
Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 CONCLUSIONS

We addressed two fundamental weaknesses of existing GNNs: Failing to act as universal learners
by not generalizing to heterophilic graphs and making use of large number of propagation steps. We
developed a novel GPR-GNN architecture which combines adaptive generalized PageRank (GPR)
scheme with GNNs. We theoretically showed that our method does not only mitigates feature over-
smoothing but also works on highly diverse node label patterns. We also tested GPR-GNNs on both
homophilic and heterophilic node label patterns, and proposed a novel synthetic benchmark datasets
generated by the contextual stochastic block model. Our experiments on real-world benchmark
datasets showed clear performance gains of GPR-GNN over the state-of-the-art methods. Moreover,
we showed that GPR-GNN has desirable interpretability properties which could be of independent
interest.

A.2 DETAILED DISCUSSION ON PREVENTING OVER-SMOOTHING.

As mentioned in Section 4, another method – APPNP – can also provably prevents over-
smoothing Klicpera et al. (2018). The authors of this study use the fact that the PPR propagation
will converge to ΠpprH

(0), where Πppr = α(In− (1−α)Ãsym)
−1 is independent on the node label

information provided in the training data. Each row of ΠpprH
(0) still depends on H(0) and thus

APPNP will not suffer from the over-smoothing effect. However, since Πppr is independent of the
label information, it can cause undesired consequences that we discuss in what follows.

1

2

3

4

5

6

7

8

(a) A graph G.

1

2

3

4

5

6

7

8

(b) One example of label
assignment.

1

2

3

4

5

6

7

8

(c) Another example of label
assignment.

Figure 5: A simple example demonstrating how GPR-GNN escapes over-smoothing.
Let us consider a simple example shown in Figure 5 involving a connected and undirected graph
G = (V,E) (Figure 5 (a)). Consider two different node label assignments shown in Figure 5 (b)
and Figure 5 (c). Obviously, the graph topologies depicted in Figure 5 (b) and (c) are identical
and the only difference is the class label assignment. In Figure 5 (b), the graph is homophilic and
hence the optimal graph filter should emphasize the low-frequency part of the graph signal. In
contrast, in Figure 5 (c), the graph is heterophilic as the graph is bipartite with respect to the labels.
Hence, the optimal graph filter should emphasize the high-frequency part of the graph signal. This
example illustrates that the optimal graph filter should depend on both the graph topology and the
node label information. Recall that the equivalent graph filter that APPNP uses in the asymptotic
regime is Πppr which is independent on the node label information. Also, Theorem 4.1 established
that APPNP intrinsically utilizes a low-pass filter. In contrast, GPR-GNN learns the GPR weights
guided by the node label information which allows it to account for both cases (homophilic and
heterophilic) shown.

A.3 PROOF OF THEOREM 4.1

We first state the formal version of Theorem 4.1.

12

Under review as a conference paper at ICLR 2021

Theorem A.1 (Formal version of Theorem 4.1). Assume the graph G is connected. Let λ1 ≥ λ2 ≥
... ≥ λn be the eigenvalues of Ãsym. If γk ≥ 0 ∀k ∈ {0, 1, ...,K},

∑K
k=0 γk = 1 and ∃k′ > 0 such

that γk′ > 0, then |gγ,K(λi)/gγ,K(λ1)| < |λi/λ1| ∀i ≥ 2. Also, if γk = (−α)k, α ∈ (0, 1) and
K →∞, then | limK→∞ gγ,K(λi)/ limK→∞ gγ,K(λ1)| > |λi/λ1| ∀i ≥ 2.

Note that |gγ,K(λi)/gγ,K(λ1)| < |λi/λ1| ∀i ≥ 2 implies that after applying the graph filter gγ,K ,
the lowest frequency component (correspond to λ1) further dominates. Hence gγ,K acts like a low
pass filter in this case. In contrast, | limK→∞ gγ,K(λi)/ limK→∞ gγ,K(λ1)| > |λi/λ1| ∀i ≥ 2
implies that after applying the graph filter, the lowest frequency component (correspond to λ1) no
longer dominates. This correspond to the high pass filter case.

Proof. We start with the low pass filter result. From basic spectral analysis (Von Luxburg, 2007)
we know that λ1 = 1 and |λi| < 1,∀i ≥ 2. One can also find the analysis in the proof of our
Lemma A.2 in the Supplement. Then by assumption we know that

gγ,K(λ1) =

K∑
k=0

γk = 1.

Hence, proving Theorem A.1 is equivalent to show
|gγ,K(λi)| < |λi| ∀i ≥ 2.

This is obvious since gγ,K(λ) =
∑K
k=0 γkλ

k is nothing but the polynomial of order K with all
coefficient non-negative. It is easy to check that ∀k ≥ 1, |λ|k < |λ|,∀|λ| < 1. Combine with the
fact that all γk are non-negative we have

|gγ,K(λi)| ≤
K∑
k=0

γk|λk| =
K∑
k=0

γk|λ|k
(a)
≤

K∑
k=0

γk|λ| = |λ|.

Finally, note that the only possibility that the inequality (a) holds is γk = δ0,K since ∀k ≥ 1, |λ|k <
|λ|,∀|λ| < 1. However, by assumption

∑K
k=0 γk = 1 and ∃k′ > 0 such that γk′ > 0 we know that

this is impossible. Hence (a) is a strict inequality <. Together we complete the proof for low pass
filtering part.

For the high pass filter result, it is not hard to see that

lim
K→∞

gγ,K(λ) = lim
K→∞

K∑
k=0

γkλ
k = lim

K→∞

K∑
k=0

(−αλ)k =
1

1 + αλ
,

where the last step is due to the fact that α ∈ (0, 1) and thus limK→∞(−αλ)K = 0,∀|λ| ≤ 1. Thus
we have ∣∣∣∣ limK→∞ gγ,K(λi)

limK→∞ gγ,K(λ1)

∣∣∣∣ = ∣∣∣∣ 1 + α

1 + αλi

∣∣∣∣ (b)
> 1

(c)
> |λi| ∀i ≥ 2.

Both strict inequalities (b) and (c) are from the fact that |λi| < 1,∀i ≥ 2. Notably, supλ∈[1,−1)
1

1+αλ

happens at the boundary λ = −1, which corresponds the the bipartite graph. It further shows that
the graph filter with respect to the choice γk = (−α)k emphasizes high frequency components and
thus it is indeed acting as a high pass filter.

A.4 PROOF OF THEOREM 4.2

We start by introducing some additional notation, lemmas and definition before we proceed to the
formal statement of Theorem 4.2. The label matrix is denoted by Y ∈ Rn×C , where each row is a
one-hot vector. We use 1[β] ∈ RC to denote the argmax of the vector β ∈ RC : we have 1[β]i = 1
if and only if βi = max(β) (ties are broken evenly), and 1[β]i = 0 otherwise. Let us replace the
softmax(·) with softmaxη(·), where we let softmaxη(β)i = eηβi/(

∑
j e
ηβj) stand for the softmax

with a smooth parameter η > 0. Note that for η = 1 we recover the standard softmax. With a slight
abuse of notation, for the vector β we write exp(β) to denote element-wise exponentiation. We use
〈·, ·〉 to denote the standard Euclidean inner product. Also we use L for the cross entropy loss where

L =
∑
i∈V
− log(

〈
P̂i:,Yi:

〉
).

13

Under review as a conference paper at ICLR 2021

Lemma A.2. Assume that the nodes in an undirected and connected graph G have one of C labels.
Then, for k large enough, we have

H
(k)
:j = βjπ + ok(1) ∀j ∈ [C], where πi =

√
D̃ii√∑
v∈V D̃vv

and βT = πTH(0). (2)

For any H(0) and large enough k ≤ K, if the label prediction is dominated by H(k), all nodes will
have a representation proportional to γkβ. Hence, we will arrive at the same label for all nodes. This
is what we refer to as the over-smoothing phenomenon.

Definition A.3 (The over-smoothing phenomenon). First, recall that Z =
∑
k γkH

(k). If over-
smoothing occurs in the GPR-GNN for K large enough, we have Z:j = c0βjπ, ∀j ∈ [C] for some
c0 > 0 if γk > 0 and Z:j = −c0βjπ, ∀j ∈ [C] for some c0 > 0 if γk < 0.

Lemma A.4. Let L =
∑
i∈T Li =

∑
i∈T −log(

〈
P̂i:,Yi:

〉
) be the cross entropy loss and let T be

the training set. Under the same assumption as given in Lemma A.2, the gradient of γk for k large
enough is ∂L

∂γk
=
∑
i∈T ηπi

〈
P̂i: −Yi:,β

〉
+ ok(1).

Lemma A.5. For any real vector β ∈ RC and η > 0 large enough, we have softmaxη(β) =
1[β] + oη(1).

Now we are ready to state the formal version of Theorem 4.2.

Theorem A.6 (Formal version of Theorem 4.2). Under the same assumptions as those listed in
Lemma A.2, if the training set contains nodes from each class, then the GPR-GNN method can
always avoid over-smoothing. More specifically, for k, η large enough we have

∂L

∂γk
=
∑
i∈T

ηπi

(
max
j∈[C]

βj − β1[Yi:]

)
+ ok(1) + oη(1), when γk > 0. (3)

∂L

∂γk
=
∑
i∈T

ηπi

(
min
j∈[C]

βj − β1[Yi:]

)
+ ok(1) + oη(1), when γk < 0. (4)

Note that when γk > 0, (3) ≥ 0 when ignoring the o(1) term. The equality is achieved if and only if
maxj∈[C] βj = β1[Yi:]. This means that over-smoothing results in a prediction that perfectly aligns
with the ground truth label in the training set. However, if our training set contains at least one node
from each class then the equality can never be attained. Thus, the gradient of γk will always be
positive when γk > 0. Similarly when γk < 0, (4) ≤ 0 when ignoring the o(1) term. The equality
is achieved if and only if minj∈[C] βj = β1[Yi:]. By the same reason we know that under the
assumption on training set the equality can never be attained. Thus, the gradient of γk will always
be negative when γk < 0. Finally, it is not hard to check that the gradient is bounded in magnitude.
Together we have shown that the gradient of γk and γk are of the same sign. This directly implies
that |γk| will approach to 0 until we escape from over-smoothing when we use a decreasing learning
rate for the optimizer (i.e. SGD).

Proof. First, let us assume the over-smoothing takes place and the γk > 0 for the dominate term.
By Definition A.3, we know that Z:j = c0βjπ, ∀j ∈ [C] for some c0 > 0 and K sufficiently large.
By Lemma A.4 we have

∂L

∂γk
=
∑
i∈T

ηπi

〈
eηZi:∑

j∈[C] e
ηZij

−Yi:,β

〉
+ ok(1) (5)

=
∑
i∈T

ηπi

〈
eηc0πiβ∑

j∈[C] e
ηc0πiβj

−Yi:,β

〉
+ ok(1), (6)

14

Under review as a conference paper at ICLR 2021

where the last step follows from Definition A.3. Next, by Lemma A.5, we may approximate the
softmaxη by the true argmax for η > 0 large enough according to∑

i∈T
ηπi 〈1[c0πiβ]−Yi:,β〉+ ok(1) + oη(1) (7)

=
∑
i∈T

ηπi 〈1[β]−Yi:,β〉+ ok(1) + oη(1) (8)

=
∑
i∈T

ηπi

(
max
j∈[C]

βj − β1[Yi:]

)
+ ok(1) + oη(1). (9)

The first equality is due to the fact that c0 > 0 and πi > 0. Recall that by Lemma A.2, πi =√
D̃ii√∑

v∈V D̃vv

. Since we have a self- loop for each node, D̃ii > 0 and thus πi > 0. For the case

γk < 0, the same analysis still valid until (7). Hence we have∑
i∈T

ηπi 〈1[−c0πiβ]−Yi:,β〉+ ok(1) + oη(1) (10)

=
∑
i∈T

ηπi 〈1[−β]−Yi:,β〉+ ok(1) + oη(1) (11)

=
∑
i∈T

ηπi

(
min
j∈[C]

βj − β1[Yi:]

)
+ ok(1) + oη(1). (12)

Together we complete the proof.

A.5 CSBM DETAILS

The cSBM adds Gaussian random vectors as node features on top of the classical SBM. For simplic-
ity, we assume C = 2 equally sized communities with node labels vi in {+1,−1}. Each node i is
associate with a f dimensional Gaussian vector bi =

√
µ
nviu+

Zi√
f

where n is the number of nodes,
u ∼ N(0, I/f) and Zi ∈ Rf has independent standard normal entries. The (undirected) graph in
cSBM is described by the adjacency matrix A defined as

P (Aij = 1) =

{
d+λ
√
d

n if vivj > 0
d−λ
√
d

n otherwise
.

Similar to the classical SBM, given the node labels the edges are independent. The symbol d stands
for the average degree of the graph. Also, recall that µ and λ control the information strength carried
by the node features and the graph structure respectively.

One reason for using the cSBM to generate synthetic data is that the information-theoretic limit of
the model is already characterized in Deshpande et al. (2018). This result is summarized below.

Theorem A.7 (Informal main result in Deshpande et al. (2018)). Assume that n, f → ∞, nf → ξ

and d→∞. Then there exists an estimator v̂ such that lim infn→∞
|〈v̂,v〉|
n is bounded away from 0

if and only if λ2 + µ2

ξ > 1.

In our experiment, we set n = 5000, f = 2000 and thus have ξ = 2.5. We vary µ and λ along the
arc λ2 +µ2/ξ = 1+ ε for some ε > 0 to ensure that we are in the achievable parameter regime. We
also choose ε = 3.25 for all our experiment.

A.6 PROOF OF LEMMA A.2

Note that the proof of Lemma A.2 reduces to a standard analysis of random walks on graph. We
include it for completeness and refer the interested readers to the tutorial Von Luxburg (2007).

15

Under review as a conference paper at ICLR 2021

We start by showing that the symmetric graph Laplacian
L̃sym = I− D̃−1/2ÃD̃−1/2 = I− Ãsym (13)

is positive semi-definite. Let u be any real vector of unit norm and f = D̃−1/2u, then we have

uT L̃symu = uTu− uT D̃−1/2ÃD̃−1/2u =

n∑
i=1

u2i −
n∑

i,j=1

fifjÃij (14)

=

n∑
i=1

D̃iif
2
i −

n∑
i,j=1

fifjÃij =
1

2
(

n∑
i=1

D̃iif
2
i − 2

n∑
i,j=1

fifjÃij +

n∑
j=1

D̃jjf
2
j) (15)

=
1

2

n∑
i,j=1

Ãij(fi − fj)2, (16)

where the last step follows from the definition of the degree.

Next we show that 0 is indeed an eigenvalue of L̃sym associated with the unit eigenvector π where

π =

√
D̃ii√∑
v D̃vv

.

Let 1 be the all one vector. Then, a direct calculation reveals that

L̃symπ = π − D̃−1/2ÃD̃−1/2π = π − D̃−1/2ÃD̃−1/2D̃1/2
1× 1√∑

v D̃vv

(17)

= π − D̃−1/2Ã1× 1√∑
v D̃vv

= π − D̃−1/2D̃1× 1√∑
v D̃vv

(18)

= π − D̃1/2
1× 1√∑

v D̃vv

= π − π = 0. (19)

Combining this result with the positive semi-definite property of the Laplacian shows that 0 is indeed
the smallest eigenvalue of L̃sym associated with the eigenvector π. Moreover, from (16) and the
assumption that the graph is connected, it is not hard to see that the multiplicity of the eigenvalue 0
is exactly 1 (See Proposition 2 and 4 in Von Luxburg (2007) for more detail). Finally, from (13) it is
obvious that the the largest eigenvalue of Ãsym is 1, which correspond to the eigenvector π. Hence
all other eigenvalues of Ãsym 1 > λ2 ≥ ... ≥ λn.

Next, we prove that |λn| < 1. This can also be shown directly from (16). Note that

uT L̃symu =
1

2

n∑
i,j=1

Ãij(fi − fj)2 (20)

≤
n∑

i,j=1

Ãij(f
2
i + f2j) = 2

n∑
i,j=1

Ãijf
2
i = 2

n∑
i,j=1

Ãij
u2i
D̃ii

(21)

= 2

n∑
i=1

u2i
D̃ii

n∑
j=1

Ãij = 2

n∑
i=1

u2i
D̃ii

D̃ii = 2

n∑
i=1

u2i = 2. (22)

The inequality follows from an application of the Cauchy-Schwartz inequality. Consequently, the
largest eigenvalue of L̃sym is bounded by 2 which means that |λn| ≤ 1. Note that equality holds
if and only if the underlying graph is bipartite. However, this is impossible in our setting since we
have added a self loop to each node. Hence |λn| < 1. This means

lim
k→∞

Ãk
sym = ππT . (23)

Hence, for any H(0) we have
lim
k→∞

Ãk
symH(0) = ππTH(0) = πβT . (24)

Note that this can also be written with the ok(1) term as
Ãk

symH(0) = πβT + ok(1). (25)
This completes the proof.

16

Under review as a conference paper at ICLR 2021

A.7 PROOF OF LEMMA A.4

Recall that our loss function equals

L =
∑
i∈T

Li =
∑
i∈T
− log(

eη〈Zi:,Yi:〉∑C
m=1 e

ηZim

). (26)

Then by taking the partial derivative of the loss function with respect to γk′ we have

∂L

∂γk′
=

∂

∂γk′

∑
i∈T

(log(

C∑
m=1

eηZim)− 〈ηZi:,Yi:〉). (27)

Next, recall that for GPR-GNN we also have Z =
∑K
k=0 γkH

(k). Plugging this expression into the
previous formula and applying the chain rule we obtain

∂

∂γk′

∑
i∈T

(log(

C∑
m=1

eηZim)− 〈ηZi:,Yi:〉) =
∑
i∈T

(

∑C
m=1 e

ηZim ∂ηZim

∂γk′∑C
m=1 e

Zim

−
〈
ηH

(k′)
i: ,Yi:

〉
) (28)

=
∑
i∈T

(

∑C
m=1 e

ηZimηH
(k′)
im∑C

m=1 e
ηZim

−
〈
ηH

(k′)
i: ,Yi:

〉
) (29)

Settin k′ = k for large enough k, it follows from Lemma A.2 that

∂L

∂γk
=
∑
i∈T

η(

∑C
m=1 e

ηZimH
(k)
im∑C

m=1 e
ηZim

−
〈
H

(k)
i: ,Yi:

〉
) (30)

=
∑
i∈T

η(

∑C
m=1 e

ηZim(πiβm + ok(1))∑C
m=1 e

ηZim

− 〈πiβ + ok(1),Yi:〉) (31)

=
∑
i∈T

πiη(

∑C
m=1 e

ηZimβm∑C
m=1 e

ηZim

− 〈β,Yi:〉) + ok(1) (32)

=
∑
i∈T

πiη(

C∑
m=1

P̂imβm − 〈β,Yi:〉) + ok(1) =
∑
i∈T

ηπi

〈
P̂i: −Yi:,β

〉
+ ok(1). (33)

Note that in (32) and (33) we used the definition of the soft prediction P̂ = softmaxη(Z). This
completes the proof.

A.8 PROOF OF LEMMA A.5

Let β̂ = max(β). Then by the definition of softmaxη for η > 0 we have

softmaxη(β) =
eηβ∑C

m=1 e
ηβm

=
e−η(β̂−β)∑C

m=1 e
−η(β̂−βm)

. (34)

Note that β̂ − βm > 0 when βm 6= β̂ and β̂ − βm = 0 when βm = β̂. Without loss of generality
we assume that there are p maxima in β, where 1 ≤ p ≤ C, and let P denote the set of indices of
those maxima. Then, taking the limit η →∞ we have

lim
η→∞

softmaxη(β)j = lim
η→∞

e−η(β̂−βj)∑
m/∈P e

−η(β̂−βm) + p
=

{
0, if βj 6= β̂
1
p , otherwise.

(35)

This implies that for η > 0 large enough one has

softmaxη(β) = 1[β] + oη(1). (36)

The above result completes the proof.

17

Under review as a conference paper at ICLR 2021

Table 3: The values of the homophily measure for cSBM datasets.
φ −1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1

H(G) 0.001 0.002 0.009 0.029 0.077 0.189 0.419 0.688 0.809

A.9 ADDITIONAL EXPERIMENTAL DETAILS

All experiments are performed on a Linux Machine with 48 cores, 376GB of RAM, and a NVIDIA
Tesla P100 GPU with 12GB of GPU memory. For the training set, we ensure that number of nodes
from each class is approximately the same an keep the total number of training nodes close to
2.5%/60%. For the validation set, we randomly sample 2.5%/20% of the nodes and place the
remaining ones into the test set.

For all baseline models, we directly use the implementation available in the Pytorch Geometric
library Fey & Lenssen (2019).We use early stopping 200 and a maximum number of epochs equal
to 1000 for both real benchmark dataset and our cSBM synthetic datasets. All models use the Adam
optimizer Kingma & Ba (2014). Note that the early stopping criteria is exactly the same as in
Pytorch Geometric – when the epoch is greater than half of the maximum epoch, we check if the
current validation loss is lower than the average over the past 200 epochs. If it is not lower, we stop
the training process.

For GCN, we use 2 GCN layers with 64 hidden units. For GAT, we use 2 GAT convolutional layers,
where the first layer has 8 attention heads and each head has 8 hidden units; the second layer has 1
attention head and 64 hidden units. For GCN-Cheby, we use 2 steps propagation for each layer with
32 hidden units. Note that the number of equivalent hidden units for each layer is64 for this case.
For JK-Net, we use the GCN-based model with 2 layers and 16 hidden units in each layer. As for
the layer aggregation part, we use a LSTM with 16 channels and 4 layers. For the MLP, we choose
a 2-layer fully connected network with 64 hidden units. For APPNP we use the same 2-layer MLP
with 10 steps of propagation. Besides the GPR-GNN, we fix the dropout rate for the NN part to be
0.5 as APPNP and optimize the dropout rate for the GPR part among {0, 0.5, 0.7}. For Geom-GCN,
we choose the datasets already tested in the paper were the method was first described (Pei et al.,
2019).

The heterophilic datasets used in (Pei et al., 2019). The graphs Chameleon, Actor, Squirrel, Texas
and Cornell in their original form are directed graphs (see the github repository of (Pei et al., 2019)).
Since the usual setting for semi-supervised node classifications involves undirected graph, we trans-
formed the graphs into undirected to test them on all previously described benchmark methods. We
keep the input graph directed for Geom-GCN as the method uses a fixed preprocessing scheme that
was unfortunately not made public by the authors. Our homophily measure valuesH(G) in Table 1
are all based on undirected graphs and hence the numbers are different from those reported in (Pei
et al., 2019).

A.10 ADDITIONAL EXPERIMENTAL RESULTS

Table 4: Results for cSBM, sparse splitting. Bold values indicate the best obtained result and while
bold, underlined values indicate results within a 95% confidence interval with respect to the best
result.

φ = −1 φ = −0.75 φ = −0.5 φ = −0.25 φ = 0 φ = 0.25 φ = 0.5 φ = 0.75 φ = 1

GPRGNN 97.19±0.16 95.54±0.15 81.54±0.73 60.65±0.31 62.16±0.23 68.83±0.28 89.31±0.16 96.98±0.08 96.71±0.13
GPRGNN(random) 88.39±3.31 88.54±3.01 66.91±2.93 56.35±0.98 58.09±0.71 64.01±1.39 81.93±1.68 94.59±0.29 93.69±1.04

APPNP 49.57±0.11 52.45±0.27 56.32±0.40 59.55±0.48 61.21±0.23 68.41±0.30 85.66±0.22 94.37±0.09 90.02±0.16
MLP 49.88±0.10 53.40±0.34 57.14±0.41 60.55±0.41 62.15±0.33 61.26±0.21 57.91±0.35 53.36±0.32 49.92±0.11
GCN 55.24±0.35 61.04±0.39 56.40±0.39 52.23±0.24 54.43±0.32 67.23±0.29 84.56±0.20 90.19±0.14 78.67±0.19
GAT 53.97±0.32 57.18±0.45 53.39±0.34 51.23±0.19 53.26±0.27 64.45±0.36 81.94±0.34 88.45±0.26 78.06±0.30

JKNet 51.70±0.39 55.83±0.75 52.67±0.51 50.27±0.15 52.02±0.35 65.67±0.44 86.35±0.19 95.13±0.09 90.32±0.17
GCN-Cheby 61.44±0.51 73.91±0.75 71.96±0.6 63.96±0.43 59.70±0.34 64.00±0.38 72.34±0.63 73.56±0.65 60.88±0.58

18

Under review as a conference paper at ICLR 2021

Table 5: Results for cSBM, dense splitting. Bold values indicate the best results found while bold,
underlined values indicate results within a 95% confidence interval with respect to the best result.

φ = −1 φ = −0.75 φ = −0.5 φ = −0.25 φ = 0 φ = 0.25 φ = 0.5 φ = 0.75 φ = 1

GPRGNN 98.83±0.06 98.19±0.08 94.23±0.14 86.06±0.20 82.22±0.20 86.48±0.20 94.34±0.13 98.46±0.08 98.84±0.06
GPRGNN(random) 98.75±0.05 98.08±0.08 94.22±0.14 86.06±0.20 81.57±0.23 86.36±0.20 94.09±0.14 98.38±0.08 98.77±0.07

APPNP 48.94±0.29 63.87±0.29 73.30±0.26 79.30±0.20 82.41±0.23 86.47±0.18 94.20±0.14 97.96±0.10 98.53±0.08
MLP 49.79±0.29 66.69±0.27 75.36±0.26 80.30±0.24 82.19±0.24 80.88±0.22 76.07±0.24 66.61±0.25 49.65±0.29
GCN 78.50±0.28 83.68±0.22 75.98±0.25 59.98±0.25 64.09±0.26 81.89±0.19 93.91±0.12 97.78±0.08 96.29±0.11
GAT 82.39±0.41 80.37±0.22 71.01±0.26 57.68±0.29 62.95±0.28 80.61±0.24 93.26±0.14 97.99±0.08 98.40±0.09

JKNet 96.11±0.37 95.33±0.25 87.98±0.56 59.61±0.49 63.28±0.10 80.23±0.36 93.28±0.15 98.33±0.07 98.22±0.07
GCN-Cheby 90.94±0.16 94.82±0.13 91.83±0.17 85.18±0.21 80.80±0.25 85.28±0.21 92.70±0.16 95.06±0.13 90.34±0.18

Table 6: Results on homophilic real-world benchmark datasets tested in (Pei et al., 2019), dense
splitting: Mean accuracy (%) ± 95% confidence interval. Boldface values indicate the best results
found while boldface, underlined values indicates results within the confidence interval with respect
to the best result.

Cora Citeseer PubMed

GPRGNN 88.65±0.28 80.01±0.28 89.18±0.15
APPNP 88.1±0.23 80.5±0.26 89.15±0.13

MLP 76.44±0.3 76.25±0.28 86.43±0.13
GCN 86.87±0.25 79.28±0.25 86.97±0.12
GAT 87.52±0.24 80.56±0.31 86.64±0.11

JKNet 86.97±0.27 77.69±0.35 87.38±0.13
GCN-Cheby 86.46±0.26 78.66±0.26 88.2±0.09
GeomGCN 85.4±0.26 76.42±0.37 88.51±0.08

Table 7: Additional experiments illustrating that GPR-GNN escapes over-smoothing. We initialize
the GPR weights γk = δkK as described in Section 5. We report the mean accuracy at Epoch 0 and
after training (Final epoch). The over-smoothing ratio indicates how many time out of the 100 runs
that GPR-GNN started with lead to the same label for all nodes. For an illustration of how GPR
weights change over different epochs, please check Figure 8.

Accuracy at epoch 0(%) Accuracy at the final epoch(%) Over-smoothing ratio(%)

Cora 12.75 88.25 84
Computers 9.41 85.93 89

Squirrel 19.87 52.06 97
Texas 21.05 90.05 100

19

Under review as a conference paper at ICLR 2021

(a) cSBM, φ = 0.0,
(H(G) = 0.077)

(b) cSBM, φ = 0.25,
(H(G) = 0.189)

(c) cSBM, φ = 0.5,
(H(G) = 0.419)

(d) cSBM, φ = 0.75,
(H(G) = 0.688)

(e) cSBM, φ = 1.0,
(H(G) = 0.809)

(f) cSBM, φ = −0.25,
(H(G) = 0.029)

(g) cSBM, φ = −0.5,
(H(G) = 0.009)

(h) cSBM, φ = −0.75,
(H(G) = 0.002)

(i) cSBM, φ = −1.0,
(H(G) = 0.001)

Figure 6: Figures (a)-(i) show the learned GPR weights by GPR-GNN with random initialization
on cSBM, dense splitting. The shaded region indicates a 95% confidence interval.

20

Under review as a conference paper at ICLR 2021

(a) Cora, (H(G) = 0.656) (b) Citeseer, (H(G) = 0.578) (c) PubMed, (H(G) = 0.644)

(d) Computers,
(H(G) = 0.272)

(e) Photo, (H(G) = 0.459) (f) Chameleon,
(H(G) = 0.024)

(g) Actor, (H(G) = 0.008) (h) Squirrel, (H(G) = 0.055) (i) Texas, (H(G) = 0.016)

(j) Cornell, (H(G) = 0.137)

Figure 7: Figures (a)-(j) show the learned GPR weights by GPR-GNN with random initialization on
various benchmark datasets, dense splitting. The shaded region indicates a 95% confidence interval.
Note that the learned GPR weights are all positive for every homophilic dataset. There is at least
one negative learned GPR weight for every heterophilic dataset.

21

Under review as a conference paper at ICLR 2021

(a) Cora, epoch 0 (b) Cora, epoch 50 (c) Cora, epoch 100 (d) Cora, epoch 150 (e) Cora, epoch 200

(f) Computers,
epoch 0

(g) Computers,
epoch 50

(h) Computers,
epoch 100

(i) Computers,
epoch 150

(j) Computers,
epoch 200

(k) Squirrel,
epoch 0

(l) Squirrel,
epoch 50

(m) Squirrel,
epoch 100

(n) Squirrel,
epoch 150

(o) Squirrel,
epoch 200

(p) Texas, epoch 0 (q) Texas, epoch 50 (r) Texas, epoch 100 (s) Texas, epoch 150 (t) Texas, epoch 200

Figure 8: Learned GPR weights by GPR-GNN with initialization γk = δkK (last step) on various
benchmark datasets, dense splitting. The shaded region indicates a 95% confidence interval. Also,
please check Table 7. Note that the GPR weights {γk}Kk=0 are identical to {−γk}Kk=0 in terms of
graph filtering.

22

Under review as a conference paper at ICLR 2021

(a) Cora, epoch 0 (b) Cora, epoch 50 (c) Cora, epoch 100 (d) Cora, epoch 150 (e) Cora, epoch 200

(f) Computers,
epoch 0

(g) Computers,
epoch 50

(h) Computers,
epoch 100

(i) Computers,
epoch 150

(j) Computers,
epoch 200

(k) Squirrel,
epoch 0

(l) Squirrel,
epoch 50

(m) Squirrel,
epoch 100

(n) Squirrel,
epoch 150

(o) Squirrel,
epoch 200

(p) Texas, epoch 0 (q) Texas, epoch 50 (r) Texas, epoch 100 (s) Texas, epoch 150 (t) Texas, epoch 200

Figure 9: The dynamics of learning GPR weights with random initialization on various benchmark
datasets, dense splitting. The shaded region indicates a 95% confidence interval.

23

	Appendix
	Conclusions
	Detailed discussion on preventing over-smoothing.
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	cSBM details
	Proof of Lemma A.2
	Proof of Lemma A.4
	Proof of Lemma A.5
	Additional Experimental details
	Additional Experimental results

