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ABSTRACT
Mountains of researches center around the Remote Sensing Image-
Text Retrieval (RSITR), aiming at retrieving the corresponding tar-
gets based on the given query. Among them, the transfer of Founda-
tion Models (FMs), such as CLIP, to remote sensing domain shows
promising results. However, existing FM-based approaches neglect
the negative impact of weakly correlated sample pairs and the key
distinctions among remote sensing texts, leading to biased and su-
perficial exploration of sample pairs. To address these challenges,
we propose a novel Eliminate Before Align strategy with Keyword
Explicit Reasoning framework (EBAKER) for RSITR. Specifically, we
devise an innovative Eliminate Before Align (EBA) strategy to filter
out the weakly correlated sample pairs to mitigate their deviations
from optimal embedding space during alignment. Moreover, we
introduce a Keyword Explicit Reasoning (KER) module to facilitate
the positive role of subtle key concept differences. Without bells
and whistles, our method achieves a one-step transformation from
FM to RSITR task, obviating the necessity for extra pretraining
on remote sensing data. Extensive experiments on three popular
benchmark datasets validate that our proposed EBAKER method
outperform the state-of-the-art methods with fewer training data.
Our source code will be released soon.

CCS CONCEPTS
• Information systems → Information retrieval; Specialized
information retrieval; Multimedia and multimodal retrieval.

KEYWORDS
Remote Sensing; Image-Text Retrieval; Foundation Model; Keyword
Explicit Reasoning

1 INTRODUCTION
With the advancement of aerospace technology, remote sensing
imagery has become increasingly accessible and finds wide applica-
tions in disaster monitoring [17], navigation [36], and agricultural
production [33]. Among these applications, Remote Sensing Image-
Text Retrieval (RSITR) stands as a foundational technique in remote
sensing vision language domain [19], aiming to retrieve semanti-
cally similar images based on given text queries, and vice versa.

Recent research efforts have shifted towards RSITR, with the
design of several effective methods leveraging from convolutional
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Figure 1: Illustration of weakly correlated pairs. An image
labeled as “A large number of trees are planted on both sides
of the road” for a “viaduct” is weakly correlated, whereas “a
medium residential” is strongly correlated but considered a
negative image-text pair.

neural networks [40–42] to Foundation Model (FM) [21, 45]. In the
realm of RSITR, initial research efforts primarily revolve around
CNN-based approaches [24, 25]. Abdullah et al. [1] pioneered the
exploration of the RSITR problem by employing an average fusion
strategy to attain robust representations. After that, plenty of CNN-
based approaches [20, 27, 34, 38, 41, 42, 42] focused on refining
alignment tailored to the characteristics of RSITR task. In recent
years, with the flourishing development of FMs [4, 7, 15, 16, 29, 31]
and their outstanding performance in various downstream tasks of
image-text retrieval [10, 43, 44], such as text-based person search
[35] and product search [3], researches in RSITR have pivoted
towards the transfer from FM to Remote Sensing Image-Text Re-
trieval Model (RSITRM) [14, 45]. Yuan et al. [37] explored multiple
Parameter-Efficient Fine-Tuning strategies to transfer CLIP to the
remote sensing domain. Liu et al. [21] annotated and amalgamated
multiple remote sensing datasets and compared the performance of
different large-scale models such as CLIP [29], BLIP [16], and AL-
BEF [18] in the remote sensing domain. Zhang et al. [45] proposed
a 5M remote sensing dataset and achieved excellent performance
by employing a two-step approach involving RS pretraining and
downstream task fine-tuning to adapt CLIP to the remote sensing
domain.

Regardless of whether they are traditional or FM-based approaches,
they both necessitate more refined datasets. Finely and accurately
annotated RSITR data will contribute to improving the performance
of the model [45]. However, despite careful annotation, meaningless
labeled image-text pairs still exist in the dataset [30]. Meaningless or
weakly correlated positive image-text pairs may mislead the align-
ment of semantically relevant instances. For instance, as shown in
Figure 1, an image of a “viaduct” may be labeled as “a large number
of trees are planted on both sides of the road”, which may be more
relevant to a “mediumresidential”. Such description, however, offers
no benefit to the model. Therefore, it is worth exploring how to
enable the model to autonomously eliminate the negative impact
of such noise before fine-grained alignment.

In addition, existing FMs boost the development of RSITR on
data volume [21, 45], which fail to grasp the core issue. The key of
RSITR task lies not merely in increasing the quantity of positive and
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(a) Traditional Methods (e.g. RemoteCLIP [21], GeoRSCLIP [45])
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Figure 2: Comparison between our EBAKER and traditional
methods on RSITR task. Traditional methods typically in-
volve a two-step training strategy. (a) A substantial quan-
tity of model-annotated remote sensing image-text pairs are
utilized to transfer the Foundation Model (FM) into a Re-
mote Sensing Foundation Model (RSFM), followed by the
conversion of RSFM into a Remote Sensing Image-Text Re-
trieval Model (RSITRM) through additional coarse-grained
contrastive learning on RSITR dataset. (b) We achieve a one-
step transformation from FM to RSITRM, by implementing
the Eliminate Before Align (EBA) strategy and the Keyword
Explicit Reasoning (KER) module.

negative sample pairs in contrastive learning, but delving deeply
into the key differences of sample pairs. Existing traditional and
CLIP-based methods in RSITR predominantly utilize global fea-
tures from vision and text encoders as their output, neglecting the
key differences guided by the fine-grained features within remote
sensing images.

The aforementioned two challenges have constrained the po-
tential of FM, despite their significant advancements in various
traditional multi-modal downstream tasks, as exemplified by CLIP
[29] and BLIP [16]. The adaptation of FMs to RSITRMs still necessi-
tates a substantial volume of remote sensing data, as illustrated in
Figure 2. For instance, GeoRSCLIP [45] employs an additional 5M
remote sensing image-text pairs and a two-step training to transfer
CLIP to the RSITRM. This undoubtedly imposes an additional bur-
den on training and presents challenging to achieving cost-effective
performance growth.

To this end, we propose a novel framework called Eliminate Be-
fore Align strategy with Keyword Explicit Reasoning (EBAKER) for

achieving a one-step transition from FM to RSITRM, as illustrated
in Figure 2 (b). Specifically, we introduce an innovative Eliminate
Before Align (EBA) strategy to counteract the adverse effects of
weakly correlated pairs. Additionally, a Keyword Explicit Reason-
ing (KER) module is introduced to facilitate the positive role of
subtle key concept differences. We validate the efficacy of our pro-
posed EBAKER method on three popular benchmark datasets, i.e.,
RSICD [23], RSITMD [38], and NWPU [5]. Extensive experiments
demonstrate that EBAKER consistently outperforms state-of-the-
art approaches.

Our contributions are summarized as follows:
• To achieve a one-step training from FM to RSITRM, we pro-
pose a novel Eliminate Before Align strategy with Keyword
Explicit Reasoning framework (EBAKER), which aims at con-
ducting fine-grained alignment through in-depth analysis
of subtle distinctions and noise filtration. Our approach di-
verges from current state-of-the-art method GeoRSCLIP [45]
by relying on a mere 4% of the training data and addressing
the nuanced characteristics.

• To mitigate the negative impact of the weakly correlated
pairs, we devise an innovative Eliminate Before Align (EBA)
strategy. It enables autonomously eliminate the positive sam-
ple pairs with low global similarity before alignment, which
promotes the accuracy of fine-grained contrastive learning
and boosts the intrinsic confidence of the model.

• We introduce a Keyword Explicit Reasoning (KER) module,
encouraging the model to predict subtle distinctions in key
concepts within local features of remote sensing image-text
pairs. This module facilitates fine-grained contrastive learn-
ing, enhancing the differentiation between extremely similar
sample pairs.

2 METHOD
In this section, we present our proposed EBAKER framework, as
illustrated in Figure 3. We begin with vision encoder, text encoder,
and our keyword statistics and mask generation in Section 2.1. Next,
we delve into our Eliminate Befora Align (EBA) strategy and Key-
word Explicit Reasoning (KER) module in Section 2.2 and Section
2.3, respectively. Finally, the overall loss function is presented in
Section 2.4.

2.1 Feature Extractor
2.1.1 Vision Encoder. Give the input image 𝐼 ∈ 𝑅 (𝐻×𝑊 ×𝐶 ) , we
initially transform 𝐼 into 𝑁 = 𝐻 ×𝑊 /𝑃2 non-overlapping blocks
of fixed size, where 𝑁 is the number of patches, 𝐻 ,𝑊 ,and 𝐶 rep-
resent the height, width, and channel of the image respectively, 𝑃
represents the block size. Subsequently, all blocks are mapped to
1D tokens through a trainable linear projection. After incorpating
positional encoding and an additional [𝑐𝑙𝑠] token, the input block
sequence is processed through 𝐿 layers of transformer blocks to
establish the relationship between the input. Finally, all the fea-
tures undergo linear projection, where 𝑓 𝑐𝑙𝑠𝑣 is transformed into the
visual global feature 𝑓 𝑔𝑣 , and

{
𝑓 1𝑣 . . . 𝑓

𝑁
𝑣

}
represent the visual local

features. The aformentioned process can be simplified as:

𝑓
𝑔
𝑣 , 𝑓

1
𝑣 ...𝑓

𝑁
𝑣 = 𝜑 (𝐼 ), (1)

2024-04-10 10:23. Page 2 of 1–10.
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Figure 3: An overview of our EBAKER approach, which consists of three parts. A. Feature Extractor: We employ CLIP as the
encoders of both modalities, and conduct word frequency analysis for masking keywords. In the end, we obtain visual features,
textual features, and masked textual features. B. Eliminate Before Align: Before alignment, we eliminate positive sample pairs
with low global similarity to mitigate the negative impact of the weakly correlated pairs. C. Keyword Explicit Reasoning: We
adopt a keyword prediction approach to facilitate the differentiation of subtle distinctions between remote sensing images.

where 𝜑 represents vision encoder of CLIP.

2.1.2 Text Encoder. For a given input text 𝑇 , we utilize CLIP text
encoder to extract representations. Initially, we tokenize the input
text by lower-cased Byte Pair Encoding (BPE) with a vocabulary
size of 49,152. The text description is surrounded by [𝑆𝑂𝑆] and
[𝐸𝑂𝑆] tokens to indicate the start and end of the sequence. Subse-
quently,

{
𝑓 sos𝑡 , 𝑓 1𝑡 . . . 𝑓

eos
𝑡

}
are fed to transformer block [32], which

employs masked self-attention to explore relationships between
blocks. Finally, all the textual features

{
𝑓 sos𝑡 , 𝑓 1𝑡 . . . 𝑓

eos
𝑡

}
undergo

linear projection, where 𝑓 eos𝑡 is transformed into the textual global
feature 𝑓 𝑔𝑡 , and the others represent the textual local features:

𝑓
𝑔
𝑡 , 𝑓

1
𝑡 ...𝑓

𝑀
𝑡 = 𝜙 (𝑇 ), (2)

where 𝜙 represents text encoder of CLIP.

2.1.3 Keyword Statistics andMask Generation. We initially perform
a statistical analysis to identify key concepts that require masking.
Through word frequency analysis across the entire dataset, we
exclude common high-frequency words such as “a”, “the”, “of”, etc.
Subsequently, we select top-𝑘 frequency keywords in each dataset,
yielding the corresponding keyword list. The process of keyword
statistics can be summarized as follows:

𝐿𝑖𝑠𝑡𝑘𝑒𝑦 = 𝑇𝑜𝑝𝑘 {𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (
∑︁𝑀

𝑖=1
𝑇𝑖 )}, (3)

We merge the keyword lists from each datset and remove any
duplicate words across them, resulting in the final keyword list
for training. If a word in the input text matches a word in the
keyword list, it is replaced with “[𝑚𝑎𝑠𝑘]”. Accordingly, we generate
the masked text 𝑇𝑚𝑎𝑠𝑘 . Subsequently, we input the sentences after

 Similarity Bank

0.56 0.24 0.72

0.33 0.46 0.63
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Figure 4: Explaination of Eliminate Before Align strategy. 1)
Initially, a similarity bank is established to store all global
similarities on-the-fly. 2) Sort all the similarities. 3) Set the
threshold based on the drop ratio. 4) Eliminate rows within a
batch corresponding to Image-to-Text or Text-to-Image pairs
with similarities below the threshold before the alignment
in the next epoch.

masking into the text encoder, obtaining the corresponding masked
global feature 𝑓 𝑔𝑚 and local features

{
𝑓 1𝑚, 𝑓

2
𝑚 . . . 𝑓𝑀𝑚

}
:

𝑓
𝑔
𝑚, 𝑓

1
𝑚 ...𝑓

𝑀
𝑚 = 𝜙 (𝑇𝑚𝑎𝑠𝑘 ). (4)

2.2 Eliminate Before Align
First, we conduct global alignment between the visual global fea-
ture 𝑓 𝑔𝑣 and the textual global feature 𝑓 𝑔𝑡 . Similar to CLIP [29], we
compute the global cosine similarity 𝑆𝑖𝑚𝑔 = 𝑐𝑜𝑠

(
𝑓
𝑔
𝑣 , 𝑓

𝑔
𝑡

)
.

Then, we conduct fine-grained alignment on the local features
obtained from the visual and textual encoders. For each input im-
age 𝐼 and text 𝑇 , we obtain visual local features {𝑓 1𝑣 . . . 𝑓 𝑁𝑣

}
and

textual local features {𝑓 1𝑡 . . . 𝑓 𝑁𝑡
}
. We then compute the local co-

sine similarity for each local block 𝑆𝑖𝑚𝑖 𝑗 = 𝑐𝑜𝑠

(
𝑓 𝑖𝑣 , 𝑓

𝑗
𝑡

)
. Next, we
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obtain the corresponding local similarities for each image-text pairs
by performing two consecutive L2-norm operations on the local
blocks:

𝑆𝑖𝑚𝑙 =


𝑆𝑖𝑚𝑖 𝑗




2,2 (5)

where ∥·∥2,2 represents the consecutive application of the L2-norm
twice. During the inference stage, we combine the global similarity
and local similarity via a weighted approach to obtain the final
similarity between image and text:

𝑆𝑖𝑚 = 𝛼𝑆𝑖𝑚𝑔 + 𝛽𝑆𝑖𝑚𝑙 . (6)

Next, we introduce our proposed EBA strategy as shown in
Figure 4. Specifically, we begin with conducting several epochs of
regular training without eliminating any training samples, allowing
the model to encounter all training samples during this process.
Subsequently, we establish the Similarity Bank (𝑆𝑖𝑚𝐵𝑎𝑛𝑘), wherein
we record the global similarity scores of all sample pairs within the
current epoch:

𝑆𝑖𝑚𝑏𝑎𝑛𝑘 =
{
𝑆𝑖𝑚

𝑔

𝑖

}𝐿
𝑖=1 , (7)

where 𝑆𝑖𝑚𝑔

𝑖
represents the 𝑖-th global similarity, 𝐿 is the total num-

ber of image-text pairs in the dataset. Upon completion of an epoch,
we extract all similarity values and sort them in descending order.
We then select the similarity from the end of the sorted list by the
predetermined drop ratio of the data volume, which will be served
as the threshold 𝑇ℎ for the next epoch:

𝑇ℎ = 𝑆𝑜𝑟𝑡 (𝑆𝑖𝑚𝑏𝑎𝑛𝑘)
[
𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑖𝑜

]
, (8)

where 𝑆𝑜𝑟𝑡 indicates sorting in descending order and 𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑖𝑜
represents the specified elimination rate. During the training of the
next epoch, the similarity of all matched image-text pairs within
each batch is compared with the threshold 𝑇ℎ. If the similarity of
the current image-text sample pair does not exceed the threshold
𝑇ℎ, its loss is excluded from the current batch. Suppose there are
𝑀 instances within a batch that do not exceed the threshold. When
calculating the loss for image-to-text and text-to-image, the corre-
sponding rows are removed, transforming the 𝑁 × 𝑁 matrix into
an (𝑁 −𝑀) × 𝑁 matrix before alignment:

𝐵
𝑔
𝑠 =

{
𝑁∑︁
𝑖

𝑆𝑖𝑚
𝑔

𝑖

�����𝑆𝑖𝑚𝑔

𝑖
> 𝑇ℎ

}
=
∑︁𝑁−𝑀

𝑖
𝑆𝑖𝑚

𝑔

𝑖
, (9)

where 𝑆𝑖𝑚𝑖
𝑔 represents the global similarities in the 𝑖-th row, 𝐵𝑠𝑔

represents the global similarity matrix within a batch. If a global
similarity is eliminated, the corresponding local similarity will also
be eliminated. Similarly, the formulation can be expressed as:

𝐵𝑙𝑠 =

{
𝑁∑︁
𝑖

𝑆𝑖𝑚𝑙
𝑖

�����𝑆𝑖𝑚𝑔

𝑖
> 𝑇ℎ

}
=
∑︁𝑁−𝑀

𝑖
𝑆𝑖𝑚𝑙

𝑖 . (10)

2.3 Keyword Explicit Reasoning
Following [12], we adopt a single cross-attention layer, along with
four Transformer blocks and a final Masked Language Modeling
(MLM) head, to construct the word reasoning architecture. However,
we observe that employing implicit reasoning on random tokens
might overlook the subtle yet crucial differences among remote
sensing images, which will be deeply analyzed in Section 3.5.3.
Therefore, we adopt keyword explicit reasoning module, leveraging
the key concepts extracted through Keyword Statistics and Mask

Generation, to explicitly incorporate meaningful keywords into the
fine-grained contrastive learning process.

First, the visual features
{
𝑓
𝑔
𝑣 , 𝑓

1
𝑣 . . . 𝑓

𝑁
𝑣

}
are served as K and V ,

while masked textual features
{
𝑓 1𝑚 . . . 𝑓𝑀𝑚

}
are served as Q, yielding

the corresponding predicted probability:{
𝑝𝑚𝑖 |𝑚 ∈ 𝐿𝑖𝑠𝑡𝑘𝑒𝑦

}𝑀
𝑖=1 = 𝑀𝐿𝑀ℎ𝑒𝑎𝑑 (𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 𝑁 (𝐶𝐴 (Q,K,V)) ),

(11)
where 𝐶𝐴 represents cross attention layer, which reasons the rela-
tionship between Q,K , andV ,𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟𝑁 represents 𝑁 Trans-
former blocks in accordance with CLIP [29],𝑀𝐿𝑀ℎ𝑒𝑎𝑑 represents
an MLP structure composed of a linear layer, QuickGELU layer,
LayerNorm layer, and another linear layer.

{
𝑝𝑚
𝑖
|𝑚 ∈ 𝐿𝑖𝑠𝑡𝑘𝑒𝑦

}𝑀
𝑖=1

denotes the predicted probability 𝑝 at position 𝑖 for the mask𝑚 of
the 𝐿𝑖𝑠𝑡𝑘𝑒𝑦 . The loss function is defined as follows:

L𝑚𝑙𝑚 = − 1
𝑀𝑉

𝑀∑︁
𝑚=1

𝑉∑︁
𝑖=1

𝑦𝑚𝑖 log
exp

(
𝑝𝑚
𝑖

)
𝑉∑
𝑗=1

exp
(
𝑝𝑚
𝑗

) , (12)

where𝑀 represents the number of masked tokens,𝑉 is the vocabu-
lary size of CLIP, 𝑦𝑚

𝑖
is the one-hot distribution of the𝑚-th masked

word in the vocabulary of CLIP corresponding to the 𝑖-th token.

2.4 Loss Function
We employ the prevalant InfoNCE loss [26] to achieve fine-grained
alignment, applied to both global and local similarities, which can
be expressed as follows:

L𝑖𝑛𝑓 𝑜 = − 1
𝑁

𝑁∑︁
𝑗=1

©­­«𝑙𝑜𝑔
𝑒𝑥𝑝

(
𝑠𝑣𝑡

+
𝑗

/𝛾
)

∑𝑁
𝑖=1 𝑒𝑥𝑝

(
𝑠𝑣𝑡
𝑖 𝑗
/𝛾
) − 𝑙𝑜𝑔

𝑒𝑥𝑝

(
𝑠𝑡𝑣

+
𝑗

/𝛾
)

∑𝑁
𝑖=1 𝑒𝑥𝑝

(
𝑠𝑡𝑣
𝑖 𝑗
/𝛾
) ª®®¬,
(13)

where 𝑠𝑣𝑡
+
and 𝑠𝑡𝑣

+
represent the positive pairs,

∑𝑁
𝑖=1 𝑠

𝑣𝑡
𝑖 𝑗

and
∑𝑁
𝑖=1 𝑠

𝑡𝑣
𝑖 𝑗

respectively represent the sum of each row in the similarity ma-
trices for Image-to-Text or Text-to-Image alignments, 𝛾 represents
the temperature hyper-parameter, 𝑁 represents the batch size. For
the matrices corrected by the EBA strategy during training, we
eliminate the corresponding noisy image-text pairs and make the
following adjustments to the InfoNCE loss:

L̃𝑖𝑛𝑓 𝑜 = − 1
𝑁

𝑁∑︁
𝑗=1

©­­«𝑙𝑜𝑔
𝑒𝑥𝑝

(
𝑠𝑣𝑡

+
𝑗

/𝛾
)

∑𝑁 −𝑀
𝑖=1 𝑒𝑥𝑝

(
𝑠𝑣𝑡
𝑖 𝑗
/𝛾

) − 𝑙𝑜𝑔

𝑒𝑥𝑝

(
𝑠𝑡𝑣

+
𝑗

/𝛾
)

∑𝑁 −𝑀
𝑖=1 𝑒𝑥𝑝

(
𝑠𝑡𝑣
𝑖 𝑗
/𝛾

) ª®®¬,
(14)

where
∑𝑁−𝑀
𝑖=1 𝑠𝑣𝑡

𝑖 𝑗
and

∑𝑁−𝑀
𝑖=1 𝑠𝑡𝑣

𝑖 𝑗
respectively represent the sum

of each row in the similarity matrices for Image-to-Text or Text-to-
Image after removing𝑀 rows.

Both global and local alignment utilize the InfoNCE loss, while
the modeling of masked attributes employs the MLM loss. We set a
drop epoch𝐾 , before which we employ the original InfoNCE loss to
expose the model to all data. Once the epoch exceeds 𝐾 , we switch
to the modified InfoNCE loss to eliminate noise. The overall loss
function is formulated as:

L𝑡𝑜𝑡𝑎𝑙 =

{
L𝑔

𝑖𝑛𝑓 𝑜
+ L𝑙

𝑖𝑛𝑓 𝑜
+ 𝛼L𝑚𝑙𝑚, 𝑖 𝑓 𝑒𝑝𝑜𝑐ℎ < 𝐾

L̃𝑔

𝑖𝑛𝑓 𝑜 + L̃𝑙

𝑖𝑛𝑓 𝑜 + 𝛼L𝑚𝑙𝑚, 𝑖 𝑓 𝑒𝑝𝑜𝑐ℎ ≥ 𝐾
(15)
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Table 1: Comparison results of the image-text retrieval on RSICD, RSITMD, and NWPU.

Approach Backbone Train Set Test Set Image-to-Text Retrieval Text-to-Image Retrieval mRR@1 R@5 R@10 R@1 R@5 R@10

VSE++BMVC2018 [9] ResNet18/Bi-GRU RSICD RSICD 3.38 9.51 17.46 2.82 11.32 18.10 10.43
LW-MCRTGRS2021 [39] ResNet18/Bi-GRU RSICD RSICD 3.29 12.52 19.93 4.66 17.51 30.02 14.66
AMFMNTGRS2022 [38] ResNet18/Bi-GRU RSICD RSICD 5.39 15.08 23.40 4.90 18.28 31.44 16.42
GaLRTGRS2022 [41] ResNet18/Bi-GRU RSICD RSICD 6.59 19.85 31.04 4.69 19.48 32.13 18.96
KCRIJCAI2022 [25] ResNet101/Bert RSICD RSICD 5.95 19.59 29.58 5.40 22.44 37.36 19.89

MultilanguageJSTARS2022 [2] ViT-B-32/Bert RSICD RSICD 10.70 29.64 41.53 9.14 28.96 44.59 27.42
SWANICMR2023 [28] ResNet50/Glove RSICD RSICD 7.41 20.13 30.86 5.56 22.26 37.41 20.61
FAMMITGRS2023 [46] DetNet/Bert RSICD RSICD 10.44 22.66 30.89 8.11 25.59 41.37 23.18
PIRACMMM2023 [27] Swin-T/Bert RSICD RSICD 9.88 27.26 39.16 6.97 24.56 38.92 24.46

KAMCLTGRS2023 [11] ResNet101/Bi-GRU RSICD RSICD 12.08 27.26 38.70 8.65 27.43 42.51 26.10
PE-RSITRTGRS2023 [37] CLIP(ViT-B-32) RSICD RSICD 14.13 31.51 44.78 11.63 33.92 50.73 31.12
RemoteCLIParxiv2023 [21] CLIP(ViT-B-32) RET-3+DET-10+SEG-4 (0.82M) RSICD 17.02 37.97 51.51 13.71 37.11 54.25 35.26
GeoRSCLIParxiv2023 [45] CLIP(ViT-B-32) RS5M+RET-2(5M+0.07M) RSICD 21.13 41.72 55.63 15.59 41.19 57.99 38.87

EBAKER(Ours) CLIP(ViT-B-32) RSICD+RSITMD+NWPU(0.2M) RSICD 21.87 44.46 58.92 17.37 43.00 58.55 40.70

VSE++BMVC2018 [9] ResNet18/Bi-GRU RSITMD RSITMD 10.38 27.65 39.60 7.79 24.87 38.67 24.83
LW-MCRTGRS2021 [39] ResNet18/Bi-GRU RSITMD RSITMD 10.18 28.98 39.82 7.79 30.18 49.78 27.79
AMFMN TGRS2022 [38] ResNet18/Bi-GRU RSITMD RSITMD 11.06 29.20 38.72 9.96 34.03 52.96 29.32
GaLR TGRS2022 [41] ResNet18/Bi-GRU RSITMD RSITMD 14.82 31.64 42.48 11.15 36.68 51.68 31.41

MultilanguageJSTARS2022 [2] ViT-B-32/Bert RSITMD RSITMD 19.69 40.26 54.42 17.61 49.73 66.59 41.38
SWAN ICMR2023 [28] ResNet50/Glove RSITMD RSITMD 13.35 32.15 46.90 11.24 40.40 60.60 34.11
FAMMI TGRS2023 [46] DetNet/Bert RSITMD RSITMD 16.15 35.62 48.89 12.96 42.39 59.96 35.99
PIR ACMMM2023 [27] Swin-T/Bert RSITMD RSITMD 18.14 41.15 52.88 12.17 41.68 63.41 38.24

KAMCL TGRS2023 [11] ResNet101/Bi-GRU RSITMD RSITMD 16.51 36.28 49.12 13.50 42.15 59.32 36.14
PE-RSITR TGRS2023 [37] CLIP(ViT-B-32) RSITMD RSITMD 23.67 44.07 60.36 20.10 50.63 67.97 44.47
RemoteCLIP arxiv2023 [21] CLIP(ViT-B-32) RET-3+DET-10+SEG-4(0.82M) RSITMD 27.88 50.66 65.71 22.17 56.46 73.41 49.38
GeoRSCLIP arxiv2023 [45] CLIP(ViT-B-32) RS5M+RET-2(5M+0.07M) RSITMD 32.30 53.32 67.92 25.04 57.88 74.38 51.81

EBAKER(Ours) CLIP(ViT-B-32) RSICD+RSITMD+NWPU(0.2M) RSITMD 34.07 54.20 67.95 28.05 60.35 75.31 53.32

VSE++ BMVC2018 [9] ResNet18/Bi-GRU NWPU NWPU 4.84 12.89 20.94 4.38 13.61 24.12 13.46
AMFMN TGRS2022 [38] ResNet18/Bi-GRU NWPU NWPU 11.49 38.75 57.73 8.63 30.25 46.48 32.22
KAMCL TGRS2023 [11] ResNet101/Bi-GRU NWPU NWPU 21.02 57.33 74.41 12.74 38.03 53.90 42.90

RemoteCLIParxiv2023 [21] CLIP(ViT-B-32) RET-3+DET-10+SEG-4+NWPU(0.97M) NWPU 24.57 57.75 74.19 14.95 40.17 55.75 44.56
EBAKER(Ours) CLIP(ViT-B-32) RSICD+RSITMD+NWPU(0.2M) NWPU 24.98 60.95 77.68 14.55 41.16 56.77 46.02

3 EXPERIMENTS
3.1 Datasets
In our experiments, we employ three benchmark datasets, RSICD
[23], RSITMD [38], and NWPU [5], to validate the effectiveness of
our approach. Following the methodology of RemoteCLIP [21], we
generate 𝑝-Hash values for image-text pairs and set a threshold
of 2 to merge these three datasets into one, aiming to eliminate
redundant images. The RSICD dataset comprises 10,921 images,
each sized at 224×224 pixels, making it the most widely utilized
dataset for RSITR. RSITMD consists of 4,743 images, each with
a size of 256×256 pixels. The NWPU dataset encompasses 31,500
images, also with a size of 256×256 pixels. Following the protocol of
[38], we divide these three datasets into train sets (80%), validation
sets (10%), and test sets (10%).

3.2 Metrics
We utilize Recall at 𝑘 (𝑅@𝑘 , 𝑘=1,5,10) and mean Recall (mR) as the
evaluation metrics to evaluate the retrieval performance. Partic-
ularly, 𝑅@𝑘 measures the percentage of ground truth instances
within the top 𝑘 samples, while mR represents the average value
across all six 𝑅@𝑘 metrics, providing an overall assessment of re-
trieval performance.

3.3 Implementation Details
The implementation of EBAKER is derived from the RemoteCLIP
codebase [21], with the ViT-B-32 architexture provided by Open-
CLIP [6]. We train the model for 7 epochs with a batch size of 100
and employ Adam [13] as our optimizer. Additionally, we adopt
linear warm-up and cosine learning rate scheduler. The learning
rate is set to 1.5e-5 and weight decay is set to 0.7, warmup is set to
200, maximum gradient norm is set to 50. For EBA strategy, we set
drop epoch 𝐾 to 4 and drop ratio to 1%. KER transformer block 𝑁
is set to 4. All the experiments are implemented with PyTorch and
trained with a single NVIDIA GeForce RTX 4090 GPU.

3.4 Comparisons with the SOTA Methods
We compare our proposed EBAKER with existing state-of-the-art
methods, which include traditional methods like VSE++ [9], LW-
MCR [39], AMFMN [38], GaLR [41], KCR [25], Multilanguage [2],
SWAN [28], FAMMI [46], PIR [27], and KAMCL [11]. Additionally,
we cover CLIP-based methods such as PE-RSITR [37], RemoteCLIP
[21], and GeoRSCLIP [45]. Our preposed EBAKER falls under the
category of CLIP-based methods. The experimental results for the
RSICD [23], RSITMD [38], and NWPU [5] datasets are presented in
Table 1. Additionally, the vision and text backbones (separated by
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Table 2: Ablation experiments with different modules of on
RSICD test set

Module Image-to-Text Retrieval Image-to-Text Retrieval mRR@1 R@5 R@10 R@1 R@5 R@10

baseline 18.85 39.35 54.08 15.93 41.45 57.85 37.92
+local 20.95 42.45 56.45 16.51 41.99 57.77 39.35
+KER 19.58 42.63 56.72 16.61 42.20 58.23 39.33
+EBA 19.58 41.72 56.36 16.98 43.18 58.19 39.34
+local+KER 21.23 43.92 58.37 17.18 43.22 58.79 40.45
+local+EBA 20.59 44.65 57.64 17.24 42.29 57.93 40.05
+KER+EBA 20.85 42.99 56.81 17.71 43.27 57.94 39.93
+local+KER+EBA 21.87 44.46 58.92 17.37 43.00 58.55 40.70

“/”), total train set, and test set are provided within the table. From
these results, we draw the following observations and conclusions.

3.4.1 Quantitative Comparison on RSICD, RSITMD, and NWPU. For
the RSICD dataset, our EBAKER method notably outperforms all
competing methods across various evaluation metrics. Specifically,
compared with GeoRSCLIP [45], our EBAKER method surpasses
it on all evaluation metrics, while utilizing only 0.2 million data
samples, a mere 4% of the 5.07 million utilized by GeoRSCLIP. Par-
ticularly noteworthy is the 3.29% improvement in image-to-text
R@10, a 1.78% enhancement in text-to-image R@1, and an over-
all mR increase of 1.83%. For the RSITMD dataset, also compared
with GeoRSCLIP, we achieve a 1.77% improvement in image-to-text
R@1, a 3.01% enhancement in text-to-image R@1, and an overall
mR increase of 1.51%. These results demonstrate a comprehensive
performance superiority over GeoRSCLIP. Following [11], we also
conduct comparative experiments on the NWPU dataset, where
the results of RemoteCLIP [21] are reproduced by fine-tuning on
NWPU by the code and weight files provided in [21]. The results
indicate that our method achieves superior performance with less
data. Specifically, we observe a 3.49% improvement in image-to-text
R@10, a 1.02% enhancement in text-to-image R@10, and an overall
mR increase of 1.46%.

3.4.2 Comparison between Traditional and CLIP-based Method.
As indicated by the backbones specified in Table 1, we categorize
the methods into traditional approaches and CLIP-based methods.
Compared with traditional approaches, CLIP-based methods often
achieve better performance through fine-tuning. However, they
typically require more training data. For instance, GeoRSCLIP[45]
necessitates an additional 5M remote sensing dataset for the pro-
cess of RS pretraining, as shown in Figure 2 (a). Our proposed
EBAKER method achieves a balance between performance and
computational cost by solely relying on the combination of the
RSICD, RSITMD, and NWPU datasets, without the need for remote
sensing data for an extra RS pretraining process. Compared with
the traditional method KAMCL [11], we achieve performance im-
provements of 14.60% and 17.18% in mR on the RSICD and RSITMD
datasets, respectively. In comparison to the CLIP-based method
GeoRSCLIP[45], we only need a one-step fine-grained training,
thereby eliminating the need for additional pretraining samples,
and achieving performance improvements of 1.83% and 1.51% in
mR, respectively.

Table 3: Ablation on the ratio of global and local alignment
on RSICD test set

Method. Global Local Image-to-Text Retrieval Image-to-Text Retrieval mRR@1 R@5 R@10 R@1 R@5 R@10

1 1 0 22.32 44.10 58.01 16.07 42.07 58.06 40.10
2 0.9 0.1 22.96 43.82 58.37 16.45 42.29 58.50 40.40
3 0.8 0.2 22.78 44.46 58.37 16.93 42.36 58.48 40.56
4 0.7 0.3 22.14 44.28 58.28 17.20 42.84 59.65 40.56
5 0.6 0.4 21.87 44.46 58.92 17.37 43.00 58.55 40.70
6 0.5 0.5 21.87 44.74 58.65 17.35 42.80 58.41 40.63
7 0.4 0.6 21.32 44.65 58.83 17.47 42.73 58.46 40.58
8 0.3 0.7 21.04 44.28 58.74 17.42 42.63 58.39 40.42
9 0.2 0.8 21.04 43.92 58.37 17.24 42.58 58.33 40.25
10 0.1 0.9 21.13 43.73 58.28 17.13 42.62 58.12 40.17
11 0 1 21.23 43.82 58.28 17.13 42.62 58.04 40.19

Table 4: Different mask strategies on RSICD test set

Approach Image-to-Text Retrieval Image-to-Text Retrieval mRR@1 R@5 R@10 R@1 R@5 R@10

IRR[12] 20.04 41.81 55.35 16.93 42.93 58.30 39.23
MAM 20.68 43.00 56.91 16.85 42.03 58.68 39.69
KER 21.87 44.46 58.92 17.37 43.00 58.55 40.70

3.5 Ablation Studies
In this section, we design a variety of ablation experiments, which
aim at investigating the performance gains of different modules in
the model to verify the effectiveness of each part.

3.5.1 Ablation Studies of Structures. As shown in Table 2, we con-
duct ablation studies on different modules to demonstrate the ef-
fectiveness of our method. Initially, we choose the original CLIP
as the baseline, and incorporate local alignment (local), the KER
module, and the EBA strategy, respectively. Compared with the
baseline, these additions resulted in respective improvements of
1.43%, 1.41%, and 1.42% in terms of mR. Subsequently, we con-
duct the combinations of each two modules and find that local
alignment with KER module yields promising results, with an im-
provement of approximately 1.10% compared with utilizing either
mechanism individually. This may be attributed to the fact that the
reasoning ability of key concepts of KER explicitly manifests in
the fine-grained local alignment. Ultimately, the integration of all
modules achieved an mR of 40.70%.

3.5.2 Ablation on the Ratio of Global and Local Alignment. To fur-
ther explore the impact of global and local alignment, we conduct
additional ablation experiments by varying the weights of global
and local alignment, as shown in Table 3. We maintain the sum of
the weights for global and local alignment to be 1. According to
the results, the combination of global and local alignment performs
best when the weights are set to 0.6 and 0.4, respectively. In this
configuration, the mR reach 40.70%, which is 0.60% higher than
utilizing only global features and 0.51% higher than utilizing only
local features. This demonstrates that global and local informa-
tion complement each other, allowing for fine-grained contrastive
learning to better capture and distinguish the details within remote
sensing images.
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Table 5: Ablation on hyperparameter on objective function
on RSICD test set

𝛼(MLM) Image-to-Text Retrieval Image-to-Text Retrieval mRR@1 R@5 R@10 R@1 R@5 R@10

0.1 21.23 43.55 55.17 16.51 43.28 58.16 39.65
0.2 19.76 42.18 56.08 17.77 43.07 58.72 39.60
0.3 20.59 43.55 58.01 17.42 42.96 59.01 40.26
0.4 21.77 43.28 58.54 17.26 42.87 58.23 40.33
0.5 21.87 44.46 58.92 17.37 43.00 58.55 40.70
0.6 21.87 43.37 57.37 17.09 43.09 58.72 40.25
0.7 21.42 43.54 56.81 17.11 42.58 58.76 40.04
0.8 21.59 43.73 57.18 16.71 43.04 58.81 40.18
0.9 21.13 40.71 56.27 17.53 43.06 58.99 39.62
1 19.12 40.26 55.63 16.72 42.40 58.59 38.79

3.5.3 Ablation on Different Mask Strategies. To validate the effec-
tiveness of our proposed Keyword Explicit Reasoning (KER) module,
we conduct comparisons with similar algorithms as shown in Table
4. Implicit Relation Reasoning (IRR) [12] utilizes a masked language
modeling (MLM) approach similar to BERT [8] to implicitly aggre-
gate vision and text features, yielding promising results. However,
we argue that this random masking approach may not effectively
capture key concepts, as common words like “is” and “a” are also
masked. Predicting such words do not significantly contribute to
the ability of truly subtle distinctions in text. Thus, we first devise
a Masked Attribute Modeling (MAM) module specifically tailored
for attribute words, as these terms often offer more discriminative
information in retrieval tasks. We annotate and mask all adjectives
in the corpus to predict them. In the experiment, we find that this
MAMmodule results in a 0.46% improvement in mR compared with
IRR. Subsequently, we further propose our KER module targeted at
key concepts. Finally, compared with IRR, our results demonstrate a
1.47% increase in mR, highlighting the importance of key concepts
in RSITR tasks and the effectiveness of KER module.

3.5.4 Ablation on Hyperparameter on Objective Function. As shown
in Table 5, we further investigate the hyperparameters of the loss
function. While keeping the ratio of global and local loss functions
constant, we adjust the weight of the MLM component. The results
indicate that the optimal weight for the MLM loss component is
0.5. It is important to note that the weight assigned to MLM should
not be excessively high, as the primary focus of the model remains
on the process of contrastive learning, and predicting keywords
serves as a secondary objective.

3.5.5 Ablation on Drop Epoch and Drop Ratio. We also conduct an
ablation study on the drop epoch as shown in Figure 5 (a). Given
that our training comprises a total of 7 epochs, we vary the drop
epoch 𝐾 for the EBA strategy from 1 to 7. Before the drop epoch,
the model encounters the entire dataset. The ultimate results of the
ablation study suggest that the most effective drop epoch is during
the 4th epoch, with an increase of 0.79% in mR.

Moreover, the ablation studies on the drop ratio are shown in
Figure 5 (b) to investigate its impact on the EBA strategy. The results
indicate that when the drop ratio is set to 1%, which means that
setting the lowest 1% similarity values stored in the sim bank as the

1 2 3 4 5 6 7
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Figure 5: Ablation on drop epoch and drop ratio. R@k
(k=1,5,10) corresponds to the left vertical axis, while meanR
corresponds to the right vertical axis.

Table 6: Ablation on the quantity of keywords for each
dataset on RSICD test set

Total Word Image-to-Text Retrieval Image-to-Text Retrieval mRR@1 R@5 R@10 R@1 R@5 R@10

27 16 19.67 40.90 55.17 17.05 42.27 58.24 38.88
57 32 20.59 41.99 57.18 16.98 43.81 59.16 39.95
109 64 20.86 43.00 56.63 17.69 42.34 57.90 39.74
198 128 20.59 42.18 57.09 16.85 42.73 58.68 39.69
394 256 22.32 43.64 56.63 17.82 43.77 58.98 40.53
800 512 21.87 44.46 58.92 17.37 43.00 58.55 40.70

threshold for filtering the global similarity for the next epoch, it
effectively filters out noisy sample pairs. However, when the drop
ratio is low, the EBA strategy filters out too few samples, failing
to effectively eliminate noise. Conversely, when the drop ratio is
high, a large number of normal samples are filtered out, leading to
suboptimal performance. Therefore, based on these findings, we
determine the drop ratio to be 1%, striking a balance between noise
elimination and retaining sufficient samples for effective training.

3.5.6 Ablation on the Quantity of Keywords for Each Dataset. We
further conduct an ablation study on the number of keywords
obtained through word frequency analysis on the dataset, as shown
in Table 6. Here, “Word” represents the number of words selected
based on the highest frequency for each dataset. “Total” indicates
the total number of unique keywords obtained by merging and
removing duplicates across all three datasets. The results suggest
that the number of words selected for the keyword list should be
within an appropriate range. Ultimately, we select the top 512 words
with the highest frequency for each dataset as the keyword list.

3.6 Trade-off between Model Performance and
Inference Speed.

In our comparison of inference time across various approaches,
we conduct traditional and CLIP-based methods across the three
datasets with a single NVIDIA GeForce RTX 4090 GPU. The “IT” in
table represents Inference Time. Note that the GaLR [41] method
are not replicated on the NWPU dataset due to a lack of detailed
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2.There is a row of red roofed houses near the 

airport .
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4.There are a lot of bare land around the airport .
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There is a long blue building.
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Figure 6: Visualization of the top 5 image-to-text and text-to-image retrieval results. Each row corresponds to the outcomes
obtained from RSICD [23], RSITMD [38], and NWPU [5] datasets, respectively. Queries are denoted in blue, correct results in
green, and wrong results in red.

Table 7: Trade-off betweenmodel performance and inference
speed.

Approach RSICD RSITMD NWPU
mR IT(s) mR IT(s) mR IT(s)

VSE++[9] 10.43 8.63 24.83 5.52 13.46 22.68
AMFMN[38] 16.42 25.56 29.72 6.39 32.22 148.41
GaLR[41] 18.96 22.92 31.41 6.23 - -

KAMCL[11] 23.26 11.86 36.19 5.63 40.75 28.53
RemoteCLIP[21] 35.26 2.42 49.38 1.42 42.90 6.38
EBAKER(Ours) 40.70 5.96 53.32 2.53 46.02 20.30

information regarding the additional Ppyolo extractor [22] it em-
ploys. As shown in Table 7, the results indicate that our model lags
behind that of the RemoteCLIP, which relies on excluding global
features, in terms of inference speed. This discrepancy arises from
the integration of fine-grained local alignment in our model, lead-
ing to a requirement for increased inference time. Despite this, our
proposed EBAKER outperforms RemoteCLIP by 5.30%, 3.84%, and
3.12% in terms of performance, albeit with an increase in inference
time by 146%, 78%, and 218%, respectively. Nevertheless, when com-
pared with traditional methods such as KAMCL [11] and GaLR
[41], we exhibit significant advantages in both performance and
inference time.

3.7 Visualization of Results
Figure 6 displays the top 5 retrieval results, with each row show-
ing the results on the RSICD [23], RSITMD [38], and NWPU [5]
datasets, respectively. As depicted, our proposed EBAKER success-
fully retrieves the target images under given queries. Additionally,
examining the incorrect retrieved results in the first and third rows

reveal that they are actually highly relevant to the query image.
This suggests that weakly correlated image-text pairs not only exist
in the train set but also in the validation and test sets. Therefore,
such errors do not necessarily indicate that the model has failed to
learn effective representations. In the future, we will investigate
how to address such issue in the test set.

4 CONCLUSION
In this paper, we have introduced a novel Eliminate Before Align
strategy with Keyword Explicit Reasoning framework (EBAKER),
aiming at achieving the transfer of foundation model to remote
sensing image-text retrieval model through a one-step fine-grained
training. This framework incorporates an Eliminate Before Align
strategy to eliminate weakly correlated pairs, thereby promoting
the accuracy of fine-grained contrastive learning. Moreover, we
employ a Keyword Explicit Reasoning module, which boosts the dis-
criminative ability to the model by predicting nuanced differences
in key concepts. Finally, we conduct comprehensive experiments to
validate the superiority and effectiveness of our approach on three
public benchmark datasets: RSICD, RSITMD, and NWPU.

Our method represents a novel attempt to skip the stage of RS
pretraining, providing a promising solution for transferring large
models directly to other tasks in the remote sensing domain. By tai-
loring the approach to the characteristics of different downstream
tasks, we potentially save a significant amount of additional train-
ing data in various domains. Thus, it also lays a foundation for
extending our method to other domains, such as product search
and pedestrian retrieval for future development. In the future, our
efforts will persist in researches on enabling models to adaptively
filter data and pay attention to more fine-grained information, aim-
ing at exploring the optimal application of multimodal foundation
models in downstream tasks.
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