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Abstract

Potential games are arguably one of the most important and widely studied classes
of normal form games. They define the archetypal setting of multi-agent coordina-
tion as all agent utilities are perfectly aligned with each other via a common poten-
tial function. Can this intuitive framework be transplanted in the setting of Markov
Games? What are the similarities and differences between multi-agent coordination
with and without state dependence? We present a novel definition of Markov Po-
tential Games (MPG) that generalizes prior attempts at capturing complex stateful
multi-agent coordination. Counter-intuitively, insights from normal-form poten-
tial games do not carry over as MPGs can consist of settings where state-games
can be zero-sum games. In the opposite direction, Markov games where every
state-game is a potential game are not necessarily MPGs. Nevertheless, MPGs
showcase standard desirable properties such as the existence of deterministic Nash
policies. In our main technical result, we prove fast convergence of independent
policy gradient to Nash policies by adapting recent gradient dominance property
arguments developed for single agent MDPs to multi-agent learning settings.

1 Introduction

Reinforcement learning (RL) has been a fundamental driver of numerous recent advances in Artificial
Intelligence (AI) applications that range from super-human performance in competitive game-playing
[30, 31, 5] and strategic decision-making in multiple tasks [23, 25, 35] to robotics, autonomous-
driving and cyber-physical systems [7, 39]. A core ingredient for the success of single-agent RL
systems, which are typically modelled as Markov Decision Processes (MDPs), is the guarantee of
existence of stationary deterministic optimal policies [3, 32]. This allows for the design of efficient
algorithms that provably converge towards the optimal policy [1]. However, a majority of the above
systems involve multi-agent interactions and despite the notable empirical advancements, there is
a lack of understanding about the theoretical convergence guarantees of the existing multi-agent
reinforcement learning (MARL) algorithms.

The main challenge when transitioning from single to multi-agent RL settings is the computation
of Nash policies. A Nash policy for n > 1 agents is defined to be a profile of policies (π∗1 , ..., π

∗
n)

so that by fixing the stationary policies of all agents but i, π∗i is an optimal policy for the resulting
single-agent MDP and this is true for all 1 ≤ i ≤ n 1 (see Definition 1). Note that in multi-agent
settings, Nash policies may not be unique in principle.

A common approach for computing Nash policies in MDPs is the use of policy gradient methods.
There has been significant progress in the analysis of policy gradient methods during the last
couple of years, notably including the works of [1] (and references therein), but it has mainly
concerned the single-agent case: the convergence properties of policy gradient in MARL remain

1Analogue of Nash equilibrium notion.
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poorly understood. Existing steps towards a theory for multi-agent settings involve the papers of [11]
who show convergence of independent policy gradient to the optimal policy, for two-agent zero-sum
stochastic games, of [38] who improve the result of [11] using optimistic policy gradient and of [40]
who study extensions of Natural Policy Gradient using function approximation. It is worth noting that
the positive results of [11, 38] and [40] depend on the fact that two-agent stochastic zero-sum games
satisfy the “min-max equals max-min” property [29] (even though the value-function landscape may
not be convex-concave, which implies that Von Neumann’s celebrated minimax theorem may not be
applicable).

Model and Informal Statement of Results. While the previous works enhance our understanding
in competitive interactions, i.e., interactions in which gains can only come at the expense of others,
MARL in cooperative settings remains largely under-explored and constitutes one of the current
frontiers in AI research [10, 9]. Based on the above, our work is motivated by the following natural
question:

Can we get (provably) fast convergence guarantees for multi-agent RL settings in which cooperation
is desirable?

To address this question, we define and study a class of n-agent MDPs that naturally generalize
normal form potential games [24], called Markov Potential Games (MPGs). In words, a multi-agent
MDP is a MPG as long as there exists a (state-dependent) real-valued potential function Φ so that if an
agent i changes their policy (and the rest of the agents keep their policy unchanged), the difference in
agent i’s value/utility, V i, is captured by the difference in the value of Φ (see Definition 2). Weighted
and ordinal MPGs are defined similar to the normal form counterparts (see Remark 1).

Under our definition, we answer the above motivating question in the affirmative. In particular, we
show that if every agent i independently runs (with simultaneous updates) policy gradient on his
utility/value V i, after O(1/ε2) iterations, the system will reach an ε-approximate Nash policy (see
informal Theorem 1.1 and formal Theorem 4.5). Moreover, we show the finite sample analogue, that
is if every agent i independently runs (with simultaneous updates) stochastic policy gradient, then
with high probability, the system will reach an ε-approximate Nash policy after O(1/ε6) iterations.

Along the way, we prove several properties about the structure of MPGs and their Nash policies (see
Theorem 1.2 and Section 3). Our results can be summarized in the following two Theorems.

Theorem 1.1 (Convergence of Policy Gradient (Informal)). Consider a MPG with n agents and let
ε > 0. Suppose that each agent i runs independent policy gradient using direct parameterization
on his policy and that the updates are simultaneous. Then, the learning dynamics reach an ε-Nash
policy after O(1/ε2) iterations. Moreover, suppose that each agent i runs stochastic policy gradient
using greedy parameterization (see (4)) on his policy and that the updates are simultaneous. Then
the learning dynamics reach an ε-Nash policy after O(1/ε6) iterations.

This result holds trivially for weighted MPGs and asymptotically also for ordinal MPGs, see Remark 4.

Theorem 1.2 (Structural Properties of MPGs). The following facts are true for MPGs with n-agents:

a. There always exists a Nash policy profile (π∗1 , . . . , π
∗
n) so that π∗i is deterministic for each agent

i (see Theorem 3.1).

b. We can construct MDPs for which each state is an underlying potential game but the MDPs are
not MPGs. This can be true regardless of whether the whole MDP is competitive or cooperative
in nature (see Examples 1 and 2, respectively). On the opposite side, we can construct MDPs
that are MPGs but which include states that are purely competitive (i.e., zero-sum games), see
Example 3.

c. We provide sufficient conditions so that a MDP is a MPG. These include cases where each
state is an underlying potential game and the transition probabilities are not affected by agents
actions or the reward functions satisfy certain regularity conditions between different states (see
conditions C1 and C2 in Proposition 3.2).

Technical Overview. The first challenge in the proof of Theorem 1.1 is that multi-agent settings
(MPGs) do not satisfy the gradient dominance property, which is an important part in the proof of
convergence of policy gradient in single-agent settings [1]. In particular, there is no uniqueness of
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optimal policies and as a result, there is not a properly defined notion of value in MPGs (in contrast to
zero-sum stochastic games [11]). On the positive side, we show that agent-wise (i.e., after fixing the
policy of all agents but i), the value function, V i, satisfies the gradient dominance property along the
direction of πi (policy of agent i). This can be leveraged to show that every (approximate) stationary
point (Definition 4) of the potential function Φ is an (approximate) Nash policy (Lemma 4.2). As a
result, convergence to an approximate Nash policy is established by showing that Φ is smooth and
then applying Projected Gradient Ascent (PGA) on Φ. This step uses the rather well-known fact that
(PGA) converges to ε-stationary points in O(1/ε2) iterations for smooth functions. As a result, by
applying PGA on the potential Φ, one gets an approximate Nash policy. Our convergence result then
follows by showing that PGA on the potential function, Φ, generates the same dynamics as if each
agent i runs independent PGA on their value function, V i.

In the case that agents do not have access to exact gradients, we derive a similar result for finite
samples. In this case, we apply Projected Stochastic Gradient Ascent (PSGA) on Φ which (as was
the case for PGA) can be shown to be the same as when agents apply PSGA independently on their
individual value functions. The key is to get an unbiased sample for the gradient of the value functions
and prove that it has bounded variance (in terms of the parameters of the MPG). This comes from the
discount factor, γ; in this case, 1− γ can be interpreted as the probability to terminate the MDP at
a particular state (and γ to continue). This can be used to show that a trajectory of the MDP is an
unbiased sample for the gradient of the value functions. To guarantee that the estimate has bounded
variance, we apply the approach of [11] which requires that agents perform PSGA with α-greedy
exploration (see (4)). The main idea is that this parameterization stays away from the boundary of the
simplex throughout its trajectory.

Concerning our structural results, the main technical challenge is the dependence of state-transitions
(in addition to agents’ rewards) on agents’ actions. Our work in this part is mainly concerned with
showing that the class of MPGs can be significantly larger than state based potential games but also
that even simple coordination games may fail to satisfy the (exact) MPG property. Finally, concerning
the existence of a deterministic Nash policies, the main challenge is (as in Theorem 1.1) the lack of a
value in general multi-agent settings. As we show in the proof of Theorem 3.1, this issue can be still
handled within the class of MPGs by constructing single-agent deviations (to deterministic optimal
policies) which keep the value of the potential constant (at its global maximum). This process (which
leads to a deterministic Nash policy profile) depends critically on the MPG property and does not
generalize to arbitrary MARL settings.

Other works on MPGs. There are only a few papers in the recent literature that define and
analyze MARL settings under the term Markov Potential Games using slight different definitions
(see [18, 34]).2 These papers mainly focus on state-based potential MDPs (i.e., MPDs in which every
state is a potential game) and require rather restrictive additional conditions, such as equality or
monotonicity of the state-based potential functions, to address the computational challenge of finding
Nash policies.3 Our current results demonstrate the efficiency of simultaneous policy gradient as
a to powerful method to find Nash policies even without additional restrictive assumptions on the
state-based potential functions. Moreover, as mentioned in Theorem 1.2, the current definition also
encompasses MDPs that are not necessarily potential at each state. To the best of our knowledge,
the only (cooperative) MPGs that have been successfully addressed in terms of convergence of
independent policy gradient prior to this work, are the ones in which all agents receive the same
value/utility (and these trivially boil down to single-agent settings) [37].

2 Preliminaries

Markov Decision Process (MDP). The following notation is standard and largely follows [1] and
[11]. We consider a setting with n agents who repeatedly select actions in a shared Markov Decision
Process (MDP). The goal of each agent is to maximize their respective value function. Formally, a
MDP is defined as a tuple G = (S,N , {Ai, Ri}i∈N , P, γ, ρ), where

2Ongoing works also include [21, 22].
3The relation of these conditions to the current work is discussed in more detail in Proposition 3.2 and

Remark 2.

3



• S is a finite state space of size S = |S|. We will write ∆(S) to denote the set of all probability
distributions over the set S.

• N = {1, 2, . . . , n} is the set of the n ≥ 2 agents in the game.
• Ai is a finite action space for agent i ∈ N with generic element ai ∈ Ai. Using common

conventions, we will writeA =
∏
i∈N Ai andA−i =

∏
j 6=iAj to denote the joint action spaces of

all agents and of all agents other than i with generic elements a = (ai)i∈N and a−i = (aj)i 6=j∈N ,
respectively. According to this notation, we have that a = (ai,a−i). We will write X = |X | and
∆(X ) to denote the size of any set X ∈ {Ai,A−i,A} and the space of all probability distributions
over X , respectively.

• Ri : S ×A → [−1, 1] is the individual reward function of agent i ∈ N , i.e., Ri(s, ai,a−i) is the
instantaneous reward of agent i when agent i takes action ai and all other agents take actions a−i
at state s ∈ S.

• P is the transition probability function, for which P (s′ | s,a) is the probability of transitioning
from s to s′ when a ∈ A is the action profile chosen by the agents.

• γ is a discount factor for future rewards of the MDP, shared by all agents.
• ρ ∈ ∆(S) is the distribution for the initial state at time t = 0.

Whenever time is relevant, we will index the above terms with t. In particular, at each time step
t ≥ 0, all agents observe the state st ∈ S, select actions at = (ai,t,a−i,t), receive rewards
ri,t := Ri(st,at), i ∈ N and transition to the next state st+1 ∼ P (· | st,at). We will write
τ = (st,at, rt)t≥0 to denote the trajectories of the system, where rt := (ri,t), i ∈ N .

Policies and Value Functions. For each agent i ∈ N , a deterministic, stationary policy πi : S →
Ai specifies the action of agent i at each state s ∈ S, i.e., πi(s) = ai ∈ Ai for each s ∈ S. A
stochastic, stationary policy πi : S → Πi, where Πi := ∆(Ai)S , specifies a probability distribution
over the actions of agent i for each state s ∈ S. In this case, we will write ai ∼ πi(· | s) to denote
the randomized action of agent i at state s ∈ S. As above, we will write π = (πi)i∈N ∈ Π :=
×i∈N∆(Ai)S and π−i = (πj)i 6=j∈N ∈ Π−i := ×i 6=j∈N∆(Aj)S to denote the joint policies of all
agents and of all agents other than i, respectively. A joint policy π induces a distribution Prπ over
trajectories τ = (st,at, rt)t≥0, where s0 is drawn from the initial state distribution ρ and ai,t is
drawn from πi(· | st) for all i ∈ N .

The value function, V is : Π → R, gives the expected reward of agent i ∈ N when s0 = s and the
agents draw their actions, at = (ai,t,a−i,t), at time t ≥ 0 from policies π = (πi, π−i)

V is (π) := Eπ

[ ∞∑
t=0

γtri,t | s0 = s

]
. (1)

We also denote V iρ (π) = Es∼ρ
[
V is (π)

]
if the initial state is random and follows distribution ρ.

Nash Policies. The solution concept that will be focusing on is the Nash Policy. Formally:
Definition 1 (Nash Policy). A joint policy, π∗ = (π∗i )i∈N ∈ Π, is a Nash policy if for each agent
i ∈ N it holds that

V is (π∗i , π
∗
−i) ≥ V is (πi, π

∗
−i), for all πi ∈ ∆(Ai)S , and all s ∈ S,

i.e., if the policy, π∗i , of each agent i ∈ N maximizes agent i’s value function for each starting state
s ∈ S given the policies, π∗−i = (π∗j )j 6=i, of all other agents j 6= i ∈ N . Similarly, a joint policy
π∗ = (π∗i )i∈N is an ε-Nash policy if there exists an ε > 0 so that for each agent i

V is (π∗i , π
∗
−i) ≥ V is (πi, π

∗
−i)− ε, for all πi ∈ ∆(Ai)S , and all s ∈ S.

We would like to note the definition of Nash policy is the same if s ∼ ρ (random starting state).

Markov Potential Games. We are ready to define the class of MDPs that we will focus on for the
rest of the paper, i.e., Markov Potential Games.
Definition 2 (Markov Potential Game). A Markov Decision Process (MDP), G, is called a Markov
Potential Game (MPG) if there exists a (state-dependent) function Φs : Π→ R for s ∈ S so that

Φs(πi, π−i)− Φs(π
′
i, π−i) = V is (πi, π−i)− V is (π′i, π−i),
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for all agents i ∈ N , all states s ∈ S and all policies πi, π′i ∈ Πi, π−i ∈ Π−i. We should note that
by linearity of expectation, it follows that Φρ(πi, π−i)−Φρ(π

′
i, π−i) = V iρ (πi, π−i)− V iρ (π′i, π−i),

where Φρ(π) := Es∼ρ [Φs(π)] .

As in normal-form games, an immediate consequence of this definition is that the value function of
each agent in a MPG can be written as a sum of the potential (common term) and a term that does not
depend on that agent’s policy (dummy term), cf. Proposition B.1 in Appendix B, i.e., for each agent
i ∈ N there exists a function U is : Π−i → R so that

V is (π) = Φs(π) + U is(π−i), for all π ∈ Π.

Remark 1 (Ordinal and Weighted Potential Games). Similar to normal-form games, one may also
define more general notions of MPGs, such as ordinal or weighted Markov Potential Games. Specifi-
cally, if for all agents i ∈ N , all states s ∈ S and all policies πi, π′i ∈ Πi, π−i ∈ Π−i, the function
Φs, s ∈ S satisfies

Φs(πi, π−i)− Φs(π
′
i, π−i) > 0 ⇐⇒ V is (πi, π−i)− V is (π′i, π−i) > 0,

then the MPD, G, is called an Ordinal Markov Potential Game (OMPG). If there exist positive
constants wi > 0, i ∈ N so that

Φs(πi, π−i)− Φs(π
′
i, π−i) = wi(V

i
s (πi, π−i)− V is (π′i, π−i)),

then G is called a Weighted Markov Potential Game (WMPG).

Similarly to normal-form games, such classes are naturally motivated also in the setting of multi-agent
MDPs. As Example 2 in Appendix B.1 shows, even simple potential-like settings, i.e., settings in
which coordination is desirable for all agents, may fail to be exact MPGs (but may still be ordinal or
weighted MPGs) due to the dependence of both the rewards and the transitions on agents’ decisions.
From our current perspective, ordinal and weighted MPGs (as defined in Remark 1) remain relevant,
since as we argue, policy gradient still converges to Nash policies in these classes of games (see
Remark 4).

Independent Policy Gradient and Direct Parameterization We assume that all agents update
their policies independently according to the projected gradient ascent (PGA) or policy gradient
algorithm on their policies. Independence here refers to the fact that (PGA) requires only local
information (each agent’s own rewards, actions and view of the environment) to form the updates,
i.e., to estimate that agent’s policy gradients. Such protocols are naturally motivated and particularly
suitable for distributed AI settings in which all information about the interacting agents, the type of
interaction and the agent’s actions (policies) is encoded in the environment of each agent.4

The PGA algorithm is given by

π
(t+1)
i := P∆(Ai)S

(
π

(t)
i + η∇πiV iρ (π(t))

)
, (PGA)

for each agent i ∈ N , where P∆(Ai)S is the projection onto ∆(Ai)S in the Euclidean norm. Here,
the additional argument t ≥ 0 denotes time. We also assume that all players i ∈ N use direct policy
parameterizations, i.e.,

πi(a | s) = xi,s,a (2)

with xi,s,a ≥ 0 for all s ∈ S, a ∈ Ai and
∑
a∈Ai xi,s,a = 1 for all s ∈ S. This parameterization is

complete in the sense that any stochastic policy can be represented in this class [1].

In practice, agents use projected stochastic gradient ascent (PSGA), according to which, the actual
gradient,∇πiV iρ (π(t)), is replaced by an estimate thereof that is calculated from a randomly selected

(yet finite) sample of trajectories of the MDP. This estimate, ∇̂(t)
πi may be derived from a single or a

4In practice, even though every agent treats their environment as fixed, the environment changes as other
agents update their policies. This is what makes the analysis of such protocols particularly challenging in
full general. It also highlights the importance of studying classes of games (MDPs) in which convergence of
independent learning protocols can be obtained such as zero-sum stochastic games [11] or MPGs as we do in
this paper.
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batch of observations which in expectation behave as the actual gradient. We choose the estimate of
the gradient of V iρ to be

∇̂(t)
πi = R

(T,t)
i

T∑
k=0

∇ log πi(a
(t)
k | s

(t)
k ), (3)

where st0 ∼ ρ, and R(T,t)
i =

∑T
k=0 r

k
i,t is the sum of rewards of agent i for a batch of time horizon T

along the trajectory generated by the stochastic gradient ascent algorithm at its t-th iterate.

The direct parameterization is not sufficient to ensure that the variance of the gradient estimator is
bounded (as policies approach the boundary). In this case, we will require that each agent i ∈ N
uses instead direct parameterization with α-greedy exploration as follows

πi(a | s) = (1− εi)xi,s,a + α/Ai, (4)

where α is the exploration parameter for all agents. Under greedy exploration, it can be shown that
(3) is unbiased and has bounded variance for α-greedy exploration (see Lemma 4.6). The form of
PSGA is given below:

π
(t+1)
i := P∆(Ai)S

(
π

(t)
i + η∇̂(t)

πi

)
. (PSGA)

3 Structural Properties of Markov Potential Games

Existence of Deterministic Nash Policies. The first question that we examine, is whether MPGs
possess a deterministic optimal policy profile, as is the case in normal-form potential games [24].
In Theorem 3.1, we show that this important property indeed carries over (which settles part (a) of
Theorem 1.2).

Theorem 3.1 (Deterministic Optimal Policy Profile). Let G be a Markov Potential Game (MPG).
Then, there exists a Nash policy π∗ ∈ ∆(A)S which is deterministic, i.e., for each agent i ∈ N and
each state s ∈ S, there exists an action ai ∈ Ai so that π∗i (ai | s) = 1.

The proof of Theorem 3.1 (which is deferred to Appendix B) exploits the fact that we can iteratively
reduce the non-deterministic components of an arbitrary Nash policy profile that corresponds to
a global maximizer of the potential and still retain the Nash profile property at all times. At each
iteration, we isolate an agent i ∈ N , and find a deterministic (optimal) policy for that agent in
the (single-agent) MDP in which the policies of all other agents but i remain fixed. The important
observation is that the resulting profile is again a global maximizer of the potential and hence, a
Nash policy profile. This argument critically relies on the MPG structure and does not seem directly
generalizable to MDPs that do not satisfy Definition 2.

Sufficient Conditions for MPGs. We next turn to the question of which types of games are
captured by Definition 2. It is tempting to think that MDPs which are potential at every state (meaning
that the immediate rewards at every state are captured by a (normal-form) potential game at that state)
are trivially MPGs. As we show in Examples 1 and 2, this intuition fails in the most straightforward
way: we can construct simple MDPs that are potential at every state but which are purely competitive
(do not possess a deterministic Nash policy) overall (Example 1) or which are cooperative in nature
overall but which do not possess an exact potential function (Example 2).

Example 1. Consider the two-agent, two-state, and two actions per state MDP, G =
(S = {0, 1},N = {A,B}, (Ai = {0, 1}, Ri)i∈N , P, ρ) in Figure 1. At state 0 (1), agent A always
receives +2 (0) and agent B always receives 0 (+2) regardless of the actions they choose. That is,
the reward functions for both states are constant, which implies that both states are potential games.
The transitions are determinstic and are given by

st+1 = st ⊕ astA ⊕ a
st
B ,

where ⊕ denotes the xor operator or equivalently, addition modulo 2, i.e., 1⊕ 1 = 0. The MDP G is
illustrated in Figure 1.

To show that G is not a MPG, it suffices to show that it cannot have a deterministic optimal policy as
should be the case according to Theorem 3.1. To obtain a contradiction, assume that agent A is using
a deterministic action a0

A ∈ {0, 1} at state 0. Then, agent B, who prefers to move to state 1, will
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s0

( 0 1

0 2, 0 2, 0
1 2, 0 2, 0

)
s1

( 0 1

0 0, 2 0, 2
1 0, 2 0, 2

)

a0
A ⊕ a0

B = 0

otherwise

otherwise

a1
A ⊕ a1

B = 0

Figure 1: A MDP which is potential at every
state but which not a MPG due to conflicting pref-
erences over states. The agents’ instantaneous
rewards, (RA(s,a), RB(s,a)), are shown in ma-
trix form below each state s = 0, 1.

s0

( 0 1

0 5, 2 −1,−2
1 −5,−4 1, 4

)
s1

(0, 0)

(a0
A, a

0
B) = (0, 0)

otherwise

Figure 2: A MDP which is potential at every state
and cooperative in nature but which is not a MPG.
The action-dependent transitions do not allow the
derivation of an exact potential function.

optimize their utility by choosing the action a0
B ∈ {0, 1} that yields a0

A ⊕ a0
B = 1. In other words,

given any deterministic action of agent A at state 0, agent B can choose an action that always moves
the sequence of play to state 1. Thus, such an action cannot be optimal for agent A which implies
that the MDP G does not have a deterministic optimal policy profile as claimed.

Intuitively, the two agents in Example 1 play a game of matching pennies in terms of the actions
that they choose (since they prefer playing in opposing states). Thus, competition arises due to the
opposing preferences of the agents over states even though the immediate rewards at each states are
determined by normal form potential games.

Example 2 shows that a state-based potential game may fail to be a MPG even if agents have similar
preferences over states. In that case, the reason is that one cannot find an exact potential function
due to the dependence of the transitions on agents’ actions. However, in the case of Example 2, it is
straightforward to show that the game is an ordinal potential game, cf. Remark 2.

Example 2. Consider the two-agent, two-state MPD, G = (S = {0, 1},N = {A,B}, {Ai,
Ri}i∈N , P, ρ) in Figure 2. At state s0, each agent has two actions, Ai = {0, 1}, whereas at state s1,
each agent has a single action. The transitions and instantaneous rewards, (RA(s,a), RB(s,a)), s =
0, 1,a = (asA, a

s
B) of this MDP are shown in Figure 2. If the action profile a = (a0

A, a
0
B) = (0, 0) is

selected at state s0, then the play remains there, otherwise the play transitions to state s1 and remains
there forever.

Since, the game at s0 is a version of the Battle of the Sexes and hence a potential game (see also
Appendix B.1), there exists a potential function φ0, such that we may write the instantaneous reward,
Ri(s0,a) of agent i = A,B at that state as the sum of the potential, φ0(π) (common term) and a
dummy term, ui0(π−i), which does not depend on the action (policy) of agent i, but only on the
action (policy) of agent −i, i.e., Ri(s0, π) = φ0(π) + ui0(π−i), for i = A,B. Here we are using the
slight abuse of notation that Ri(s, π) = Ea∼π Ri(s,a). This leads (after some standard algebra) to
the following expression for the value function V i0 (π) of agent i = A,B with starting state s0

V i0 (π) =
φ0(π)

1− γpq
+
ui(π−i)

1− γpq
, for i = A,B,

where p, q ∈ [0, 1] are the probabilities with which agents A and B respectively select their action
0 at state s0. This expression clearly indicates the complexity that emerges in MPDs versus static
games. Namely, the first term of the value function is a common term (same for both agents) that
can conveniently become part of a potential function. However, the second term is a mixture of a
common term (denominator) and a term that is different for each agent (numerator). The reason
is that the policy of each agent determines the time that the agents spend at each state and thus, it
does not (generally) allow for an agent independent term (as required by the definition of a potential
game). However, this game is clearly a potential-like game in which agents have common interests.
This motivates to look at the notion of ordinal or weighted MPGs. Note that (by a straightforward
calculation) this game is an ordinal MPG for the potential function Φs = φs for s = 0, 1.

Based on the intuition from the previous Examples, we formulate the following sufficient conditions
in Proposition 3.2 which ensure that a state based potential game (i.e., a game that is potential at
every state) is also a MPG according to Definition 2 (cf. Theorem 1.2 part (c)).
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s0

( H T

H 1,−1 −1, 1
T −1, 1 1,−1

)
sHH

(
1
γ ,−

1
γ

)
sHT

(
− 1
γ ,

1
γ

)
sTH

(
− 1
γ ,

1
γ

)
sTT

(
1
γ ,−

1
γ

)
s1

( L R

L (1, 1) (9, 0)
R (0, 9) (6, 6)

)

p0

1− p0

Figure 3: A 2-player MPG which is not potential at every state. The rewards in state s1 form a
potential game, whereas the rewards in s0 do not. However, the states inside the dotted rectangle do
form a potential game and this can be leveraged to show that the whole MPG is a potential game
whenever p0 does not depend on agents’ actions.

Proposition 3.2 (Sufficient Conditions for MPGs). Consider a MDP G in which every state s ∈ S
is a potential game, i.e., the immediate rewards R(s,a) = (Ri(s,a))i∈N for each state s ∈ S are
captured by the utilities of a potential game with potential function φs. Additionally, assume that one
of the following conditions holds

C1. Agent-Independent Transitions: P (s′ | s,a) does not depend on a, that is, P (s′ | s,a) = P (s′ |
s) is just a function of the present state for all states s, s′ ∈ S.

C2. Equality of Individual Dummy Terms: P (s′ | s,a) is arbitrary but the dummy terms of
each agent’s immediate rewards are equal across all states, i.e., there exists a function
ui : ∆(A−i)S → R such that

Ri(s, ai,a−i) = φs(πi, π−i) + ui(π−i), for all states s ∈ S.

If either C1 or C2 are true, then G is a MPG.
Remark 2. As the rest of the proofs of Section 3, the proof of Proposition 3.2 is provided in
Appendix B. The following remarks are due.

1. Condition C2 (or variations of it) is also known as state-transitivity and is present as requirement
in the existing definitions of potential-like MDPs, see e.g., [18, 21, 22] and along with some
additional conditions on the transitions also in [34]. Example 2 shows that such conditions
are restrictive, in the sense that they do not capture very simple MDPs that intuitively have a
potential-like (cooperative) structure. These observations motivate the study ordinal or weighted
potential games as natural models to capture instances that are of cooperative nature but which
are not MPGs (cf. Remark 1). As we show, our convergence results about independent policy
gradient naturally extend to these classes as well (see Remark 4).

2. Another condition that is (trivially) sufficient to ensure that a MPD that is potential at every
state is also a MPG is that the instantaneous rewards of all agents are the same at each state, i.e.,
that Ri(s, ai,a−i) = φs(ai,a−i) for all agents i ∈ N , all actions ai ∈ Ai and all states s ∈ S.
MDPs that satisfy this condition are called Team Markov Games and their study (in terms of
learning their equilibria) boils down to a single agent setting [37].

The previous discussion focuses on games that are potential at every state as natural candidates
to generalize the notion of normal-form games to state games. This leaves an important question
unanswered: are there games which are not potential at every state but which are captured by the our
current definition of MPGs? Example 3 answers this question affirmatively. Together with Example 1,
this settles the claim in Theorem 1.2, part (b).
Example 3 (Not potential at every state may still imply MPG). Consider the 2-agent MDP of Figure 3.
At state s0, agents’ rewards, (R1(s0,a), R2(s0,a)) form a constant sum (equivalent to zero-sum)
game. The agents’ actions at s0 induce a deterministic transition to a state sab with a, b ∈ {H,T} in
which the only available actions are precisely the chosen actions at s0. Each agent’s instantaneous
reward at this state is the reward of the other agent at s0 (scaled by 1/γ). The MDP then transitions
deterministically to state s1 which is a potential game with rewards (R1(s1,a), R2(s1,a)). After the
agents select their actions at s1, there is an exogenous given probability, p0, according to which the
play transitions to state s = 0. Otherwise it remains at s1.

While the game at state s = 0 is not a potential game, the combined states in the dotted rectangle of
Figure 3 do form a potential game, with potential function equal to the sum of the agent’s payoffs at
s0 (the rewards of both agents are equal for every pass of the play through the states in the dotted
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rectangle). Thus, it is not hard to see that both value functions are of the form

V is (π1, π2) = c1 (s) · x0 (R1(s0,a) +R2(s0,a))y0 + c2 (s) · x1Ri(s1,a)y1,

for s ∈ {s0, s1} and i = {1, 2}, where c1 (s) , c2 (s) > 0 are appropriate constants that depend only
the state s ∈ {s0, s1} and not on the agents. Since the game at s1 is a potential game, with potential
function given by a 2× 2 matrix φ1, it is immediate to see that

Φs (π1, π2) := c1 (s)x0 (R1(s0,a) +R2(s0,a))y0 + c2 (s) · x1φ1y1, for s ∈ {s0, s1}
is a potential function so that G satisfies the definition of an MPG.

4 Convergence of Policy Gradient in Markov Potential Games

The current section presents the proof of convergence of (projected) policy gradient to approximate
Nash policies in Markov Potential Games (MPGs). We analyze the cases of both infinite and finite
samples using direct and α-greedy parameterizations, respectively.

Before we proceed with the formal statements and proofs of this section, we provide the definition of
distribution mismatch coefficient as it is commonly used [14] applied to our setting.
Definition 3 (Distribution Mismatch coefficient). Let µ be any distribution in ∆(S) and let O be the
set of policies π ∈ ∆(A)S so that π is 0.1-Nash policy (moreover assume for the rest of the paper
that ε ≤ 0.1). We call

D := max
π∈O

∥∥∥∥dπs0µ
∥∥∥∥
∞

the distribution mismatch coefficient, where dπs is the discounted state distribution (16).

The first auxiliary Lemma has to do with the projection operator that is used on top of the independent
policy gradient, so that the policy vector π(t)

i remains a probability distribution for all agents i ∈ N
(see (PGA)). It is not hard to show (due to separability) that the projection operator being applied
independently for each agent i on ∆(Ai)S is the same as jointly applying projection on ∆(A)S . This
fact is captured in lemma 4.1.
Lemma 4.1 (Projection Operator). Let π := (π1, ..., πn) be the policy profile for all agents and let

π′ = π + η∇πΦρ(π),

be a gradient step on the potential function for a step-size α > 0. Then, it holds that

P∆(A)S (π′) = (P∆(A1)S (π′1), . . . , P∆(An)S (π′n)).

The main implication of Lemma 4.1 along with the equality of the derivatives between value functions
and the potential function in MPGs, i.e., ∇πiV is (π) = ∇πiΦ(π) for all i ∈ N (see property P2 in
Proposition B.1), is that running independent (PGA) on each agent’s value function is equivalent
to running (PGA) on the potential function Φ. In turn, Lemma 4.2 suggests that as long as policy
gradient reaches a point π(t) with small gradient along the directions in ∆(A)S , it must be the case
that π(t) is an approximate Nash policy. Together with Lemma 4.1, this will be sufficient to prove
convergence of (PGA).
Lemma 4.2 (Stationarity of Φ implies Nash). Let ε ≥ 0, π be an ε-stationary point of Φ (see
Definition 4). Then, it holds that π is a

√
SDε

1−γ -Nash policy.

To prove Lemma 4.2, we will need the Gradient Domination property that has been shown to hold in
single-agent MDPs [1]. This is presented in Lemma 4.3.
Lemma 4.3 (Agent-wise Gradient Domination Property in MPGs [1]). Let G be a MPG with potential
function Φ, fix any agent i ∈ N , and let π = (πi, π−i) ∈ ∆(A)S be a policy. Let π∗i be an optimal
policy for agent i in the single agent MDP in which the rest of the agents are fixed to choose π−i.
Then, for the policy π∗ = (π∗i , π−i) ∈ ∆(A)S that differs from π only in the policy component of
agent i, it holds that

Φρ(π
∗)− Φρ(π) ≤ 1

1− γ

∥∥∥∥∥dπ
∗

ρ

µ

∥∥∥∥∥
∞

max
π′=(π′i,π−i)

(π′ − π)>∇πiΦµ(π),

for any distributions µ, ρ ∈ ∆(S).
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Remark 3 (Best Response). Intuitively, Lemma 4.3 implies that there is a best response structure
in the agents’ updates that we can exploit to show convergence of (projected) policy gradient to an
optimal policy profile. In particular, given a fixed policy profile of all agents other than i, the decision
of agent i is equivalent to the decision of that agent in a single MDP. Thus, the inequality (which
stems directly from the gradient domination property in the single MDP)

V is (π∗)− V is (π) ≤ 1

1− γ

∥∥∥∥dπ∗sµ
∥∥∥∥
∞

max
π′=(π′i,π−i)

(π′ − π)>∇πiV iµ(π)

implies that any stationary point of V is (w.r.t the variables xi,s,a of agent’s i policy with the rest of
the variables being fixed) is an optimal policy for i, i.e., a best response given the policies of all other
agents.

Lemma 4.3 also suggests that there is an important difference in the Gradient Domination Property
between (multi-agent) MPGs and single agent MDPs (cf. Lemma 4.1 in [1]). Specifically, for MPGs,
the optimal policy may not be unique which implies that the gradient domination property, as stated
in Lemma 4.3, will only be enough to guarantee convergence to one of the optimal (stationary) points
of Φ (and not necessarily to the absolute maximum of Φ). Having all these in mind, we can now
prove Lemma 4.2.

Proof of Lemma 4.2. Fix agent i and suppose that i deviates to an optimal policy π∗i (w.r.t the
corresponding single agent MDP). Since π is ε-stationary it holds that (Definition 4)

max
π′i∈∆(Ai)S

(π′i − πi)>∇πiΦµ(π) ≤
√
Sε. (5)

Thus, with π∗ = (π∗i , π−i), Lemma 4.3 implies that

Φρ(π
∗)− Φρ(π) ≤ 1

1− γ

∥∥∥∥∥dπ
∗

ρ

µ

∥∥∥∥∥
∞

max
π′=(π′i,π−i)

(π′ − π)>∇πiΦµ(π)

(5)

≤ D

1− γ
√
Sε.

(6)

Thus, using the definition of the potential function (cf. Definition 2), we obtain that

V iρ (π∗)− V iρ (π) = Φρ(π
∗)− Φρ(π) ≤

√
SDε

1− γ
.

Since the choice of i was arbitrary, we conclude that π is an
√
SDε

1−γ -approximate Nash policy.

The last critical step before we proceed to the formal statement and proof of Theorem 1.1 is that the
potential function Φ is smooth. This fact is used in the analysis of both (PGA) and its stochastic
counterpart (PSGA).
Lemma 4.4 (Smoothness of Φ). Let Amax := maxi∈N |Ai| (the maximum number of actions for
some agent). Then, for any initial state s0 ∈ S (and hence for every distribution µ ∈ ∆(S) on states)
it holds that

‖∇πΦs0(π)−∇πΦs0(π′)‖2 ≤
2γAmaxn

(1− γ)3
‖π − π′‖2 (7)

i.e., Φµ(π) is 2nγAmax

(1−γ)3 -smooth.

Exact gradients case. We are now ready to prove Theorem 1.1 (restated formally), following
standard arguments about (PGA). Recall that Amax := maxi∈N |Ai| is the maximum number of
actions for some agent (which scales linearly in the number of agents). Note that the global maximum
among all values/utilities of agents must be at most one.
Theorem 4.5 (Formal Theorem 1.1, part (a)). Let G be a MPG and let s0 ∈ S denote an arbitrary
initial state. Let also Amax = maxi |Ai|, and set the number of iterations to be T = 16γnD2SAmax

(1−γ)5ε2

and the learning rate (step-size) to be η = (1−γ)3

2γAmaxn
. If the agents run independent projected policy

gradient (PGA) starting from arbitrarily initialized policies, then there exists a t ∈ {1, . . . , T} such
that π(t) is an ε-approximate Nash policy.
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Proof. The first step is to show that Φ is a β-smooth function, in particular, that ∇πΦ is β-Lipschitz
with β = 2γAmaxn

(1−γ)3 as established in Lemma 4.4. Then, a standard ascent lemma for Gradient Ascent
(see Lemma D.1 from [6]) implies that for any β-smooth function f it holds that f(x′) − f(x) ≥
1

2β ‖x
′ − x‖22 where x′ is the next iterate of (PGA). Applied to our setting, this gives

Φµ(π(t+1))− Φµ(π(t)) ≥ (1− γ)3

4γAmaxn

∥∥∥π(t+1) − π(t)
∥∥∥2

2
(8)

Thus, if the number of iterates, T , is 16γnD2SAmax

(1−γ)5ε2 , then there must exist a 1 ≤ t ≤ T so that∥∥π(t+1) − π(t)
∥∥

2
≤ ε(1−γ)

2D
√
S

. Using a standard approximation property (see Lemma D.2), we then

conclude that π(t+1) will be a ε(1−γ)

D
√
S

-stationary point for the potential function Φ. Hence, by

Lemma 4.2, it follows that π(t+1) is an ε-Nash policy and the proof is complete.

Finite Sample case In the case of finite samples, we analyze (PSGA) on the value V i of each agent
i which (as was the case for PGA) can be shown to be the same as applying projected gradient ascent
on Φ. The key is to get an estimate of the gradient of Φ (3) at every iterate. Note that 1 − γ now
captures the probability for the MDP to terminate after each round (and it does not play the role of a
discounted factor since we consider finite length trajectories). Lemma 4.6 argues that the estimator of
equation (3) is both unbiased and bounded.

Lemma 4.6 (Unbiased estimator with bounded variance ). It holds that ∇̂(t)
πi is an unbiased estimator

of∇πiΦ for all i ∈ N , that is

Eπ(t)∇̂(t)
πi = ∇πiΦµ(π(t)) for all i ∈ N .

Moreover, for all agents i ∈ N , it holds that

Eπ(t)

∥∥∥∇̂(t)
πi

∥∥∥2

2
≤ 24A2

max

ε(1− γ)4
, for all i ∈ N .

Proof. It is straightforward from Lemma D.4 and the equality of the partial derivatives between
the value functions and the potential, i.e., ∇πiΦµ = ∇πiV iµ for all i ∈ N (see property P2 in
Proposition B.1).

We now state and prove part (b) of Theorem 1.1.

Theorem 4.7 (Formal Theorem 1.1, part (b)). Let G be a MPG and let s0 ∈ S denote an arbitrary
initial state. Let Amax = maxi |Ai|, and set the number of iterations to be T = 48(1−γ)AmaxD

4S2δ4

ε6γ3

and the learning rate (step-size) to be η = ε4(1−γ)3γ
48nD2A2

maxSδ
2 . If the agents run projected stochastic policy

gradient (PSGA) starting from arbitrarily initialized policies and using α-greedy parametrization with
α = ε2, then with probability 1− δ there exists a t ∈ {1, . . . , T} such that π(t) is an ε-approximate
Nash policy.

Proof. Let δt = ∇̂(t)
π −∇πΦµ(π(t)) and set λ = (1−γ)3

2γAmaxn
(the inverse of the smooth parameter in

4.4). Moreover, we set y(t+1) = P∆(A)S (π(t) + η∇πΦ(π(t))) (yt+1 captures the next iterate of the
projected (deterministic) gradient ascent).

We follow the analysis of Projected Stochastic Gradient Ascent for non-convex smooth-functions
(see [12], Theorem 2.1) that makes use of the Moreau envelope. Let

φλ(x) = arg min
y∈∆(A)S

−Φµ(y) +
1

λ
‖y − x‖22 ,
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(definition of Moreau envelope for our objective Φ). From the definition of φ and a standard property
of projection we get

φλ(π(t+1)) ≤ −Φµ(y(t+1)) +
1

λ

∥∥∥π(t+1) − y(t+1)
∥∥∥2

2

≤ −Φµ(y(t+1)) +
1

λ

∥∥∥π(t) + η∇̂(t)
π − y(t+1)

∥∥∥2

2

= −Φµ(y(t+1)) +
1

λ

∥∥∥π(t) − y(t+1)
∥∥∥2

2
+
η2

λ

∥∥∥∇̂(t)
π

∥∥∥2

2
+

2η

λ
(π(t) − y(t+1))>∇̂(t)

π

(9)

Since ∇̂(t)
π is unbiased (Lemma 4.6) we have that E[δt|π(t)] = 0, therefore E

[
δ>t (y(t+1) − π(t))

]
=

0. Additionally, by Lemma 4.6 (applied for all agents i) we also have E
[∥∥∥∇̂(t)

π

∥∥∥2

2

]
≤ 24nA2

max

ε(1−γ)4 .

Hence by taking expectation on (9) we have:

E[φλ(π(t+1))] ≤ E
[
−Φµ(y(t+1)) +

1

λ

∥∥∥π(t) − y(t+1)
∥∥∥2

2

]
+

2η

λ
E[(π(t)−y(t+1))>∇πΦµ(π(t))]+

24η2nA2
max

λε(1− γ)4
.

Using the definition of Moreau envelope and the fact that Φ is 1
λ -smooth (Lemma 4.4, after the

parametrization the smoothness parameter does not increase) we conclude that

E[φλ(π(t+1))] ≤ E[φλ(π(t))] +
2η

λ
E[(π(t) − y(t+1))>∇πΦµ(π(t))] +

24η2nA2
max

λε(1− γ)4

≤ E[φλ(π(t))] +
2η

λ
E
[
Φµ(π(t))− Φµ(y(t+1)) +

1

2λ

∥∥∥π(t) − y(t+1)
∥∥∥2

2

]
+

24η2nA2
max

λε(1− γ)4
,

or equivalently

E[φλ(π(t+1))]−E[φλ(π(t))] ≤ 2η

λ
E
[
Φµ(π(t))− Φµ(y(t+1)) +

1

2λ

∥∥∥π(t) − y(t+1)
∥∥∥2

2

]
+

24η2nA2
max

λε(1− γ)4

(10)

Adding telescopically (10), dividing by 1/T and because w.l.o.g −Φ ∈ [−1, 0] we get that

1

T
+

24η2nA2
max

λε(1− γ)4
≥ 2η

λ
E
[
Φµ(y(t+1))− Φµ(π(t))

]
− η

λ2T

T∑
t=1

E
[∥∥∥y(t+1) − π(t)

∥∥∥2

2

]
≥ min
t∈[T ]

2η

λ
E
[
Φµ(y(t+1))− Φµ(π(t))

]
− η

λ2
E[
∥∥∥y(t+1) − π(t)

∥∥∥2

2
]

(11)

Let t∗ be the time index that minimizes the above. We show the following inequality (which provides
a lower bound on the RHS of (11):

E
[
Φµ(y(t∗+1))− Φµ(π(t∗))

]
− 1

2λ
E
[∥∥∥y(t∗+1) − π(t∗)

∥∥∥2

2

]
≥ 1

λ
E
[∥∥∥y(t∗+1) − π(t∗)

∥∥∥2

2

]
(12)

Observe that by 1
λ -smoothness of Φµ we get that H(x) := −Φµ(x) + 1

λ

∥∥x− π(t∗)
∥∥2

2
is 1

λ -strong
convex and moreover y(t+1) is the minimizer of H . Therefore we get that

H(πt∗)−H(yt∗+1) ≥ 1

2λ

∥∥πt∗ − yt∗+1
∥∥2

2
,

or equivalently

Φµ(yt∗+1)− Φµ(πt∗)− 1

λ

∥∥πt∗ − yt∗+1
∥∥2

2
≥ 1

2λ

∥∥πt∗ − yt∗+1
∥∥2

2
.

By taking expectation of terms above, (12) follows. Combining (11) with (12) we conclude that

1

T
+

24η2nA2
max

λε(1− γ)4
≥ 2η

λ2
E
[∥∥πt∗ − yt∗+1

∥∥2

2

]
.
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By Jensen’s inequality it occurs that

E
[∥∥∥y(t∗+1) − π(t∗)

∥∥∥
2

]
≤

√
λ2

2ηT
+ η

12nλA2
max

ε(1− γ)4
. (13)

To get an ε-Nash policy with probability at least 1 − δ, we have to bound
∥∥y(t∗+1) − π(t∗)

∥∥ ≤
ε(1−γ)

2D
√
Sδ(2+

√
nAmax)

and choose α = ε2 in the greedy parametrization. This is true because of Lemma
D.3 Lemma 4.2, and Markov’s inequality. Hence we need to choose η, T so that√

λ2

2ηT
+ η

12nλA2
max

ε2(1− γ)4
≤ ε(1− γ)

2D
√
Sδ(2 +

√
nAmax)

.

We conclude that η can be chosen to be ε4(1−γ)3γ
48nD2A2

maxSδ
2 and T to be 48(1−γ)AmaxD

4S2δ4

ε6γ3 .

We conclude this section by giving a remark on Weighted and Ordinal MPGs (cf. Definition in 1).

Remark 4 (Weighted and ordinal MPGs). It is rather straightforward to see that our results carry over
for weighted MPGs. The only difference in the running time of (PGA) is to account for the weights
(which are just multiplicative constants).

In contrast, the extension to ordinal MPGs is not immediate and the reason is that we cannot prove
any bound on the smoothness of Φ in that case (i.e., we cannot generalize Lemma 4.4). Therefore,
we cannot have rates of convergence of policy gradient. Nevertheless, it is quite straightforward that
(PGA) converges asymptotically to critical points (in bounded domains) for differentiable functions.
Therefore as long as Φ is differentiable, it is guaranteed that asymptotically (PGA) will converge to a
critical point of Φ. By Lemma 4.2, this point will be a Nash policy.

5 Experiments: Congestion Games

We next study the performance of the policy gradient algorithm in a general class of MPGs that are
congestion games at every state.

Experimental setup: We consider a MDP in which every state is a congestion game (cf. [4]). In
the current experiment, there are N = 8 agents, Ai = 4 facilities (resources or locations) that the
agents can select from and S = 2 states: a safe state and a distancing state. In both states, all agents
prefer to be in the same facility with as many other agents as possible (follow the crowd) [13]. In
particular, the reward of each agent for being at facility k is equal to a predefined positive weight wsafe

k

times the number of agents at k = A,B,C,D. The weights satisfy wsafe
A < wsafe

B < wsafe
C < wsafe

D ,
i.e., facility D is the most preferable by all agents. However, if more than 4 = N/2 agents find
themselves in the same facility, then the game transitions to the distancing state. At the distancing
state, the reward structure is the same for all agents, but the weights are reduced by a constant factor,
i.e., wdist

k = wsafe
k − c, where c > 0 is a (considerably large) constant for k = A,B,C,D. To return

to the safe state, the agents need to achieve maximum distribution over the facilities, i.e., no more
than 2 = N/4 agents may be in the same facility. We consider deterministic transitions, however,
the results are quantitatively equivalent also when these transitions occur with some probability (see
Appendix E).

To see that this MDP is a MPG, it suffices to check that every state is a potential game and that
condition C2 (i.e., equality of individual dummy terms) of Proposition 3.2 is satisfied. The first claim
is straightforward since at each state, the agents play a congestion game [24, 27]. The second claim
follows from the fact that the rewards of all agents in all facilities at the distancing state are shifted by
the same constant amount, c. (If c is different for each facility, then the resulting MDP is not an MPG
but cooperation is still desirable. For this case, see Appendix E). The MPG is illustrated in the upper
left panel of Figure 4.
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≤ N/4> N/2

4 facilities distancing state

safe state

Figure 4: Upper left panel: An illustration of the MPG that is used in the experiments with S = 2
states, 4 facilities and N = 8 agents (description in text). Lower left panel: The distribution of agents
at the equilibrium that is reached by the policy gradient algorithm (common for all runs). Right
column: Trajectories of the L1-accuracy (average difference between current policy and Nash policy)
over the 10 runs for both equal (upper panels) and different learning rates among agents (lower
panels).

Paremeters: We perform episodic updates with T = 20 steps. At each iteration, we estimate
the Q-functions, the value function, the discounted visitation distributions and, hence, the policy
gradients using the average of mini-batches of size 20. We use γ = 0.99. For the presented plots,
we use a common learning rate η = 0.0001 (upper panels) or randomly generated learning rates
(different for each agent) in [.00005, .0005] (lower panels) in Figure 4. Note that these learning rates
are (several orders of magnitude) larger than the theoretical guarantee, η = (1−γ)3

2γAmaxn
≈ 1e− 08, of

Theorem 4.5. Experiments (not presented here) with even larger learning rates (e.g., η = 0.001) did
not lead (consistently) to convergence.

Results: The lower left panel of Figure 4 shows that the agents learn the expected Nash profile in
both states in all runs (this is common for both the fixed and the random learning rates). At the safe
state, the agents distribute themselves equally among the two most preferable facilities (C and D).
This leads to a maximum utility and avoids a transition to the distancing (bad) state. At the distancing
state, the agents learn the unique distribution (2 agents per facility) that leads them back to the safe
state. Importantly, this (Nash) policy profile to which policy gradient converges to is deterministic in
line with Theorem 4.5. The panels in the middle and right columns depict the L1-accuracy in the
policy space at each iteration which is defined as the average distance between the current policy and
the final policy of all 8 agents, i.e., L1-accuracy = 1

N

∑
i∈N |πi−πfinal

i | = 1
N

∑
i∈N

∑
s

∑
a |πi(a |

s)− πfinal
i (a | s)|. The results are qualitatively equivalent in both cases (common and non-common

learning rates). However, due to the larger step-sizes used by some agents, the algorithm becomes
more responsive and exhibits faster convergence in the non-common case.

6 Further Discussion and Conclusion

In this paper, we have presented a number of positive results (both structural and algorithmic) about
the performance of independent policy gradient ascent in Markov potential games. Specifically,
deterministic Nash policies always exist and independent policy gradient is guaranteed to quickly
converge to a Nash policy profile even in the case of finite samples. Given these positive results, a
number of interesting open questions emerge.

Open questions. Price of (Markov) Anarchy. Price of Anarchy (PoA) [16] is a classic notion
in normal form games that captures the inefficiency due to the lack of a central authority that can
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coordinate all agents to implement the social optimum outcome. Formally, it is defined as the ratio of
the social cost of the worst Nash equilibrium divided by the cost of the social optimum. PoA has
been studied extensively in many classes of games including several classes of potential games for
which tight PoA bounds exist (e.g. congestion games [28]). It would be interesting to explore to what
extent this type of analysis can be generalized to Markov Potential Games as well as more general
classes of Markov Games.

Stability of Deterministic Policies. When it comes to online learning in normal form potential
games, it sometimes possible to prove that the dynamics do not converge to an arbitrary Nash
equilibrium but that in fact most initial conditions converge to a deterministic (sometimes referred
to also as pure) Nash equilibrium [15, 26, 8, 19]. To produce such equilibrium selection results,
standard Lyapunov arguments do not suffice and one needs to apply more advanced techniques such
as the Center-Stable-Manifold theorem [17] which would be a fascinating direction for future work
in Markov potential games.

Other Algorithmic Approaches: Softmax Parametrization & Natural Policy Gradient. In [1],
the authors show asymptotic convergence to the global optimum to single-agent MDP in the tabular
setting with exact gradients for the softmax policy parameterization. Moreover, polynomial conver-
gence rate is shown when additional KL-based entropy regularizer is used, as well as dimension-free
convergence to optimum when Natural Policy Gradient is applied. Extending such algorithmic
techniques to the case of multi-agent MPGs is a natural direction for future work.

Global Convergence in other Multi-Agent Markov Games. Recently, there has been intense
interest in understanding convergence to Nash policies for different classes of learning dynamics
in Markov zero-sum games [11, 38, 40]. Our approach moves in orthogonal direction focusing on
MPGs and establishing strong convergence results in these games. A natural open question is whether
and under what conditions can we prove strong convergence guarantees in more general classes of
Markov games, possibly by combining tools and techniques from both lines of work.

Regularities beyond Equilibration in Multi-Agent Markov Games. Given the complexities of
such multi-agent settings, it is highly unlikely to expect practical algorithms which can always
guarantee convergence to equilibrium. This is already the case even for the more restricted setting
of normal-form games [36, 2]. Nevertheless, strong guarantees can be shown via, e.g., existence of
cyclic/recurrent orbits, invariant functions [20] or strong social welfare guarantees [33]. Whether
such results can be extended to Multi-Agent Markov Games is a stimulating direction for future
work.
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A Additional Notation and Definitions: Section 2

We first provide some additional notation and definitions that will be used in the proofs.

Q-value and Advantage Functions. Recall from the main part that the value function, V is : Π→
R, gives the expected reward of agent i ∈ N when s0 = s and the agents draw their actions,
at = (ai,t,a−i,t), at time t ≥ 0 from policies π = (πi, π−i) and is defined as

V is (π) := Eτ∼π

[ ∞∑
t=0

γtri,t | s0 = s

]
.

Similarly, we will write V iρ (π) := Eso∼ρ[V is (π)] to denote the expected value of agent i ∈ N under
the initial state distribution ρ.

For any state s ∈ S, the Q-value function Qis : P × A → R and the advantage function Ais :
P ×A → R of agent i ∈ N are defined as

Qis(π,a) := Eτ∼π

[ ∞∑
t=0

γtri,t | s0 = s,a0 = a

]
, and (14)

Ais(π,a) := Qis(π,a)− V is (π). (15)

Discounted State Distribution. It will be useful to define the discounted state visitation distribution
dπs0(s) for s ∈ S that is induced by a (joint) policy π as

dπs0(s) := (1− γ)

∞∑
t=0

γtPrπ(st = s | s0), for all s ∈ S. (16)

As for the value function, we will also write dπρ (s) = Es0∼ρ[dπs0(s)] to denote the discounted state
visitation distribution when the initial state distribution is ρ.

Stationary point for potential function Φ . Formally a stationary point for the potential function
Φ is given below.
Definition 4 (ε-stationary). A policy π := (π1, ..., πn) ∈ ∆(A)S is called ε-stationary for Φ w.r.t
distribution µ as long as

max
(π1+δ1,...,πn+δn)∈∆(A)S ,

∑
i∈N ‖δi‖

2
2≤1

∑
i∈N

δ>i ∇πiΦµ(π) ≤ ε (17)

In words, the function Φ(π) cannot increase in value by more than ε along every possible local
direction δ that is feasible (namely π + δ is also a policy).

B Omitted Materials: Section 3

Proposition B.1 (Separability of Value Functions and Equality of Derivatives). Let G = (S,N ,A =
{Ai}i∈N , P,R, ρ) be a Markov Potential Game (MPG) with potential Φs, for s ∈ S. Then, for the
value function V is , s ∈ S of each agent i ∈ N , the following hold

P1. Separability of Value Functions: there exists a function U is : ∆(A−i)S → R such that for each
joint policy profile π = (πi, π−i) ∈ ∆(A)S , we have V is (π) = Φs(π) + U is(π−i).

P2. Equality of Derivatives: the partial derivatives of agent i’s value function V is coincide with the
partial derivatives of the potential Φs that correspond to agent i’s parameters, i.e.,

∂xi,s,aV
i
s (π) = ∂xi,s,aΦs(π), for all i ∈ Nand all s ∈ S.

Proof. To obtain P1, consider any 3 arbitrary policies for agent i, notated by πi, π′i, π
′′
i ∈ ∆(Ai)S .

Then, by the definition of MPGs, we have that
Φs(πi, π−i)− Φs(π

′
i, π−i) = V is (πi, π−i)− V is (π′i, π−i),

Φs(πi, π−i)− Φs(π
′′
i , π−i) = V is (πi, π−i)− V is (π′′i , π−i).
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for every starting state s ∈ S. This implies that we can write V is (πi, π−i) as both

V is (πi, π−i) = Φs(πi, π−i)− Φs(π
′
i, π−i) + V is (π′i, π−i)

V is (πi, π−i) = Φs(πi, π−i)− Φs(π
′′
i , π−i) + V is (π′′i , π−i)

Thus, we have that −Φs(π
′
i, π−i) + V is (π′i, π−i) = −Φs(π

′′
i , π−i) + V is (π′′i , π−i) for any arbitrary

pair of policies π′i and π′′i for agent i, implying that agent i’s policy has no impact on these terms.
Accordingly, we can express them as

U is(π−i) := −Φs(π
′
i, π−i) + V is (π′i, π−i) = −Φs(π

′′
i , π−i) + V is (π′′i , π−i),

where U is(π−i) is a function that does not depend on the policy of agent i. Thus, we can express the
utility function of any agent i in a MPG as

V is (π) = Φs(π) + U is(π−i).

as claimed. To obtain P2, we use P1 for a vector xi parameterizing πi, and obtain that

∂xi,aV
i(π) = ∂xi,aΦ(π) + 0

for any coordinate xi,a with a ∈ Ai of xi, from which we can see that our claim is true.

Note that P1 serves as a characterization of MPGs. Namely, a multi-agent MDP is a MPG if and only
if the value function of each agent i ∈ N can be decomposed in a term that is common for all players
(potential function) and in a term that may be different for each agent i ∈ N but which depends only
on the actions of all agents other than i. This property carries over from normal form (single state)
potential games. Also note that both properties, P1 and P2, hold for any (differentiable for P2) policy
parameterization and not only for the direct one that we use here.

Proof of Theorem 3.1. Let Φ be the potential function of G. Since the space ∆(A)S = ∆(A1)S ×
... × ∆(An)S is compact and Φ is continuous, Φ has a global maximum Φmax. Let (π∗1 , ..., π

∗
n)

denote a global maximizer, i.e., a joint policy profile at which Φmax is attained. By the Definitions of
MPGs and Nash policies, this implies, in particular, that (π∗1 , ..., π

∗
n) is a Nash policy, since

0 < Φs(π
∗
i , π
∗
−i)− Φs(πi, π

∗
−i) = V is (π∗i , π

∗
−i)− V is (πi, π

∗
−i), (∗)

for all i ∈ N , s ∈ S and all policies πi ∈ ∆(Ai)S . If π∗1 , ..., π
∗
n are all deterministic we are done.

So, we may assume that there exists an i ∈ N so that π∗i is randomized and consider the MDP G′
in which the policy of all agents other than i has been fixed to π∗−i. G′ is a single agent MDP with
the same states as G, the same actions and rewards for agent i and transition probabilities that are
determined by the joint distribution of the environment and the joint policy of all agents other than i.
As a single agent MDP, this setting has a deterministic optimal policy, say π̃i, for agent i. Thus, it
holds that

V is (π̃i, π
∗
−i) ≤ V is (π∗i , π

∗
−i) ≤ V is (π̃i, π

∗
−i),

where the first inequality follows from the fact that π∗ is a Nash policy and the second from the
optimality of π̃i. It follows that

V is (π̃i, π
∗
−i) = V is (π∗i , π

∗
−i),

i.e., the payoff of agent i at (π̃i, π
∗
−i) is the same as in (π∗i , π

∗
−i). Hence, by the definition of the

potential function, we have that

0 = V is (π̃i, π
∗
−i)− V is (π∗i , π

∗
−i) = Φs(π̃i, π

∗
−i)− Φs(π

∗
i , π
∗
−i),

which implies that
Φs(π̃i, π

∗
−i) = Φs(π

∗
i , π
∗
−i) = Φmax.

Thus, (π̃i, π
∗
−i) is also a global maximizer of Φ which implies that (π̃i, π

∗
−i) is a Nash policy by the

same reasoning as in equation (∗). Note that the value of all players other than i may not be the same
at the joint policy profile (π̃i, π

∗
−i) as it is in (π∗i , π

∗
−i). However, what we need for our purpose is

that this step reduces the number of randomized policies by one and that it retains the value of the
potential function invariant at its global maximum (which ensures that the ensuing policy profile is
also a Nash policy). By iterating this process until π∗j becomes deterministic for all agents j ∈ N ,
we obtain the claim.
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Proof of Proposition 3.2. The proof is constructive and proceeds by finding the potential function,
Φs, s ∈ S in both cases, C1-C2. Since the individual rewards of the agents at each state s ∈ S are
captured by a potential function φs, then for the reward, Ri(s,a) of each agent i at the action profile
a, it holds that

Ri(s,a) = φs(a) + uis(a−i), (18)
where uis : ∆(A−i) → R is a function that does not depend on the actions of agent i in any way.
Thus, we may write the value function of each agent i ∈ N as

V is (π) = Eτ∼π

[ ∞∑
t=0

γtRi(st,at) | s0 = s

]

= Eτ∼π

[ ∞∑
t=0

γt
(
φs(at) + uis(a−i,t)

)
| s0 = s

]

= Eτ∼π

[ ∞∑
t=0

γtφs(at) | s0 = s

]
+ Eτ∼π

[ ∞∑
t=0

γtuis(a−i,t) | s0 = s

]
(?)

where τ ∼ π is the random trajectory generated by policy π. To show that G is a MPG, it suffices to
show that the value function of each agent i ∈ N can be decomposed in a term that is common for
all agents (and which may depend on the actions of agent i ∈ N ) and in a term that does not depend
(in any way) in the actions of agent i (dummy term), cf Proposition B.1. The first term in expression
(?), i.e., Eτ∼π [

∑∞
t=0 γ

tφs(at) | s0 = s], depends on the actions of all players and is common for all
agents i ∈ N (and is thus, a good candidate for the potential function). The second term in expression
(?), i.e., Eτ∼π

[∑∞
t=0 γ

tuis(a−i,t) | s0 = s
]
, does not depend on player i via the payoffs uis(a−i,t),

but, in general, it does depend on player i via the transitions τ ∼ π. The two cases in the statement of
Proposition 3.2 ensure precisely that this term is either independent of agent i, in which case it is a
dummy term for agent i or that is also common for all players, in which case it can be included in the
potential function. Specifically, we have that

C1. If the transitions do not depend on the action of the players, we have that τ ∼ P , where P is an
exogenously given distribution function (state-wise). In this case, we have that

Φs(π) := Eτ∼π

[ ∞∑
t=0

γtφs(at) | s0 = s

]
is a potential function and U is(π−i) := Eτ∼π

[∑∞
t=0 γ

tuis(a−i) | s0 = s
]

is a dummy term
that does not depend (in any way) on the policy of agent i ∈ N . For a rigorous argument, let
αta,s(πi, π

′
i) = Pr[at = a|st = s] − Pr[a′t = a|s′t = s] for any policies π = (πi, π−i) and

π′ = (π′i, π−i). By (crucially) using the fact that Prπ[st = s] = Prπ
′
[s′t = s] according to our

assumption that P does not depend on actions, we then have that

Eτ∼π

[ ∞∑
t=0

γtuis(a−i,t) | s0 = s

]
− Eτ∼π′

[ ∞∑
t=0

γtuis(a
′
−i,t) | s0 = s

]
=

=
∑
s

Pr[st = s]

(∑
a

αta,s(π, π
′
i)u

i
s(a)

)
Now note that we must have

∑
a α

t
a,s(πi, π

′
i) = 0. Intuitively, for whatever probability went up

for an action when agent i went from πi to π′i, an equal mass of probability must have gone down
for other actions. Let A+ = {a | αta,s(πi, π′i) > 0} and A− = {a|αta,s(πi, π′i) < 0}. Then this
implies we can find some number M of pairs (a+

m,a
−
m) ∈ A+×A−, with coefficients βm, such

that
∑
m βm =

∑
a∈A+ αta,s(πi, π

′
i) = −

∑
a∈A− α

t
a,s(πi, π

′
i), and such that we have

∑
s

Pr[st = s]

(∑
a

αta,s(π, π
′
i)u

i
s(a)

)
=
∑
s

Pr[st = s]
∑
m

βm
(
(uis(a

+
m)− uis(a−m)

)
=
∑
s

Pr[st = s]
∑
m

βm
(
(φs(a

+
m)− φs(a−m)

)
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where the last equality uses the fact that the game at state s is a potential game. Now, the right
hand side of the last expression is equal to the difference of the common terms, i.e.,∑

s

P[st = s]
∑
m

βm
(
(φs(a

+
m)− φs(a−m)

)
=

= Eτ∼π

[ ∞∑
t=0

γtφs(a−i,t) | s0 = s

]
− Eτ∼π′

[ ∞∑
t=0

γtφs(a
′
−i,t) | s0 = s

]
which, thus implies that

Φs(πi, π−i)− Φs(π
′
i, π−i) = V is (πi, π−i)− V is (π′i, π−i)

as claimed.

C2. If the dummy terms for each player i ∈ N are equal across states, i.e., if there exists a function
ui : ∆(A−i)S → R so that uis(a−i) = ui(a−i) for all s ∈ S, then it holds that the term
Eτ∼π

[∑∞
t=0 γ

tuis(a−i) | s0 = s
]

is equal for all trajectories τ ∼ π. Hence, this term does not
in the actions of player i and the same decomposition as in condition C1 applies.

Summing up, in both cases, C1-C2, G is an MPG as claimed.

Note that the proof of the (trivial) case in which the instantaneous rewards of all agents i ∈ N are
equal at each state s ∈ S (cf. Remark 2) is similar. In this case, it is immediate to see that the
instantaneous rewards are precisely given by the potential function at that state, i.e., it holds that
Ri(s,a) = φs(a) for all i ∈ N and all s ∈ S. In this case, it holds that uis(a−i) ≡ 0 for all i ∈ N
and all s ∈ S and hence,

Φs(π) := Eτ∼π

[ ∞∑
t=0

γtφs(a) | s0 = s

]
is a potential function for G, and the dummy terms are all equal to 0, i.e., U is(π−i) ≡ 0.

B.1 Examples

Example 2 (Continued). At each state, s ∈ {0, 1}, the agents’ payoffs, (R1
s, R

2
s), form a potential

game (at that state), and are given as follows

State 0 : (R1
0, R

2
0) =

( 0 1

0 5, 2 −1,−2

1 −5,−4 1, 4

)
, with potential Φ0 =

(
4 0
−6 2

)
,

State 1 : (R1
1, R

2
1) = (0, 0), with potential Φ1 = 0.

In this MDP, agents need only to select an action at state s0. Thus, we will denote a policy, π1, of
agent 1 by π1 = (p, 1− p) where p ∈ [0, 1] is the probability with which agent A selects action 0 at
state s0. Similarly, we will denote a policy, π2, of agent B by π2 = (q, 1− q) where q ∈ [0, 1] is the
probability with which agent B selects action 0 at state s0. Moreover, we will slightly abuse notation
and write

Ri0(π) = Ri0(π1, π2) = π>1 R
i
0π2 = [p, 1− p]Ri0[q, 1− q]>.

We also assume that the horizon is infinite and there is a discount factor γ ∈ [0, 1). Accordingly, we
can calculate the value functions V i0 (π1, π2) of agents i = A,B starting from state s0 as follows,

V i0 (π) = Ri0(π) + γpqV i0 (π)− γ(1− pq)× 0

which yields the solution

V i0 (π) =
Ri0(π)

1− γpq
, for i = A,B.
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Next, we use the Performance Difference Lemma (Lemma 3.2 by [1]) to determine the difference in
the value between two different policies. We will do this for agent 1 (the calculation is similar for
agent 2: we use here 1 for agent 1 and 2 for agent B). For a policy π = (π1, π2), we have at state s0

that

Ea∼π1(·|s0)[A
1
0(π′,a)] = pA1

0(π′, 0, a2) + (1− p)A1(π′, 1, a2)

= p
[
R1

0(0, π2) + γqV0(π′)− V0(π′)
]

+ (1− p)
[
R1

0(1, π2) + 0− V0(π′)
]

= pR1
0(0, π2) + (1− p)R1

0(0, π2)− (1− γpq)V0(π′)

= R1
0(π)− (1− γpq)V0(π′).

At state s1, there is only one available action for each agent which yields a payoff of 0. Thus,

Ea∼π1(·|s1)[A
1
1(π′,a)] = 0.

Moreover, concerning the discounted visitation distribution, we have that

dπ0 (s0) = (1− γ)

∞∑
t=0

γtPrπ(st = s0 | s0) = (1− γ)
[
1 + γpq + (γpq)2 + . . .

]
=

1− γ
1− γpq

,

and dπ0 (s1) = 1− dπ0 (s0) = γ(1−pq)
1−γpq . Thus, using all the above, we have that

V0(π)− V0(π′) =
1

1− γ

[
1− γ

1− γpq
· (R1

0(π)− (1− γpq)V0(π′)) +
γ(1− pq)
1− γpq

· 0
]

=
R1

0(π)

1− γpq
− V0(π′) = V0(π)− V0(π′).

which shows that our initial calculations conform with the outcome specified by the Performance
Difference Lemma.

Finally, a direct calculation shows that Φs = φs for s = 0, 1 is a valid potential function for which
the MDP is an ordinal MPG.
Example 3 (Continued). At state s0, we consider the game with action sets A1(s0) = A2(s0) =
{H,T} and (instantaneous) payoffs

R1(s0, a1, a2) =

( H T

H 1 −1
T −1 1

)
and R2(s0, a1, a2) =

( H T

H −1 1
T 1 −1

)
,

where a1 denotes the action of agent 1 and a2 the action of agent 2 (agent 1 selects rows and agent 2
selects columns in both matrices). This is a constant sum game (equivalent to zero-sum) and hence, it
is not an (ordinal) potential game. Apart from the instantaneous rewards, agents’ actions at s0 induce
a deterministic transition to a state in which the only available actions to the agents are precisely the
actions that they chose at state s0 and their instantaneous rewards at this state are the rewards of the
other agent at s0. In particular, there are four possible transitions to states sab with a, b ∈ {H,T},
with action sets and instantaneous rewards given by

A1(sab) = {a}, A2(sab) = {b}, R1(sab, a, b) = R2(s0, b, a), R2(sab, a, b) = R1(s0, b, a),

for agents 1 and 2, respectively. Note that the visitation probability of this states is equal to the
visitation probability of state s0. After visiting one of these states, the MDP transitions to state s1

which is a potential game, with potential function given by

Φ1 =

(L R

L 4 3
R 3 0

)
As mentioned above, the game in state s0 does not admit a potential function. However, the joined
rewards RJ1, RJ2 of agents 1 and 2 which result from selecting an action profile (a, b) ∈ H,T 2 at
s0 and then traversing both s0 and the ensuing sab (part included in the dotted rectangle in Figure 3),
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do admit a potential function. The potential function in this case is the sum of agents’ rewards and is
given by

Φ0ab =

( H T

H 1− 1 1− 1
T 1− 1 1− 1

)
=

(H T

H 0 0
T 0 0

)
.

Let π1 = (x0,x1) denote a policy of agent 1. Here x0 = (x0, 1 − x0), where x0 ∈ [0, 1] is
the probability with which agent 1 chooses action H at state s0. Similarly, x1 = (x1, 1 − x1)
where x1 ∈ [0, 1] is the probability with which agent 1 chooses action L at state s1. At states
sab, a, b ∈ {H,T}2, agents only have one action to choose from, so this choice is eliminated from
their policy representation. Similarly, we represent a policy of agent 2 by π2 = (y0,y1) with
y0, y1 ∈ [0, 1]. Let also

p0 := p0 (π1, π2) := Pr(st+1 = s0 | st = s1, π1, π2), (19)

In the general case, p0, i.e., the transition probability from s1 to s0, may depend on the actions of the
agents or it may be completely exogenous (i.e., constant with respect to agents’ actions). If we write

p0(a1, a2) := Pr(st+1 = s0 | st = s1, a1, a2), for a1, a2 ∈ {L,R},

to denote the probability of transitioning from state s1 to state s0 given that the agents chose actions
a1, a2 ∈ {L,R} at state s1, then we can write p0 as

p0 = E(a1,a2)∼(π1,π2)[p0(a1, a2)] =
∑

(a1,a2)∈{L,R}2
Pr(a1, a2 | π1, π2) · p0(a1, a2)

= x1y1p0(L,L) + x1(1− y1)p0(L,R) + (1− x1)y1p0(R,L) + (1− x1)(1− y1)p0(R,R).
(20)

Using this notation, we can now proceed to compute the value function of each state of the MDP in
Figure 3. Since the value of states sa,b, a, b ∈ H,T 2 is equal to a constant reward plus the value of
state s1 (discounted by γ), it suffices to calculate the value for states s0 and s1. We have that

V 1
0 (π1, π2) = x0R

1
0y0 + γ

(
x0

(
R2

0/γ
)
y0

)
+ γ2V 1

1 (π1, π2)

V 1
1 (π1, π2) = x1R

1
1y1 + γ

[
p0V

1
0 (π1, π2) + (1− p0)V 1

1 (π1, π2)
]
,

which after some trivial calculations yield

V 1
0 (π1, π2) = x0

(
R1

0 +R1
0

)
y0 + γ2V 1

1 (π1, π2)

V 1
1 (π1, π2) =

1

1− γ (1− p0)

[
x1R

1
1y1 + γp0V

1
0 (π1, π2)

]
.

This is a system of 2 equations in the 2 unknown quantities, V 1
0 (π1, π2) and V 1

1 (π1, π2). Solving
for these two quantities, yields the unique solution

V 1
0 (π1, π2) =

1

1− γ (1− p0)− γ3p0

[
(1− γ (1− p0))x0

(
R1

0 +R2
0

)
y0 + γ2x1R

1
1y1

]
.

V 1
1 (π1, π2) =

1

1− γ (1− p0)− γ3p0

[
γp0x0

(
R1

0 +R2
0

)
y0 + x1R

1
1y1

]
.

In the case that p0 is a constant with respect to π1, π2, then both value functions are of the form

V is (π1, π2) = c1 (s) · x0

(
R1

0 +R2
0

)
y0 + c2 (s) · x1R

i
1y1, for s ∈ {s0, s1}, and i = {1, 2},

where c1 (s) , c2 (s) > 0 are appropriate constants that depend only the state s ∈ {s0, s1} and on
agents 1, 2. Since the game at s1 is a potential game, with potential function given by a 2× 2 matrix
Φ1, it is immediate to infer that

V is (π′1, π2)− V is (π1, π2) = Φs (π′1, π2)− Φs (π1, π2) , for s ∈ {s0, s1},

with
Φs (π1, π2) := c1 (s)x0

(
R1

0 +R2
0

)
y0 + c2 (s) · x1Φ1y1, for s ∈ {s0, s1}.

However, if p0 depends on the actual policies of agents 1 and 2, cf. equation (19), then it is not
immediate to determine a potential (or even to decide whether a (exact) potential exists or not).
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Remark 5. Several elements of Example 3 have been selected in the sake of simplicity and are not
necessary for the main takeaway, i.e., that there are MDP that are not potential at some states but
which are MPGs. First, the transitions from s0 to the states sab need not be deterministic. To see this,
let q ∈ (0, 1) and assume that if the agents select actions H,T is s0, then the process transitions with
probability q to a state sHT with rewards (−1, 1)/qγ and with probability (1 − q) to a state s′HT
with rewards (1,−1)/(1 − q)γ. The rest remains the same. Accordingly, the expected reward for
agent 1 after (H,T ) has been selected in s0 is the same as in the current format.

Second, the construction with states s0 and sab, (a, b) ∈ H,T 2 is not the only one that leads to such
an example. Another very common instance occurs in the case of aliasing between s0 and states sab,
i.e., when the agents cannot tell these states apart. The intuition which carries over from the currently
presented example is that the roles of the agents are essentially reversed between the two states but
the agents do not know (from the observable features) in which state they are. Thus, any valid policy,
selects the same action in both states leading to the same situation as in the presented example.

Finally, if the horizon is finite, then the instantaneous rewards in states sab still work if we eliminate
the scaling factor (here γ). Thus, the construction works in both episodic and continuing settings.

C Omitted Materials: Section 4

Before we proceed with the formal statements, we provide the definition of the commonly used
distribution mismatch coefficient [14] applied to our setting.

Definition 5 (Distribution Mismatch Coefficient). Let µ be any distribution in ∆(S) and letO be the
set of policies π ∈ ∆(A)S so that π is 0.1-Nash policy (moreover assume for the rest of the paper
that ε ≤ 0.1). We call

D := max
π∈O

∥∥∥∥dπs0µ
∥∥∥∥
∞

the distribution mismatch coefficient, where dπs is the discounted state distribution (16).

Proof of Lemma 4.1. Observe that for any set X ⊆ Rn, it holds that

PX (y) = argmin
x∈X

‖x− y‖22 .

Thus,

P∆(A)S (y) = argmin
x∈∆(A)S

‖x− π′‖22 = argmin
x1∈∆(A1)S ,...,xn∈∆(An)S

n∑
i=1

‖xi − π′i‖
2
2

=

n∑
i=1

argmin
xi∈∆(Ai)S

‖xi − π′i‖
2
2 = (P∆(A1)S (π′1), . . . , P∆(An)S (π′n)).

To prove Lemma 4.3, we will use a multi-agent version of the Performance Difference Lemma (cf.
[1] for a single agent and [11] for two agents).

Lemma C.1 (Multi-agent Performance Difference Lemma). Consider an n-agent MDP G and fix
an agent i ∈ N . Then, for any policies π = (πi, π−i), π

′ = (π′i, π−i) ∈ Π and any distribution
ρ ∈ ∆(S), it holds that

V iρ (π)− V iρ (π′) =
1

1− γ
Es∼dπρ Eai∼πi(·|s) Ea−i∼π−i(·|s)

[
Ais(π

′, ai,a−i)
]
,

where a−i ∼ π−i(· | s) denotes the action profile of all agents other than i that is drawn from the
product distribution induced by their policies π−i = (πj)j 6=i∈N ∈ Π−i.
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Proof. For any initial state s ∈ S and joint policies π = (πi, π−i), π
′ = (π′i, π−i) ∈ Π, it holds that

V is (π)− V is (π′) = Eτ∼π

[ ∞∑
t=0

γtri,t | s0 = s

]
− V is (π′)

= Eτ∼π

[ ∞∑
t=0

γt (ri,t − Vst(π′) + Vst(π
′)) | s0 = s

]
− V is (π′)

= Eτ∼π

[ ∞∑
t=0

γt
(
ri,t − Vst(π′) + γVst+1

(π′)
)
| s0 = s

]

= Eτ∼π

[ ∞∑
t=0

γt
(
ri,t + γ E

[
Vst+1(π′) | st, ai,t,a−i,t

]
− Vst(π′)

)
| s0 = s

]

= Eτ∼π

[ ∞∑
t=0

γtAist(π
′,at) | s0 = s

]

=
1

1− γ
Es′∼dπρ Eai∼πi(·|s′) Ea−i∼π−i(·|s′)

[
Ais′(π

′,a)
]
.

Taking expectation over the states s ∈ S with respect to the distribution ρ ∈ ∆(S) yields the
result.

Proof of Lemma 4.3. Fix an agent i ∈ N and let π = (πi, π−i), π
∗ = (π∗i , π−i) ∈ Π = ∆(A)S . By

the definition of MPGs (cf. Definition 2), it holds that

V iρ (π∗)− V iρ (π) = Φρ(π
∗)− Φρ(π).

Thus, using the multi-agent version of the Performance Difference Lemma (cf. Lemma C.1), we have
for any distribution µ ∈ ∆(S) that

Φρ(π
∗)− Φρ(π) = V iρ (π∗)− V iρ (π)

=
1

1− γ
Es∼dπ∗ρ Eai∼π∗i (·|s) Ea−i∼π∗−i(·|s)

[
Ais(π, ai,t,a−i,t)

]
≤ 1

1− γ
max
π′i∈Πi

{∑
s∈S

dπ
∗

ρ (s)Eai∼π′i(·|s) Ea−i∼π∗−i(·|s)
[
Ais(π, ai,a−i)

]}
,

=
1

1− γ
max
π′i∈Πi

{∑
s∈S

dπ
∗

ρ (s)

dπµ(s)
dπµ(s)Eai∼π′i(·|s) Ea−i∼π∗−i(·|s)

[
Ais(π, ai,a−i)

]}
,

≤ 1

1− γ

∥∥∥∥∥dπ
∗

ρ

dπµ

∥∥∥∥∥
∞

max
π′i∈Πi

{∑
s∈S

dπµ(s)Eai∼π′i(·|s) Ea−i∼π∗−i(·|s)
[
Ais(π, ai,a−i)

]}
.

To proceed, observe that

Eai∼πi(·|s) Ea−i∼π∗−i(·|s)
[
Ais(π, ai,a−i)

]
= 0.

Thus, for any π′i ∈ Πi and any state s ∈ S, it holds that

Eai∼π′i(·|s) Ea−i∼π∗−i(·|s)
[
Ais(π, ai,a−i)

]
=

=
∑
ai∈Ai

(π′i(ai | s)− πi(ai | s))Ea−i∼π∗−i(·|s)
[
Ais(π, ai,a−i)

]
=
∑
ai∈Ai

(π′i(ai | s)− πi(ai | s))Ea−i∼π∗−i(·|s)
[
Qis(π, ai,a−i)

]
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since V is (π) does not depend on ai. Substituting back in the last inequality of the previous calculations,
we obtain that

Φρ(π
∗)− Φρ(π) ≤

≤

∥∥∥∥∥dπ
∗

ρ

dπµ

∥∥∥∥∥
∞

max
π′i∈Πi

{∑
s,ai

dπµ(s)

1− γ
(π′i(ai | s)− πi(ai | s))Ea−i∼π∗−i(·|s)

[
Qis(π, ai,a−i)

]}

=

∥∥∥∥∥dπ
∗

ρ

dπµ

∥∥∥∥∥
∞

max
π′i∈Πi

(π′i − πi)>∇πiV iµ(π),

where we used the policy gradient theorem ([1, 32]) under the assumption of direct policy pa-
rameterization (cf. equation (2)). We can further upper bound the last expression by using that
dπµ(s) ≥ (1 − γ)µ(s) which follows immediately from the definition of the discounted visitation
distribution dπµ(s) for any initial state distribution µ. Finally, property P2 of Proposition B.1, implies
that ∇πiV iρ (π) = ∇πiΦρ(π) (making crucial use of the MPG structure). Putting these together, we
have that

Φρ(π
∗)− Φρ(π) ≤ 1

1− γ

∥∥∥∥∥dπ
∗

ρ

µ

∥∥∥∥∥
∞

max
π′=(π′i,π

∗
−i)

(π′ − π)>∇πiV iµ(π)

=
1

1− γ

∥∥∥∥∥dπ
∗

ρ

µ

∥∥∥∥∥
∞

max
π′=(π′i,π

∗
−i)

(π′ − π)>∇πiΦµ(π),

as claimed.

Proof of Lemma 4.4. It suffices to show that the maximum eigenvalue in absolute value of the Hessian
of Φ is at most 2nγAmax

(1−γ)3 , i.e., that

∥∥∇2Φµ
∥∥

2
≤ 2nγAmax

(1− γ)3
.

We first prove the following intermediate claim.

Claim C.2. Consider the symmetric block matrix C with n× n matrices so that ‖Cij‖2 ≤ L. Then,
it holds that ‖C‖2 ≤ nL, i.e., if all block submatrices have spectral norm at most L, then C has
spectral norm at most nL.

Proof. We will prove the claim by induction on n. For n = 2 we need to show that

‖C‖2 :=

∥∥∥∥( C11 C12

C21 C22

)∥∥∥∥
2

≤ 2L

if ‖C11‖2 , ‖C12‖2 , ‖C21‖2 , ‖C22‖2 ≤ L. Define matrix W to be

W := 2L · I − C =

(
2L · I − C11 −C12

−C21 2L · I − C22

)
,

where I is the identity matrix (of appropriate size). If we show that W is positive semi-definite, then
it follows that W has only non-negative eigenvalues, which, in turn, implies that the spectral norm of
C is at most 2L. To see this, set

W1 :=

(
L · I − C11 0

0 L · I − C22

)
,W2 :=

(
L · I −C12

−C21 L · I

)
.

W1 is positive semi-definite as a block diagonal matrix with diagonal blocks positive semi-definite
matrices. Moreover, by Schur complement we get that W2 is positive semi-definite as long as L · I is
positive semi-definite and L · I − 1

L · C12C21 is positive semidefinite. By assumption, we have that

1

L
‖C12C21‖2 ≤

1

L
‖C12‖2 ‖C12‖2 ≤ L,

26



which implies that L·I− 1
L ·C12C21 has non-negative eigenvalues. Thus,W2 is positive semi-definite.

We conclude thatW1 +W2 is positive semi-definite (sum of positive semi-definite matrices is positive
semi-definite) and the claim follows.

For the induction step, suppose that the claim holds for an n = k − 1 ≥ 2. To establish that it also
holds for k, we need to show that

‖C‖2 :=

∥∥∥∥∥∥∥∥


C11 C12 . . . C1k

C21 C22 . . . C2k

...
...

...
...

Ck1 Ck2 . . . Ckk


∥∥∥∥∥∥∥∥

2

≤ kL

as long as ‖Cij‖2 ≤ L for all i, j. Let W = kL · I − C. To show that W is positive semi-definite
consider

W1 :=


kL · I − C11 −C12 −C13 . . . −C1k

−C21 L · I 0 . . . 0
...

...
...

...
−Ck1 0 0 . . . L · I

 ,W2 := W −W1.

By induction, it follows that W2 is positive semi-definite. We need to show that the same holds for
W1. By Schur complement we obain that W1 is positive semi-definite if and only if kL · I − C11 −
1
L

∑k
i=2 C1iCi1 is positive semi-definite. It follows that∥∥∥∥∥C11 −

1

L

∑
i

C1iCi1

∥∥∥∥∥
2

≤ ‖C11‖2 +
1

L

k∑
i=2

‖C1i‖2 ‖Ci1‖2 ≤ L+ (k − 1)L = kL.

Hence W1 is positive semi-definite and the induction is complete.

Returning to the statement of Lemma 4.4, we will show that∥∥∥∇2
πjπiV

j
µ

∥∥∥
2
≤ C, (21)

for all i, j ∈ N with C chosen to be 2γAmax

(1−γ)3 . Assuming we have shown (21), we conclude from
Claim C.2 that ∥∥∇2Φµ

∥∥
2
≤ nC,

and hence Φ will be nC-smooth (the proof of Lemma 4.4 will follow).

To prove (21), we follow the same proof steps as in the proof of [1], Lemma D.3. We will need to
prove an upper bound on the largest eigenvalue (in absolute value) of the matrix

∇2
πjπiV

j
µ = ∇2

πjπiV
i
µ,

along the direction where only agent i is allowed to change policy.

Fix policy π = (π1, ..., πn), agents i 6= j, scalars t, s ≥ 0, state s0 and u, v be unit vectors such that
πi + t · u ∈ ∆(Ai)S and πj + s · v ∈ ∆(Aj)S . Moreover, let V (t) = V is0(πi + t · u, π−i). and
W (t, s) = V is0(πi + t · u, πj + s · v, π−i,−j). It suffices to show that

max
‖u‖2=1

∣∣∣∣d2V (0)

dt2

∣∣∣∣ ≤ 2γ|Ai|
(1− γ)3

and max
‖u‖2=1

∣∣∣∣d2W (0, 0)

dtds

∣∣∣∣ ≤ 2γ
√
|Ai||Aj |

(1− γ)3
. (22)

• We first focus on V (t).

It holds that V (t) =
∑
a∈Ai

∑
a∈A−i(xi,s0,a + tui,s0,a)

∏
j 6=i xj,s0,ajQ

i
s0((πi + tu, π−i), (a,a))

(note that
∑
a∈Ai

∑
a∈A−i(xi,s0,a + tui,s0,a)

∏
j 6=i xj,s0,aj = 1 since it is a distribution), hence

taking the second derivative we have
d2V (0)

dt2
=
∑
a∈Ai

∑
a∈A−i

(xi,s0,a + tui,s0,a)
∏
j 6=i

xj,s0,aj
d2Qis0(π, (a,a))

dt2

+ 2
∑
a∈Ai

∑
a∈A−i

ui,s0,a
∏
j 6=i

xj,s0,aj
dQis0(π, (a,a))

dt

(23)
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For the remaining of the first part of the proof, we shall show∣∣∣∣dQis0(π, (a,a))

dt

∣∣∣∣ ≤ γ
√
|Ai|

(1− γ)2
and

∣∣∣∣d2Qis0(π, (a,a))

dt2

∣∣∣∣ ≤ 2γ2|Ai|
(1− γ)3

,

and then combining with (23) we get∣∣∣∣d2V (0)

dt2

∣∣∣∣ ≤ 2γ
√
|Ai|

(1− γ)2

∑
a∈Ai

|ui,s0,a|+
2γ2|Ai|
(1− γ)3

≤ 2γ|Ai|
(1− γ)2

+
2γ2|Ai|
(1− γ)3

≤ 2γAmax

(1− γ)3

To bound the derivative of the Q-function, observe that Qis0((πi + tu, π−i), (a,a)) = e>s0,a(I −
γP (t))−1r, where r(s0, a) is the expected reward of agent i (w.r.t the randomness of the remaining
agents) if he chooses action a at state s0 and P (t) is state-action transition matrix of w.r.t the joint
distribution of all agents but i, i.e., π−i and the environment.

It is clear that d
2P
dt2 = 0 (linear with respect to t because of direct parametrization) and moreover∥∥dP

dt

∥∥
∞ ≤

∑
a∈Ai |ui,s0,a| ≤

√
Ai ≤

√
Amax. Using the fact that

∥∥(I − γP (t))−1
∥∥
∞ ≤

1
1−γ , we

get ∣∣∣∣dQis0(π, (a,a))

dt

∣∣∣∣ = γ

∣∣∣∣e>s0,a(I − γP (0))−1 dP (0)

dt
(I − γP (0))−1r

∣∣∣∣
≤

γ
√
|Ai|

(1− γ)2
≤ γ
√
Amax

(1− γ)2
,

(24)

and also∣∣∣∣d2Qis0(π, (a,a))

dt2

∣∣∣∣ = 2γ2

∣∣∣∣e>s0,a(I − γP (0))−1 dP (0)

dt
(I − γP (0))−1 dP (0)

dt
(I − γP (0))−1r

∣∣∣∣
≤ 2γ2|Ai|

(1− γ)3
≤ 2γ2Amax

(1− γ)3
,

(25)

Since u is arbitrary, the first part of (22) is proved.

• For the second part, we focus on W (t) which is equal to

W (t, s) =
∑
a∈Ai

∑
b∈Aj

∑
a∈A−i,−j

(xi,s0,a + tui,s0,a)(xj,s0,b + svj,s0,b)·

·
∏
j′ 6=i,j

xj′,s0,aj′Q
i
s0((πi + tu, πj + sv, π−i,−j), (a, b,a))

(26)

We consider the derivative of W (26) and we get

dW (0, 0)

dtds
=
∑
a∈Ai

∑
b∈Aj

∑
a∈A−i,−j

ui,s0,avj,s0,b ·
∏
j′ 6=i,j

xj′,s0,aj′Q
i
s0(π, (a, b,a))

+
∑
a∈Ai

∑
a∈A−i

ui,s0,a ·
∏
j′ 6=i

xj′,s0,aj′
dQis0(π, (a,a))

dt

+
∑
b∈Aj

∑
a∈A−j

vj,s0,b ·
∏
j′ 6=j

xj′,s0,aj′
dQis0(π, (b,a))

dt
.

+
∑
a∈A

∏
j′

xj′,s0,aj′
d2Qis0(π,a)

dtds
.

(27)

28



The first term of the sum in absolute value is at most
√
|Ai||Aj |
1−γ (assuming rewards lie in [0, 1].)

Moreover using (24) the second term of the sum in absolute value is bounded by γ
√
|Ai|
√
|Ai|

(1−γ)2 and

the third term by
γ
√
|Aj |
√
|Ai|

(1−γ)2 . To bound the
d2Qis0

(π,a)

dtds , the same approach works that we used
to prove (25) with the extra fact that the state-action transition matrix is P (t, s) and moreover the
reward r(s0, a, b) is the expected reward of agent i (w.r.t the randomness of all agents but i, j) if i
chooses action a and j chooses b at state s0.

Finally for the fourth term we get that∣∣∣∣d2Qis0(π,a)

dtds

∣∣∣∣ ≤ γ2

∣∣∣∣e>s0,a(I − γP (0, 0))−1 dP (0, 0)

ds
(I − γP (0, 0))−1 dP (0, 0)

dt
(I − γP (0, 0))−1r

∣∣∣∣+
+ γ2

∣∣∣∣e>s0,a(I − γP (0, 0))−1 dP (0, 0)

dt
(I − γP (0, 0))−1 dP (0, 0)

ds
(I − γP (0, 0))−1r

∣∣∣∣+
+ γ

∣∣∣∣e>s0,a(I − γP (0, 0))−1 d
2P (0, 0)

dt2
(I − γP (0, 0))−1r

∣∣∣∣
≤
γ2
√
|Ai||Aj |

(1− γ)3
+
γ2
√
|Ai||Aj |

(1− γ)3
+
γ
√
|Ai||Aj |

(1− γ)2
≤

2γ
√
|Ai||Aj |

(1− γ)3
≤ 2γAmax

(1− γ)3
.

D Auxiliary Lemmas

Recall that PX denotes the projection onto some set X .
Lemma D.1 ([6], Lemma 3.6). Let f be a β-smooth function5 with convex domain X . Let x ∈ X ,
x+ = PX (x− 1

β∇f(x)) and gX (x) = β(x− x+). Then the following holds true:

f(x+)− f(x) ≤ − 1

2β
‖gX (x)‖22 .

Lemma D.2 ([1], Proposition B.1). Let f(π) be a β-smooth in π ∈ ∆(A)S . Define the gradient
mapping

G(π) = β

(
P∆(A)S

(
π +

1

β
∇πf(π)

)
− π

)
and the update rule for the projected gradient is π′ = π + 1

βG(π). If ‖G(π)‖2 ≤ ε then

max
π+δ∈∆(A)S ,‖δ‖2≤1

δ>∇πf(π′) ≤ 2ε.

Lemma D.3. Let f(x) be a β-smooth in where x uses α-greedy parametrization. Define the gradient
mapping

G(x) = β

(
P∆(A)S

(
x+

1

β
∇f(x)

)
− x
)

and the update rule for the projected gradient is x′ = x+ 1
βG(x). If ‖G(x)‖2 ≤ ε then

max
π+δ∈∆(A)S ,‖δ‖2≤1

δ>∇f(x′) ≤ 2ε+
√
nαAmax.

Proof. It is a direct application of Lemma D.2 and the fact that Φµ is Lipschitz with parameter√
nAmax

(1−γ)2 (this is Proposition 3 in page 23 of [11]).

Lemma D.4 (Unbiased with bounding variance [11]). It holds that ∇̂(t)
πi is unbiased estimator of

∇πiV i for all i, that is
Eπ(t)∇̂(t)

πi = ∇πiV iρ (π(t)) for all i.
Moreover for all agents i we get that (this is what the authors actually prove)

Eπ(t)

∥∥∥∇̂(t)
πi

∥∥∥2

2
≤ 24A2

max

α(1− γ)4
.

5Differentiable with ∇f to be β-Lipschitz.
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E Additional Experiments

In this part, we provide a systematic analysis of variations of the experimental setting in Section 5.

Coordination beyond MPGs As mentioned in Remark 4, we know that policy gradient converges
also in other cooperative settings which may fail to be exact MPGs. To study this case, we modify our
experiment from Section 5. The setting remains mostly the same, except now in the distancing state
the weights are no longer reduced by the same constant factor, i.e., wdist

k = wsafe
k − c for all facilities

k, but are instead reduced by differing (yet still sufficiently large) ck’s, i.e., wdist
k = wsafe

k − ck for
k = A,B,C,D.

Figure 5: Figures similar to Figure 4, except now with c > cA > cB > cC > cD as described in the
text. Independent policy gradient requires more iterations to converge compared to the MPG setting,
but still arrives at the same Nash policy.

This change is such that the MDP no longer satisfies condition C2 of Proposition 3.2. Since the
transitions depend on the actions of the players, a similar reasoning as in Example 2 suggests that
the game is not an MPG. However, it is still natural that cooperation is still desirable in this setting.
In particular, if the ck’s for all k = A,B,C,D are taken to be greater than the c of the MPG from
Section 5, then the agents can be said to have even “stronger” incentive to cooperate. The results
of running independent policy gradient on this variant are shown in Figure 5. Independent policy
gradient requires more iterations to converge compared to the MPG setting, but still arrives at the
same Nash policy.

Figure 6: Convergence to deterministic Nash policies of independent policy gradient in a variation
of the MPG of Section 5 with N = 16 agents and Ai = 5 facilities, Ai = {A,B,C,D,E} with
wA < wB < wC < wD < wE (i.e., E is the most preferable by all agents). Again, while there are
several (symmetric) deterministic Nash policies, all of them yield the same distribution of agents
among states (leftmost panel). All runs converge successfully to that outcome (however, some runs
required a larger number of iterates to converge).

Coordination with more agents and facilities We next test the performance of the independent
policy gradient algorithm in a larger setting with N = 16 agents and Ai = 5 facilities, Ai =
{A,B,C,D,E} with wA < wB < wC < wD < wE (i.e., E is the most preferable by all agents).
We use a learning rate η = 0.0001 for all agents (which is again much larger than the theoretical
guarantee of Theorem 4.5). All runs lead to convergence to an (optimal) Nash policy as shown in the
middle and rightmost panels. The leftmost panel shows the distribution of the agents among facilities
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in both states, which is the same (and the optimal one) in all Nash policies that are reached by the
algorithm. The results are shown in Figure 6.

Figure 7: Convergence to deterministic Nash policies of independent policy gradient in two variations
of the MPG of Section 5 with stochastic transitions between states.

Coordination with random transitions Next, we study the effect of adding randomness to the
transitions on the performance of the individual policy gradient algorithm. In this case, we experiment
with the same setting as in Section 5 (i.e., N = 8 agents and Ai = 4 facilities that each agent
i ∈ N can choose from), but use the following stochastic transition rule instead: in addition to the
existing transition rules, the sequence of play may transition from the safe to the distancing state with
probability p% regardless of the distribution of the agents and may remain at the distancing state with
probability q% again regardless of the distribution of the agents there.

Two sets of results are presented in Figure 7. In the first (upper panels), we use p, q = 1%, 10% and
in the second p, q = 5%, 20%. In both cases, we use a learning rate η = 0.0001 (several orders of
magnitude higher than what is required by Theorem 4.7). Independent policy gradient converges in
both cases to deterministic Nash policies despite the randomness in the transitions. However, for
higher levels of randomness (lower panels), the algorithm remains at an ε-Nash policy for a high
number of iterations. This is in line with the theoretical predictions of Theorem 4.7.
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