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ABSTRACT

We study how group symmetry helps improve data efficiency and generaliza-
tion for end-to-end differentiable planning algorithms, when symmetry appears in
decision-making tasks. Motivated by equivariant convolution networks, we treat
the path planning problem as signals over grids. We show that value iteration in
this case is a linear equivariant operator, which is a (steerable) convolution. This
extends Value Iteration Networks (VINs) on using convolutional networks for path
planning with additional rotation and reflection symmetry. Our implementation is
based on VINs and uses steerable convolution networks to incorporate symmetry.
The experiments are performed on four tasks: 2D navigation, visual navigation,
2 degrees of freedom (2DOFs) configuration space and workspace manipulation.
Our symmetric planning algorithms improve training efficiency and generalization
by large margins compared to non-equivariant counterparts, VIN and GPPN.

1 INTRODUCTION

Figure 1: Symmetry in path planning.
Our Symmetric Planning guarantees the
solutions are same up to rotations.

Model-based planning usually struggles in complex prob-
lems, where a solution is to apply planning in more struc-
tured and reduced space (Sutton and Barto, 2018; Li et al.,
2006; Ravindran and Barto, 2004; Fox and Long, 2002).
When symmetry exists in a task, it could be used for plan-
ning by effectively reducing search space. However, to
use symmetry, existing planning algorithms assumes per-
fect dynamics knowledge and requires explicitly building
equivalence classes (Fox and Long, 1999; 2002; Pochter
et al., 2011; Zinkevich and Balch, 2001; Narayanamurthy
and Ravindran, 2008), while specific task structure can po-
tentially alleviate these requirements.

We use the path planning problem as an example of sym-
metry in a task, shown in Figure 1. Given a map M (top
row), the objective is to find optimal actions A = SymPlan(M) (bottom row) to a given posi-
tion (red dots). If we rotated the map g.M (top right), its solution g.A (shortest path) can also be
connected by a rotation with the original solution A. Specifically, we say the task has symmetry
since the solutions SymPlan(g.M) = g.SymPlan(M) are related by a ⟲ 90◦ rotation. As a more
concrete example, the action in the NW corner of A is the same as the action in the SW corner of
g.A, after also rotating the arrow ⟲ 90◦. This is an example of symmetry appeared in a specific
task, which can be observed before solving the task or assuming other domain knowledge. If we
can use the rotation (and reflection) symmetry in this task, we effectively reduce the search space by
|C4| = 4 (or |D4| = 8) times. Instead, classic planning algorithms like A* would require searching
symmetric states (NP-hard) with known dynamics (Pochter et al., 2011).

Recently, symmetry in model-free deep reinforcement learning (RL) has also been studied (van der
Pol et al., 2020a; Wang et al., 2021). A core benefit of model-free RL that enables great asymptotic
performance is its end-to-end differentiability. However, it can only effectively handle pixel-level
“element-wise” symmetry, such as flipping or rotating state and action together. This motivates us
to combine the spirit of both: is it possible to enable end-to-end differentiable planning algorithms
to make use of symmetry in environments?

1



Under review as a conference paper at ICLR 2023

In this work, we propose a framework, named Symmetric Planning (SymPlan), that allows to (1)
avoid explicitly building equivalence classes for symmetric states while (2) realize planning in an
end-to-end differentiable manner. We are motivated by work in the equivariant network and geo-
metric deep learning community (Bronstein et al., 2021a; Cohen et al., 2020; Kondor and Trivedi,
2018; Cohen and Welling, 2016a;b; Weiler and Cesa, 2021): view geometric data as signals over
a base space. For example, an RGB image is a signal, written as mapping Z2 → R3. The theory
in equivariant networks allows to inject symmetry into operations between signals by equivariant
operations, such as convolutions. It satisfies our key desiderata: equivariant networks on images
do not need to explicitly consider “symmetric pixels” while guarantee symmetry properties. This
avoids searching symmetric states.

We use the intuition to study a straightforward but general task: path planning. We focus on 2D grid
and prove that value iteration (VI) for 2D path planning is equivariant under translations, rotations,
and reflections (isometries of Z2), and further show that VI for path planning is an instance of
steerable convolution network (Cohen and Welling, 2016a). In practice, we use Value Iteration
Network (VIN, (Tamar et al., 2016a)) and its variants, since they only need operations between
signals. We implement the equivariant steerable version of VIN, named SymVIN, and use a variant,
GPPN (Lee et al., 2018), to build SymGPPN. Both SymPlan methods achieve great improvement
on training efficiency and generalization performance to unseen random maps, which showcases the
advantage of exploiting symmetry from environments for planning. Our contributions include:

• We propose a framework to incorporate symmetry into planning for path planning problems (on
2D grids). We also provide the derivation in detail in appendix.

• Since the framework proves that value iteration for path planning is a steerable CNN, we imple-
ment SymVIN by replacing the 2D convolution with steerable convolution.

• Show significant improvement in training and generalization on 2D navigation and manipulation.

2 RELATED WORK

Planning with symmetries (Symmetric Planning). Symmetries widely exist in various domains,
and have been exploited in classic planning algorithms as well as model checking (Fox and Long,
1999; 2002; Pochter et al., 2011; Domshlak et al.; Shleyfman; Shleyfman et al., 2015; Sievers et al.;
Wehrle et al.; Abdulaziz et al.; Sievers et al., 2015; Sievers; Winterer et al.; Röger et al., 2018; Sievers
et al., 2019; Fišer et al., 2019). Zinkevich and Balch (2001) show the invariance of value function for
an MDP with symmetry. Narayanamurthy and Ravindran (2008) prove that finding exact symmetry
in MDPs is graph isomorphism complete. However, they are based on classic planning algorithms,
such as A*, and have a fundamental issue with exploitation of symmetries: they explicitly construct
equivalence classes of symmetric states, which explicitly represents states and introduces symmetry
breaking. Therefore, they are intractable (NP-hard) in maintaining symmetries in trajectory rollout
and forward search (for large state space and symmetry group) and incompatible with differentiable
pipelines for representation learning, hindering it from wider applications in RL and robotics.

State abstraction for detecting symmetries. Coarsest state abstraction aggregates all symmetric
states into equivalence classes, studied in MDP homomorphisms and bisimulation (Ravindran and
Barto, 2004; Ferns et al., 2004; Li et al., 2006). However, they usually require perfect MDP dy-
namics knowledge and do not scale up well, because of the complexity in maintaining abstraction
mappings (homomorphisms) and abstracted MDPs. van der Pol et al. (2020b) integrate symmetry
into model-free RL based on MDP homomorphisms (Ravindran and Barto, 2004), which avoids the
challenges in handling symmetry in forward search. Park et al. (2022) learn equivariant transition
models, but do not consider planning. Additionally, the formulation in commonly defined symmet-
ric MDPs (Ravindran and Barto, 2004; van der Pol et al., 2020a; Pochter et al., 2011; Zinkevich
and Balch, 2001) is different from our symmetry formulation for path planning, since they study
"element-wise" symmetry for every state-action pairs and require reward to be symmetric. Our re-
ward is not symmetric and we mainly study symmetry of the underlying domain (2D grid), as further
discussed in Section B.2.

Symmetries and equivariance in deep learning. Equivariant neural networks are used to incor-
porate symmetry in supervised learning for different domains (e.g. grid and sphere), symmetry
groups (e.g. translations and rotations), and group representations (Bronstein et al., 2021b). Cohen
and Welling (2016b) introduce G-CNNs, followed by Steerable CNNs (Cohen and Welling, 2016a)
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which generalizes from scalar feature fields to vector fields with induced representations. Kondor
and Trivedi (2018); Cohen et al. (2020) study theory on equivariant maps and convolutions. Weiler
and Cesa (2021) propose to solve kernel constraints under arbitrary representations for E(2) and its
subgroups by decomposing into irreducible representations, named E(2)-CNN.

Differentiable planning. Our pipeline is based on learning to plan in a neural network in a dif-
ferentiable manner. Value iteration network (VIN) (Tamar et al., 2016b) is a representative work
that performs value iteration using convolution on lattice grids, and has been further extended (Niu
et al., 2017; Lee et al., 2018; Chaplot et al., 2021; Deac et al., 2021). Other than using convolution
network, works on integrating learning and planning into differentiable networks include (Oh et al.,
2017; Karkus et al., 2017; Weber et al., 2018; Srinivas et al., 2018; Schrittwieser et al., 2019; Amos
and Yarats, 2019; Wang and Ba, 2019; Guez et al., 2019; Hafner et al., 2020; Pong et al., 2018;
Clavera et al., 2020). In the theoretical side, Grimm et al. (2020; 2021) propose to understand the
differentiable planning algorithms from value equivalence perspective.

3 BACKGROUND

Construct

Spatial MDP


Figure 2: (Left) Construction of spatial MDPs from
path planning problems, enabling G-invariant transi-
tion. (Right) A demonstration of how an action (arrow
in red circle) is rotated when a map is rotated.

Markov decision processes. We model the
path planning problems as Markov decision pro-
cesses (MDP) (Sutton and Barto, 2018). An
MDP is a 5-tuple M = ⟨S,A, P,R, γ⟩, with
state space S, action space A, transition proba-
bility function P : S × A × S → R+, reward
function R : S × A → R, and discount fac-
tor γ ∈ [0, 1]. Value functions V : S → R
and Q : S × A → R represent expected fu-
ture returns. The core component behind dy-
namic programming (DP) based algorithms in
reinforcement learning is Bellman (optimality)
equation (Sutton and Barto, 2018): V (s) =
maxaR(s, a) + γ

∑
s′ P (s

′|s, a)V (s′). Value
iteration is an instance of a dynamic programming (DP) method to solve MDPs, which iteratively
applies the Bellman (optimality) operator until convergence.

Path planning. The objective of the path planning problem is to find optimal actions for every
location that navigates to the target in shortest time. However, the original path planning problem
is not equivariant under translation due to obstacles, while VINs (Tamar et al., 2016a) implicitly
convert it to an equivalent problem, which has equivariant transition function, thus CNNs can be
used to inject translation equivariance. We visualize the construction of an equivalent “spatial MDP”
in Figure 2 (Left), where the key idea is to encode obstacle information in the transition function
from map (top left) into the reward function in the constructed spatial MDP (bottom right) as “trap”
with −∞ reward. Further details about construction are in Section E.1 and E.3. In Figure 2 (Right),
we provide a visualization of the representation π(r) of a rotation r of ⟲ 90◦, and how an action
(arrow) is rotated ⟲ 90◦ accordingly.

Value Iteration Network. Tamar et al. (2016a) proposed Value Iteration Networks (VINs) that use
a convolution network to parameterize value iteration. It jointly learns in a latent MDP on 2D grid,
which has the latent reward function R̄ : Z2 → R|A| and value function V̄ : Z2 → R, and applies
value iteration on that MDP:

Q̄
(k)
ā,i′,j′ = R̄ā,i,j +

∑
i,j

WV
ā,i,j V̄

(k−1)
i′−i,j′−j , V̄

(k)
i,j = max

ā
Q̄

(k)
ā,i′,j′ . (1)

The first equation can be written as: Q̄(k) = R̄a+Conv2D(V̄ (k−1);WV
ā ), where the 2D convolution

layer Conv2D has parameter WV .

Our final goal is to use VIN to demonstrate a principled method for incorporating symmetry in
differentiable planning. We intentionally omit equivariant network details and rather focus on the
core idea of integrating symmetry with equivariant networks. We present the necessary group theory
background in Section C and full framework and theory in Section D and E.
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Figure 3: The commutative diagram of Symmetric Value Iteration Network (SymVIN). Every row is a full
computation graph of VIN. Every column is to rotate field by ⟲ 90◦.

4 METHOD: INTEGRATING SYMMETRY INTO PLANNING BY CONVOLUTION

In this work, we aim to exploit the inherent symmetry in a broadly existed problem: path planning.
As visualized in Figure 1, the equivariance property unveils the inherent symmetry of the path plan-
ning problem on the 2D grid that we could exploit. We provide a rigorous algorithmic framework
that can provably make use of symmetry in an efficient manner. To keep approachable, we first
introduce how to use VIN as the foundation to build our algorithm: Symmetric VIN. In the next
section, we provide the explanation on why we make this choice and introduce further theoretical
guarantees on how to exploit symmetry.

How to inject symmetry? VIN uses a regular 2D convolutional network (Equation 1), which has
translation equivariance (Cohen and Welling, 2016b; Kondor and Trivedi, 2018). More concretely, a
VIN will output the same value function for the same map patches that up to 2D translation. We omit
how to characterize translation equivariance here, since it requires a different mechanism to handle
and does not decrease the search space nor reduce a path planning MDP to an easier problem.

Beyond translation, we are more interested in rotation and reflection symmetries. Intuitively, as
in Figure 1, if we find the optimal solution to a map, it automatically generalizes the solution to
all 8 transformed maps (4 rotations times 2 reflections, including identity transformation). This
can be characterized by equivariance of a planning algorithm Plan, such as value iteration VI:
g.Plan(M) = Plan(g.M), where M is a maze map, and g is the symmetry group D4 under
which 2D grid is invariant.

More importantly, symmetry also helps training of differentiable planning. Intuitively, symmetry
in path planning poses additional constraints to its search space: if the goal is in the north, go up;
if in the east, go right. In other words, the knowledge can be shared between symmetric cases, or
the path planning is effectively reduced by symmetry to a smaller one. This property can also be
depicted by equivariance of Bellman operators T , or a step of value iteration: g.T [V0] = T [g.V0].
If we use VI(M) to denote applying Bellman operators on arbitrary initialization until convergence
T ∞[V0], value iteration is also equivariant:

g.VI(M) ≡ g.T ∞[V0] = T ∞[g.V0] ≡ VI(g.M). (2)
We formally prove the equivariance in Theorem 5.1 in next section. In Theorem 5.2, we theoretical
show that value iteration in path planning is a specific type of convolution: steerable convolution
(Cohen and Welling, 2016a). Before that, we take the conclusion and first present the pipeline on
how to use Steerable CNNs (Cohen and Welling, 2016a) to integrate symmetry.

Pipeline: SymVIN. We have shown that VI is equivariant given symmetry in path planning. We
introduce our method Symmetric Value Iteration Network (SymVIN), that realizes equivariant VI by
integrating equivariance into VIN w.r.t. rotation and reflection, in addition to translation. We use
an instance of Steerable CNN: E(2)-Steerable CNNs (Weiler and Cesa, 2021) and their package
e2cnn for implementation, which is equivariant under D4 rotation and reflection, and also Z2

translation on the 2D grid Z2. In practice, to inject symmetry into VIN, we mainly need to replace
the translation-equivariant Conv2D in Eq. 1 with SteerableConv:

Q̄
(k)
ā = R̄ā + SteerableConv(V̄ ;WV ), V̄ (k) = max

ā
Q̄

(k)
ā . (3)

4



Under review as a conference paper at ICLR 2023

We visualize the full pipeline in Figure 3. The map and goal are represented as signal M : Z2 →
{0, 1}2. It will be processed by another layer and output to the core value iteration loop. After some
iterations, the final output will be used to predict the actions and compute cross-entropy loss.

It highlights the injected equivariance property: if we rotate the map (from M to g.M ), to guarantee
the final policy function to also be equivalently rotated (from A to g.A), we shall guarantee every
transformation (e.g., Qk 7→ Vk and Vk 7→ Qk+1) in value iteration to also be equivariant, for every
pair of columns. We formally justify our design in the section below and provide more technical
details in Section E.

Extension: Symmetric GPPN. Based on same spirit, we also implement a symmetric version of
Gated path planning network (GPPN (Lee et al., 2018)). It proposes to use LSTM to alleviate the
issue of unstable gradient in VINs. Although it does not strictly follow value iteration, it still follows
the spirit of steerable planning. Thus, we first obtained a fully convolutional variant of GPPN from
[Redacted for anonymous review], called ConvGPPN. It replaces the MLPs in the original LSTM
cell with convolutional layers, and then replaces convolutions with equivariant steerable convolu-
tions, resulting in a fully equivariant SymGPPN. See Appendix G.1 for details.

Why do we choose VIN-based planners? There are two reasons behind the choice.

1. The expected value operator in value iteration
∑

s′ P (s
′|s, a)V (s′) is (1) linear in value function

and (2) equivariant (shown in Theorem 5.1). Cohen et al. (2020) show that any linear equivariant
operator (on homogeneous spaces 2D grid) is a (group) convolution operator.

2. Value iteration, or Bellman (optimality) operator, consists of only maps between fields/signals
over Z (e.g., value map and transition function map). This enables to inject symmetry by en-
forcing equivariance to those maps. Take Figure 1 as example, the 4 corner states are symmetric
under transformations in D4. Equivariance enforces those 4 states to have the same value if we
rotate or flip the map. This avoids the need to find if a new state is symmetric to any existing
state, which is shown to be NP-hard (Narayanamurthy and Ravindran, 2008).

In summary, VIN satisfies both desiderata: (1) it uses convolution as the backbone, and (2) it operates
on fields. Furthermore, we find VIN is empirically and conceptually the simplest differentiable
planning algorithm that satisfies them, which leads to our decision.

5 THEORY: VALUE ITERATION IS STEERABLE CONVOLUTION

In the last section, we show how to exploit symmetry in path planning by equivariance from con-
volution via intuition. The goal of this section is to (1) connect the theoretical justification with the
algorithmic design, and (2) provide intuition for the justification. Even through we focus on a spe-
cific task, we hope that the underlying guidelines on integrating symmetry into planning are useful
for broader planning algorithms and problems as well. The complete version is in Section E.

Overview. There are numerous types of symmetry in various planning tasks. We study symmetry
in path planning as an example, because it is a straightforward planning problem, and its solu-
tions have been intensively studied in robotics and artificial intelligence (LaValle, 2006; Sutton and
Barto, 2018). However, even for this problem, the symmetry has not been effectively exploited in
its planning algorithms, such as Dijkstra’s algorithm, A*, or RRT, because of NP-hard orbit finding
(Narayanamurthy and Ravindran, 2008). Additionally, we focus on value iteration because it is
both widely use and connects closely with convolution (Cohen and Welling, 2016a).

Symmetry from tasks. If we want to exploit inherent symmetry in a task to improve planning, there
are two major steps: (1) characterize the symmetry in the task, and (2) incorporate corresponding
symmetry into the planning algorithm. The theoretical results in Section E.2 mainly characterize the
symmetry and direct us to a feasible planning algorithm.

The symmetry in tasks or MDPs can be specified by the equivariance property of the transition and
reward function, studied in Ravindran and Barto (2004); van der Pol et al. (2020b):

P̄ (s′ | s, a) = P̄ (g.s′ | g.s, g.a), ∀g ∈ G,∀s, a, s′ (4)

R̄M (s, a) = R̄g.M (g.s, g.a), ∀g ∈ G,∀s, a (5)
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Note that how the group G acts on states and actions is called group representation, and is decided
by the space S or A, which has been discussed in Equation 19 in Section E.2. We emphasize that
the equivariance property of the reward function is different from prior work (Ravindran and Barto,
2004; van der Pol et al., 2020b): in our case, the reward function encodes obstacles as well, and thus
depends on map input M . Intuitively, using Figure 1 as an example, if a position s is rotated g.s, to
find the correct original reward R before rotation, the input map M must also be rotated g.M . More
details in Section E.

Symmetry into planning. As for exploiting the symmetry in planning algorithms, we focus on value
iteration and the VIN algorithm. We first prove in Theorem 5.1 that value iteration for path planning
respects the equivariance property, motivating us to incorporate symmetry with equivariance.

Theorem 5.1 (informal). If transition is G-invariant, expected value operator
∑

s′ P (s
′|s, a)V (s′)

and value iteration are equivariant under translation, rotation, reflection on the 2D grid.

Value Update

Figure 4: Commutative diagram of a single step
of value update, showing equivariance under rota-
tions. Each grid in Q-value field correspond to all
values of a location Q(·, a).

We visualize the equivariance of the central value
update step R + γP ⋆ Vk in Figure 4. The upper
row is a value field Vk and its rotated version g.Vk
and the lower row is for Q-value fields Qk and g.Qk

(each ). The diagram shows that, if we input a ro-
tated value g.Vk, the output R + γP ⋆ g.Vk is guar-
anteed to be equal to rotated Q-field g.Qk. Addi-
tionally, rotating Q-field g.Qk has two components:
(1) spatially rotating each grid (a feature channel for
an action Q(·, a)) and (2) cyclically permuting the
channels (black arrows). The red dashed line points
how a specific grid of a Q-value grid Qk(·,South)
got rotated and permuted. We discuss the theoretical
guarantees in Theorem 5.1 and provide full proofs in
the appendix.

However, this theorem provides intuition but is in-
adequate since we do not know: how to implement
it like CNNs with multiple feature channels as in
VINs, since the first theorem only shows for scalar-
valued transition probability and value function. The
next result in Theorem 5.2 further proves that value iteration is a general form of convolution (steer-
able convolution), motivating the use of steerable CNNs by Cohen and Welling (2016a) to replace
regular CNNs in VIN. Cohen et al. (2020) prove that steerable convolution is the most general linear
equivariant map under some conditions, which value iteration satisfies.

Theorem 5.2 (informal). If transition isG-invariant, the expected value operator is expressible as a
steerable convolution ⋆, which is equivariant under translation, rotation, and reflection on 2D grid.
The value iteration (with max, +, ×) then forms a deep steerable CNN (Cohen and Welling, 2016a).

We provide a complete version of the framework in Section E and the proofs in Section F. This
justifies why we should use Steerable CNN (Cohen and Welling, 2016a) in implementation, since
the VI itself is composed of steerable convolution and additional operations (max, +, ×).

Summary. We study how to inject symmetry into VIN for (2D) path planning, and expect the task-
specific technical details are useful for two types of readers. (i) Using VIN. If one uses VIN for
differentiable planning, the resulting algorithms SymVIN or SymGPPN can be a plug-in alternative,
as a part in a larger end-to-end system. Our framework generalizes the idea behind VINs and en-
ables us to understand its applicability and restrictions. (ii) Studying path planning. The proposed
framework characterizes the symmetry in path planning, so it is possible to apply the underlying
ideas to other domains. For example, it is possible to extend to even higher-dimensional continuous
Euclidean spaces or spatial graphs (Weiler et al., 2018; Brandstetter et al., 2021). Additionally, we
emphasize that the symmetry in spatial MDPs is different from symmetric MDPs (Zinkevich and
Balch, 2001; Ravindran and Barto, 2004; van der Pol et al., 2020a), since our reward function is not
G-invariant (if not conditioning on obstacles). We further discuss this in Section B.2 and E.4.
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Figure 5: (1) Visual navigation. The environment provides a set of egocentric panoramic images for
each location, where a set of panoramic images in four directions is visualized. Then, a mapper layer
takes them as input and predict a map, visualized in subfigure (2). The predicted map is provided
to a mapper to perform path planning. (3) Workspace manipulation. The top-down view is the
workspace of a 2-DOF manipulation task. It is mapped by a mapper layer to configuration space,
shown in subfigure (4), and provided to planners as well.

6 EXPERIMENTS

We experiment VIN, GPPN and our SymPlan methods on four path planning tasks, including using
given or learned maps. The additional experiments and ablation studies are in Appendix H.

Environments and datasets. We demonstrate the idea in four path planning tasks: (1) 2D naviga-
tion, (2) visual navigation, (3) 2 degrees of freedom (2DOFs) configuration space manipulation,
and (4) 2DoFs workspace manipulation. We focus on the 2D regular grid setting for path plan-
ning, as adopted in prior work (Tamar et al., 2016a; Lee et al., 2018; Chaplot et al., 2021). For each
task, we consider using either given (2D navigation and 2-DOF configuration-space manipulation)
or learned maps (visual navigation and 2-DOF workspace manipulation). In the latter case, the plan-
ner needs to jointly learn a mapper that converts egocentric panoramic images (visual navigation) or
workspace states (workspace manipulation) into a map that the planners can operate on, as in (Lee
et al., 2018; Chaplot et al., 2021). In both cases, we randomly generate training, validation and
test data of 10K/2K/2K maps for all map sizes, to demonstrate data efficiency and generalization
ability of symmetric planning. Note that the test maps are unlikely to be symmetric to the train-
ing maps by any transformation from the symmetry groups G. For all environments, the planning
domain is the 2D regular grid S = Ω = Z2, and the action space is to move in 4 ⟲ directions1:
A = (north, west, south, east).

Methods: planner networks. We compare five planner methods, where two are our SymPlan
methods. Our two equivariant methods is based on Value Iteration Networks (VIN, (Tamar et al.,
2016a)) and Gated Path Planning Networks (GPPN, (Lee et al., 2018)). Our equivariant version
of VIN is named SymVIN. For GPPN, we first obtained a fully convolutional version, named Con-
vGPPN [Redacted for anonymous review], and furthermore SymGPPN with steerable CNNs. All
methods use (equivariant) convolutions with circular padding in planning in configuration spaces
for the manipulation tasks, except GPPN that is not fully convolutional. Chaplot et al. (2021) pro-
pose SPT based on Transformers, while integrating symmetry to Transformers is beyond steerable
convolutions, thus we do not consider it but still adopt some useful setup.

Training and evaluation. We report success rate and training curves over 3 seeds. The training
process (on given maps) follows (Tamar et al., 2016a; Lee et al., 2018), where we train 30 epochs
with batch size 32, and use kernel size F = 3 by default. The gradient clip threshold is set to 5. The
default batch size is 32, while we need to reduce for some GPPN variants, since LSTM consumes
much more memory.

6.1 PLANNING ON GIVEN MAPS

Environmental setup. In the 2D navigation task, the map and goal are randomly generated, where
the map size is {15, 28, 50}. In 2-DOF manipulation in configuration space, we adopt the setting
in (Chaplot et al., 2021) and train networks to take as input of configuration space, represented by

1Note that the MDP action space A needs to be compatible with the group action G × A → A. Since the
E2CNN package (Weiler and Cesa, 2021) uses counterclockwise rotations ⟲ as generators for rotation groups
Cn, the action space needs to be counterclockwise ⟲.
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Table 1: Averaged test success rate (%) for using 10K/2K/2K dataset for all four types of tasks.

Method Navigation Manipulation
(10K Data) 15× 15 28× 28 50× 50 Visual 18× 18 36× 36 Workspace

VIN 66.97 67.57 57.92 50.83 77.82 84.32 80.44
SymVIN 98.99 98.14 86.20 95.50 99.98 99.36 91.10

GPPN 96.36 95.77 91.84 93.13 2.62 1.68 3.67
ConvGPPN 99.75 99.09 97.21 98.55 99.98 99.95 89.88
SymGPPN 99.98 99.86 99.49 99.78 100.00 99.99 90.50

two joints. We randomly generate 0 to 5 obstacles in the manipulator workspace. Then the 2 degree-
of-freedom (DOF) configuration space is constructed from workspace and discretized into 2D grid
with sizes {18, 36}, corresponding to bins of 20◦ and 10◦, respectively. All methods are trained
using the same network size, where for equivariant versions, we use regular representations for all
layers, which has size |D4| = 8. We keep the same parameters for all methods, so all equivariant
convolution layers with regular representations will have higher embedding sizes. Due to memory
constraint, we use K = 30 iterations for 2D maze navigation, and K = 27 for manipulation. We
use kernel sizes F = {3, 5, 5} for m = {15, 28, 50} navigation, and F = {3, 5} for m = {18, 36}
manipulation.
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Figure 6: Training curves on 2D naviga-
tion with 10K of 15 × 15 maps. Faded
areas indicate standard error.

Results. We show the averaged test results for both 2D
navigation and C-space manipulation tasks on general-
izing to unseen maps (Table 1) and the training curves
for 2D navigation (Figure 6).

For VIN series, our SymVIN is much better than the
vanilla VIN in terms of generalization and training per-
formance in both environments, which learns much
faster and achieves almost perfect asymptotic perfor-
mance. As for GPPN, we found the fully convolutional
variant ConvGPPN actually works better than the orig-
inal one in (Lee et al., 2018), especially in learning
speed. However, SymVIN does fluctuate in some runs,
which seems to come from initialization and label, further studied in Appendix. SymGPPN further
boosts ConvGPPN and outperforms all other methods. One exception is GPPN learns poorly in
C-space manipulation. For GPPN, the added circular padding in the convolution encoder leads to
gradient vanishing problem.

Additionally, we found using regular representations (for D4 or C4) for state value V : Z2 → RCV

(and for Q-value) works better than trivial representations. This is counterintuitive since we expect
the V value to be scalar Z2 → R. One reason is that switching between regular (for Q) and trivial
(for V ) representation introduces unnecessary bottleneck. Depending on the choice of represen-
tations, we implement different max-pooling, with details in Appendix G.2. We also empirically
found using FC only in the final layer QK 7→ A helps stabilize the training. The ablation study on
this and more are in Appendix H.

Remark. Two symmetric planners are both significantly better than their counterparts. Notably,
we did not include any symmetric maps to the test data that symmetric planners would perform
much better. There are several potential sources of advantages: (1) SymPlan allows parameter
sharing across positions and maps and implicitly enables planning in a reduced space: every (s, a, s′)
seamlessly generalizes to (g.s, g.a, g.s′) for any g ∈ G, (2) thus it uses training data more efficiently,
(3) it reduces the space of hypothesis class and facilitate generalization to unseen maps.

6.2 PLANNING ON LEARNED MAPS: SIMULTANEOUSLY PLANNING AND MAPPING

Environmental setup. For visual navigation, we randomly generate maps using the same strategy
as before, and then render four egocentric panoramic views for each location from produced 3D
environments with Gym-MiniWorld (Chevalier-Boisvert, 2018), since it allows to generate 3D mazes
with any layout. For m × m maps, all egocentric views for a map is represented by m × m × 4
RGB images. For workspace manipulation, we randomly generate 0 to 5 obstacles in workspace
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as before. We use a mapper network to convert the 96 × 96 workspace (image of obstacles) to the
m×m 2 degree-of-freedom (DOF) configuration space (2D occupancy grid). In both environments,
the setup is similar to Section 6.1, while we only use m = 15 maps but longer 100 epochs for visual
navigation and m = 18 maps still with 30 epochs for workspace manipulation.

Methods: mapper networks and setup. For visual navigation, we implemented equivariant map-
per network based on (Lee et al., 2018). The mapper network converts every image into a 256-
dimensional embedding m×m×4×256 and then predicts map layout m×m×1. For workspace
manipulation, we use U-net (Ronneberger et al., 2015) with residual-connection (He et al., 2015)
as a mapper. For more training details, see Section H.

Results. The results are also shown in Table 1, denoted as Visual (navigation, 15 × 15) and
Workspace (manipulation, 18 × 18). In visual navigation, the trends are similar to 2D case: two
symmetric planners both train much faster. Besides vanilla VIN, all approaches finally converge to
near-optimal successful rate (around 95%), while the validation and test results show large gaps.
SymGPPN has almost no generalization gap, while VIN does not generalize well to new 3D visual
navigation environments. Our SymVIN improves test successful rate from less than 50% to 90%
and is comparable with GPPN. Since the input is raw images and a mapper is used to learn end-to-
end, it potentially causes one major source of generalization gap for some approaches. In workspace
manipulation, the results are also analogous to C-space, while ours advantages over baselines are
smaller. In our inspection, we found the mapper network is the bottleneck, since the mapping for
obstacles from workspace to C-space is nontrivial to learn.

6.3 RESULTS ON GENERALIZATION TO LARGER MAPS

To demonstrate the generalization advantage of ours methods, all methods are trained in small map
and tested in larger maps. All methods are trained on 15 × 15 with K = 30. Then we test all
methods on map size 15 × 15 through 99 × 99, averaging over 3 seeds (3 model checkpoints) for
each method and 1000 maps for each map size. IterationsK is set to

√
2 ·M , whereM is the testing

map size (x-axis). The results are shown in Figure 7.
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Figure 7: Results for testing on larger
maps, when trained on size 15 map. Our
methods outperform all baselines.

Results. SymVIN generalizes better than VIN, al-
though the variance is greater. GPPN diverges for larger
variable K since it is even worse than fixed K = 30 in
all map sizes. ConvGPPN converges, while it fluctuates
for different seeds. SymGPPN shows the best general-
ization and has small variance. In conclusion, SymVIN
and SymGPPN generalize better to different map sizes,
compare to all non-equivariant baselines.

Remark. The SymPlan models demonstrate end-to-
end planning and learning ability, potentially enabling
further applications to other tasks as a differentiable
component for planning. The additional results and ab-
lation studies are provided in Appendix H.

7 DISCUSSION

In this work, we study the symmetry in 2D path planning problem, and build a framework using the
theory of steerable CNNs to prove that value iteration in path planning is actually a form of steerable
CNN (on 2D grids). Although we focus on Z2, we can generalize to path planning on higher-
dimensional or even continuous Euclidean spaces (Weiler et al., 2018; Brandstetter et al., 2021), and
use equivariant operations on steerable feature fields (such as steerable convolutions, pooling, and
point-wise non-linearities) from steerable CNNs. We practically show that the SymPlan algorithms
exactly motivated by the theory provide great improvement. We hope the framework along with
the design of practical algorithms can provide a new pathway to exploiting symmetry structure in
differentiable planning.

9
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8 REPRODUCIBILITY STATEMENT

We provide additional details in the appendix. We also plan to open source the codebase. We briefly
outline the appendix below.

1. Additional Discussion
2. Background: Technical background and concepts on steerable CNNs and group CNNs
3. Method: we provide full details on how to reproduce it
4. Theory/Framework: we provide the complete version of the theory statements
5. Proofs: this includes all proofs
6. Experiment / Environment / Implementation details: useful details for reproducibility
7. Additional results
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A OUTLINE

We provide a table of content above.

We omit technical details on symmetry and equivariant networks in the main paper and delay them
here. Specifically, for readers interested in additional details on how to use equivariant networks
for symmetric planning, we recommend an order as follows: (1) Basics on group representations
and equivariant networks in Section C.1. (2) Practice on building SymVIN in Section D.1. (3)
Detailed formulation on SymPlan in Section E.1 and Section E.2.

The rest technical sections provide additional reading materials for the readers interested in more
in-depth account on studying symmetry in reinforcement learning and planning.

B ADDITIONAL DISCUSSION

B.1 LIMITATIONS AND EXTENSIONS

Assumption on known domain structure. As in VIN, although the framework of steerable plan-
ning can potentially handle different domains, one important hidden assumption is that the under-
lying domain Ω (state space), is known. In other words, we fix the structure of learned transition
kernels p(s′ | s, a) and estimate coefficients of it. One potential method is to use Transformers
that learn attention weights to all states in S, which has been partially explored in SPT (Chaplot
et al., 2021). Additionally, it is also possible to treat unknown MDPs as learned transition graphs,
as explored in XLVIN (Deac et al., 2021). We leave the consideration of symmetry in unknown
underlying domains for future work.

The curse of dimensionality. The paradigm of steerable planning still requires full expansion
in computing value iteration (opposite to sampling-based), since we realize the symmetric planner
using group equivariant convolutions (essentially summation or integral). Convolutions on high-
dimensional space could suffer from the curse of dimensionality for higher dimensional domains,
and are vastly under-explored. This is a primary reason why we need sampling-based planning
algorithms. If the domain (state-action transition graph) is sparsely connected, value iteration can
still scale up to higher dimensions. It is also unclear either when steerable planning would fail, or
how sampling-based algorithms could be integrated with the symmetric planning paradigm.

B.2 THE CONSIDERED SYMMETRY AND DIFFERENCE TO EXISTING WORK

We need to differentiate between two types of symmetry in MDPs. Let’s take spatial graph as
illustrative example to understand the potential symmetry from a higher level, which means that the
nodes V in the graph have spatial coordinates Zn or Rn. Our 2D path planning is a special case of
spatial graph, where the actions can only move to adjacent spatial nodes.

Let the graph denoted as G = ⟨V, E⟩. E is the set of edges connecting two states with an action.
One type of symmetry is the symmetry of the graph itself. For the grid case, it means that after D4

rotation or reflection, the map is unchanged.

Another type of symmetry comes from the isometries of the space. For a spatial graph, we can rotate
it freely in a space, while the relative positions are unchanged. For our grid case, it is shown in the
Figure 1 that rotating a map resulting in the rotated policy. However, the map or policy itself can
never be equal under any transformation in D4.

In other words, the first type is symmetry within a MDP (rely on the property of the MDP itself
M, or Aut(M)), and the second type is symmetry between MDPs (only rely on the property of the
underlying spatial space Z2, or Aut(Z2)).

Nevertheless, we could input map M and somehow treat symmetric states between MDPs as one
state. See the proofs section for more details.
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Construct

Spatial MDP


Figure 8: (Left) Construction of spatial MDPs from path planning problems, enabling G-invariant
transition. (Middle) The group acts on a feature field (MDP actions). We need to find the element
in the original field by f(r−1x), and also rotate the arrow by ρ(r), where r ∈ D4. We represent
one-hot actions as arrows (vector field, using ρstd) for visualization. (Right) Equivariance of V 7→ Q
in Bellman operator on feature fields, under ⟲ 90◦ ∈ C4 rotation, which visually explains Theo-
rem E.1. The example simulates VI for one step (see red circles; minus signs omitted) with true
transition P using ⟲ N-W-S-E actions. The Q-value field are for 4 actions and can be viewed as
either Z2 → R4 ((Cohen and Welling, 2016a; Weiler and Cesa, 2021)) or Z2 ⋊ C4 → R (on p4
group, (Cohen and Welling, 2016b)). Simplified figures are presented in the main paper.

C BACKGROUND: EQUIVARIANT NETWORKS

We omit technical details in the main paper and delay them here. This section introduces the back-
ground on equivariant networks and representation theory. The first subsection covers necessary
basics, while the rest subsections provide additional reading materials for the readers interested in
more in-depth account on the preliminaries on studying symmetry in reinforcement learning and
planning.

C.1 BASICS: GROUPS AND GROUP REPRESENTATIONS

Symmetry groups and equivarance. A symmetry group is defined as a setG together with a binary
composition map satisfying the axioms of associativity, identity, and inverse. A (left) group action
of G on a set X is defined as the mapping (g, x) 7→ g.x which is compatible with composition.
Given a function f : X → Y and G acting on X and Y , then f is G-equivariant if it commutes
with group actions: g.f(x) = f(g.x),∀g ∈ G,∀x ∈ X . In the special case the action on Y is trivial
g.y = y, then f(x) = f(g.x) holds, and we say f is G-invariant.

Group representations. We mainly use two groups: dihedral group D4 and cyclic group C4. The
cyclic group of 4 elements is C4 = ⟨r | r4 = 1⟩, a symmetry group of rotating a square. The
dihedral group D4 = ⟨r, s | r4 = s2 = (sr)2 = 1⟩ includes both rotations r and reflections s, and
has size |D4| = 8. A group representation defines how a group action transforms a vector space
G × S → S. These groups have three types of representations of our interest: trivial, regular,
and quotient representations, see (Weiler and Cesa, 2021). The trivial representation ρtriv maps
each g ∈ G to 1 and hence fixes all s ∈ S. The regular representation ρreg of C4 group sends each
g ∈ C4 to a 4×4 permutation matrix that cyclically permutes a 4-element vector, such as a one-hot 4-
direction action. The regular representation ofD4 maps each element to an 8×8 permutation matrix
which does not act on 4-direction actions, which requires the quotient representations (quotienting
out sr2 reflection part) and forming a 4× 4 permutation matrix. It is worth mentioning the standard
representation of the cyclic groups, which are 2 × 2 rotation matrices, only used for visualization
(Figure 8 middle).
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Figure 9: Visualization of the permutation representations of D4 group for every element g ∈ D4

(4 rotations each row and 2 reflections each column). They are (1) the trivial representation, (2) the
regular representation, (3) the quotient representation (quotienting out rotations), (4) the quotient
representation (quotienting out reflections).

Steerable feature fields and Steerable CNNs. The concept of feature fields is used in (equivariant)
CNNs (Bronstein et al., 2021a; Cohen et al., 2020; Kondor and Trivedi, 2018; Cohen and Welling,
2016a;b; Weiler and Cesa, 2021). The pixels of an 2D RGB image x : Z2 → R3 on a domain
Ω = Z2 is a feature field. In steerable CNNs for 2D grid, features are formed as steerable feature
fields f : Z2 → RC that associate a C-dimensional feature vector f(x) ∈ RC to each element on
a base space, such as Z2. Defined like this, we know how to transform a steerable feature field and
also the feature field after applying CNN on it, using some group (Cohen and Welling, 2016a). The
type of CNNs that operates on steerable feature fields is called Steerable CNN (Cohen and Welling,
2016a), which is equivariant to groups including translations as subgroup (Z2,+), extending (Cohen
and Welling, 2016b). It needs to satisfy a kernel steerability constraint, where the R2 and Z2 cases
are considered in (Weiler and Cesa, 2021). We consider the 2D grid as our domain Ω = S = Z2

and use G = p4m group as the running example. The group p4m = (Z2,+) ⋊ D4 (wallpaper
group) is semi-direct product of discrete translation group Z2 and dihedral group D4, see (Cohen
and Welling, 2016b;a). We visualize the transformation law of p4m on a feature field on Ω = Z2 in
Figure 8 (Middle), usually referred as induced representation (Cohen and Welling, 2016a; Weiler
and Cesa, 2021).

C.2 GROUP REPRESENTATIONS: VISUAL UNDERSTANDING

A group representation is a (linear) group action that defines how a group acts on some space.
Cohen and Welling (2016b;a); Weiler and Cesa (2021) provide more formal introduction to them in
the context of equivariant neural networks. We provide visual understanding and refer the readers to
them for comprehensive account.

To visually understand how the groupD4 acts on some vector space, we visualize the trivial, regular,
and quotient (quotienting out reflections sr2) representations, which are permutation matrices. If
we apply such a representation ρ(g)(g ∈ D4) to a vector, the elements get cyclically permuted. See
Figure 9.

The quotient representation that quotients out reflections and has dimension 4 × 4 is what we need
to use on the 4-direction action space.

C.3 GEOMETRIC DEEP LEARNING

We review another set of important concepts that motivate our formulation of steerable planning:
geometric deep learning and the theories on connecting equivariance and convolution (Bronstein
et al., 2021a; Cohen et al., 2020; Kondor and Trivedi, 2018). Bronstein et al. (2021a) use x for
feature fields while Cohen and Welling (2016a); Cohen et al. (2020); Weiler and Cesa (2021) use f .

Convolutional feature fields. The signals are taken from set C = RD on some structured domain
Ω, and all mappings from the domain to signals forms the space of C-valued signals X (Ω, C) = {f :
Ω → C}, or X (Ω) for abbreviation. For instance, for RGB images, the domain is the 2D n × n
grid Ω = Zn × Zn, and every pixel can take RGB values C = R3 at each point in the domain
u ∈ Ω, represented by a mapping x : Zn × Zn → R3. A function on images thus operates on
3n2-dimensional inputs.

It is argued that the underlying geometric structure of domains Ω plays key role in alleviating the
curse of dimensionality, such as convolution networks in computer vision, and this framework is
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named Geometric Deep Learning. We refer the readers to Geometric Deep Learning (Bronstein
et al., 2021a) for more details, and to more rigorous theories on the relation between equivari-
ant maps and convolutions in (Cohen et al., 2020) (vector fields through induced representations)
and (Kondor and Trivedi, 2018) (scalar fields through trivial representations).

Group convolution. Convolutions are shift-equivariant operations, and vice versa. This is the
special case for Ω = R, which can be generalized to any group G (that we can integrate or sum
over). The group convolution for signals on Ω is then defined2 as

(f ⋆ ψ)(g) = ⟨f, ρ(g)ψ⟩ =
∫
Ω

f(u)ψ(g−1u)du, (6)

where ψ(u) is shifted copies of a filter, usually locally supported on a subset of Ω and padded
outside. Note that although x takes u ∈ Ω, the feature map (x ⋆ ψ) takes as input the elements
g ∈ G instead of points on the domain u ∈ Ω. All following group convolution layers take G:
X (G) → X (G). In the grid case, the domain Ω is homogeneous space of the groupG, i.e. the group
G acts transitively: for any two points u, v ∈ Ω there exists a symmetry g ∈ G to reach u = gv.

Analogous to classic shift-equivariant convolutions, the generalized group convolution is G-
equivariant (Cohen et al., 2020). It is observed that ⟨x, ρ(g)θ⟩ = ⟨ρ(g−1)x, θ⟩, and from the defining
property of group representations ρ(h−1)ρ(g) = ρ(h−1g), the G-equivariance of group convolution
follows (Bronstein et al., 2021a):

(ρ(h)x ⋆ θ)(g) = ⟨ρ(h)x, ρ(g)θ⟩ =
〈
x, ρ(h−1g)θ

〉
= ρ(h)(x ⋆ θ)(g) (7)

Steerable convolution kernels. Steerable convolutions extend group convolutions to more general
setup and decouple the computation cost with the group size (Cohen and Welling, 2016a; Cohen,
2021). For example, E(2)-steerable CNNs (Weiler and Cesa, 2021) apply it for E(2) group, which
is semi-direct product of translations R2 and a fiber groupH , whereH is a group of transformations
that fixes the origin and is O(2) or its subgroups. The representation on the signals/fields is induced
from a representation of the fiber group H . Use R2 as example, a steerable kernel only needs to be
H-equivariant by satisfying the following constraint (Weiler and Cesa, 2021):

ψ(hx) = ρout (h)ψ(x)ρin (h
−1) ∀h ∈ H,x ∈ R2. (8)

C.4 STEERABLE CNNS

We still use the running example on Z2 and group p4m = Z2 ⋊D4.

Induced representations. We follow (Cohen and Welling, 2016a; Cohen et al., 2020) to use π for
induced representations. We still use feature fields over Z2 as example.

As shown in Figure 8 middle, to transform a feature field f : Z2 → RC on base Z2 with group
p4m = Z2 ⋊ D4, we need the induced representation (Cohen and Welling, 2016a; Cohen et al.,
2020). The induced representation in this case is denoted as π(g) ≜ indZ

2⋊D4

D4
ρ(g) (for all g),

which means how the group action of D4 transforms a feature field on Z2 ⋊D4.

It acts on the feature field with two parts: (1) on the base space Z2 and (2) on the fibers (feature
channels RC) by fiber group H = D4 (Cohen and Welling, 2016a; Weiler and Cesa, 2021). More
specifically, applying a translation t ∈ Z2 and a transformation r ∈ D4 to some field f , we get
π(tr)f (Cohen and Welling, 2016a; Weiler and Cesa, 2021):

f(x) 7→ [π(tr)f ] (x) ≜ ρ(r) ·
[
f
(
(tr)−1x

)]
. (9)

ρ(r) is the fiber representation that transforms the fibers RC , and (tr)−1x finds the element before
group action (or equivalently transforming the base space Z2). Thus, π only depends on the fiber
representation ρ but not the latter part, thus named induced representation by ρ.

2The definition of group convolution needs to assume that (1) signals X (Ω) are in a Hilbert space (to define
an inner product ⟨x, θ⟩ =

∫
Ω
x(u)θ(u)du) and (2) the group G is locally compact (so a Haar measure exists

and "shift" of filter can be defined).
2Technically, we still need to solve the linear equivariance constraint in Eq. 34 to enable weight-sharing for

equivariance, while Weiler and Cesa (2021) have implemented it for 2D case.

19



Under review as a conference paper at ICLR 2023

Steerable convolution vs. group convolution. The steerable convolution on Z2 The understand-
ing of this point helps to understand how a group acts on various feature fields and the design of
state space for path planning problems. We use the discrete group p4 = Z2 ⋊C4 as example, which
consists of Z2 translations and 90◦ rotations. The only difference with p4m is p4 does not have
reflections.

The group convolution with filter ψ and signal x on grid (or p ∈ Z2), which outputs signals (a
function) on group p4

[ψ ⋆ x](t, r) :=
∑
p∈Z2

ψ((t, r)−1p) x(p). (10)

A group G has a natural action on the functions over its elements; if x : G → R and g ∈ G, the
function g.x is defined as [g.x](h) := x(g−1 · h).
For example: The group action of a rotation r ∈ C4 on the space of functions over p4 is

[r.y](p, s) := y(r−1(p, s)) = y(r−1p, r−1s), (11)

where r−1p spatially rotates the pixels, r−1s cyclically permutes the 4 channels.

The G-space (functions over p4) with a natural action of p4 on it:

[(t, r).y](p, s) := y((t, r)−1 · (p, s)) = y(r−1(p− t), r−1s) (12)

The group convolution in discrete case is defined as

[ψ ⋆ x](g) :=
∑
h∈H

ψ(g−1 · h) x(h). (13)

The group convolution with filter ψ and signal x on p4 group is given by:

[ψ ⋆ x](t, r) :=
∑
s∈C4

∑
p∈Z2

ψ((t, r)−1(p, s)) x(p, s). (14)

Using the fact
ψ((t, r)−1(p, s)) = ψ(r−1(p− t, s)) = [r.ψ](p− t, s), (15)

the convolution can be equivalently written into

[ψ ⋆ x](t, r) :=
∑
s∈C4

∑
p∈Z2

[r.ψ](p− t, s) x(p, s)

 . (16)

So
(∑

p∈Z2 [r.ψ](p− t, s) x(p, s)
)

can be implemented in usual shift-equivariant convolution
CONV2D.

The inner sum
∑

p∈Z2 is equivalently for the sum in steerable convolution, and the outer sum
∑

s∈C4

implement rotation-equivariant convolution that satisfies H-steerability kernel constraint. Here, the
outer sum is essentially using the regular fiber representation of C4.

In other words, group convolution on p4 = Z2 ⋊C4 group is equivalent to steerable convolution on
base space Z2 with the fiber group of C4 with regular representation.

Stack of feature fields. Analogous to ordinary CNNs, a feature space in steerable CNNs can con-
sist of multiple feature fields fi : Z2 → Rci . The feature fields are stacked f =

⊕
i fi together

by concatenating the individual feature fields fi (along the fiber channel), which transforms under
the directly sum ρ =

⊕
i ρi of individual (fiber) representations. Every layer will be equivariant

between input and output field fin, fout under induced representations πin, πout. For a steerable con-
volution between more than one-dimensional feature fields, the kernel is matrix-valued (Cohen et al.,
2020; Weiler and Cesa, 2021).
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Figure 10: Commutative diagram for the full pipeline of SymVIN on steerable feature fields over Z2

(every grid). If rotating the input map M by πM (g) of any g, the output action A = SymVIN(M)
is guaranteed to be transformed by πA(g), i.e. the entire steerable SymVIN is equivariant under in-
duced representations πM and πA: SymVIN(πM (g)M) = πA(g)SymVIN(M). We use stacked fea-
ture fields to emphasize that SymVIN supports direct-sum of representations beyond scalar-valued.

D SYMMETRIC PLANNING IN PRACTICE

D.1 BUILDING SYMMETRIC VIN

In this section, we discuss how to achieve Symmetric Planning on 2D grids with E(2)-steerable
CNNs (Weiler and Cesa, 2021). We focus on implementing symmetric version of value iteration,
SymVIN, and generalize the methodology to make a symmetric version of a popular follow-up of
VIN, GPPN (Lee et al., 2018).

Steerable value iteration. We have showed that, value iteration for path planning problems on Z2

consists of equivariant maps between steerable feature fields. It can be implemented as an equivari-
ant steerable CNN, with recursively applying two alternating (equivariant) layers:

Qa
k(s) = Ra

m(s) + γ × [P a
θ ⋆ Vk] (s), Vk+1(s) = max

a
Qa

k(s), s ∈ Z2, (17)

where k ∈ [K] indexes iteration, Vk, Qa
k, R

a
m are steerable feature fields over Z2 output by equiv-

ariant layers, P a
θ is a learned kernel in neural network, and +,× are element-wise operations.

Implementation of pipeline. We follow the pipeline in VIN (Tamar et al., 2016a). The commutative
diagram for the full pipeline is shown in Figure 10. The path planning task is given by a m × m
spatial binary obstacle occupancy map and one-hot goal map, represented as a feature field M :
Z2 → {0, 1}2. For the iterative process Qa

k 7→ Vk 7→ Qa
k+1, the reward field RM is predicted from

map M (by a 1 × 1 convolution layer) and the value field V0 is initialized as zeros. The network
output is (logits of) planned actions for all locations3, represented asA : Z2 → R|A|, predicted from
the final Q-value field QK (by another 1×1 convolution layer). The number of iterations K and the
convolutional kernel size F of P a

θ are set based on map size M , and the spatial dimension m ×m
is kept consistent.

Building Symmetric Value Iteration Networks. Given the pipeline of VIN fully on steerable
feature fields, we are ready to build equivariant version with E(2)-steerable CNNs (Weiler and Cesa,
2021). The idea is to replace every Conv2d with a steerable convolution layer between steerable
feature fields, and associate the fields with proper fiber representations ρ(h).

VINs use ordinary CNNs and can choose the size of intermediate feature maps. The design choices
in steerable CNNs is the feature fields and fiber representations (or type) for every layer (Cohen and
Welling, 2016a; Weiler and Cesa, 2021). The main difference4 in steerable CNNs is that we also
need to tell the network how to transform every feature field, by specifying fiber representations, as
shown in Figure 10.

3Technically, it also includes values or actions for obstacles, since the network needs to learn to approximate
the reward RM (s,∆s) = −∞ with enough small reward and avoid obstacles.
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Specification of input map and output action. We first specify fiber representations for the input
and output field of the network: map M and action A. For input occupancy map and goal M :
Z2 → {0, 1}2, it does notD4 to act on the 2 channels, so we use two copies of trivial representations
ρM = ρtriv ⊕ ρtriv. For action, the final action output A : Z2 → R|A| is for logits of four actions
A = (north, west, south, east) for every location. If we use H = C4, it naturally
acts on the four actions (ordered ⟲) by cyclically ⟲ permuting the R4 channels. However, since
the D4 group has 8 elements, we need a quotient representation, see (Weiler and Cesa, 2021) and
Appendix G.

Specification of intermediate fields: value and reward. Then, for the intermediate feature fields:
Q-values Qk, state value Vk, and reward Rm, we are free to choose fiber representations, as well as
the width (number of copies). For example, if we want 2 copies of regular representation of D4, the
feature field has 2× 8 = 16 channels and the stacked representation is 16× 16 (by direct-sum).

For theQ-value fieldQa
k(s), we use representation ρQ and its size asCQ. We need at leastCA ≥ |A|

channels for all actions of Q(s, a) as in VIN and GPPN, then stacked together and denoted as
Qk ≜

⊕
aQ

a
k with dimension Qk : Z2 → RCQ∗CA . Therefore, the representation is direct-sum⊕

ρQ for CA copies. The reward is implemented similarly as RM ≜
⊕

aR
a
M and must have same

dimension and representation to add element-wisely. For state value field, we denote the choose as
fiber representation as ρV and its size CV . It has size Vk : Z2 → RCV Thus, the steerable kernel
is matrix-valued with dimension Pθ : Z2 → R(CQ∗CA)×CV . In practice, we found using regular
representations for all three works the best. It can be viewed as "augmented" state and is related to
group convolution, detailed in Appendix G.

Other operations. We now visit the remained (equivariant) operations. (1) The max operation in
Qk 7→ Vk+1. While we have showed the max operation in Vk+1(s) = maxaQ

a
k(s) is equivariant

in Theorem E.3, we need to apply max(-pooling) for all actions along the "representation channel"
from stacked representations CA ∗ CQ to one CQ. More details are in Appendix G.2. (2) The final
output layer QK 7→ A. After the final iteration, the Q-value field Qk is fed into the policy layer
with 1× 1 convolution to convert the action logit field Z2 → R|A|.

Extended method: Symmetric GPPN. Gated path planning network (GPPN (Lee et al., 2018))
proposes to use LSTM to alleviate the issue of unstable gradient in VINs. Although it does not
strictly follow value iteration, it still follows the spirit of steerable planning. Thus, we first obtained
a fully convolutional variant of GPPN from [Redacted for anonymous review], called ConvGPPN.
It replaces the MLPs in the original LSTM cell with convolutional layers, and then replaces con-
volutions with equivariant steerable convolutions, resulting in a fully equivariant SymGPPN. See
Appendix G.1 for details.

Extended tasks: planning on learned maps with mapper networks. We consider two planning
tasks on 2D grids: 2D navigation and 2-DOF manipulation. To demonstrate the ability of handling
symmetry in differentiable planning, we consider more complicated state space input: visual naviga-
tion and workspace manipulation, and discuss how to use mapper networks to convert the state input
and use end-to-end learned maps, as in (Lee et al., 2018; Chaplot et al., 2021). See Appendix H.2
for details.

D.2 PYTORCH-STYLE PSEUDOCODE

Here, we write a section on explaining the SymVIN method with PyTorch-style pseudocode, since
it directly corresponds to what we propose in the method section. We try to relate (1) existing
concepts with VIN, (2) what we propose in Section 4 and 5 for SymVIN, and (3) actual PyTorch
implementation of VIN and SymVIN aligned line-by-line based on semantic correspondence.

We provide the key Python code snippets to demonstrate how easy it is to implement SymVIN, our
symmetric version of VIN (Tamar et al., 2016a).

In the current Section 5 (SymPlan practice), we heavily use the concepts from Steerable CNNs.
Thanks to the equivariant network community and the e2cnn package, the actual implementation
is compact and closely corresponds to their non-equivariant counterpart, VIN, line-by-line. Thus,
the ultimate goal here is to illustrate that, whatever concepts we have in regular CNNs (e.g., have

22



Under review as a conference paper at ICLR 2023

1 import torch
2
3
4
5
6
7
8
9

10
11
12 # Define regular 2D convolution
13 q_conv = torch.nn.Conv2d(
14 in_channels=1,
15 out_channels=2 * q_size,
16 kernel_size=F, stride=1, bias=False
17 )

Listing 1: Define ‘expected value‘ convolution
layer for VIN.

1 import torch
2 import e2cnn
3
4 # Define the symmetry group to be D4
5 gspace = e2cnn.gspaces.FlipRot2dOnR2(N=4)
6 # Define feature (fiber) representations
7 field_type_q_in = e2cnn.nn.FieldType(
8 gspace=gspace,
9 representations=2 * q_size * [gspace.

regular_repr]
10 )
11 # Define steerable convolution
12 q_r2conv = e2cnn.nn.R2Conv(
13 in_type=field_type_q_in,
14 out_type=field_type_q_out,
15 kernel_size=F, stride=1, bias=False
16 )

Listing 2: Define ‘expected value‘ (steerable)
convolution layer for SymVIN.

whatever channels we want), we can can use steerable CNNs that incorporate desired extra symmetry
(of D4 rotation+reflection or C4 rotation).

We highlight the implementation of the value iteration procedure in VIN and SymVIN:

V := max
a

Ra + γ × P a ∗ V. (18)

Note that we use actual code snippets to avoid hiding any details.

Defining (steerable) convolution layer. First, we show the definition of the key convolution layer
for a key operation in VIN and SymVIN: expected value operator, in Listing 1 and 2.

As proved in Theorem E.2, the expected value operator can be executed by a steerable convolution
layer for (2D) path planning. This serves as the theoretical foundation on how we should use a
steerable layer here.

For the left side, a regular 2D convolution is defined for VIN. The right side defines a steerable
convolution layer, using the library e2cnn from (Weiler and Cesa, 2021). It provides high-level
abstraction for building equivariant 2D steerable convolution networks. As a user, we only need to
specify how the feature fields transform (as shown in Figure 10), and it will solve the G-steerability
constraints, process what needs to be trained for equivariant layers, etc. We use name q_r2conv
to highlight the difference.

Value iteration procedure. Second, we compare the for loop for value iteration updates in VIN
and SymVIN, where the former one has regular 2D convolution Conv2D (Listing 3), and the latter
one uses steerable convolution (Weiler and Cesa, 2021) (Listing 4).

The lines are aligned based on semantic correspondence. The e2cnn layers, including steerable
convolution layers, operate on its GeometricTensor data structure, which is to wrap a PyTorch
tensor. We denote them with _geo suffix. It only additionally needs to specify how this tensor (fea-
ture field) transforms under a group (e.g., D4), i.e. the user needs to specify a group representation
for it.

tensor_directsum is used to concatenate two GeometricTensor’s (feature fields) and
compute their associated representations (by direct-sum).

Thus, the e2cnn steerable convolution layer on the right side q_r2conv can be used as a regular
PyTorch layer, while the input and output are GeometricTensor.

We also define the max operation as a customized max-pooling layer, named q_max_pool. The
implementation is similar to the left side of VIN and needs to additionally guarantee equivariance,
and the detail is omitted.

Note that for readability, we assume we use regular representations for the Q-value field Q and the
state-value field V . They are empirically found to work the best. This corresponds to the definition
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1 # Input: maze and goal map, #iterations K
2
3
4
5
6 x = torch.cat([maze_map, goal_map], dim=1)
7
8 r = r_conv(x)
9

10 # Init value function V
11 v = torch.zeros(r.size())
12
13
14 for _ in range(K):
15 # Concat and convolve V with P
16 rv = torch.cat([r, v], dim=1)
17 q = q_conv(rv)
18
19 # Max over action channel
20 # > Q: batch_size x q_size x W x H
21 # > V: batch_size x 1 x W x H
22 q = q.view(-1, q_size, W, H)
23 v, _ = torch.max(q, dim=1)
24 v = v.view(-1, W, H)
25
26 # Output: ’q’ (to produce policy map)

Listing 3: The central value iteration procedure
for VIN. Some variable names are adjusted
accordingly for readability. W and H are width
and height for 2D map.

1 # Input: maze and goal map, #iterations K
2
3 from e2cnn.nn import GeometricTensor
4 from e2cnn.nn import tensor_directsum
5
6 x = torch.cat([maze_map, goal_map], dim=1)
7 x_geo = GeometricTensor(x, type=field_type_x)
8 r_geo = r_r2conv(x_geo)
9

10 # Init V and wrap V in e2cnn ’geometric tensor’
11 v_raw = torch.zeros(r_geo.size())
12 v_geo = GeometricTensor(v_raw, field_type_v)
13
14 for _ in range(K):
15 # Concat (direct-sum) and convolve V with P
16 rv_geo = tensor_directsum([r_geo, v_geo])
17 q_geo = q_r2conv(rv_geo)
18
19 # Max over group channel
20 # > Q: batch_size x (|G| * q_size) x W x H
21 # > V: batch_size x (|G| * 1) x W x H
22 v_geo = q_max_pool(q_geo)
23
24
25
26 # Output: ’q_geo’ (to produce policy map)

Listing 4: The equivariant steerable value
iteration procedure for SymVIN. Lines are
aligned by semantic correspondence. Definition
of other field types are similar and thus omitted.

in field_type_q_in in line 9 in the SymVIN definition listing and the comments in line 16-17
in the steerable VI procedure listing for SymVIN.

Other components are omitted.

E SYMMETRIC PLANNING FRAMEWORK

This section formulates the notion of Symmetric Planning (SymPlan). We expand the understanding
of path planning in neural networks by planning as convolution on steerable feature fields (steerable
planning). We use that to build steerable value iteration and show it is equivariant.

E.1 STEERABLE PLANNING: PLANNING ON STEERABLE FEATURE FIELDS

We start the discussion based on Value Iteration Networks (VINs, (Tamar et al., 2016a)) and use a
running example of planning on the 2D grid Z2. We aim to understand (1) how VIN-style networks
embed planning and how its idea generalizes, (2) how is symmetry structure defined in path planning
and how could it be injected into such planning networks.

Constructing G-invariant transition: spatial MDP. Intuitively, the embedded MDP in a VIN
is different from the original path planning problem, since (planar) convolutions are translation
equivariant but there are different obstacles in different regions.

We found the key insight in VINs is that it implicitly uses an MDP that has translation equivariance.
The core idea behind the construction is that it converts obstacles (encoded in transition probability
P , by blocking) into “traps” (encoded in reward R̄, by −∞ reward). This allows to use planar con-
volutions with translation equivariance, and also enables use to further use steerable convolutions.

The demonstration of the idea is shown in Figure 8 (Left). We call it spatial MDP, with different
transition and reward function M̄ = ⟨S,A, P̄ , R̄m, γ⟩, which converts the “complexity” in the
transition function P in M to the reward function R̄m in M̄. The state and action space are kept
the same: state S = Z2 and action A ⊂ Z2 to move ∆s in four directions in a 2D grid. We provide
the detailed construction of the spatial MDP in Section E.3.

Steerable features fields. We generalize the idea from VIN, by viewing functions (in RL and
planning) as steerable feature fields, motivated by (Bronstein et al., 2021a; Cohen et al., 2020;
Cohen and Welling, 2016a). This is analogous to pixels on images Ω → [255]3, and would allow
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us to apply convolution on it. The state value function is expressed as a field V : S → R, while
the Q-value function needs a field with |A| channels: Q : S → R|A|. Similarly, a policy field5

has probability logits of selecting |A| actions. For the transition probability P (s′|s, a), we can use
action to index it as P a(s′|s), similarly for reward Ra(s). The next section will show that we can
convert the transition function to field and even convolutional filter.

E.2 SYMMETRIC PLANNING: INTEGRATING SYMMETRY BY CONVOLUTION

The seemingly slight change in the construction of spatial MDPs brings important symmetry struc-
ture. The general idea in exploiting symmetry in path planning is to use equivariance to avoid
explicitly constructing equivalence classes of symmetric states. To this end, we construct value
iteration over steerable feature fields, and show it is equivariant for path planning.

In VIN, the convolution is over 2D grid Z2, which is symmetric under D4 (rotations and reflec-
tions). However, we also know that VIN is already equivariant under translations. To consider all
symmetries, as in (Cohen and Welling, 2016a; Weiler and Cesa, 2021), we understand the group
p4m = G = B ⋊ H as constructed by a base space B = G/H = (Z2,+) and a fiber group
H = D4, which is a stabilizer subgroup that fixes the origin 0 ∈ Z2. We could then formally study
such symmetry in the spatial MDP, since we construct it to ensure that the transition probability
function in M̄ is G-invariant. Specifically, we can uniquely decompose any g ∈ Z2 ⋊D4 as t ∈ Z2

and r ∈ D4 (and translations act "trivially" on action), so

P̄ (s′ | s, a) = P̄ (g.s′ | g.s, g.a) ≡ P̄ ((tr).s′ | (tr).s, r.a) , ∀g = tr ∈ Z2 ⋊D4,∀s, a, s′. (19)

Expected value operator as steerable convolution. The equivariance property can be shown step-
by-step: (1) expected value operation, (2) Bellman operator, and (3) full value iteration. First, we
use G-invariance to prove that the expected value operator

∑
s′ P (s

′|s, a)V (s′) is equivariant.

Theorem E.1. If transition isG-invariant, the expected value operator E over Z2 isG-equivariant.

The proof is in Section F.1 and visual understanding is in Figure 8 middle. However, this provides
intuition but is inadequate since we do not know: (1) how to implement it with CNNs, (2) how to use
multiple feature channels like VINs, since it shows for scalar-valued transition probability and value
function (corresponding to trivial representation). To this end, we next prove that we can implement
value iteration using steerable convolution with general steerable kernels.
Theorem E.2. If transition is G-invariant, there exists a (one-argument, isotropic) matrix-valued
steerable kernel P a(s− s′) (for every action), such that the expected value operator can be written
as a steerable convolution and is G-equivariant:

Ea[V ] = P a ⋆ V, [g.[P a ⋆ V ]](s) = [P g.a ⋆ [g.V ]](s), ∀s ∈ Z2,∀g ∈ Z2 ⋊D4. (20)

The full derivation is provided in Section F. We write the transition probability as P a(s, s′), and we
show it only depends on state difference P a(s − s′) (or one-argument kernel (Cohen et al., 2020))
using G-invariance, which is the key step to show it is some convolution. Note that we use one
kernel P a for each action (four directions), and when the group acts on E, it also acts on the action
P g.a (and state, so technically acting on S × A). Additionally, if the steerable kernel also satisfies
theD4-steerability constraint (Weiler and Cesa, 2021; Weiler et al., 2018), the steerable convolution
is equivariant under p4m = Z2 ⋊D4. We can then extend VINs from Z2 translation equivariance
to p4m-equivariance (translations, rotations, reflections). The derivation follows the existing work
on steerable CNNs (Cohen and Welling, 2016b;a; Weiler and Cesa, 2021; Cohen et al., 2020), while
this is our goal: to justify the close connection between path planning and steerable convolutions.

Steerable Bellman operator and value iteration. We can now represent all operations in Bellman
(optimality) operator on steerable feature fields over Z2 (or steerable Bellman operator) as follows:

Vk+1(s) = max
a

Ra(s) + γ × [P a ⋆ Vk] (s), (21)

where V,Ra, P̄ a are steerable feature fields over Z2. As for the operations, maxa is (max) pooling
(over group channel), +,× are point-wise operations, and ⋆ is convolution. As the second step,

5We avoid the symbol π for policy since it is used for induced representation in (Cohen and Welling, 2016a;
Weiler and Cesa, 2021).
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the main idea is to prove every operation in Bellman (optimality) operator on steerable fields is
equivariant, including the nonlinear maxa operator and +,×. Then, iteratively applying Bellman
operator forms value iteration and is also equivariant, as shown below and proved in Appendix F.4.

Proposition E.3. For a spatial MDP with G-invariant transition, the optimal value function can be
found through G-steerable value iteration.

Remark. Our framework generalizes the idea behind VINs and enables us to understand its appli-
cability and restrictions. More importantly, this allows us to integrate symmetry but avoid explicitly
building equivalence classes and enables planning with symmetry in end-to-end fashion. We empha-
size that the symmetry in spatial MDPs is different from symmetric MDPs (Zinkevich and Balch,
2001; Ravindran and Barto, 2004; van der Pol et al., 2020a), since our reward function is not G-
invariant (if not conditioning on reward). Although we focus on Z2, we can generalize to path
planning on higher-dimensional or even continuous Euclidean spaces (like R3 space (Weiler et al.,
2018) or spatial graphs in R3 (Brandstetter et al., 2021)), and use equivariant operations on steerable
feature fields (such as steerable convolutions, pooling, and point-wise non-linearities) from steerable
CNNs. We refer the readers to (Cohen and Welling, 2016b;a; Cohen, 2021; Weiler and Cesa, 2021)
for more details.

E.3 DETAILS: CONSTRUCTING PATH PLANNING IN NEURAL NETWORKS

We provide the detailed construction of doing path planning in neural networks in the Section E.
This further explains the visualization in Figure 8 left.

We use the running example of planning on the 2D grid Z2. We aim to understand (1) how VIN-
style networks embed planning and how its idea generalizes, (2) how is symmetry structure defined
in path planning and how could it be injected into such planning networks. Recall that we aim
to understand (1) how VIN-style networks embed planning and how its idea generalizes, (2) how
is symmetry structure defined in path planning and how could it be injected into such planning
networks.

Path planning as MDPs. To answer the above two questions, we first need to understand how
a VIN embeds a path planning problem into a convolutional network as some embedded MDP.
Intuitively, the embedded MDP in a VIN is different from the original path planning problem, since
(planar) convolutions are translation equivariant but there are different obstacles in different regions.

For path planning on the 2D grid S = Z2, the objective is to avoid some obstacle region Cobs ⊂ Z2

and navigate to the goal region Cgoal through free space C\Cobs. An action a = ∆s ∈ A is to
move from the current state s to a next free state s′ = s + ∆s, where for now we limit it to be in
four directions: A =. Assuming deterministic transition, the agent moves to s′ with probability 1 if
s+∆s ∈ C\Cobs. If it hits an obstacle, it stays at s if s+∆s ∈ Cobs: P (s+∆s | s,∆s) = 0 and
P (s | s,∆s) = 1. Every move has a constant negative reward R(s, a) = −1 to encourage shortest
path. We call this ground path planning MDP, a 5-tuple M = ⟨S,A, P,R, γ⟩.

Constructing embedded MDPs. However, such transition function is not translation-invariant,
i.e. at different position, the transition probabilities are not related by any symmetry: P (s′|s, a) ̸=
P (g.s′|g.s, g.a). Instead, we could always construct a "symmetric" MDP that has equivalent optimal
value and policy for path planning problems, which is implicitly realized in VINs. The idea is to
move the information of obstacles from transition function to reward function: when we hit some
action s + ∆s ∈ Cobs, we instead allow transition P̄ (s+∆s | s,∆s) = 1 (with all other s′ as 0
probability) while set a "trap" with negative infinity reward R̄m (s,∆s) = −∞. The reward function
needs the information from the occupancy map M , indicating obstacles Cobs and free space. For the
free region, the reward is still a constant R̄M (s,∆s) = −1, indicating the cost of movement.

We call it the embedded MDP, with different transition and reward function M̄ = ⟨S,A, P̄ , R̄M , γ⟩,
which converts the “complexity” in the transition function P in M to the reward function R̄m in
M̄. Here, map M shall also be treated as an “input”, thus later we will derive how the group acts
on the map g.M . It has the same optimal policy and value as the ground MDP M, since the optimal
policies in both MDPs will avoid obstacles in M or trap cells in M̄. It could be easily verified by
simulating value iteration backward in time from the goal position.
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The transition probability P̄ of the embedded MDP M̄ is for an “empty” maze and thus translation-
invariant. Note that the reward function R̄ is not not necessarily invariant. This construction is not
limited to 2D grid and generalizes to continuous state space or even higher dimensional space, such
as R6 configuration space for 6-DOF manipulation.

Note, all of this is what we use to conceptually understand how a VIN is possible to learn. The
reward cannot be negative infinity, but the network will learn it to be smaller than all desired Q-
values.

E.4 DETAILS: UNDERSTANDING SYMMETRIC PLANNING BY ABSTRACTION

How do we deal with potential symmetry in path planning? How do we characterize it? We try to
understand symmetric planning (steerable planning after integrating symmetry with equivariance)
and how it is difference classic planning algorithms, such as A*, for planning under symmetry.

Steerable planning. Recall that we generalize the idea of VIN by considering it as a planning
network that composes of mappings between steerable feature fields.

The critical point is that, convolutions directly operate on local patches of pixels and never directly
touch coordinates of pixels. In analogy, this avoids a critical drawback in other explicit planning
algorithms: in sampling-based planning, a trajectory (s1, a1, s2, a2, . . .) is sampled and inevitable
represented by states Ω = S. However, to find another symmetric state g.s, we potentially need to
compare it against all known states S ′ ⊂ S with all symmetries g ∈ G. On high level, an implicit
planner can avoid such symmetry breaking and is more easily compatible with symmetry by using
equivariant constraints.

We can use MDP homomorphism to understand this (Ravindran and Barto, 2004; van der Pol et al.,
2020b).

MDP homomorphisms. An MDP homomorphism h : M → M is a mapping from one MDP
M = ⟨S,A, P,R, γ⟩ to another M = ⟨S,A, P ,R, γ⟩ (Ravindran and Barto, 2004; van der Pol
et al., 2020b). h consists of a tuple of surjective maps h = ⟨ϕ, {αs | s ∈ S}⟩, where ϕ : S → S
is the state mapping and αs : A → A is the state-dependent action mapping. The mappings are
constructed to satisfy the following conditions:

R (ϕ(s), αs(a)) ≜ R(s, a) ,

P (ϕ (s′) | ϕ(s), αs(a)) ≜
∑

s′′∈ϕ−1(ϕ(s′))

P (s′′ | s, a) , (22)

for all s, s′ ∈ S and for all a ∈ A.

We call the reduced MDP M the homomorphic image of M under h. If h = ⟨ϕ, {αs | s ∈ S}⟩ has
bijective maps ϕ and {αs}, we call h an MDP isomorphism. Given MDP homomorphism h, (s, a)
and (s′, a′) are said to be h-equivariant if σ(s) = σ (s′) and αs(a) = αs′ (a

′).

Symmetry-induced MDP homomorphisms. Given group G, an MDP homomorphism h is said
to be group structured if any state-action pair (s, a) and its transformed counterpart g.(s, a) are
mapped to the same abstract state-action pair: (ϕ(s), αs(a)) = (ϕ(g.s), αg.s(g.a)), for all s ∈
S, a ∈ A, g ∈ G. For convenience, we denote g.(s, a) as (g.s, g.a), where g.a implicitly6 depends
on state s. Applied to the transition and reward functions, the transition function P is G-invariant
if P satisfies P (g.s′|g.s, g.a) = P (s′|s, a), and reward function R is G-invariant if R(g.s, g.a) =
R(s, a), for all s ∈ S, a ∈ A, g ∈ G.

5We avoid the symbol π for policy since it is used for induced representation in (Cohen and Welling, 2016a;
Weiler and Cesa, 2021).

6The group operation acting on action space A depends on state, since G actually acts on the product space
S × A: (g, (s, a)) 7→ g.(s, a), while we denote it as (g.s, g.a) for consistency with h = ⟨ϕ, {αs | s ∈ S}⟩.
As a bibliographical note, in van der Pol et al. (2020b), the group acting on state and action space is denoted as
state transformation Lg : S → S and state-dependent action transformation Ks

g : A → A.
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However, this only fits the type of symmetry in (van der Pol et al., 2020a; Wang et al., 2021). And
also, they cannot handle invariance to translation Z2. In our case, we need to augment the reward
function with map M input:

Rg.M (g.s, g.a) = RM (s, a), (23)

for all s ∈ S, a ∈ A, g ∈ G = p4m.

This means that, at least for rotations and reflections D4, the MDPs constructed from transformed
maps {g.M} are MDP isomorphic to each other.

E.5 NOTE: AUGMENTED STATE

We derive the relationship between group convolution and steerable convolution in Section C.4.

The augmented state Z2 ⋊ D4 → R can be similarly treated on the group p4m = Z2 ⋊ D4. It is
equivalent to using regular representation on the base space Z2 as Z2 → R8.

F SYMMETRIC PLANNING FRAMEWORK: PROOFS

We show the derivation and proofs for all theoretical results in this section.

We follow the notation in (Cohen et al., 2020) to use ⋆ for (one-argument) convolution and · for
(two-argument) multiplication:

Ea[V ](s) = [P a · V ](s) ≡
∑
s′

P a (s′ | s) · V (s′) (24)

F.1 PROOF: EQUIVARIANCE OF SCALAR-VALUED EXPECTED VALUE OPERATION

We present the Theorem E.1 here and its formal definition.

Theorem F.1. If transition is G-invariant, the expected value operator E over Z2 is G-equivariant:

[g.Ea[V ]] (s) = [Eg.a[g.V ]] (s), for all g = tr ∈ Z2 ⋊D4.

Proof. E is the expected value operator. We also write the transition probability as

Recall the G-invariance condition of transition probability, the group element g acts on s, a, s′:

P̄ (s′ | s, a) = P̄ (g.s′ | g.s, g.a) ≡ P̄ ((tr).s′ | (tr).s, r.a) , ∀g = tr ∈ Z2 ⋊D4,∀s, a, s′, (25)

where we can uniquely decompose any g ∈ Z2 ⋊ D4 as t ∈ Z2 and r ∈ D4 (Cohen and Welling,
2016a). Note that, since the action is the difference between states a = ∆s = s′ − s, the translation
part t acts trivially on it, so g.a = (tr).a = r.a for all r ∈ D4.

We transform the feature field and show its equivariance:

[g.Ea[V ]](s) ≡ [g.[P a · V ]](s) (26)

≡
∑
s′

ρtriv(r)P
a
(
s′ | (tr)−1.s

)
· V (s′) (27)

=
∑
s′

ρtriv(r)P
r.a ((tr).s′ | s) · V (s′) (28)

=
∑
s̃′

ρtriv(r)P
r.a (s̃′ | s) · V

(
(tr)−1s̃′

)
(29)

=
∑
s̃′

P r.a (s̃′ | s) · ρtriv(r)V
(
(tr)−1s̃′

)
(30)

≡ [P r.a · [g.V ]](s) (31)
≡ [Er.a[g.V ]](s). (32)
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We use the trivial representation ρtriv(g) = Id1×1 = 1 to emphasize that (1) the group element g acts
on feature fields P a and V , and (2) both feature fields P a and V are scalar-valued and correspond
to the one-dimensional trivial representation of r ∈ D4.

In the third line, we use the G-invariance of transition probability.

The fourth line uses substitution s̃′ ≜ (tr).s′, for all s′ ∈ Z2 and tr ∈ Z2⋊D4. This is an one-to-one
mapping and the summation does does not change.

F.2 PROOF: expected value operator AS STEERABLE CONVOLUTION

In this section, we derive how to cast expected value operator as steerable convolution. The equiv-
ariance proof is in the next section.

In Theorem E.1, we show equivariance of value iteration in 2D path planning, while it is only for
the case that feature fields P a and V are scalar-valued and correspond to one-dimensional trivial
representation of r ∈ D4.

Here, we provide the derivation for Theorem E.2 show that steerable CNNs (Cohen and Welling,
2016a) can achieve value iteration since we could construct the G-invariant transition probability
as a steerable convolutional kernel. This generalizes Theorem E.1 from scalar-valued kernel (for
transition probability) with trivial representation to matrix-valued kernel with any combination of
representations, enabling using stack (direct-sum) of feature fields and representations.

We state Theorem E.2 here for completeness:

Theorem F.2. If transition is G-invariant, there exists a (one-argument, isotropic) matrix-valued
steerable kernel P a(s− s′) (for every action), such that the expected value operator can be written
as a steerable convolution and is G-equivariant:

Ea[V ] = P a ⋆ V, [g.[P a ⋆ V ]](s) = [P g.a ⋆ [g.V ]](s), ∀s ∈ Z2,∀g ∈ Z2 ⋊D4. (33)

Steerable kernels. In our earlier definition, ψa and fin are transition probability and value func-
tion, which are both real-valued ψa : Z2 → R, fin : Z2 → R. However, this is a special case which
corresponds to use one-dimensional trivial representation of the fiber group D4. In the general case
in steerable CNNs (Cohen and Welling, 2016a; Weiler and Cesa, 2021), we can choose the feature
fields ψa : Z2 → RCout×Cin and fin : Z2 → RCin and their fiber representations, which we will
introduce the group representations of D4 and how to choose in practice in the next section.

Weiler et al. (2018) show that convolutions with steerable kernels ψa : Z2 → RCout×Cin is the most
general equivariant linear map between steerable feature space, transforming under ρin and ρout. In
analogy to the continuous version7 in (Weiler and Cesa, 2021), the convolution is equivariant iff the
kernel satisfies a H-steerability kernel constraint:

ψa(hs) = ρout(h)ψ
a(s)ρin(h

−1) h ∈ H = D4, s ∈ Z2. (34)

Expected value operation as steerable convolution. The foremost step is to show that the ex-
pected value operation is a form of convolution and is also G-equivariant. By definition, if we want
to write a (linear) operator as a form of convolution, we need one-argument kernel. Cohen et al.
(2020) show that every linear equivariant operator is some convolution and provide more details.
For our case, this is formally shown as follows.

Proposition F.3. If the transition probability is G-invariant, it can be expressed as an (one-
argument) kernel P a(s′|s) = P a(s′ − s) that only depends on the difference s′ − s.

Proof. The form of our proof is similar to (Cohen et al., 2020), while its direction is different from
us. We construct a MDP such that the transition probability kernel is G-invariant, while Cohen et al.
(2020) assume the linear operator ψ · f is linear equivariant operator on a homogeneous space,
and then derive that the kernel is G-invariant and expressible as one-argument kernel. Additionally,

7Weiler and Cesa (2021) use letter G to denote the stabilizer subgroup H ≤ O(2) of E(2).
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our kernel ψa(s, s′) and ψa(s − s′) both live on the base space B = Z2 but not on the group
G = Z2 ⋊D4.

We show that the transition probability only depends on the difference ∆s = s′−s, so we can define
the two-argument kernel P a(s′|s) on S ×S by an one-argument kernel P a(s′− s) (for every action
a) on S = Z2, without loss of generality:

P a(s′ − s) ≡ P a(0, s′ − s) (35)

= P g.a(g.0, g.(s′ − s)) (36)

= P r.a((rs).0, (rs).(s′ − s)) (37)

= P r.a(r.s, r.(s′ − s+ s)) (38)

= P r.a(r.s, r.s′) (39)

= P a(s, s′), (40)

where the second step usesG-invariance with g = sr, understood as the composition of a translation
s ∈ Z2 and a transformation in r ∈ D4.

Additionally, we can also derive that, for the one-argument kernel, if we rotate state difference
r.(s′ − s), the probability is the same for rotated action r.a.

P a(s′ − s) = P r.a(r.(s′ − s)), for all r ∈ D4, s, s
′ ∈ Z2 (41)

The expected value operator with two-argument kernel can be then written as

E[V ](s) ≡ [P a · V ](s) =
∑
s′

P a(s′|s)V (s′) =
∑
s′

P a(s′ − s)V (s′) ≡ [P a ⋆ V ](s). (42)

Note that we do not differentiate between cross-correlation (s′ − s) and convolution (s− s′).

F.3 PROOF: EQUIVARIANCE OF expected future value

Our derivation follows the existing work on group convolution and steerable convolution net-
works (Cohen and Welling, 2016b;a; Weiler and Cesa, 2021; Cohen et al., 2020). However, the
goal of providing the proof is not just for completeness, but instead to emphasize the close connec-
tion between how we formulate our planning problem and the literature of steerable CNNs, which
explains and justifies our formulation.

Additionally, there are several subtle differences worth to mention. (1) Throughout the paper, we
do not discuss kernels or fields that live on a group G to make it more approachable. Nevertheless,
group convolutions are a special case of steerable convolutions with fiber representation ρ as regular
representation. (2) We use Z2 as running example. Some prior work uses R2 or Z2, but they are
merely just differ in integral and summation. (3) The definition of convolution and cross-correlation
might be defined and used interchangeably in the literature of (equivariant) CNNs.

Notation. To keep notation clear and consistent with the literature (Cohen and Welling, 2016a;
Cohen et al., 2020; Weiler and Cesa, 2021), we denote the transition probability P̄ (s′|s, a) ≜
ψa(s, s′) ∈ R (one kernel for an action) and value function as V (s′) ≜ fin(s

′) ∈ R, and the
resulting expected value as faout(s) =

∑
s′ ψ

a(s, s′)fin(s
′) (given a specific action a).

Transformation laws: induced representation. For some group acting on the base space Z2, the
signals f : Z2 → Rc are transformed like Cohen and Welling (2016a):

[π(g)f ](x) = f(g−1x) (43)

Apply a translation t and a transformation r ∈ D4 to f , we get π(tr)f . The transformation law on
the input space fin is (Cohen and Welling, 2016a; Weiler and Cesa, 2021):

f(x) 7→ [π(tr)f ] (x) ≜ ρ(r) ·
[
f
(
(tr)−1x

)]
(44)
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The transformation law of the output space after applying πin on input fin is given by Cohen and
Welling (2016a):

[ψ ⋆ f ] (x) 7→ [ψ ⋆ [π(tr)f ]] (x) ≜ ρ(r) ·
[
[ψ ⋆ f ]

(
(tr)−1x

)]
. (45)

In our case, the output space is faout : Z2 → RCout and the input space is fin : Z2 → RCin . Intuitively,
if we rotate a vector field (fibers represent arrows) by the induced representation π(tr) of f , we also
need to rotate the direction of arrows by ρ(r), r ∈ D4.

Equivariance. Now we prove the steerable convolution is equivariant:

[ψa ⋆ [πin(g)fin]] (s) = [πout(g)f
a
out] (s) ∀s ∈ S,∀g ∈ G. (46)

The induced representation of input field fin is induced by the fiber representation ρin, expressed by
πin ≜ indGHρin = indZ

2⋊D4

D4
ρin, where ρin is the fiber representation of group H = D4. The induced

representation of output field πout is analogously from ρout.

Weiler and Cesa (2021) proved equivariance of steerable convolutions for R2 case, while we include
the proof under our setup for completeness. The definition in (Weiler and Cesa, 2021) uses a form
of cross-correlation and we use convolution, while it is usually referred to interchangeably in the
literature and is equivalent. Cohen and Welling (2016a); Weiler et al. (2018); Weiler and Cesa
(2021); Cohen et al. (2020); Cohen (2021) provide more details and we refer the readers to them for
more comprehensive account.

The convolution on discrete grids Z2 with input field fin transformed by the induced representation
πin gives:

[ψa ⋆ [πin(rt)fin]](s) =
∑
s′∈Z2

ψa(s− s′)[πin(rt)fin](s
′)

=
∑
s′∈Z2

ψa(s− s′)ρin(r)fin(r
−1(s′ − t))

=
∑
s′∈Z2

ρout(r)ψ
a(r−1(s− s′))ρin(r)

−1ρin(r)fin(r
−1(s′ − t))

= ρout(r)
∑
s′∈Z2

ψa(r−1(s− s′))fin(r
−1(s′ − t))

= ρout(r)
∑
s̃∈Z2

ψa(r−1(s− t)− s̃)fin(s̃)

= ρout(r)fout(r
−1(s− t))

= [πout(rt)f
a
out] (s),

(47)

where s′ ∈ S = Z2, and thus satisfies the equivariance condition:

[ψa ⋆ [πin(rt)fin]] (s) = [πout(rt)f
a
out] (s),∀s ∈ Z2,∀rt ∈ Z2 ⋊D4. (48)

1. Definition of ⋆
2. Transformation law of the induced representation πin (Cohen and Welling, 2016a; Weiler

and Cesa, 2021)
3. Kernel steerability ψa(s) = ρout(h)ψ

a(h−1s)ρin(h
−1) (Weiler and Cesa, 2021)

4. Move and cancel
5. Substitutes s̃ = r−1(s′ − t), r−1s′ = r−1t + s̃, so r−1(s − s′) = r−1(s − t) − s̃.

Since r ∈ D4 and s − s′ ∈ Z2, the result is still in p4m, it is one-to-one correspondence
p4m×Z2 → Z2, and the summation does not change. Weiler and Cesa (2021) analogously
considers the continuous case, where D4 is orthogonal transformations so the Jacobian is
always 1.

6. Definition of ⋆
7. Transform law of the induced representation πout
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Figure 11: We attach a copy of the commutative diagram of SymVIN to show the equivariance
of steerable value iteration. Commutative diagram for the full pipeline of SymVIN on steerable
feature fields over Z2 (every grid). If rotating the input map M by πM (g) of any g, the output action
A = SymVIN(M) is guaranteed to be transformed by πA(g), i.e. the entire steerable SymVIN is
equivariant under induced representations πM and πA: SymVIN(πM (g)M) = πA(g)SymVIN(M).
We use stacked feature fields to emphasize that SymVIN supports direct-sum of representations
beyond scalar-valued.

F.4 PROOF: EQUIVARIANCE OF STEERABLE VALUE ITERATION

As the third and final step, we would like to show that the full steerable value iteration pipeline
is equivariant under G = Z2 ⋊ D4. We need to show that every operation in the steerable value
iteration is equivariant.

The key is to prove that maxa is an equivariant non-linearity over feature fields, which follows
Section D.2 in (Weiler and Cesa, 2021).

Step 1: V 7→ Q. Here, we prove the equivariance of Qa
k(s) = R̄a

M (s) + γ ×
[
P̄ a
θ ⋆ Vk

]
(s). First,

let the group acts on both sides:

Qa
k(s) = R̄a

M (s) + γ ×
[
P̄ a
θ ⋆ Vk

]
(s) (49)

⇐⇒ [πout(g)Q
a
k](s) = [πout(g)R̄

a
M ](s) + γ ×

[
πout(g)

[
P̄ a
θ ⋆ Vk

]]
(s) (50)

⇐⇒ [πout(g)Q
a
k](s) = [πout(g)R̄

a
M ](s) + γ ×

[
P̄ a
θ ⋆ [πin(g)Vk]

]
(s) (51)

⇐⇒ Qg.a
k (g−1s) = R̄g.a

g.M (g−1s) + γ ×
[
P̄ g.a
θ ⋆ Vk

]
(g−1s) (52)

⇐⇒ Qã
k(s̃) = R̄ã

πM(g)M (s̃) + γ ×
[
P̄ ã
θ ⋆ Vk

]
(s̃) (53)

The the last step we substitute s̃ = g−1s and ã = g.a.

M : Z2 → {0, 1}2 is the concatenation of maze occupancy map and goal map, which also lives on
Z2. We use two copies of trivial representations as fiber representation ρM, and denote the induced
representation of the field M as πM.

Then, we prove the equivariance: if we transform the occupancy map (and goal map), the value
iteration should have both input V and output Q transformed. Since this is an iterative process, the
only input to the value iteration is actually the occupancy map M : Z2 → {0, 1}2.

Before that, we observe that the reward also has G-invariance when we have map as input:

R̄a
M (s) = R̄g.a

g.M (g.s). (54)

Additionally, since the reward R̄a
M (s) means the reward at given position in mapM after executing

action a, when we transform the map, we also need to transform the action: R̄g.a
g.M (s).
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Since it is iterative process, let the Q-map being transformed by g:

[g.Qa
k](s) = Qa

k(g
−1s) (55)

= R̄a
M (g−1s) + γ ×

[
P̄ a
θ ⋆ Vk

]
(g−1s) (56)

= R̄g.a
g.M (s) + γ ×

[
P̄ a
θ ⋆ Vk

]
(g−1s) (57)

= R̄g.a
g.M (s) + γ ×

[
P̄ g.a
θ ⋆ [g.Vk]

]
(s) (58)

The second last step uses the G-invariance condition R̄a
M (s) = R̄g.a

g.M (g.s). The last step uses the
equivariance of steerable convolution.

It should be understood as: (1) transforming map g.M and action g.a, is always equal to (2) trans-
forming values [g.Qa

k] and [g.Vk]. This proves the equivariance visually shown in Figure 11.

Step 2: Q 7→ V . The second step is to show for Vk+1(s) = maxaQ
a
k(s).

Intuitively, we sum over every channel of each representation. For example, if we have N copies
of the regular representation with size |D4| = 8, we transform the tensor (N × 8) × m × m to
(1 × 8) × m × m along the N channel. Thus, how we use the 8 × 8 regular representation to
transform the N × 8 channels still holds for 1× 8, which implies equivariance. The m×m spatial
map channels form the base space Z2 and are transformed as usual (spatially rotated).

Weiler and Cesa (2021) provide detailed illustration and proofs for equivariance of different types
of non-linearities.

Step 3: multiple iterations. Since each layer is equivariant (under induced representations), Co-
hen and Welling (2016b); Kondor and Trivedi (2018); Cohen et al. (2020) show that stacking mul-
tiple equivariant layers is also equivariant. Thus, we know iteratively applying step 1 and 2 (equiv-
ariant steerable Bellman operator) is also equivariant (steerable value iteration).

G IMPLEMENTATION DETAILS

G.1 IMPLEMENTATION OF SYMGPPN

ConvGPPN [Redacted for anonymous review] is inspired by VIN and GPPN. To avoid the training
issues in VIN, GPPN proposes to use LSTM to alleviate them. In particular, it does not use max
pooling in the VIN. Instead, it uses a CNN and LSTM to mimic the value iteration process. Con-
vGPPN, on the other hand, integrates CNN into LSTM, resulting in a single component convLSTM
for value iteration. We found that ConvGPPN performs better than GPPN in most cases. Based on
ConvGPPN, SymGPPN replaces each convolutional layer with steerable convolutional layer.

G.2 IMPLEMENTATION OF max OPERATION

Here, we consider how to implement the max operation in Vk+1(s) = maxaQ
a
k(s). The max is

taken over every state, so the computation mainly depends on our choice of fiber representation.

For example, if we use trivial representations for both input and output, the input would be Qk :
Z2 → R1∗CA and the output is state-value Vk : Z2 → R. This recovers the default value iteration
since we take max over RCA vector.

In steerable CNNs, we can use stack of fiber representations. We can choose from regular-regular,
trivial-trivial, and regular-trivial (trivial-regular is not considered).

We already covered trivial representations for both input and output, they would be Qk : Z2 →
RCQ∗CA and Vk : Z2 → RCV with CQ = CV = 1, since every channel would need a trivial
representation.

If we use regular representation for Q and trivial for V , they are Qk : Z2 → RCQ∗CA and Vk :
Z2 → RCV with CQ = |D4| = 8 and CV = 1. It degenerates that we just take max over all
CQ ∗ CA channels.
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For both using regular representations, we need to make sure they use the same fiber group (such as
D4 or C4), so CQ = CV . If using D4, we have Qk : Z2 → R8∗CA and Vk : Z2 → R8, and we
take max over every CA channels (for every location) and have 8 channels left, which are used as
Z2 → R8.

Empirically, we found using regular representations for both works the best overall.

H EXPERIMENT DETAILS AND ABLATION STUDY

H.1 ENVIRONMENT SETUP

Action space. Note that the MDP action space A needs to be compatible with the group action
G × A → A. Since the E2CNN package (Weiler and Cesa, 2021) uses counterclockwise rotations
as generators for rotation groups Cn, the action space needs to be counterclockwise.

We show the figures for Configuration-space and Workspace manipulation in Figure 12, and the
figures for 2D and Visual Navigation in Figure 13.

Figure 12: A set of visualization for a 2-joint manipulation task. The obstacles are randomly gener-
ated. (1) The 2-joint manipulation task shown in top-down workspace with 96× 96 resolution. This
is used as the input to the Workspace Manipulation task. (2) The predicted configuration space in
resolution 18 × 18 from a mapper module, which is jointly optimized with a planner network. (3)
The ground truth configuration space from a handcraft algorithm in resolution 18× 18. This is used
as input to the Configuration-space (C-space) Manipulation task and as target in the auxiliary
loss for the Workspace Manipulation task (as done in SPT (Chaplot et al., 2021)). (4) The predicted
policy (overlaid with C-space obstacle for visualization) from an end-to-end trained SymVIN model
that uses a mapper to take the top-down workspace image and plans on a learned map. The red block
is the goal position.

Manipulation. For planning in configuration space, the configuration space of the 2 DoFs ma-
nipulator has no constraints in the {0, π} boundaries, i.e., no joint limits. To reflect this nature
of the configuration space in manipulation tasks, we use circular padding before convolution op-
eration. The circular padding is applied to convolution layers in VIN, SymVIN, ConvGPPN, and
SymGPPN. Moreover, in GPPN, there is a convolution encoder before the LSTM layer. We add the
circular padding in the convolution layers in GPPN as well.

In 2-DOF manipulation in configuration space, we adopt the setting in (Chaplot et al., 2021) and
train networks to take as input of configuration space, represented by two joints. We randomly
generate 0 to 5 obstacles in the manipulator workspace. Then the 2 degree-of-freedom (DOF) con-
figuration space is constructed from workspace and discretized into 2D grid with sizes {18, 36},
corresponding to bins of 20◦ and 10◦, respectively.

We allow each joint to rotate over 2π, so the configuration space of 2-DOF manipulation forms a
torus T2. Thus, the both boundaries need to be connected when generating action demonstrations,
and (equivariant) convolutions need to be circular (with padding mode) to wrap around for all meth-
ods. We allow each joint to rotate over 2π, so the both boundaries in configuration space need
to be connected when generating action demonstrations, and (equivariant) convolutions need to be
circular (with padding mode) to wrap around for all methods.

34



Under review as a conference paper at ICLR 2023

Figure 13: A set of visualization for 2D navigation and visual navigation. The maze is randomly
generated. (1, top) The 3D visual navigation environment generated by an illustrative 7 × 7 map,
where we highlight the panoramic view at a position (5, 3) with four RGB images (resolution 32×
32 × 3). The entire observation tensor for this 7 × 7 example visual navigation environment is
7 × 7 × 4 × 32 × 32 × 3. This is used as the input to the Visual Navigation task. (2) Another
predicted map in resolution 15 × 15 from a mapper module, which is jointly optimized with a
planner network. We show the visualization a different map used in actual training. (3) The ground
truth map in resolution 15× 15. This is also used as input to the 2D Navigation task and as target in
the auxiliary loss for the Visual Navigation task (as done in GPPN). (4) The predicted policy from
an end-to-end trained SymVIN model that uses a mapper to take the observation images (formed as
a tensor) and plans on a learned map. The red block is the goal position.

H.2 BUILDING MAPPER NETWORKS

For visual navigation. For navigation, we follow the setting in GPPN (Lee et al., 2018). The input
ism×m panoramic egocentric RGB images in 4 directions of resolution 32×32×3, which forms a
tensor of m×m×4×32×32×3. A mapper network converts every image into a 256-dimensional
embedding and results in a tensor in shapem×m×4×256 and then predicts map layoutm×m×1.

For the first image encoding part, we use a CNN with first layer of 32 filters of size 8× 8 and stride
of 4 × 4, and second layer with 64 filters of size 4 × 4 and stride of 2 × 2, with a final linear layer
of size 256.

The second obstacle prediction part, the first layer has 64 filters and the second layer has 1 filter, all
with filter size 3× 3 and stride 1× 1.

For workspace manipulation. For workspace manipulation, we use U-net Ronneberger et al.
(2015) with residual-connection He et al. (2015) as a mapper, see Figure.14. The input is 96 ×
96 top-down occupancy grid of the workspace with obstacles, and the target is to output 18 × 18
configuration space as the maps for planning.
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Figure 14: The U-net architecture we used as manipulation mapper.

During training, we pre-train the mapper and the planner separately for 15 epochs. Where the map-
per takes manipulator workspace and outputs configuration space. The mapper is trained to mini-
mize the binary cross entropy between output and ground truth configurations space. The planner is
trained in the same way as described in Section 6.1. After pre-training, we switch the input to the
planner from ground truth configuration space to the one from the mapper. During testing, we fol-
low the pipeline in Chaplot et al. (2021) that the mapper-planner only have access to the manipulator
workspace.

H.3 TRAINING SETUP

We try to mimic the setup in VIN and GPPN (Lee et al., 2018).

For non-SymPlan related parameters, we use learning rate of 10−3, batch size of 32 if possible
(GPPN variants need smaller), RMSprop optimizer.

For SymPlan parameters, we use 150 hidden channels (or 150 trivial representations for SymPlan
methods) to process the input map. We use 100 hidden channels for Q-value for VIN (or 100 regular
representations for SymVIN), and use 40 hidden channels for Q-value for GPPN and ConvGPPN
(or 40 regular representations for SymGPPN on 15×15, and 20 for larger maps because of memory
constraint).

H.4 VISUALIZATION OF LEARNED MODELS

We visualize a trained VIN and a SymVIN, evaluated on a 15× 15 map and its rotated version. For
non-symmetric VIN in Figure 15, the learned policy is obviously not equivariant under rotation.

We also visualize SymVIN on larger map sizes: 28×28 and 50×50, to demonstrate its performance
and equivariance.

Figure 15: A trained VIN evaluated on a 15× 15 map and its rotated version. It is obvious that the
learned policy is not equivariant under rotation.
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Figure 16: A trained SymVIN evaluated on a 15× 15 map and its rotated version.

Figure 17: A fully trained SymVIN evaluated on a 28× 28 map and its rotated version.

Figure 18: A fully trained SymVIN evaluated on a 50× 50 map and its rotated version.

H.5 ABLATION STUDY

Additional training curves. We also provide other training curves that we only show test numbers
in the main text.
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Figure 19: (Left) Accuracy evaluated on unseen test maps. The x-axis is the width of the map, and
the y-axis is the accuracy, reported on every map size and every size and every chose symmetry
group G. (Right) Visual navigation 15× 15 with 10K data.
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Figure 20: Training curves on (Left) 2D navigation with 10K of 15×15 maps and on (Right) 2DoFs
manipulation with 10K of 18× 18 maps in configuration space. Faded areas indicate standard error.
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Figure 21: Training curves for (Left) 28× 28 and (Right) 50× 50.
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Figure 22: Training curves for 15×15 2D navigation 1K data (Left) training and (Right) validation
successful rate.

Training efficiency with less data. Since the supervision is still dense, we experiment on training
with even smaller dataset to experiment in more extreme setup. We experiment how symmetry may
affect the training efficiency of Symmetric Planners by further reducing the size of training dataset.
We compare on two environments: 2D navigation and visual navigation, with training/validation/test
size of 1K/200/200, for all methods.

Choose of symmetry groups for navigation. One important benefit of partially equivariant net-
work is that, we do not need to design the group representation of MDP action space ρA(g) for
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Figure 23: Training curves for 15 × 15 visual navigation 1K data (Left) training and (Right) vali-
dation successful rate.

Table 2: Fiber representations

(Fiber representation) SymVIN

Default 98.45
Hidden: trivial to regular 99.07

State-value ρV : regular to trivial 63.08
Q-value ρQ: regular to trivial 21.30

ρQ and ρV : both trivial 2.814

different group or action space. Thus, we experiment several G-equivariant variants with different
group equivariance: (discrete rotation group) C2, C4, C8, C16, and (dihedral group) D2, D4, D8, all
based on E(2)-steerable CNN (Weiler and Cesa, 2021). For all intermediate layers, we use regular
representations ρreg(g) of each group, followed by a final policy layer with non-equivariant 1 × 1
convolution.

The results are reported in the Figure 19 (left). We only compare VIN (denoted as "none" symmetry)
against our E(2)-VIN (other symmetry group option) on 2D navigation with 15× 15 maps.

In general, the planners equipped with any G group equivariance outperform the vanilla non-
equivariant VIN, and D4-equivariant steerable CNN performs the best on most map sizes. Addi-
tionally, since the environment has actions in 8 directions (4 diagonals), C8 or D8 groups seem to
take advantage of that and have slightly higher accuracy on some map sizes, while C16 is over-
constrained compared to the true symmetry G = D4 and be detrimental to performance. The
non-equivariant VIN also experiences higher variance on large maps.

Choosing fiber representations. As we use steerable convolutions (Weiler and Cesa, 2021) to
build symmetric planners, we are free to choose the representations for feature fields, where interme-
diate equivariant convolutional layers will be equivariant between them f(ρin(g)x) = ρout(g)f(x).
We found representations for some feature fields are critical to the performance: mainly V : S → R
and Q : S → R|A|.

We use the best setting as default, and ablate every option. As shown in Table 2, changing ρV or ρQ
to trivial representation would result in much worse results.

Fully vs. Partially equivariance for symmetric planners. One seemingly minor but critical
design choice in our SymPlan networks is the choice of the final policy layer, which maps Q-values
S → R|A| to policy logits S → R|A|. Fully equivariant is expected to perform better, but it has some
points worth to mention. (1) We experience unstable training at the beginning, where the loss can
go up to 106 in the first epoch, while we did not observe it in non-equivariant or partially equivariant
counterparts. However, this only slightly affects training.

In summary, we found even though fully equivariant version can perform slightly better in the best
tuned setting, on average setting, partially equivariant version is more robust and the gap is much
larger, as shown in the follow table, which an example of averaging over three choices of represen-
tations introduced in the last paragraph. On average partially equivariant version is much better. In
our experiments, partially equivariant version also is easier to tune.
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Table 3: Fully vs. Partially equivariance

(Equivariance) SymVIN

Partially equivariant averaged over all representations 91.04
Fully equivariant averaged over all representations 42.61

Generalization additional experiment for fixed K. For fixed K setup in Figure 24 (left), we
keep number of iterations to be K = 30 and kernel size F = 3 for all methods.
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Figure 24: Results for generalization on larger maps for all methods. (Left) FixedK = 30 iterations.
(Left) Variable K iterations, where K =

√
2 ·M and M is the generalization map size (x-axis).

For SymVIN, it far surpasses VIN for all sizes and preserves the gap throughout the evaluation. Ad-
ditionally, SymVIN has slightly higher variance across three random seeds (three separately trained
models).

Among GPPN and its variants, SymGPPN significantly outperforms both GPPN and ConvGPPN.
Interestingly, ConvGPPN has sharper drop with map size than both SymGPPN and ConvGPPN and
thus has increasingly larger gap with SymGPPN and finally even got surpassed by GPPN. Across
random seeds, the three trained models of ConvGPPN give unexpectedly high variance compared to
GPPN and SymGPPN.
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