Published as a conference paper at ICLR 2024

HAZARD CHALLENGE: EMBODIED DECISION MAK-
ING IN DYNAMICALLY CHANGING ENVIRONMENTS

Qinhong Zhou' Sunli Chen?*, Yisong Wang?, Haozhe Xu®, Weihua Du?,

Hongxin Zhang', Yilun Du?, Joshua B. Tenenbaum®, Chuang Gan'-®

University of Massachusetts Amherst, ? Institute for Interdisciplinary Information Sciences,
Tsinghua University, >Peking University, *“MIT, MIT-IBM Watson Al Lab

ABSTRACT

Recent advances in high-fidelity virtual environments serve as one of the major
driving forces for building intelligent embodied agents to perceive, reason and
interact with the physical world. Typically, these environments remain unchanged
unless agents interact with them. However, in real-world scenarios, agents might
also face dynamically changing environments characterized by unexpected events
and need to rapidly take action accordingly. To remedy this gap, we propose a new
simulated embodied benchmark, called HAZARD, specifically designed to assess
the decision-making abilities of embodied agents in dynamic situations. HAZARD
consists of three unexpected disaster scenarios, including fire &, flood -, and
wind Y, and specifically supports the utilization of large language models (LLMs)
to assist common sense reasoning and decision-making. This benchmark enables
us to evaluate autonomous agents’ decision-making capabilities across various
pipelines, including reinforcement learning (RL), rule-based, and search-based
methods in dynamically changing environments. As a first step toward addressing
this challenge using large language models, we further develop an LLM-based
agent and perform an in-depth analysis of its promise and challenge of solving these
challenging tasks. HAZARD is available at https://vis-www.cs.umass.
edu/hazard/.

1 INTRODUCTION

Embodied agents operate in a dynamic world that exhibits constant changes. This world experiences
various changes at every moment, including the rising and setting of the sun, the flow of rivers,
weather variations, and human activities. To successfully navigate and function in such an ever-
changing environment, robots are required to perceive changes in their surroundings, reason the
underlying mechanisms of these changes, and subsequently make decisions in response to them.

To simulate a dynamic world, it is necessary to create environments that can spontaneously undergo
changes. Currently, various simulation platforms have emerged in the field of embodied Al, including
iGibson (Shen et al., 2021), Habitat (Savva et al., 2019), SAPIEN (Xiang et al., 2020b), Virtual-
Home (Puig et al., 2018), AI2THOR (Kolve et al., 2017), ThreeDWorld (TDW) (Gan et al., 2021), etc.
Existing tasks on these simulation platforms involve agent exploration and agent-driven interactions,
but they lack support for environment-driven changes, which are rather influential and unpredictable.
The iGibson 2.0 (Li et al., 2021) platform partially supports spontaneous environmental changes to a
limited extent, but these changes are limited to the propagation of a few variables between individual
objects.

In this paper, we propose the HAZARD challenge, an innovative exploration of embodied decision-
making in dynamic environments, by designing and implementing new capabilities for physical
simulation and visual effects on top of the ThreeDWorld. HAZARD manifests itself in the form of
unexpected disasters, such as fires, floods, and wild winds, and requires agents to rescue valuable
items from these continuously evolving and perilous circumstances.

The HAZARD challenge places agents within indoor or outdoor environments, compelling them to
decipher disaster dynamics and construct an optimal rescue strategy. As illustrated in Figure 1, the

*Qinhong Zhou and Sunli Chen contribute equally.

https://vis-www.cs.umass.edu/hazard/
https://vis-www.cs.umass.edu/hazard/

Published as a conference paper at ICLR 2024

Flood £

9]
oo
c

i

©

<
(8]

o

o

<

N

<

a5

Figure 1: Illustration of HAZARD Challenge. The HAZARD challenge consists of three dynamically changing
scenarios: fire &, flood £-, and wind Y. In the fire scenario, flames continuously spread and burn objects. In the
flood scenario, water spreads and rises, washing away objects and causing damage to non-waterproof objects.
The wind scenario poses the challenge of objects being blown away, making them hard to reach. These scenarios
present embodied agents with complex perception, reasoning, and planning challenges.

scenarios vary in severity and complexity. An indoor fire scenario might involve the rapid spread of
flames, threatening flammable target objects. In an indoor flood scenario, an overwhelming volume of
water inundates the house, jeopardizing non-waterproof targets. In an outdoor wind scenario, strong
winds scatter lightweight objects across roads, making retrieval a challenging task for agents. To
successfully rescue target objects from these disasters, agents must effectively transfer them to safe
zones such as backpacks or shopping carts.

To facilitate this endeavor, we introduce a comprehensive benchmark comprising these disaster
scenarios, complete with quantitative evaluation metrics. We also provide an API to employ large
language models (LLMs) for action selection. This API integrates visual observations and historical
memories into textual descriptions, thereby providing a semantic understanding of the dynamic
environment. To optimize the use of LLMs, we compress a large volume of low-level actions by A*
algorithm, significantly reducing the frequency of LLM queries.

We evaluate both LLM-based agents and several other decision-making pipelines on our benchmark,
including a rule-based pipeline that operates based on a simple set of rules, a search-based pipeline
that utilizes the Monte Carlo tree search (MCTS) algorithm for action selection, and a reinforcement
learning-based pipeline. Through our experiments, we find while the LLM pipeline is capable
of understanding and considering certain basic factors, such as object distance, it may encounter
challenges in comprehending and effectively handling more complex factors, such as the dynamic
nature of environmental changes.

The main contributions of our work are: 1) designing and implementing a new feature that enables the
simulation of complex fire, flood, and wind effects for both indoor and outdoor virtual environments
in TDW; 2) developing a comprehensive benchmark, HAZARD, for evaluating embodied decision-
making in dynamically changing environments, as well as incorporating the LLM API into our
benchmark; and 3) conducting an in-depth analysis of the challenges posed by perception and
reasoning for existing methods, especially LLM-based agents in tackling the proposed benchmark.

2 RELATED WORK

Simulators for Embodied AI The recent advance of embodied Al has largely been driven by the
development of simulation platforms. While earlier platforms primarily focused on supporting agent
exploration (Savva et al., 2017; Beattie et al., 2016; Savva et al., 2019; Yi et al., 2018; Das et al.,

Published as a conference paper at ICLR 2024

2018), recent platforms (Gan et al., 2021; Xiang et al., 2020a; Shen et al., 2021; Szot et al., 2021; Li
etal., 2021; Puig et al., 2018; Kolve et al., 2017; Yan et al., 2018) have advanced by enabling physical
agent-driven interactions. In this paper, we specifically focus on the impact of environment-driven
changes on embodied agents, which remains a relatively unexplored area of research. Earlier works
either supported spontaneous changes in the environment within limited ranges (Li et al., 2021),
different environmental impacts on agent actions (Zeng et al., 2022), or just focused on identifying
such changes, which occurred only during each reset (Landi et al., 2022).

Embodied AI with Large Language Models Recently, large language models (LLMs) (Brown et al.,
2020; Chowdhery et al., 2022; Touvron et al., 2023a; Ouyang et al., 2022) have made remarkable
strides in the field of Al, and their potential in embodied Al tasks has also been widely investigated and
explored (Kant et al., 2022; Wake et al., 2023; Shah et al., 2023; Vemprala et al., 2023; Lin et al., 2023;
Yang et al., 2023; Liu et al., 2023a). LLMs are capable of providing contextual information (Ahn
et al., 2022), building inner monologues (Huang et al., 2022), providing model initializing weights (Li
et al., 2022), and error correction (Wang et al., 2023) to enhance the planning of embodied agents.
More directly, LLMs can generate policy code (Liang et al., 2022) or produce plans for embodied
agents (Song et al., 2022; Driess et al., 2023). Different from previous works, we explore the planning
and decision-making ability of LLMs in dynamically changing environments. We also implement
APIs for LLM-based agents in HAZARD, providing support for future research in this area.

Search and Rescue Search and rescue (SAR) is a widely explored area for robotics. Most of
the existing projects and programs in robot SAR focus on using unmanned aerial vehicles (Ollero
et al., 2005; Mehmood et al., 2018; Merino et al., 2005; Hayat et al., 2016; Shakhatreh et al., 2019;
Yeong et al., 2015), unmanned ground vehicles (Chikwanha et al., 2012; Santos et al., 2020; Cubber
et al., 2017), and unmanned underwater vehicles (Binney et al., 2010; Zeng et al., 2015; Li et al.,
2018) for searching one or more target in mostly static scenes. Some previous works also provide a
dynamic simulation of disasters but are restricted to 2D abstract environments (rob, 2023) or limited
scenes (Tang et al., 2018). Different from these works, we provide simulation for dynamically
changing environments in embodied scenes and focus on decision-making in these environments.

3 THE HAZARD CHALLENGE

3.1 OVERVIEW

The HAZARD challenge sets itself apart through its distinctive dynamic scenarios, requiring high-
quality physical and visual simulation of significant environmental changes such as fire, flood, and
wind. To realize our objectives, we have developed an environment change simulation framework,
premised on the robust foundation of the ThreeDWorld platform. This framework offers a reliable
physical simulation system, with a versatile renderer capable of producing visual effects tailored to
each type of environmental change. In this section, we delve into the implementation details of both
how we simulate these dynamic environment changes and our new dataset.

Figure 2: Detailed visual effect of fire @ and flood . We have developed near-realistic visual effects for the
fire and flood scenarios, which are controlled by our simulation system.
3.2 SCENES

3.2.1 FIRE

In the fire scenario, we simulate an indoor scene of a room on fire. This dynamic environment
presents various changes to the agent, including the spreading visual effects of the fire, changes in

Published as a conference paper at ICLR 2024

temperature, and the transformation of objects as they burn or become burnt. To capture these effects
accurately, we implement a temperature system and integrate it with the visual effects using the
ThreeDWorld simulator.

Temperature The temperature system simulates the heat transfer process among all objects in the
environment. According to the second law of thermodynamics, in this system, heat is transferred
from objects with higher temperatures to those with lower temperatures. However, it is infeasible to
simulate real heat transfer to a fine-grained level due to computational limits. Instead, we adopt an
expedient approach described below.

For each object o in each time frame, we update the temperature 77(0) = T'(0) - (1 —d) + d - Teno (0)
where d is the decay rate. T, (0) simulates the heat transfer from the environment and is defined
as the weighted average of room temperature 7., and surrounding objects T'(o’). The weight for
Tr0om is a pre-defined constant W,.,,,, and the weight for T'(o’) is W,» = min(D~2, dist (o, 0')~2)
where D is the distance threshold and dist(o, o') is the distance between objects o and o’. In summary,
we have pre-defined constants W,., T}.,.m, decay rate d and distance threshold D to simulate real-life
heat transfer between objects.

Not only the objects can catch on fire. In our setting, we divide the floor into 2-D grids where each
grid can burn separately. Since the grid size is set small, it’s infeasible to assign a temperature to each
grid and update them every frame. Instead, we use a spreading model where a fire having burnt for
time ¢ has probability p(t) to spread to a nearby grid. p(¢) is a linear function so that after sufficient
time the fire must spread.

Object status and visual effect To simulate the visual effects generated by a spreading fire, we define
three distinct object statuses similar to (Li et al., 2021): normal, burning, and burnt. Objects in the
normal status exhibit no additional visual effects. An object becomes burning once its temperature
reaches the ignition point. As illustrated in Figure 2, burning objects are adorned with a fire visual
effect on the top, with the scale of this visual effect gradually amplifying as the object combusts over
subsequent frames. After a designated burning duration, an object becomes burnt and has a black hue
to represent the burnt state.

3.2.2 FLooOD

The flood scenario is designed to simulate the spread and rise of water within an indoor room. This
scene introduces the following changes to the agent: (a). The flood gradually submerges the objects
within the scene, making them challenging to recognize and causing damage to non-waterproof
objects, and (b). objects with low density have the tendency to float on the flood surface and may be
swept away by the force of the flood.

Visual effect As Figure 2 shows, the flood surface is designed to be translucent, allowing the agent to
perceive both the flood surface itself and the objects located beneath it. To simulate the spread of the
flood, we rotate the surface into a sloped position and make it gradually rise and move forward. This
combination of visual effects accurately depicts the dynamic nature of a spreading flood.

Physical simulation For each object in the flood, we incorporate two forces to simulate the physical
effects of the flood: buoyancy and drag force. The buoyancy force, denoted as F'g, acts in the opposite
direction to gravity and its magnitude is determined by Fg = p;V g, where V' denotes the product
of the volume of the submerged portion of the object, g denotes the gravitational acceleration, and
ps denotes the density of the flood. On the other hand, the drag force, denoted as F'p, is calculated

1
using the drag equation Fp = —p fsz DA, where v represents the relative velocity of the object

with respect to the fluid, Cp denotes the drag coefficient, and A represents the vertical area of the
object. The direction of Fp is opposite to the relative speed of the object in relation to the fluid.

3.2.3 WIND

In contrast to the fire and flood scenarios, the wind scenario simulates an outdoor scene where objects
are affected by intense and turbulent winds. As a result, the primary dynamic feature of this scenario
is the movement of objects induced by powerful wind forces. In real life, determining wind forces
is a complex topic in aerodynamics, so we take an ideal model. Specifically, we assume the wind
has a fixed velocity everywhere and objects have a face vertical to this velocity. With some physics

Published as a conference paper at ICLR 2024

derivation, The force is F' = p,v? A where p, is the air density, v is the relative wind velocity and A
is the vertical area facing the wind. We modify it by setting F = F} 4+ F, in which F}; = p,v?A and
F> =1 x Fi. ris arandom vector of fixed length so that /> simulates a random turbulence minor
compared to F. We also apply a random torque to each object to account for forces applied not on
the center of mass. The magnitude of forces and torques is hand-adjusted to create a dynamically
changing scene.

To reduce the difficulty of the HAZARD challenge, environmental impacts like temperature, flood
forces, and wind forces do not affect agents in the default setting. Additionally, we explore a more
challenging scenario where agents are influenced by these environmental effects in Appendix B.

3.2.4 PROCEDURAL SCENE GENERATION

Based on the ProcGenKitchen pipeline from ThreeDWorld simulator, we develop a procedural
generation pipeline tailored for the HAZARD challenge. This pipeline enables the generation of
diverse scenes with dynamic changes. Initially, a basic scene is generated using ProcGenKitchen.
Subsequently, we introduce additional elements to this basic scene in a random manner, including (a).
target objects and additional objects on both floor and surfaces of the existing objects, such as tables
and chairs, (b). agents’ initial positions and directions, and (c). initial positions of the fire sources.
This procedural generation pipeline ensures the creation of various dynamically changing scenes for
the HAZARD challenge.

3.3 BENCHMARK DETAILS

 POB®

walkto explore pickup drop

. Evaluation metrics
Thermal observation

/

Value of rescued objects

1
1
1

L 1

RGB-D observation I Value =
| atue Value of all objects
FA Toothbrush, value 1 : st Total steps taken
ep =
B Apple, value 1 1 P Number of rescued objects
1
" Bottle, value 5 1 Damaged objects amount
- I Damage = &)

1

Target object information Segmentation mask (optional) Objects amount

Figure 3: Benchmark details. In HAZARD challenge, an embodied agent needs to rescue a given set of objects
from disasters. The agent observations include RGB-D signals, temperature or water level signals, target object
information, and segmentation masks. To address the challenge in perception, we also provide a perceptional
version of HAZARD which excludes segmentation mask from observations. The action space consists of four
high-level actions: Pick Up, Explore, Drop, and Walk To, each representing a compression of multiple low-level
actions. The final performance of agents is measured by ‘value’, ‘step’, and ‘damage’.

Problem definition In the HAZARD challenge, the objective for an embodied agent is to rescue a
predetermined set of objects, denoted as target objects, and bring them to a given safe location such
as a bag held by the agent or a shopping cart. As Figure 3 shows, at each step, an agent receives an
RGB-D observation, semantic segmentations of the observation, and a blurred environment-specific
observation (temperature in the fire scenario and water level in the flood scenario). We also provide a
perceptional version of HAZARD which excludes semantic segmentation from inputs. Given these
observations, agents must make appropriate choices from the available agent action space at each
step to accomplish the mission.

Target objects The objects that agents are required to rescue are denoted as “target objects.” These
objects are randomly placed on the floor or other surfaces within the environment. In each fire
or flood scene, we randomly select 4 categories of objects from a universal target category pool,
which consists of 22 object categories for fire or flood scenarios, and 11 object categories for wind
scenarios. All objects falling within these selected categories are considered target objects. The

Published as a conference paper at ICLR 2024

target category pool encompasses objects that exhibit diversity across four attributes: object value,
waterproof capability, ignition point, and susceptibility to the wind.

Agent action space In our study, we utilize ThreeDWorld Replicant, a humanoid agent with basic
actions such as Move Forward By, Turn By, Reach For, and Reset Arm. To accomplish the proposed
task, we introduced compressed actions derived from these foundational actions. Specifically, the
Explore action combines several Turn By actions, enabling agents to swiftly perceive their environment.
A robust Pick Up action, formed by Reach For and Reset Arm actions, allows the agent to grasp target
objects effectively. Additionally, a Drop action helps the agent put down held objects. Therefore,
once the agent reaches the object, it can utilize the Pick Up action to hold the object and subsequently
use the Drop action to position it in a safe location. HAZARD also supports direct utilization of
low-level actions, including ‘move_by’, ‘turn_by’, and ‘turn_to’.

Support for LLM-based pipelines The proposed benchmark also supports using LLMs as decision-
makers. However, a significant challenge arises when querying the LLM for actions at each step, as
it can lead to frequent queries and subsequently lower inference speed. To solve this problem, we
implement agent navigation to objects using the A* algorithm. This navigation algorithm compresses
a large number of Move Forward By and Turn By actions into a single Walk To action. As a result,
apart from the Pick Up and Drop actions, the LLM is only queried to select which objects to Walk To.
Based on this design, we implement efficient APIs for LLM-based pipelines in HAZARD.

Evaluation metrics For HAZARD challenge, we use rescued value rate (Value), averaged rescue
step (Step), and averaged damaged rate (Damage) as evaluation metrics. The rescued value rate
is calculated as the ratio of the total value of the rescued objects to the total initial value of all
target objects. Objects that are damaged due to environmental changes will lose half of their value.
Specifically, in the fire scenario, objects lose their value once they start burning. In the flood scenario,
a non-waterproof object loses its value if it becomes submerged by the flood. The averaged rescue
step, as a measurement of efficiency, is defined as the averaged step number to rescue an object for an
agent. To improve the efficiency of the evaluation process, we set a time limit of 1,500 frames for
tasks fire and flood while a longer 3,000 frames is set in the wind scenario. The averaged damaged
rate (Damage) is calculated as the proportion of damaged objects among the objects that the agent
rescued. Note that objects can only be damaged in a fire or flood scenario.

4 BUILDING LLM-BASED PIPELINE FOR EMBODIED AGENTS

— Environment D —

RGB-D observation L Observation memory selected Action
' !
1
mmalll Thermal / water-level signal ! 1 e e H y
! Decision Maker i Tl [<3R1 A ed
, Lo} e]
| i |
1
1

—_—
Semantic mask (optional) (Large Language Model)

Figure 4: Framework of the proposed LLM-based pipeline. The LLM takes in diverse input information from
the environment and engages in comprehensive decision-making. At the high level, the LLM selects actions
such as “walk to", “pick up", “drop”, or “explore". These chosen actions are then executed through a series of
low-level actions. This hierarchical approach enables the LLM to effectively process and utilize the various

types of input information available.

Taking inspiration from recent research (Song et al., 2022; Driess et al., 2023), we employ an LLM
as the decision maker to determine the target destination for embodied agents. As illustrated in
Figure 4, to enable the perception of LLM, we convert the information from the environment into
text descriptions. Then LLM is required to select a proper action, which is subsequently converted
into multiple low-level actions for execution. We provide the LLM decision maker in this step with
the following information:

Published as a conference paper at ICLR 2024

* Task description: The first part of the prompt consists of a manually designed description of the
current task. The description briefly introduces the challenges the disaster agent needs to face, the
overall goal of the agent, and the format of the following prompt parts.

* Target information: After the task description, we provide target information for LLMs, including
the names, values, and properties of target objects.

* Current state: To provide LLM with comprehensive information about the current state, we convert
visual observations, thermal or water-level signals, and semantic masks into a 2D semantic map.
For the perceptional version of HAZARD, input semantic mask is replaced with a segmentation
proposal provided by a perception model. Then the LLM is provided with a textual description of
the semantic map, including object distance, temperature, water level, and value.

* Observation memory: To help LLMs infer the dynamics of the environment and predict future
changes, we have designed an observation memory to store the historical states. During inference,
LLM:s utilize the observation memory by incorporating the description of each historical state into
the prompt.

* Available actions: The prompt concludes with a list of the currently available actions. Therefore,
LLMs make decisions by solving a multi-choice problem.

¢ Other information: The prompt also includes other necessary information, such as the agent’s
history of actions taken and its current status.

The detailed format of the prompt can be referred to as shown in Figure 7 in the Appendix.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Traning and testing setup To create the dataset for HAZARD, we choose 4 distinct indoor rooms
for the fire and flood tasks, and 4 outdoor regions for the wind task. Within each room or region, we
generate 25 diverse scenes using our procedural generation pipeline (described in Section 3.2.4). One
indoor room and one outdoor region are selected as the test set. As a result, we obtain a total of 100
unique scenes for each task, with a train-set split ratio of 3:1.

Details of language model backbone We evaluate the LLM-based agent in Section 4 with 3 different
LLM backbones, including Llama-13b-chat model (Touvron et al., 2023b), OpenAl GPT-3.5-turbo
(August 3 Version), and OpenAl GPT-4. We use max tokens of 512, temperature of 0.7, top p of 1.0
as hyper-parameters during inference.

Perception Module To get semantic segmentations in the perceptional version of HAZARD, we use
OpenMMLab detection framework (Chen et al., 2019) to implement our perceptional model. We
collect 200 images with ground truth segmentation in each training instance and use the collected
data to fine-tune a Mask-RCNN (He et al., 2017) model provided by OpenMMLab.

5.2 BASELINES

We implement several baseline agents for evaluations as follows.

Random agent An agent randomly selects low-level actions to execute. To emphasize the hardness
of our challenge, we provide more informative actions including walking to the nearest target object
(container), picking up (dropping) the nearest object and exploring.

RL model We also trained reinforcement learning models using Proximal Policy Optimization
(PPO) (Schulman et al., 2017). The actions are the same as described in the random agent. We design
the function that rewards picking up and dropping correctly while penalizing actions that fail or have
no effect. To make the reward function smoother, we also add a factor of the distance from the agent
to the nearest object.

Rule-based agent An agent randomly chooses a target object to rescue. After selecting the target
object, the agent automatically walks to the object, picks it up, and drops it into a safe place.

MCTS agent Monte Carlo Tree Search (MCTS) (Kocsis & Szepesvari, 2006) is a commonly
used algorithm in decision-making problems, which has an effective balance of exploration and

Published as a conference paper at ICLR 2024

exploitation. Since it is hard to get the ground truth frame costs of each action, we design several
kinds of heuristic costs for MCTS, such as navigation heuristics, grasp heuristics, drop heuristics,
and exploration heuristics. After that, we use MCTS to find an action plan with minimal total cost.

Greedy agent A simple greedy agent that persists in rescuing the nearest target object with the lowest
cost. This agent chooses actions randomly when there are no target objects in observation or memory.

5.3 EXPERIMENTAL RESULTS

Table 1: The rescued value rate (Value), averaged rescue step (Step), and averaged damaged rate (Damage)
of the proposed LLM pipeline (LLM) and all baseline methods. Without perception denotes the scenario that
includes the semantic mask in the input, while the with perception scenario excludes the semantic input and
requires the agents to perceive the environment with a perception model.

Methods Fire & Flood £« Wind Y
Valuet Step| Damage| | Value? Step| Damage| | Valuet Step|
Without Perception
Greedy 354 315.8 259 18.5 289.9 80.3 0.2 444.0
Random 43.8 279.1 37.3 28.1 286.6 80.0 7.1 1131.8
Rule 53.1 236.1 323 27.3 3253 82.2 0.0 -
RL 46.1 2717.3 33.6 35.0 252.5 71.7 124 889.5
MCTS 75.9 150.1 19.7 43.7 146.6 69.9 18.0 898.0
LLM (Llama-13b) 70.2 173.8 24.0 42.6 179.6 71.2 9.6 1255.6
LLM (GPT-3.5) 70.9 170.4 20.3 44.3 156.6 63.7 23.5 735.0
LLM (GPT-4) 77.8 159.9 15.9 45.7 142.9 64.9 31.1 590.1
With Perception
Greedy 35.5 257.8 25.3 21.5 250.7 68.8 0.2 442.0
Random 413 314.6 31.6 26.7 313.5 75.8 5.0 1113.6
Rule 34.5 356.3 33.7 22.6 346.2 76.2 0.0 -
RL 45.8 241.8 353 33.1 256.6 77.0 8.5 1044.9
MCTS 59.2 147.3 12.3 30.6 145.1 63.6 18.0 939.1
LLM (Llama-13b) 56.2 192.6 214 34.1 193.1 69.9 16.2 1090.1
LLM (GPT-3.5) 63.5 166.6 13.5 38.5 160.0 56.5 16.2 804.9
LLM (GPT-4) 67.7 158.5 16.1 38.2 153.8 51.3 33.9 555.8

Quantitative results According to the quantitative results in Table 1, the proposed HAZARD
benchmark presents a significant challenge, as all the Random, Rule, and Greedy methods exhibit
poor performance across all three scenarios. The MCTS method inherently reasons the environment
changes through simulation and therefore performs the best among baseline methods. Surprisingly,
although not finetuned on the training data, the LLM pipeline demonstrates superior performance
compared to most baseline methods on three scenarios, showing its strong zero-shot decision-making
capabilities. Furtherly, the results indicate a clear difference in decision making ability among
different LLMs, as the GPT-4 model outperforms both GPT-3.5-turbo model and LLaMa-13b chat
model by a large margin. Notably, in the wind scenario, all methods struggle with a remarkably low
Value score, highlighting the difficulty of reasoning the movements of objects.

Perceptional results According to Table 1, all methods show reduced performance in the with per-
ception scenario, highlighting the challenges of perception in dynamic environments. The perception
model struggles to detect objects submerged in water or obscured by flames. Interestingly, in wind
scenarios, this perceptual difficulty can be beneficial, as agents stop pursuing objects blown far
away. Notably, despite these challenges, LLM-based agents still demonstrate competitive and robust
decision-making ability.

Qualitative results As illustrated in Figure 5, the LLM pipeline shows the ability to take into account
basic attributes during decision-making processes, enabling it to make rational choices in some cases.
For instance, in the fire scenario, the LLM pipeline demonstrates comprehensive consideration of
object temperature, distance, and value in the reasoning path. Accordingly, the LLM finally selects a
valuable target with a low temperature, which is an optimal choice in this situation.

Published as a conference paper at ICLR 2024

Prompt: Egocentric View:

Objects states history:

Object id 75, object location: x 246.5, y 256.5, object distance from me is 16.57 m, object
temperature is 56.66 Celsius at step 503, 71.29 Celsius at step 609.

Object id 84, object location: x 254.1, y 279.0, object distance from me is 25.6 m, object
temperature is 41.78 Celsius at step 331, 51.66 Celsius at step 437, 54.41 Celsius at step 470.
Object id 87, object location: x 261.8, y 288.6, object distance from me is 33.62 m, object
temperature is 38.77 Celsius at step 331, 45.24 Celsius at step 437, 49.97 Celsius at step 470.

Reasoning Path:

1. Evaluating the object "apple" (75): Although it is closest to you, its value is low (1) and its
temperature is quite high (71.29 Celsius), indicating it might start burning soon.

2. Evaluating the object "bag" (84): Its value is higher (5), but it's farther away and its
temperature is also high (54.41 Celsius), which might also start burning before you reach it.
3. Evaluating the object "bag" (87): Although it's the farthest, its temperature is the lowest Final Outputs:

(49.97 Celsius) and its value is high (5), so it might not start burning before you reach it. 2o pick up object <bag> (87)

Figure 5: A qualitative result of the LLM pipeline. The GPT-4 model takes simple attributes, such as distance,
temperature, and object value into consideration to enhance its decision-making abilities.

Failure cases In Figure 6, we provide two failure cases of the LLM pipeline. In the first case on the
left, the LLM struggles with effectively considering dynamics during decision-making. The LLM
pipeline chooses to walk towards the closest target, the backpack object. However, the object is
swiftly carried away by the wind, leading to the failure of the LLM in catching up with the backpack
object. In the second case on the right, the LLM pipeline suffers from inconsistency between its
reasoning and prediction. Despite the thought process indicating that the optimal choice is to search
for other target objects, which leads to hairbrush with id 66, it ultimately fails to select the desired
target as its final decision.

Prompt: Prompt:

I'm in' i 0}1tdoor scene where an intense and turbulent Suppose I am wearing fireproof suits and my house is on fire. I want
wind is going on. I want to save as many valuable target to save as many valuable target objects as possible by picking them up
objects as possibl§ by picking them up and putting into and putting them into my bag.

some fixed shopping carts. Previous actions: go pick up object <hairbrush> (64) (paused
after taking 100 steps)

Available actions:

A. go pick up object <hairbrush> (64)

B. go pick up object <hairbrush> (66)

Target objects currently seen:
name: basket, id: 9, value: 1, distance: 24.83
name: backpack, id: 5, value: 5, distance: 14.21

Reasoning Path: Reasoning Path:

the best available action would be B. go pick up object ... Therefore, it is not recommended to choose this action. Given
<backpack> (5) and then try to put it into a shopping cart. the available actions, it seems that none of the hairbrushes are good

If unsuccessful, we should try to look around for another options to save. It may be more beneficial to search for other target
shopping cart or hold onto the backpack until we find one. objects that have not been previously attempted to be saved.
Action result: Final Outputs:

Fail A. go pick up object <hairbrush> (64)

Figure 6: Two failure cases of the LLM pipeline. The LLM pipeline will collapse when it fails to reason the
environmental change that the backpack object is being blown away (on the left), or is inconsistent between
reasoning and predicting (on the right).

6 CONCLUSION

We introduce HAZARD, a novel challenge with dynamically changing environments. To support
environment changes, we develop a simulation system on top of the ThreeDWorld platform. This
system includes a physical simulator and a visual effect generator, enabling simulations of fire, flood,
and wind scenarios. Leveraging this framework, we design an object rescue task for embodied agents
and generate a dataset for this task. Subsequently, we evaluate and analyze the performance of large
language model (LLM) agents and existing baseline methods using the generated dataset. However,
the HAZARD challenge focuses only on object rescue. In the future, we will introduce more actions
to the simulator to allow agents to mitigate environmental changes (e.g., using an extinguisher to put
out fires).

Published as a conference paper at ICLR 2024

REPRODUCIBILITY STATEMENT

For readers interested in reproducing the experimental results presented in this paper, we have
made our experiments accessible via a Github repository, available at https://github.com/
UMass—Foundation-Model/HAZARD. For implementation details, please refer to the docu-
mentation within the repository.

ACKNOWLEDGMENT

We thank Tianmin Shu and Chuangchuang Sun for their insightful discussions, Dongyu Ji for helping
us design the pipeline figure, Jeremy Schwartz and Esther Alter for setting up the ThreeDWorld
environments. We thank the anonymous reviewers for their helpful suggestions. This work is funded
in part by grants from ONR Science of Al Program, Google, Amazon, Cisco, and Toyota Motor
North America.

REFERENCES
Robocup rescue simulation. https://rescuesim.robocup.org/, 2023.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Kiittler,
Andrew Lefrancq, Simon Green, Victor Valdés, Amir Sadik, et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

Jonathan Binney, Andreas Krause, and Gaurav S Sukhatme. Informative path planning for an au-
tonomous underwater vehicle. In 2010 IEEE International Conference on Robotics and Automation,
pp. 4791-4796. IEEE, 2010.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen
Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie
Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. MMDetection: Open mmlab detection toolbox and benchmark.
arXiv preprint arXiv:1906.07155, 2019.

Allan Chikwanha, Sibonelo Motepe, and Riaan Stopforth. Survey and requirements for search and
rescue ground and air vehicles for mining applications. In 2012 19th International Conference on
Mechatronics and Machine Vision in Practice (M2VIP), pp. 105-109. IEEE, 2012.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Geert De Cubber, Daniela Doroftei, Konrad Rudin, Karsten Berns, Daniel Serrano, Jose Sanchez,
Shashank Govindaraj, Janusz Bedkowski, and Rui Roda. Search and rescue robotics-from theory
to practice, 2017.

Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv Batra. Embodied
question answering. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1-10, 2018.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. Palm-e: An embodied
multimodal language model. In arXiv preprint arXiv:2303.03378, 2023.

10

https://github.com/UMass-Foundation-Model/HAZARD
https://github.com/UMass-Foundation-Model/HAZARD
https://rescuesim.robocup.org/

Published as a conference paper at ICLR 2024

Chuang Gan, Jeremy Schwartz, Seth Alter, Damian Mrowca, Martin Schrimpf, James Traer, Julian
De Freitas, Jonas Kubilius, Abhishek Bhandwaldar, Nick Haber, et al. Threedworld: A platform
for interactive multi-modal physical simulation. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 1), 2021.

Samira Hayat, Evgen Yanmaz, and Raheeb Muzaffar. Survey on unmanned aerial vehicle networks
for civil applications: A communications viewpoint. IEEE Communications Surveys & Tutorials,
18(4):2624-2661, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961-2969, 2017.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. arXiv preprint arXiv:2207.05608, 2022.

Yash Kant, Arun Ramachandran, Sriram Yenamandra, Igor Gilitschenski, Dhruv Batra, Andrew Szot,
and Harsh Agrawal. Housekeep: Tidying virtual households using commonsense reasoning. In
Computer Vision—-ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23-27, 2022,
Proceedings, Part XXXIX, pp. 355-373. Springer, 2022.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollar, and Ross Girshick.
Segment anything. arXiv:2304.02643, 2023.

Levente Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning. In Machine Learning:
ECML 2006: 17th European Conference on Machine Learning Berlin, Germany, September 18-22,
2006 Proceedings 17, pp. 282—293. Springer, 2006.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Matt
Deitke, Kiana Ehsani, Daniel Gordon, Yuke Zhu, et al. Ai2-thor: An interactive 3d environment
for visual ai. arXiv preprint arXiv:1712.05474, 2017.

Federico Landi, Roberto Bigazzi, Marcella Cornia, Silvia Cascianelli, Lorenzo Baraldi, and Rita
Cucchiara. Spot the difference: A novel task for embodied agents in changing environments. In
2022 26th International Conference on Pattern Recognition (ICPR), pp. 4182-4188. IEEE, 2022.

Chengshu Li, Fei Xia, Roberto Martin-Martin, Michael Lingelbach, Sanjana Srivastava, Bokui Shen,
Kent Elliott Vainio, Cem Gokmen, Gokul Dharan, Tanish Jain, et al. igibson 2.0: Object-centric
simulation for robot learning of everyday household tasks. In 5th Annual Conference on Robot
Learning, 2021.

Daoliang Li, Peng Wang, and Ling Du. Path planning technologies for autonomous underwater
vehicles-a review. leee Access, 7:9745-9768, 2018.

Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, Clinton Wang, Linxi Fan, Tao Chen, De-An
Huang, Ekin Akyiirek, Anima Anandkumar, et al. Pre-trained language models for interactive
decision-making. Advances in Neural Information Processing Systems, 35:31199-31212, 2022.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. arXiv preprint
arXiv:2209.07753, 2022.

Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette Bohg. Text2motion:
From natural language instructions to feasible plans. arXiv preprint arXiv:2303.12153, 2023.

Bo Liu, Yugqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
LIm+ p: Empowering large language models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023a.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499, 2023b.

11

Published as a conference paper at ICLR 2024

Saqib Mehmood, Shakeel Ahmed, Anders Schmidt Kristensen, and Dewan Ahsan. Multi criteria
decision analysis (mcda) of unmanned aerial vehicles (uavs) as a part of standard response to
emergencies. In 4th International Conference on Green Computing and Engineering Technologies,
pp- 31. Gyancity International Publishers, 2018.

Luis Merino, Fernando Caballero, JR Martinez-de Dios, and Anibal Ollero. Cooperative fire detection
using unmanned aerial vehicles. In Proceedings of the 2005 IEEE international conference on
robotics and automation, pp. 1884-1889. IEEE, 2005.

Anibal Ollero, Simon Lacroix, Luis Merino, Jeremi Gancet, Johan Wiklund, Volker Remuf, Iker Veiga
Perez, Luis G Gutiérrez, Domingos Xavier Viegas, Miguel Angel Gonzalez Benitez, et al. Multiple
eyes in the skies: architecture and perception issues in the comets unmanned air vehicles project.
IEEE robotics & automation magazine, 12(2):46-57, 2005.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730-27744, 2022.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Torralba.
Virtualhome: Simulating household activities via programs. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 8494-8502, 2018.

Luis C Santos, Filipe N Santos, EJ Solteiro Pires, Anténio Valente, Pedro Costa, and Sandro
Magalhaes. Path planning for ground robots in agriculture: A short review. In 2020 IEEE
International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 61-66.
IEEE, 2020.

Manolis Savva, Angel X Chang, Alexey Dosovitskiy, Thomas Funkhouser, and Vladlen Koltun.
Minos: Multimodal indoor simulator for navigation in complex environments. arXiv preprint
arXiv:1712.03931, 2017.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied
ai research. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
9339-9347, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

Dhruv Shah, Btazej Osinski, Sergey Levine, et al. Lm-nav: Robotic navigation with large pre-trained
models of language, vision, and action. In Conference on Robot Learning, pp. 492-504. PMLR,
2023.

Hazim Shakhatreh, Ahmad H Sawalmeh, Ala Al-Fuqaha, Zuochao Dou, Eyad Almaita, Issa Khalil,
Noor Shamsiah Othman, Abdallah Khreishah, and Mohsen Guizani. Unmanned aerial vehicles
(uavs): A survey on civil applications and key research challenges. Ieee Access, 7:48572-48634,
2019.

Bokui Shen, Fei Xia, Chengshu Li, Roberto Martin-Martin, Linxi Fan, Guanzhi Wang, Claudia Pérez-
D’ Arpino, Shyamal Buch, Sanjana Srivastava, Lyne Tchapmi, et al. igibson 1.0: A simulation
environment for interactive tasks in large realistic scenes. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 7520-7527. IEEE, 2021.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. arXiv
preprint arXiv:2212.04088, 2022.

Andrew Szot, Alexander Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah
Maestre, Mustafa Mukadam, Devendra Singh Chaplot, Oleksandr Maksymets, et al. Habitat 2.0:
Training home assistants to rearrange their habitat. Advances in Neural Information Processing
Systems, 34:251-266, 2021.

12

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

Published as a conference paper at ICLR 2024

Jian Tang, Kejun Zhu, Haixiang Guo, Chengzhu Gong, Can Liao, and Shuwen Zhang. Using auction-
based task allocation scheme for simulation optimization of search and rescue in disaster relief.
Simulation Modelling Practice and Theory, 82:132-146, 2018.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Sai Vemprala, Rogerio Bonatti, Arthur Bucker, and Ashish Kapoor. Chatgpt for robotics: Design
principles and model abilities. Microsoft Auton. Syst. Robot. Res, 2:20, 2023.

Naoki Wake, Atsushi Kanehira, Kazuhiro Sasabuchi, Jun Takamatsu, and Katsushi Ikeuchi. Chatgpt
empowered long-step robot control in various environments: A case application. arXiv preprint
arXiv:2304.03893, 2023.

Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe, explain, plan and select:
Interactive planning with large language models enables open-world multi-task agents, 2023.

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
Jiang, Yifu Yuan, He Wang, et al. Sapien: A simulated part-based interactive environment.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
11097-11107, 2020a.

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
Jiang, Yifu Yuan, He Wang, et al. Sapien: A simulated part-based interactive environment.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
11097-11107, 2020b.

Claudia Yan, Dipendra Misra, Andrew Bennnett, Aaron Walsman, Yonatan Bisk, and Yoav Artzi.
Chalet: Cornell house agent learning environment. arXiv preprint arXiv:1801.07357, 2018.

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter Abbeel, and Dale Schuurmans. Foun-
dation models for decision making: Problems, methods, and opportunities. arXiv preprint
arXiv:2303.04129, 2023.

SP Yeong, LM King, and SS Dol. A review on marine search and rescue operations using unmanned
aerial vehicles. International Journal of Marine and Environmental Sciences, 9(2):396-399, 2015.

Wu Yi, Wu Yuxin, Gkioxari Georgia, and Tian Yuandong. Building generalizable agents with a
realistic and rich 3d environment, 2018. URL https://openreview.net/forum?id=
rkaT3zWCZ.

Kuo-Hao Zeng, Luca Weihs, Roozbeh Mottaghi, and Ali Farhadi. Moving forward by moving back-
ward: Embedding action impact over action semantics. In The Eleventh International Conference
on Learning Representations, 2022.

Zheng Zeng, Lian Lian, Karl Sammut, Fangpo He, Youhong Tang, and Andrew Lammas. A survey
on path planning for persistent autonomy of autonomous underwater vehicles. Ocean Engineering,
110:303-313, 2015.

A EXPERIMENT DETAILS

Navigation An integrated navigation module based on perception and A* planning is provided to
all agents. The module divides the world into grids of size 0.25 and calculates the maximum height
of objects inside each grid using RGB-D observation. It then assigns weights to each grid according
to the exponential of height. Finally, it runs an A* path planning algorithm on the grids and controls
agents to walk to the path midpoints sequentially. The module also provides a ‘walk one step’ option,
in which the agent only walks to the first midpoint.

13

https://openreview.net/forum?id=rkaT3zWCZ
https://openreview.net/forum?id=rkaT3zWCZ

Published as a conference paper at ICLR 2024

Perception model details Since we used RCNN-based perception models, we map each detected
instance to a ground truth object index during testing. For this purpose, we find the ground truth
object in the same category as the detected instance and has the most overlapping bounding box
with that instance, and then assign its index to the instance. Since we need to make sure the same
instance is mapped to the same index across different frames, we have to use some of the ground
truth information here. However, we keep GT information usage minimal.

Random Agent We implemented an agent that does random actions chosen from:

» Walk one step closer to the nearest target object.
» Walk one step closer to the nearest container (available in ‘wind’ scene).
* Pick up the nearest target object.

* Drop the object in hand into the nearest container in ‘wind’ scene or into the grasped
container on another hand in other scenes.

* Turn around and explore.

* Walk to a random object in sight.

Reinforcement Learning Our RL agent uses the same set of actions as the random agent. We
design the cumulative reward as the sum of the following terms

* For each object retrieved, add 20 to the reward.

* If the agent is holding something, add —10 to the reward. This penalizes the agent for
holding an object for too long.

* The distance from the agent to the nearest target or container, depending on whether it is
grasping a target.

¢ For each action done, add —0.1 to the reward. For invalid actions, add —5 instead.

The agent is given a map of 4 x W x H where W and H are the sizes of the grid map set in
advance. One channel contains binary information denoting if each grid is explored, while another
contains height information as in navigation. We also provide the object id in each grid (if any) in the
third channel and agent information in the last channel. For fire and flood scenes respectively, we
additionally provide the temperature or water level in a separate channel.

We use the PPO algorithm with learning rate 2.5 x 10~ and train for 10° steps. We did not run a
typical 106 steps for two reasons: low sample frequency due to physics simulation, and the model
collapsing to doing only the explore action after sufficient steps. We use an early-stopped training
result of our RL agent to do our evaluation.

Rule-based Agent Another set of high-level motions is used in all agents except Random and RL,
which is outlined as follows:

» walk to nearest: The agent moves towards the nearest object, with the heuristic cost
equating to the distance required to reach the destination;

 explore: This action involves the agent exploring its surroundings to discover more objects,
and the heuristic cost for this action is a constant;

* pick up nearest: When an agent is near an object, he can perform the action to pick the
nearest object up;

* drop: The agent can drop the object in hand to a container or ground;

Our rule-based agent first decides all available actions from the objects visible from the observation
or in memory. It then randomly selects a target object, walks to it, picks the target up, possibly walks
to a random container, and drops it. This process is repeated until the step threshold is reached or no
target object is visible. In the latter case, the agent does a ‘look around’ action and tries to select a
target again.

14

Published as a conference paper at ICLR 2024

My house is on fire now, | want to save as many valuable target objects as possible by picking
them up and putting them into my bag. Given the current state and my previous actions,
please help me choose the best available action to save as many valuable target objects as
possible. All objects are denoted as <name> (id), such as <table> (712), and different objects
have different values. Note objects lose their value once they start burning. The status of the
objects previously seen may not be accurate any more. The final score is measured by the total
value of the target objects | saved successfully.

Target objects:
name: bag, handbag, pocketbook, purse, value: 5, attribute: None
name: hairbrush, value: 1, attribute: None

Current State:

Target objects currently seen:

name: bag, handbag, pocketbook, purse, id: 56, value: 5, distance: 21.71, temperature: 41.81
Celsius

name: hairbrush, id: 57, value: 1, distance: 19.81, temperature: 42.43 Celsius

Target objects previously seen:
name: hairbrush, id: 64, value: 1, distance: 36.45, temperature: 56.49 Celsius
name: hairbrush, id: 66, value: 1, distance: 36.17, temperature: unknown

Previous actions:
go pick up object <bag, handbag, pocketbook, purse> (62) (success), look around (success), go
pick up object <bag, handbag, pocketbook, purse> (56) (paused after taking 100 steps)

Objects states history:

Object id 56, object location: x 242.0, y 231.5, object temperature is 37.53 Celsius at step 277,
41.81 Celsius at step 383.

Object id 57, object location: x 249.33, y 233.67, object temperature is 37.51 Celsius at step
277, 42.43 Celsius at step 383.

Object id 64, object location: x 264.17, y 284.0, object temperature is 56.49 Celsius at step 43.

Available actions:

A. go pick up object <bag, handbag, pocketbook, purse> (56)
B. go pick up object <hairbrush> (57)

C. go pick up object <hairbrush> (64)

D. go pick up object <hairbrush> (66)

E. look around

Answer: Let's think step by step.

Figure 7: An example of detailed prompt input for LLM. The example is selected from a fire scene.

15

Published as a conference paper at ICLR 2024

MCTS Agent The MCTS agent applies the Monte Carlo Tree Search (MCTS) strategy for action
planning and decision-making to rescue objects. It can memorize all the objects it has seen and
simulate the object status transition in its mind before making a decision. When faced with a decision,
the agent identifies a plan that results in the lowest heuristic cost to complete the task at hand. The
first action of this plan is then selected as the current action. In detail, in each step, the agent will
simulate 2000 times. To consider object properties and historical information, the MCTS agent
retains past observations of objects, enabling linear predictions of their status and value in the next
step. Subsequently, these object value predictions are incorporated into the heuristic cost calculation
employed by MCTS.

For each decision in MCTS, the score (s, a) and policy (s, a) for each action a and current state s
is:

Quer(s,a) = Q(s,a) + c(n(s))lJr::((e:)a)

muor(s) = argmax, Quer (s, a). 2

; (D

where n(s),n(s, a) is the visiting times for state s and action « at state s respectively, Q(s, a) is the
mean value of action a at state s, ¢(n(s)) is a function related to n(s):

c(x) = log <1+$+CO> +cq, 3

Co

Here, ¢ = 10% and ¢; = 0.1.

Greedy Agent We modify the selection of our rule-based agent to create the greedy agent. Instead
of randomly choosing a target, it chooses the target or container that has the lowest heuristic cost
calculated in the same way as the MCTS agent, to the best of the agent’s knowledge (memory and
observation). If no target object is available, we also let the agent look around.

LLM-based Agent In Figure 7, we illustrate an examplar input prompt for the LLM-based agent.
This prompt begins with an outline of the task description, prompt format, and agent’s objective. The
Target objects section enumerates the names, values, and attributes of the target objects. Current
state depicts objects the agent holds, which is empty in this example as the agent currently holds
nothing. The sections, Target objects currently seen and Target objects previously seen, represent
target objects in the present and past semantic maps, respectively. Previous actions records prior
agent actions, while Objects states history includes observed object states over time. The prompt
concludes with a list of possible actions.

Computational resources used We run most of our experiments on an Intel 19-9900k CPU and
RTX2080-Super GPU Desktop. Each trial takes no more than 15 minutes, except for LLM-based
agents where most of the time is spent on API calls. Our RL training took 20 GPU hours for each
scene.

B EXPLORING THE IMPACT OF ENVIRONMENTAL EFFECTS ON AGENTS

Table 2: The performance of baseline methods when agents are affected by hazards on the ‘without perception’
version of HAZARD. The results in the fire scene is not included because agents can hardly complete the task
when being affected by flames.

Methods Flood Wind
Value! Step] Damage| | Valuet Step|
Greedy 13.9 328.4 81.5 0.0 -
Random 28.9 293.4 74.3 4.6 1148.5
Rule 24.4 327.7 73.4 0.0 -
RL 33.2 258.9 64.5 13.1 890.6
MCTS 42.3 146.7 70.8 16.9 938.2

16

Published as a conference paper at ICLR 2024

In the default setting of HAZARD, agents are not affected by environmental hazards, including fire,
flood, and wind. To investigate how agents performs when they are impacted by environmental
hazards, we provide an additional setting supported by HAZARD as follows:

* Fire: In the fire scene, the agent has its own temperature affected by fires. By limiting the
agent’s temperature upper bound, we keep the agent away from regions occupied by fire.

* Flood and Wind: In flood and wind scenes, agents are affected by flood or wind forces.
These forces slow down the agents’ actions when agents are moving against the direction of
the flood or wind.

Table 2 shows the results in wind and flood scenes when baseline agents are influenced by environ-
mental forces. Most of baseline methods have a minor decline in performance. From these results,
we can infer that the impact of environmental factors marginally increases the difficulty level in both
flood and wind scenes. The change in fire scenes requires all baseline methods to be modified, as fire
blocking the way will greatly affect our path planning and decision making components. Therefore,
we leave this part of experiments as future work.

C ADDITIONAL TEST SETS

Table 3: The performance of baseline methods on test set with new objects. We use fire and flood scenes with
‘with perception’ version of HAZARD for this evaluation.

Methods Fire Flood

Valuet Step| Damage| | Value? Step| Damage]
Greedy 31.3 326.5 32.2 23.6 318.8 80.0
Random 423 311.9 24.5 32.5 291.6 76.9
Rule 35.8 334.3 28.0 21.9 332.3 84.9
RL 45.7 291.9 25.5 36.0 233.0 772
MCTS 69.6 164.5 16.5 322 181.1 71.2

To assess the generalization capabilities of embodied agents more comprehensively, we have intro-
duced the following two additional test sets:

1. Test Set with New Objects: This test set includes target objects that were not present in the
training set.

2. Test Set with Larger Rooms: The rooms in this test set are larger than those in the training
set.

For the test set with new objects, the ‘without perception’ version of HAZARD does not present
additional challenges, as agents are provided with ground truth labels. In this section, we propose a
method to tackle the test set with new objects in the ‘with perception’ version of HAZARD. We have
replaced the R-CNN perception module with Grounded-SAM (Kirillov et al., 2023; Liu et al., 2023b)
to generate segmentations for scenes containing new objects. As illustrated in Table 3, this powerful
perception module helps all baseline models to retain most of their effectiveness when encountering
new objects.

D TRAINING DEMONSTRATIONS GENERATION

To enable the training of imitation learning methods, we provide demonstrations on training sets
using an oracle planner with access to complete ground truth information. After obtaining the ground
truth information for all time steps, the oracle planner traverses all possible rescue plans and identifies
the one with the highest value. If multiple plans have the same value, the plan with the fewest time
steps is selected. However, this planner is imperfect because it assumes successful action execution
(e.g., unobstructed navigation).

17

	Introduction
	Related Work
	The HAZARD Challenge
	Overview
	Scenes
	Fire
	Flood
	Wind
	Procedural Scene Generation

	Benchmark details

	Building LLM-Based Pipeline for Embodied Agents
	Experiments
	Experimental Setup
	Baselines
	Experimental Results

	Conclusion
	Experiment Details
	Exploring the Impact of Environmental Effects on Agents
	Additional Test Sets
	Training Demonstrations Generation

