

root) node in its splay tree and the rest of the preferred path is made up of a path of strictly decreasing734

distance to the root. Return this linked-list splay tree as the resulting path from u to v.735

Let T be a link-cut tree, u, v ∈ T with v higher up in the tree than u (it is closer to the root of T than736

u). Define REDUCE(T, u, v, op) to be an associative reduction on the path from u to v. To do this,737

apply EXPOSE(u) then EXPOSE(v), then apply the associative operation on the whole auxiliary tree,738

as implemented on a splay tree in [56]. The associative reduction takes O(log n) time. This splay739

tree corresponds to the preferred path from u to v formed from the two EXPOSE operations. Notice740

that EXPOSE(u) results in a preferred path from u to the root while the second call EXPOSE(v)741

detaches the path from v to the root of T from the preferred path of u to the root.742

Let T be a link-cut tree, u, v ∈ T and lca the least common ancestor of u, v ∈ T . Assume the743

nodes are labeled by a pair of their value and index. Define ARGMAXREDUCECYCLE(T, u, v, lca)744

as the operation that finds the edge with one of its nodes containing the maximum value on the745

cycle formed by u, v and lca. There are many ways to implement this. We describe a method that746

maintains the O(log n) complexity of link-cut tree operations. We first compute (value(w1), w1) :=747

REDUCE(T, u, lca,max) to find the maximum value node along the path from u to lca, then compute748

(value(w2), w2) := REDUCE(T, v, lca,max) to find the maximum value node along the path from749

v to lca. Let w to be the maximum valued vertex between w1 and w2. If w ̸= lca(u, v), then find the750

parent z of w otherwise apply EXPOSE(u) then EXPOSE(v) and keep track of the child z of w that gets751

detached during EXPOSE(v). Parent of w can be found by EXPOSE(w) then traversing its splay tree752

to find the parent of w ∈ T . The edge (z, w) is returned by ARGMAXREDUCECYCLE(T, u, v, lca)753
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(a) 2000 nodes, 0.01 sparsity (b) 2000 nodes, 0.1 sparsity (c) 2000 nodes, 0.3 sparsity

(d) 2000 nodes, 0.5 sparsity (e) 2000 nodes, 0.7 sparsity (f) 2000 nodes, 0.9 sparsity

Figure 9: Cycle length histograms of the cycle representatives output by the extended persistence
algorithm on sampled Erdos-Renyi graphs

E Cycle Length Distribution of the Cycle Basis found by Extended754

Persistence Algorithm for Erdos-Renyi Graphs755

We perform an experiment to determine the cycle length distribution of cycle representatives output756

by our algorithm on random Erdos-Renyi graphs. We observe that, as the graph becomes more dense,757

the distribution of cycles shifts towards very short cycles. We also find that the cycle lengths for most758

Erdos-Renyi sparsity hyperparameters rarely become very long.759

For a given node count n, edge count m, and sparsity hyperparameter, 0 ≤ s ≤ 1 which we define760

as the Erdos-Renyi probability for keeping an edge from a clique on n nodes, we sample three761

Erdos-Renyi graphs. We collect the multiset of m− n+ 1 cycle lengths in the cycle basis found by762

the algorithm. This multiset can be visualized as a histogram. Each histogram is a relative frequency763

mixture of the three cycle length histograms for each graph. See Figure 9 for the histograms we764

obtained from sampled Erdos-Renyi graphs. Notice that, even for 0.01 sparsity, Erdos-Renyi samples765

of graphs on 2000 nodes have the average cycle length of 15, which is 0.75% of n = 2000.766

To put this in perspective, assume that we can relate the Erdos-Renyi sparsity s by ŝ := m
n2 . For767

the datasets of our experiments, we have ŝ ≈ 0.009, 0.0048, 0.39, 0.062, 0.084, 0.0018, 0.032,and768

0.045 for DD, PROTEINS, IMDB-MULTI, MUTAG, PINWHEELS, 2CYCLES, MOLBACE,769

and MOLBBBP, respectively. The sparsity estimator is in the range of 0.0018 ≤ ŝ ≤ 0.39, which770

tells us that most of the cycle lengths found by our algorithm are short.771

20



Extended Graph Filtration Learning

F Rational Hat Function Visualization772

Figure 10 and Figure 11 visualize the rational hat function for fixed r value and varying x and y773

values. Notice the boundedness of the plot as (x, y) → ∞. For the theory behind the rational hat774

function, see [1].

Figure 10: The function r̂, output sliced at
one dimension, as a function of |(x, y)|1 with
r = 0.5 from Equation 1. The point (x, y) is
given by (x, y) = p− c.

Figure 11: The function r̂, output sliced at
one dimension, as a function of |(x, y)|1 with
r = 1.0 from Equation 1. The point (x, y) is
given by (x, y) = p− c.

775

G Datasets and Hyperparameter Information776

Here are the datasets, both synthetic and real world, used in all of our experiments along with training777

hyperparameter information.778

The barcode vectorization layer, or concatenation of four-rational hat functions, is set to a dimension779

of 256. The LSTM used on the explicit cycle representatives was set to a 2-layer bidirectional LSTM780

with single channel inputs and 256 dimensional vector representations. Due to the fact that our781

algorithm on random Erdos-Renyi graphs rarely encounters long cycles, we set the LSTM layers to a782

small number like 2 to avoid overfitting.783

Dataset and Hyperparameter Information
Dataset Graphs Classes Avg. Vertices Avg. Edges lr Node At-

trs.(Y/N)
num.
layers

Class ratio

DD 1178 2 284.32 715.66 0.01 Yes 2 691/487

PROTEINS 1113 2 39.06 72.82 0.01 Yes 2 663/422

IMDB-MULTI 1500 3 13.00 65.94 0.01 No 2 500/500/500

MUTAG 188 2 17.93 19.79 0.01 Yes 1 63/125

PINWHEELS 100 2 71.934 437.604 0.01 No 2 50/50

2CYCLES 400 2 551.26 551.26 0.01 No 2 200/200

MOLBACE 1513 2 34.09 36.9 0.001 Yes 2 822/691

MOLBBBP 2039 2 24.06 25.95 0.001 Yes 2 479/1560

Table 3: Dataset statistics and training hyperparameters used for all datasets in scoring experiments
of Table 1 and Table 2

H Implementation Dependencies784

Our experiments have the following dependencies: python 3.9.1, torch 1.10.1, torch_geometric 2.0.5,785

torch_scatter 2.0.9, torch_sparse 0.6.13, scipy 1.6.3, numpy 1.21.2, CUDA 11.2, GCC 7.5.0.786
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I Visualization of Graph Filtrations787

We visualize the filtration functions fG learned on graphs G for the datasets: IMDB-MULTI, MUTAG,788

and REDDIT-BINARY. The value of fG(v) for each v ∈ V is shown in each figure.
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Figure 12: IMDB-MULTI learned filtration function
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Figure 13: MUTAG learned filtration function
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