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A Glossary

Notation Meaning

O(n) The orthogonal group acting on an n-dimensional vector space.
SO(n) The special orthogonal group acting on an n-dimensional vector space.
E(n) The Euclidean group acting on an n-dimensional vector space.
SE(n) The special Euclidean group acting on an n-dimensional vector space.
GL(n) The general linear group acting on an n-dimensional vector space.
O(V, q) The orthogonal group of vector space V with respect to a quadratic form q.
OR(V, q) The orthogonal group of vector space V with respect to a quadratic form q that

acts as the identity on R.
V A vector space.
R The radical vector subspace of V such that for any f 2 R, b(f, v) = 0 for all

v 2 V .
F A field.
R The real numbers.
N The natural numbers.
Z The integers.
[n] The set of integers {1, . . . , n}.
q A quadratic form, q : V ! F.
b A bilinear form, b : V ⇥ V ! F.
Cl(V, q) The Clifford algebra over a vector space V with quadratic form q.
Cl

⇥
(V, q) The group of invertible Clifford algebra elements.

Cl
[⇥]

(V, q) The group of invertible parity-homogeneous Clifford algebra elements.
Cl

[⇥]
(V, q) := {w 2 Cl

⇥
(V, q) | ⌘(w) 2 {±1}}.

Cl
[0]
(V, q) The even subalgebra of the Clifford algebra. Cl[0](V, q) :=

Ln
m even Cl

(m)
(V, q).

Cl
[1]
(V, q) The odd part of the Clifford algebra. Cl[1](V, q) :=

Ln
m odd Cl

(m)
(V, q).

Cl
(m)

(V, q) The grade-m subspace of the Clifford algebra.
(_)(m) Grade projection, (_)(m)

: Cl(V, q) ! Cl
(m)

(V, q).
⇣ Projection onto the zero grade, ⇣ : Cl(V, q) ! Cl

(0)
(V, q).

ei A basis vector, ei 2 V .
fi A basis vector of R.
eA A Clifford basis element (product of basis vectors) with eA 2 Cl(V, q), A ✓

{1, . . . , n}.
b̄ The extended bilinear form on the Clifford algebra, b̄ : Cl(V, q)⇥Cl(V, q) ! F.
q̄ The extended quadratic form on the Clifford algebra, q̄ : Cl(V, q) ! F.
↵ Clifford main involution ↵ : Cl(V, q) ! Cl(V, q).
� Main Clifford anti-involution, also known as reversion, � : Cl(V, q) ! Cl(V, q).
� Clifford conjugation � : Cl(V, q) ! Cl(V, q).
⌘ Coboundary of ↵. For w 2 Cl

⇥
(V, q), ⌘(w) 2 {±1} if and only if w is parity-

homogeneous.
⇢(w) The (adjusted) twisted conjugation, used as the action of the Clifford group.

⇢(w) : Cl(V, q) ! Cl(V, q), w 2 Cl
⇥
(V, q).

�(V, q) The Clifford group of Cl(V, q).
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Notation Meaning

�
[0]
(V, q) The special Clifford group. It excludes orientation-reversing (odd) elements.

�
[0]
(V, q) := �(V, q) \ Cl

[0]
(V, q).

V
(R) The radical subalgebra of Cl(V, q). I.e., those elements that have zero q̄. It is

equal to the exterior algebra of R.
V[i]

(R) The even or odd (i 2 {0, 1}) subalgebra of
V
(R).

V[i]
(R) :=

V
(R) \

Cl
[i]
(V, q).

V(�1)
(R) The subalgebra of

V
(R) with grade greater than or equal to one.

V(�1)
(R) :=

span{f1 . . . fk | k � 1, fl 2 R}.
V⇥

(R) The group of invertible elements of
V
(R).

V⇥
(R) = F⇥

+
V(�1)

(R).
V[⇥]

(R) The group of invertible elements of
V
(R) with even grades.

V[⇥]
(R) := F⇥

+

span{f1 . . . fk | k � 2 even, fl 2 R}.
V⇤

(R) Same as
V⇥

(R), but with F⇥ set to 1.
V[⇤]

(R) Same as
V[⇥]

(R), but with F⇥ set to 1.
SN Spinor norm, SN : Cl(V, q) ! F.
CN Clifford norm, CN : Cl(V, q) ! F.
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B Supplementary Material: Introduction

Existing literature on Clifford algebra uses varying notations, conventions, and focuses on several
different applications. We gathered previous definitions and included independently derived results to
achieve the desired outcomes for this work and to provide proofs for the most general cases, including,
e.g., potential degeneracy of the metric. As such, this appendix acts as a comprehensive resource
on quadratic spaces, orthogonal groups, Clifford algebras, their constructions, and specific groups
represented within Clifford algebras.

We start in Appendix C with a primer to quadratic spaces and the orthogonal group. In particular,
we specify how the orthogonal group is defined on a quadratic space, and investigate its action.
We pay special attention to the case of spaces with degenerate quadratic forms, and what we call
“radical-preserving” orthogonal automorphisms. The section concludes with the presentation of the
Cartan-Dieudonné theorem.

In Appendix D, we introduce the definition of the Clifford algebra as a quotient of the tensor algebra.
We investigate several key properties of the Clifford algebra. Then, we introduce its parity grading,
which in turn is used to prove that the dimension of the algebra is 2n, where n is the dimension of the
vector space on which it is defined. This allows us to construct an algebra basis. Subsequently, we
extend the quadratic and bilinear forms of the vector space to their Clifford algebra counterparts. This
then leads to the construction of an orthogonal basis for the algebra. Furthermore, the multivector
grading of the algebra is shown to be basis independent, leading to the orthogonal sum decomposition
into the usual subspaces commonly referred to as scalars, vectors, bivectors, and so on. Finally, we
investigate some additional properties of the algebra, such as its center, its radical subalgebra, and its
twisted center.

In Appendix E we introduce, motivate, and adjust the twisted conjugation map. We show that
it comprises an algebra automorphism, thereby respecting the algebra’s vector space and also its
multiplicative properties. Moreover, it can serve as a representation of the Clifford algebra’s group of
invertible elements. We then identify what we call the Clifford group, whose action under the twisted
conjugation respects also the multivector decomposition. We investigate properties of the Clifford
group and its action. Specifically, we show that its action yields a radical-preserving orthogonal
automorphism. Moreover, it acts orthogonally on each individual subspace.

Finally, after introducing the Spinor and Clifford norm, the section concludes with the pursuit of a
general definition for the Pin and Spin group, which are used in practice more often than the Clifford
group. This, however, turns out to be somewhat problematic when generalizing to fields beyond R.
We motivate several choices, and outline their (dis)advantages. For R, we finally settle on definitions
that are compatible with existing literature.
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C Quadratic Vector Spaces and the Orthogonal Group

We provide a short introduction to quadratic spaces and define the orthogonal group of a (non-definite)
quadratic space. We use these definitions in our analysis of how the Clifford group relates to the
orthogonal group.

We will always denote with F a field of a characteristic different from 2, char(F) 6= 2. Sometimes
we will specialize to the real numbers F = R. Let V be a vector space over F of finite dimension
dimF V = n. We will follow [Ser12].
Definition C.1 (Quadratic forms and quadratic vector spaces). A map q : V ! F will be called a
quadratic form of V if for all c 2 F and v 2 V :

q(c · v) = c
2 · q(v), (17)

and if:

b(v1, v2) :=
1

2
(q(v1 + v2)� q(v1)� q(v2)) , (18)

is a bilinear form over F in v1, v2 2 V , i.e., it is separately F-linear in each of the arguments v1 and
v2 when the other one is fixed.

The tuple (V, q) will then be called a quadratic (vector) space.
Remark C.2. 1. Note that we explicitely do not make assumptions about the non-degeneracy

of b. Even the extreme case with constant q = 0 is allowed and of interest.

2. Further note, that b will automatically be a symmetric bilinear form.
Definition C.3 (The radical subspace). Now consider the quadratic space (V, q). We then call the
subspace:

R := {f 2 V | 8v 2 V. b(f, v) = 0} , (19)

the radical subspace of (V, q).
Remark C.4. 1. The radical subspace of (V, q) is the biggest subspace of V where q is

degenerate. Note that this space is orthogonal to all other subspaces of V .

2. If W is any complementary subspace of R in V , so that V = R�?
W , then q restricted to

W is non-degenerate.
Definition C.5 (Orthogonal basis). A basis e1, . . . , en of V is called orthogonal basis of V if for all
i 6= j we have:

b(ei, ej) = 0. (20)

It is called an orthonormal basis if, in addition, q(ei) 2 {�1, 0,+1} for all i = 1, . . . , n.
Remark C.6. Note that every quadratic space (V, q) has an orthogonal basis by [Ser12] p. 30 Thm.
1, but not necessarily a orthonormal basis. However, if F = R then (V, q) has an orthonormal basis
by Sylvester’s law of inertia, see [Syl52].
Definition C.7 (The orthogonal group). For a quadratic space (V, q) we define the orthogonal group
of (V, q) as follows:

O(q) := O(V, q) :=
�
� : V ! V

��� F-linear automorphism8, s.t. 8v 2 V. q(�(v)) = q(v)
 
.

(21)

If (V, q) = R(p,q,r), i.e. if F = R and V = Rn and q has the signature (p, q, r) with p+ q + r = n

then we define the group of orthogonal matrices of signature (p, q, r) as follows:

O(p, q, r) :=
�
O 2 GL(n)

��O>
�(p,q,r)O = �(p,q,r)

 
, (22)

where we used the (n⇥ n)-diagonal signature matrix:

�(p,q,r) := diag(+1, . . . ,+1| {z }
p-times

,�1, . . . ,�1| {z }
q-times

, 0, . . . , 0| {z }
r-times

). (23)
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Theorem C.8 (See [YCo20]). Let (V, q) be a finite dimensional quadratic space over a field F with
char(F) 6= 2. Let R ✓ V be the radical subspace, r := dimR, and, W ✓ V a complementary
subspace, m := dimW . Then we get an isomorphism:

O(V, q) ⇠=
✓
O(W, q|W ) 0m⇥r

M(r,m) GL(r)

◆
=

⇢✓
O 0m⇥r

M G

◆ ����O 2 O(W, q|W ),M 2 M(r,m), G 2 GL(r)

�
,

(24)

where M(r,m) := Fr⇥m is the additive group of all (r ⇥m)-matrices with coefficients in F and
where GL(r) is the multiplicative group of all invertible (r ⇥ r)-matrices with coefficients in F.

Proof. Let e1, . . . , em be an orthogonal basis for W and f1, . . . , fr be a basis for R, then the
associated bilinear form b of q has the following matrix representation:

✓
Q 0

0 0

◆
, (25)

with an invertible diagonal (m⇥m)-matrix Q. For the matrix of any orthogonal automorphism � of
V we get the necessary and sufficient condition:

✓
Q 0

0 0

◆
!
=

✓
A

>
C

>

B
>

D
>

◆✓
Q 0

0 0

◆✓
A B

C D

◆
(26)

=

✓
A

>
QA A

>
QB

B
>
QA B

>
QB

◆
. (27)

This is equivalent to the conditions:

Q = A
>
QA, 0 = A

>
QB, 0 = B

>
QB. (28)

This shows that A is the matrix of an orthogonal automorphism of W (w.r.t. b|W ), which, since Q is
invertible, is also invertible. The second equation then shows that necessarily B = 0. Since the whole
matrix needs to be invertible also D must be invertible. Furthermore, there are no constraints on C.

If all those conditions are satisfied the whole matrix satisfies the orthogonality constraints from
above.

Corollary C.9. For R(p,q,r) we get:

O(p, q, r) ⇠=
✓

O(p, q) 0(p+q)⇥r

M(r, p+ q) GL(r)

◆
, (29)

where O(p, q) := O(p, q, 0).
Remark C.10. Note that the composition �1��2 of orthogonal automorphisms of (V, q) corresponds
to the matrix multiplication as follows:

✓
O1 0

M1 G1

◆✓
O2 0

M2 G2

◆
=

✓
O1O2 0

M1O2 +G1M2 G1G2

◆
. (30)

Definition C.11 (Radical preserving orthogonal automorphisms). For a quadratic space (V, q) with
radical subspace R ✓ V we define the group of radical preserving orthogonal automorphisms as
follows:

OR(V, q) := {� 2 O(V, q) |�|R = idR} . (31)

If (V, q) = R(p,q,r), i.e. if F = R and V = Rn and q has the signature (p, q, r) with p+ q + r = n

then we define the group of radical preserving orthogonal matrices of signature (p, q, r) as follows:

OR(p, q, r) := {O 2 O(p, q, r) | bottom right corner of O = Ir} =

✓
O(p, q) 0(p+q)⇥r

M(r, p+ q) Ir

◆
,

(32)

where Ir is the (r ⇥ r)-identity matrix.
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Remark C.12. Note that the matrix representation of � 2 OR(q) w.r.t. an orthogonal basis like in
the proof of theorem C.8 is of the form:

✓
O 0m⇥r

M Ir

◆
, (33)

with O 2 O(W, q|W ), M 2 M(r,m) and where Ir is the (r ⇥ r)-identity matrix.

The composition �1 � �2 of �1 and �2 2 OR(q) is then given by the corresponding matrix
multiplication:

✓
O1 0

M1 Ir

◆✓
O2 0

M2 Ir

◆
=

✓
O1O2 0

M1O2 +M2 Ir

◆
. (34)

By observing the left column (the only part that does not transform trivially), we see that O(q|W )

acts on M(r,m) just by matrix multiplication from the right (in the corresponding basis):

(O1,M1) · (O2,M2) = (O1O2,M1O2 +M2). (35)

This immediately shows that we can write OR(q) as the semi-direct product:

OR(q) ⇠= O(q|W )nM(r,m). (36)

In the special case of R(p,q,r) we get:

OR(p, q, r) ⇠= O(p, q)nM(r, p+ q). (37)

We conclude this chapter by citing the Theorem of Cartan and Dieudonné about the structure of
orthogonal groups in the non-degnerate case, but still for arbitrary fields F with char(F) 6= 2.
Theorem C.13 (Theorem of Cartan-Dieudonné, see [Art57] Thm. 3.20). Let (V, q) be a non-
degenerate quadratic space of finite dimension dimV = n < 1 over a field F of char(F) 6= 2. Then
every element g 2 O(V, q) can be written as:

g = r1 � · · · � rk, (38)

with 1  k  n, where ri are reflections w.r.t. non-singular hyperplanes.
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D The Clifford Algebra and Typical Constructions

In this section, we provide the required definitions, constructions, and derivations leading to the
results stated in the main paper. We start with a general introduction to the Clifford algebra.

D.1 The Clifford Algebra and its Universal Property

We follow [LS09, Cru90].

Let (V, q) be a finite dimensional quadratic space over a field F (also denoted an F-vector space) with
char(F) 6= 2. We abbreviate the corresponding bilinear form b on vectors v1, v2 2 V as follows:

b(v1, v2) :=
1

2
(q(v1 + v2)� q(v1)� q(v2)) . (39)

Definition D.1. To define the Clifford algebra Cl(V, q) we first consider the tensor algebra of V :

T(V ) :=

1M

m=0

V
⌦m

= span {v1 ⌦ · · ·⌦ vm |m � 0, vi 2 V } , (40)

V
⌦m

:= V ⌦ · · ·⌦ V| {z }
m-times

, V
⌦0

:= F, (41)

and the following two-sided ideal9:
I(q) :=

⌦
v ⌦ v � q(v) · 1T(V )

�� v 2 V
↵
. (42)

Then we define the Clifford algebra Cl(V, q) as the following quotient:
Cl(V, q) := T(V )/I(q). (43)

In words, we identify the square of a vector with its quadratic form. We also denote the canonical
algebra quotient map as:

⇡ : T(V ) ! Cl(V, q). (44)
Remark D.2. 1. It is not easy to see, but always true, that dimCl(V, q) = 2

n, where n :=

dimV , see Theorem D.15.

2. If e1, . . . , en is any basis of (V, q) then (eA)A✓[n] is a basis for Cl(V, q), where we put for
a subset A ✓ [n] := {1, . . . , n}:

eA :=

<Y

i2A

ei, e; := 1Cl(V,q). (45)

where the product is taken in increasing order of the indices i 2 A, see Corollary D.16.

3. If e1, . . . , en is any orthogonal basis of (V, q), then one can even show that (eA)A✓[n] is an
orthogonal basis for Cl(V, q) w.r.t. an extension of the bilinear form b from V to Cl(V, q),
see Theorem D.26.

Lemma D.3 (The fundamental identity). Note that for v1, v2 2 V , we always have the fundamental
identity in Cl(V, q):

v1v2 + v2v1 = 2b(v1, v2). (46)

Proof. By definition of the Clifford algebra we have the identities:
q(v1) + v1v2 + v2v1 + q(v2) = v1v1 + v1v2 + v2v1 + v2v2 (47)

= (v1 + v2)(v1 + v2) (48)
= q(v1 + v2) (49)
= b(v1 + v2, v1 + v2) (50)
= b(v1, v1) + b(v1, v2) + b(v2, v1) + b(v2, v2) (51)
= q(v1) + 2b(v1, v2) + q(v2). (52)

Substracting q(v1) + q(v2) on both sides gives the claim.
9The ideal ensures that for all elements containing v⌦ v (i.e., linear combinations, multiplications on the left,

and multiplications on the right), v⌦ v is identified with q(v); e.g. x⌦ v⌦ v⌦ y ⇠ x⌦ (q(v) · 1T(V ))⌦ y for
every x, y 2 T(V ).
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Further, the Clifford algebra Cl(V, q) is fully characterized by the following property.

Theorem D.4 (The universal property of the Clifford algebra). For every F-algebra10 (an algebra
over field F) A and every F-linear map f : V ! A such that for all v 2 V we have:

f(v)
2
= q(v) · 1A, (53)

there exists a unique F-algebra homomorphism11
f̄ : Cl(V, q) ! A such that f̄(v) = f(v) for all

v 2 V .

More explicitely, if f satisfies equation 53 and x 2 Cl(V, q). Then we can take any representation of
x of the following form:

x = c0 +

X

i2I

ci · vi,1 · · · vi,ki , (54)

with finite index sets I and ki 2 N and coefficients c0, ci 2 F and vectors vi,j 2 V , j = 1, . . . , ki,
i 2 I , and, then we can compute f̄(x) by the following formula (without ambiguity):

f̄(x) = c0 · 1A +

X

i2I

ci · f(vi,1) · · · f(vi,ki). (55)

In the following, we will often denote f̄ again with f without further indication.

D.2 The Multivector Filtration and the Grade

Note that the Clifford algebra is a filtered algebra.

Definition D.5. We define the multivector filtration12 of Cl(V, q) for grade m 2 N0 as follows:

Cl
(m)

(V, q) := ⇡

⇣
T

(m)
(V )

⌘
, T

(m)
(V ) :=

mM

l=0

V
⌦l
. (56)

Remark D.6. Note that we really get a filtration on the space Cl(V, q):

F = Cl
(0)

(V, q) ✓ Cl
(1)

(V, q) ✓ Cl
(2)

(V, q) ✓ . . . ✓ Cl
(n)

(V, q) = Cl(V, q). (57)

Furthermore, note that this is compatible with the algebra structure of Cl(V, q), i.e. for i, j � 0 we
get:

x 2 Cl
(i)

(V, q) ^ y 2 Cl
(j)

(V, q) =) xy 2 Cl
(i+j)

(V, q). (58)

Together with the equality: ⇡(T(m)
(V )) = Cl

(m)
(V, q) for all m, we see that the natural map:

⇡ : T(V ) ! Cl(V, q), (59)

is a surjective homomorphism of filtered algebras. Indeed, since Cl(V, q) is a well-defined algebra,
since we modded out a two-sided ideal, ⇡ is clearly a homomorphism of filtered algebras. As a
quotient map ⇡ is automatically surjective.

Definition D.7 (The grade of an element). For x 2 Cl(V, q) \ {0} we define its grade through the
following condition:

grdx := k such that x 2 Cl
(k)

(V, q) \ Cl(k�1)
(V, q), (60)

grd 0 := �1. (61)

10For the purpose of this text an algebra is always considered to be associative and unital (containing an
identity element), but not necessarily commutative.

11An algebra homomorphism is both linear and multiplicative.
12A filtration F is an indexed family (Ai)i2I (I is an ordered index set) of subsets of an algebraic structure A

such that for i  j : Ai ✓ Aj .
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D.3 The Parity Grading

In this section, we introduce the parity grading of the Clifford algebra. We will use the parity grading
to later construct the (adjusted) twisted conjugation map, which will be used as a group action on the
Clifford algebra.
Definition D.8 (The main involution). The linear map:

↵ : V ! Cl(V, q), ↵(v) := �v, (62)

satisfies (�v)
2
= v

2
= q(v). The universal property of Cl(V, q) thus extends ↵ to a unique algebra

homomorphism:

↵ : Cl(V, q) ! Cl(V, q), ↵

 
c0 +

X

i2I

ci · vi,1 · · · vi,ki

!
(63)

= c0 +

X

i2I

ci · ↵(vi,1) · · ·↵(vi,ki) (64)

= c0 +

X

i2I

(�1)
ki · ci · vi,1 · · · vi,ki , (65)

for any finite sum representation with vi,j 2 V and ci 2 F. This extension ↵ will be called the main
involution13 of Cl(V, q).
Definition D.9 (Parity grading). The main involution ↵ of Cl(V, q) now defines the parity grading of
Cl(V, q) via the following homogeneous parts:

Cl
[0]
(V, q) := {x 2 Cl(V, q) |↵(x) = x} , (66)

Cl
[1]
(V, q) := {x 2 Cl(V, q) |↵(x) = �x} . (67)

With this we get the direct sum decomposition:

Cl(V, q) = Cl
[0]
(V, q)� Cl

[1]
(V, q), (68)

x = x
[0]

+ x
[1]
, x

[0]
:=

1

2
(x+ ↵(x)), x

[1]
:=

1

2
(x� ↵(x)), (69)

with the homogeneous parts x[0] 2 Cl
[0]
(V, q) and x

[1] 2 Cl
[1]
(V, q).

We define the parity of an (homogeneous) element x 2 Cl(V, q) as follows:

prt(x) :=

(
0 if x 2 Cl

[0]
(V, q),

1 if x 2 Cl
[1]
(V, q).

(70)

Definition D.10 (Z/2Z-graded algebras). An F-algebra (A,+, ·) together with a direct sum decom-
position of sub-vector spaces:

A = A[0] �A[1]
, (71)

is called a Z/2Z-graded algebra if for every i, j 2 Z/2Z we always have:

x 2 A[i] ^ y 2 A[j]
=) x · y 2 A[i+j]

. (72)

Note that [i + j] is meant here to be computed modulo 2. The Z/2Z-grade of an (homogeneous)
element x 2 A will also be called the parity of x:

prt(x) :=

⇢
0 if x 2 A[0]

,

1 if x 2 A[1]
.

(73)

The above requirement then implies for homogeneous elements x, y 2 A the relation:

prt(x · y) = prt(x) + prt(y) mod 2. (74)

We can now summarize the results of this section as follows:
Theorem D.11. The Clifford algebra Cl(V, q) is a Z/2Z-graded algebra in its parity grading.

13An involution is a map that is its own inverse.
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D.4 The Dimension of the Clifford Algebra

In this subsection we determine the dimension of the Clifford algebra, which allows us to construct
bases for the Clifford algebra.

In the following, we again let F be any field of char(F) 6= 2.
Definition/Lemma D.12 (The twisted tensor product of Z/2Z-graded F-algebras). Let A and B be
two Z/2Z-graded algebras over F. Then their twisted tensor product A⌦̂B is defined via the usual
tensor product A⌦ B of F-vector spaces, but where the product is defined on homogeneous elements
a1, a2 2 A, b1, b2 2 B via:

(a1⌦̂b1) · (a2⌦̂b2) := (�1)
prt(b1)·prt(a2)(a1a2)⌦̂(b1b2). (75)

This turns A⌦̂B also into a Z/2Z-graded algebra over F with the Z/2Z-grading:

(A⌦̂B)[0] :=
⇣
A[0] ⌦ B[0]

⌘
�
⇣
A[1] ⌦ B[1]

⌘
, (76)

(A⌦̂B)[1] :=
⇣
A[0] ⌦ B[1]

⌘
�
⇣
A[1] ⌦ B[0]

⌘
. (77)

In particular, if a 2 A, b 2 B are homogeneous elements then we have:

prtA⌦̂B(a⌦̂b) = prtA(a) + prtB(b) mod 2. (78)

Proof. By definition we already know that A⌦̂B is an F-vector space. So we only need to investigate
the multiplication and Z/2Z-grading.

For homogenous elements a1, a2, a3 2 A, b1, b2, b3 2 B we have:
�
(a1⌦̂b1) · (a2⌦̂b2)

�
· (a3⌦̂b3) (79)

= (�1)
prt(b1)·prt(a2)

�
(a1a2)⌦̂(b1b2)

�
· (a3⌦̂b3) (80)

= (�1)
prt(b1)·prt(a2) · (�1)

prt(b1b2)·prt(a3)(a1a2a3)⌦̂(b1b2b3) (81)

= (�1)
prt(b1)·prt(a2)+prt(b1)·prt(a3)+prt(b2)·prt(a3)(a1a2a3)⌦̂(b1b2b3) (82)

= (�1)
prt(b1)·prt(a2a3) · (�1)

prt(b2)·prt(a3)(a1a2a3)⌦̂(b1b2b3) (83)

= (�1)
prt(b2)·prt(a3)(a1⌦̂b1) ·

�
(a2a3)⌦̂(b2b3)

�
(84)

= (a1⌦̂b1) ·
�
(a2⌦̂b2) · (a3⌦̂b3)

�
. (85)

This shows associativity of multiplication on homogeneous elements, which extends by linearity to
general elements. The distributive law is clear.

To check that we have a Z/2Z-grading, note that for homogeneous elements a1, a2 2 A, b1, b2 2 B
we have:

prtA⌦̂B
�
(a1⌦̂b1) · (a2⌦̂b2)

�
= prtA⌦̂B

⇣
((�1)

prt(a2)·prt(b1)a1a2)⌦̂(b1b2)

⌘
(86)

= prtA(a1a2) + prtB(b1b2) (87)
= prtA(a1) + prtA(a2) + prtB(b1) + prtB(b2) (88)
= prtA⌦̂B

�
a1⌦̂b1

�
+ prtA⌦̂B

�
a2⌦̂b2

�
mod 2. (89)

The general case follows by linear combinations.

Remark D.13 (The universal property of the twisted tensor product of Z/2Z-graded F-algebras).
Let A1,A2, B be Z/2Z-graded F-algebras. Consider Z/2Z-graded F-algebra homomorphisms:

 1 : A1 ! B,  2 : A2 ! B, (90)

such that for all homogeneous elements a1 2 A1 and a2 2 A2 we have:

 1(a1) ·  2(a2) = (�1)
prt(a1)·prt(a2) ·  2(a2) ·  1(a1). (91)

Then there exists a unique Z/2Z-graded F-algebra homomorphism:

 : A1⌦̂A2 ! B, (92)
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such that:

 � �1 =  1,  � �2 =  2, (93)

where �1,�2 are the following Z/2Z-graded F-algebra homomorphisms:

�1 : A1 ! A1⌦̂A2, a1 7! a1⌦̂1, (94)
�2 : A2 ! A1⌦̂A2, a2 7! 1⌦̂a2, (95)

which satisfy for all homogeneous elements a1 2 A1 and a2 2 A2:

�1(a1) · �2(a2) = (�1)
prt(a1)·prt(a2) · �2(a2) · �1(a1). (96)

Furthermore, A1⌦̂A2 together with �1,�2 is uniquely characterized as a Z/2Z-graded F-algebra
by the above property (when considering all possible such B and  1, 2).
Proposition D.14. Let (V, q) be a finite dimensional quadratic vector space over F, char(F) 6= 2,
with an orthogonal sum decomposition:

(V, q) = (V1, q1)� (V2, q2). (97)

Then the inclusion maps: Cl(Vi, qi) ! Cl(V, q) induce an isomorphism of Z/2Z-graded F-algebras:

Cl(V, q) ⇠= Cl(V1, q1)⌦̂Cl(V2, q2). (98)

In particular:

dimCl(V, q) = dimCl(V1, q1) · dimCl(V2, q2). (99)

Proof. First consider the canonical inclusion maps, l = 1, 2:

�l : Cl(Vl, ql) ! Cl(V, q), xl 7! xl. (100)

These satisfy for all (parity) homogeneous elements xl 2 Cl(Vl, ql), l = 1, 2, the condition:

�1(x1)�2(x2) = x1x2
!
= (�1)

prt(x1)·prt(x2) · x2x1 = (�1)
prt(x1)·prt(x2) · �2(x2)�1(x1). (101)

Indeed, we can by linearity reduce to the case that x1 and x2 are products of vectors v1 2 V1 and
v2 2 V2, resp. Since V1 and V2 are orthogonal to each other by assumption, for those elements we
get by the identities D.3:

v1v2 = �v2v1 + 2 b(v1, v2)| {z }
=0

= �v2v1. (102)

This shows the condition above for x1 and x2.

We then define the F-bilinear map:

Cl(V1, q1)⇥ Cl(V2, q2) ! Cl(V, q), (x1, x2) 7! x1x2, (103)

which thus factorizes through the F-linear map:

� : Cl(V1, q1)⌦̂Cl(V2, q2) ! Cl(V, q), x1⌦̂x2 7! x1x2. (104)

We now show that � also respects multiplication. For this let x1, y1 2 Cl(V1, q1) and x2, y2 2
Cl(V2, q2) (parity) homogeneous elements. We then get:

�
�
(x1⌦̂x2) · (y1⌦̂y2)

�
(105)

= �

⇣
(�1)

prt(x2)·prt(y1) · (x1y1)⌦̂(x2y2)

⌘
(106)

= (�1)
prt(x2)·prt(y1) · x1y1x2y2 (107)

= x1x2y1y2 (108)
= �(x1⌦̂x2) · �(y1⌦̂y2). (109)

This shows the multiplicativity of � on homogeneous elements. The general case follows by the
F-linearity of �. Note that � also respects the parity grading.
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Now consider the Z/2Z-graded F-algebra Cl(V1, q1)⌦̂Cl(V2, q2) and Z/2Z-graded F-algebra ho-
momorphisms:

 1 : Cl(V1, q1) ! Cl(V1, q1)⌦̂Cl(V2, q2), x1 7! x1⌦̂1, (110)
 2 : Cl(V2, q2) ! Cl(V1, q1)⌦̂Cl(V2, q2), x2 7! 1⌦̂x2. (111)

Note that for all homogeneous elements xl 2 Cl(Vl, ql), l = 1, 2, we have:

 2(x2) ·  1(x1) = (1⌦̂x2) · (x1⌦̂1) (112)

= (�1)
prt(x1)·prt(x2) · x1⌦̂x2 (113)

= (�1)
prt(x1)·prt(x2) · (x1⌦̂1) · (1⌦̂x2) (114)

= (�1)
prt(x1)·prt(x2) ·  1(x1) ·  2(x2). (115)

We then define the F-linear map:
 : V = V1 � V2 ! Cl(V1, q1)⌦̂Cl(V2, q2), v = v1 + v2 7!  1(v1) +  2(v2) =:  (v). (116)

Note that we have:
 (v)

2
= ( 1(v1) +  2(v2)) · ( 1(v1) +  2(v2)) (117)

=  1(v1)
2
+  2(v2)

2
+  1(v1) ·  2(v2) +  2(v2) ·  1(v1) (118)

=  1(v1)
2
+  2(v2)

2
+  1(v1) ·  2(v2) + (�1)

prt(v1)·prt(v2) 1(v1) ·  2(v2)| {z }
=0

(119)

=  1(v
2
1) +  2(v

2
2) (120)

= q1(v1) ·  1(1Cl(V1,q1)) + q2(v2) ·  2(1Cl(V2,q2)) (121)
= q1(v1) · 1Cl(V1,q1)⌦̂Cl(V2,q2)

+ q2(v2) · 1Cl(V1,q1)⌦̂Cl(V2,q2)
(122)

= (q1(v1) + q2(v2)) · 1Cl(V1,q1)⌦̂Cl(V2,q2)
(123)

= q(v) · 1Cl(V1,q1)⌦̂Cl(V2,q2)
. (124)

By the universal property of the Clifford algebra  uniquely extends to an F-algebra homomorphism:
 : Cl(V, q) ! Cl(V1, q1)⌦̂Cl(V2, q2), (125)

vi1 · · · vik 7! ( 1(vi1,1) +  2(vi1,2)) · · · ( 1(vik,1) +  2(vik,2)). (126)
One can see from this, by explicit calculation, that  also respects the Z/2Z-grading. Furthermore,
we see that  � �l =  l for l = 1, 2, and, also, � �  l = �l for l = 1, 2.

One easily sees that � and  are inverse to each other and the claim follows.

Theorem D.15 (The dimension of the Clifford algebra). Let (V, q) be a finite dimensional quadratic
vector space over F, char(F) 6= 2, n := dimV < 1. Then we have:

dimCl(V, q) = 2
n
. (127)

Proof. Let e1, . . . , en be an orthogonal basis of (V, q) and Vi := span(ei) ✓ V , qi := q|Vi . Then
we get the orthogonal sum decomposition:

(V, q) = (V1, q1)� · · ·� (Vn, qn), (128)
and thus by Proposition D.14 the isomorphism of Z/2Z-graded algebras:

Cl(V, q) ⇠= Cl(V1, q1)⌦̂ · · · ⌦̂Cl(Vn, qn), (129)
and thus:

dimCl(V, q) = dimCl(V1, q1) · · · dimCl(Vn, qn), (130)
Since dimVi = 1 and thus:

dimCl(Vi, qi) = dim (F� Vi) = 2, (131)
for i = 1, . . . , n, we get the claim:

dimCl(V, q) = 2
n
. (132)
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Corollary D.16 (Bases for the Clifford algebra). Let (V, q) be a finite dimensional quadratic vector
space over F, char(F) 6= 2, n := dimV < 1. Let e1, . . . , en be any basis of V , then (eA)A✓[n] is
a basis for Cl(V, q), where we put for a subset A ✓ [n] := {1, . . . , n}:

eA :=

<Y

i2A

ei, e; := 1Cl(V,q). (133)

where the product is taken in increasing order of the indices i 2 A.

Proof. Since Cl(V, q) = T(V )/I(q) and
T(V ) = span {ei1 ⌦ · · ·⌦ eim |m � 0, ij 2 [n], j 2 [m]} , (134)

we see that:
Cl(V, q) = span {ei1 · · · eim |m � 0, ij 2 [n], j 2 [m]} . (135)

By several applications of the fundamental identities D.3:
eikeil = �eileik + 2b(eik , eil), eikeik = q(eik), (136)

we can turn products ei1 · · · eim into sums of smaller products if some of the occuring indices agree,
say ik = il. Furthermore, we can also use those identities to turn the indices in increasing order. This
then shows:

Cl(V, q) = span {eA |A ✓ [n]} . (137)
Since # {A ✓ [n]} = 2

n and dimCl(V, q) = 2
n by Theorem D.15 we see that {eA |A ✓ [n]} must

already be a basis for Cl(V, q).

D.5 Extending the Quadratic Form to the Clifford Algebra

We provide the extension of the quadratic form from the vector space to the Clifford algebra, which
will lead to the constrution of an orthogonal basis of the Clifford algebra.
Definition D.17 (The opposite algebra of an algebra). Let (A,+, ·) be an algebra. The opposite
algebra (Aop

,+, •) is defined to consist of the same underlying vector space (Aop
,+) = (A,+), but

where the multiplication is reversed in comparison to A, i.e. for x, y 2 Aop we have:
x • y := y · x. (138)

Note that this really turns (Aop
,+, •) into an algebra.

Definition D.18 (The main anti-involution of the Clifford algebra). Consider the following linear
map:

� : V ! Cl(V, q)op, v 7! v, (139)
which also satisfies v • v = vv = q(v). By the universal property of the Clifford algebra we get a
unique extension to an algebra homomorphism:

� : Cl(V, q) ! Cl(V, q)op, �

 
c0 +

X

i2I

ci · vi,1 · · · vi,ki

!
(140)

= c0 +

X

i2I

ci · vi,1 • · · · • vi,ki (141)

= c0 +

X

i2I

ci · vi,ki · · · vi,1, (142)

for any finite sum representation with vi,j 2 V and ci 2 F. We call � the main anti-involution of
Cl(V, q).
Definition D.19 (The combined anti-involution of the Clifford algebra). The combined anti-involution
or Clifford conjugation of Cl(V, q) is defined to be the F-algebra homomorphism:

� : Cl(V, q) ! Cl(V, q)op, �(x) := �(↵(x)). (143)
More explicitely, it is given by the formula:

�

 
c0 +

X

i2I

ci · vi,1 · · · vi,ki

!
= c0 +

X

i2I

(�1)
ki · ci · vi,ki · · · vi,1, (144)

for any finite sum representation with vi,j 2 V and ci 2 F.
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Remark D.20. If e1, . . . , en 2 V is an orthogonal basis for (V, q). Then we have for A ✓ [n]:

↵(eA) = (�1)
|A|

eA, �(eA) = (�1)
(
|A|
2 )eA, �(eA) = (�1)

(
|A|+1

2 )
eA. (145)

Recall the definition of a trace of a linear map:
Definition D.21 (The trace of an endomorphism). Let Y be a vector space over a field F of dimension
dimY = m < 1 and � : Y ! Y a vector space endomorphism14. Let B = {b1, . . . , bm} be a basis
for Y and B

⇤
= {b⇤1, . . . , b⇤m} be the corresponding dual basis of Y⇤, defined via: b

⇤
j (bi) := �i,j .

Let A = (ai,j)i=1,...,m,
j=1,...,m

be the matrix representation of � w.r.t. B:

8j 2 [m]. �(bj) =

mX

i=1

ai,jbi. (146)

Then the trace of � is defined via:

Tr(�) :=

mX

j=1

aj,j =

mX

j=1

b
⇤
j (�(bj)) 2 F. (147)

It is a well known fact that Tr(�) is not dependent on the initial choice of the basis B. Furthermore,
Tr is a well-defined F-linear map (homomorphism of vector spaces):

Tr : EndF(Y) ! F, � 7! Tr(�). (148)

We now want to define the projection of x 2 Cl(V, q) onto its zero component x(0) 2 F in a basis
independent way.
Definition D.22 (The projection onto the zero component). We define the F-linear map:

⇣ : Cl(V, q) ! F, ⇣(x) := 2
�n

Tr(x), (149)

where n := dimV and Tr(x) := Tr(Lx), where Lx is the endomorphism of Cl(V, q) given by left
multiplication with x:

Lx : Cl(V, q) ! Cl(V, q), y 7! Lx(y) := xy. (150)

We call ⇣ the projection onto the zero component. We also often write for x 2 Cl(V, q):

x
(0)

:= ⇣(x). (151)

The name is justified by following property:
Lemma D.23. Let e1, . . . , en be a fixed orthogonal basis of (V, q). Then we know that (eA)A✓[n] is
a basis for Cl(V, q). So we can write every x 2 Cl(V, q) as:

x =

X

A✓[n]

xA · eA, (152)

with xA 2 F, A ✓ [n]. The claim is now that we have:

⇣(x)
!
= x;. (153)

Proof. By the linearity of the trace we only need to investigate Tr(eA) for A ✓ [n]. For A = ;, we
have e; = 1 and we get:

Tr(1) =

X

B✓[n]

e
⇤
B(1 · eB) =

X

B✓[n]

1 = 2
n
, (154)

14A map from a mathematical object space to itself.
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which shows: ⇣(1) = 2
�n

Tr(1) = 1. Now, consider A ✓ [n] with A 6= ;. Let 4 denote the
symmetric difference of two sets. Further, we can write ± to refrain from distinguishing between
signs, which will not affect the result.

Tr(eA) =

X

B✓[n]

e
⇤
B(eAeB) (155)

=

X

B✓[n]

±
Y

i2A\B

q(ei) · e⇤B(eA4B) (156)

=

X

B✓[n]

±
Y

i2A\B

q(ei) · �B,A4B (157)

=

X

B✓[n]

±
Y

i2A\B

q(ei) · �;,A (158)

= 0, (159)

where the third equality follows from the fact that B = A4B holds if and only if A = ;, regardless
of B. However, A = ; was ruled out by assumption, so then in the last equality we always have
�;,A = 0. So for A 6= ; we have: ⇣(eA) = 2

�n
Tr(eA) = 0. Altogether we get:

⇣(eA) = �A,; =

⇢
1, if A = ;,
0, else.

(160)

With this and linearity we get:

⇣(x) = ⇣

0

@
X

A✓[n]

xA · eA

1

A =

X

A✓[n]

xA · ⇣(eA) =
X

A✓[n]

xA · �A,; = x;. (161)

This shows the claim.

Definition D.24 (The bilinear form on the Clifford algebra). For our quadratic F-vector space (V, q)
with corresponding bilinear form b and corresponding Clifford algebra Cl(V, q) we now define the
following F-bilinear form on Cl(V, q):

b̄ : Cl(V, q)⇥ Cl(V, q) ! F, b̄(x, y) := ⇣(�(x)y). (162)

We also define the corresponding quadratic form on Cl(V, q) via:

q̄ : Cl(V, q) ! F, q̄(x) := b̄(x, x) = ⇣(�(x)x). (163)

We will see below that b̄ and q̄ will agree with b and q, resp., when they are restricted to V . From
that point on we will denote b̄ just by b, and q̄ with q, resp., without (much) ambiguity.

Lemma D.25. For v, w 2 V we have:

b̄(v, w) = b(v, w). (164)

Proof. We pick an orthogonal basis e1, . . . , en for V and write:

v =

nX

i=1

ai · ei, w =

nX

j=1

cj · ej . (165)
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We then get by linearity:

b̄(v, w) =
nX

i=1

nX

j=1

aicj · b̄(ei, ej) (166)

=

nX

i=1

nX

j=1

aicj · ⇣(�(ei)ej) (167)

=

nX

i=1

nX

j=1

aicj · ⇣(eiej) (168)

=

X

i 6=j

aicj · ⇣(eiej)| {z }
=0

+

X

i=j

aicj · ⇣(eiej) (169)

=

nX

i=1

aici · q(ei) · ⇣(1)|{z}
=1

(170)

=

nX

i=1

nX

j=1

aicj ·

q(ei)·�i,j=z }| {
b(ei, ej) (171)

= b

0

@
nX

i=1

ai · ei,
nX

j=1

cj · ej

1

A (172)

= b(v, w). (173)

This shows the claim.

Theorem D.26. Let e1, . . . , en be an orthogonal basis for (V, q) then (eA)A✓[n] is an orthogonal
basis for Cl(V, q) w.r.t. the induced bilinear form b̄. Furthermore, for x, y 2 Cl(V, q) of the form:

x =

X

A✓[n]

xA · eA, y =

X

A✓[n]

yA · eA, (174)

with xA, yA 2 F we get:

b̄(x, y) =
X

A✓[n]

xA · yA ·
Y

i2A

q(ei), q̄(x) =
X

A✓[n]

x
2
A ·
Y

i2A

q(ei). (175)

Note that: q̄(e;) = q̄(1) = 1.

Proof. We already know that (eA)A✓[n] is a basis for Cl(V, q). So we only need to check the
orthogonality condition. First note that for eC = ei1 · · · eir we get:

q̄(eC) = ⇣(�(eC)eC) = ⇣(eir · · · ei1 · ei1 · · · eir ) = q(ei1) · · · q(eir ). (176)

Now let A,B ✓ [n] with A 6= B, i.e. with A4B 6= ;. We then get:

b̄(eA, eB) = ⇣(�(eA)eB) = ±
Y

i2A\B

q(ei) · ⇣(eA4B) = 0. (177)
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This shows that (eA)A✓[n] is an orthogonal basis for Cl(V, q). For x, y 2 Cl(V, q) from above we
get:

b̄(x, y) = b̄

0

@
X

A✓[n]

xA · eA,
X

B✓[n]

yB · eB

1

A (178)

=

X

A✓[n]

X

B✓[n]

xA · yB · b̄(eA, eB) (179)

=

X

A✓[n]

X

B✓[n]

xA · yB · q̄(eA) · �A,B (180)

=

X

A✓[n]

xA · yA · q̄(eA) (181)

=

X

A✓[n]

xA · yA ·
Y

i2A

q(ei). (182)

This shows the claim.

D.6 The Multivector Grading

Now that we have an orthogonal basis for the algebra, we show that the Clifford algebra allows a
vector space grading that is independent of the chosen orthogonal basis.

Let (V, q) be a quadratic space over a field F with char(F) 6= 2 and dimV = n < 1.

In the following we present a technical proof that works for fields F with char(F) 6= 2. An alternative,
simpler and more structured proof, but for the more restrictive case of char(F) = 0, can be found in
Theorem D.37 later.
Theorem D.27 (The multivector grading of the Clifford algebra). Let e1, . . . , en be an orthogonal
basis of (V, q). Then for every m = 0, . . . , n we define the following sub-vector space of Cl(V, q):

Cl
(m)

(V, q) := span {ei1 · · · eim | 1  i1 < · · · < im  n} (183)
= span {eA |A ✓ [n], |A| = m} , (184)

where Cl
(0)

(V, q) := F.

Then the sub-vector spaces Cl(m)
(V, q), m = 0, . . . , n, are independent of the choice of the orthogo-

nal basis, i.e. if b1, . . . , bn is another orthogonal basis of (V, q), then:

Cl
(m)

(V, q) = span {bi1 · · · bim | 1  i1 < · · · < im  n} . (185)

Proof. First note that by the orthogonality and the fundamental relation of the Clifford algebra we
have for all i 6= j:

eiej = �ejei, bibj = �bjbi. (186)

We now abbreviate:

B
(m)

:= span {bj1 · · · bjm | 1  j1 < · · · < jm  n} , (187)

and note that:

Cl
(m)

(V, q) = span {ei1 · · · eim | 1  i1 < · · · < im  n} (188)
= span {ei1 · · · eim | 1  i1, . . . , im  n, 8s 6= t. is 6= it} . (189)

We want to show that for 1  j1 < · · · < jm  n we have that:

bj1 · · · bjm 2 Cl
(m)

(V, q). (190)

Since we have two bases we can write an orthogonal change of basis:

bj =

nX

i=1

ai,jei 2 V = Cl
(1)

(V, q). (191)
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Using this, we can now write the above product as the sum of two terms:

bj1 · · · bjm =

X

i1,...,im

ai1,j1 · · · aim,jm · ei1 · · · eim (192)

=

X

i1,...,im
8s 6=t. is 6=it

ai1,j1 · · · aim,jm · ei1 · · · eim +

X

i1,...,im
9s 6=t. is=it

ai1,j1 · · · aim,jm · ei1 · · · eim .

(193)

Our claim is equivalent to the vanishing of the second term. Note that the above equation for bj
already shows the claim for m = 1. The case m = 0 is trivial.

We now prove the claim for m = 2 by hand before doing induction after. Recall that j1 6= j2:

bj1bj2 =

X

i1,i2
i1 6=i2

ai1,j1ai2,j2 · ei1ei2 +
nX

i=1

ai,j1ai,j2 · eiei (194)

=

X

i1,i2
i1 6=i2

ai1,j1ai2,j2 · ei1ei2 +
nX

i=1

ai,j1 ai,j2 · q(ei)| {z }
=b(ei,bj2 )

(195)

=

X

i1,i2
i1 6=i2

ai1,j1ai2,j2 · ei1ei2 + b(bj1 , bj2)| {z }
=0

(196)

=

X

i1,i2
i1 6=i2

ai1,j1ai2,j2 · ei1ei2 (197)

2 Cl
(2)

(V, q). (198)

This shows the claim for m = 2.

By way of induction we now assume that we have shown the claim until some m � 2, i.e. we have:

bj1 · · · bjm =

X

i1,...,im
8k 6=l. ik 6=il

ai1,j1 · · · aim,jmei1 · · · eim 2 Cl
(m)

(V, q). (199)

Now consider another bj with j := jm+1 6= jk, k = 1, . . . ,m. We then get:
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bj1 · · · bjmbj =

0

BB@
X

i1,...,im
8k 6=l. ik 6=il

ai1,j1 · · · aim,jmei1 · · · eim

1

CCA

 
nX

i=1

ai,jei

!
(200)

=

nX

i=1

X

i1,...,im
8k 6=l. ik 6=il

ai1,j1 · · · aim,jmai,jei1 · · · eimei (201)

=

nX

i=1

X

i1,...,im
8k 6=l. ik 6=il
i/2{i1,...,im}

ai1,j1 · · · aim,jmai,jei1 · · · eimei (202)

+

nX

i=1

X

i1,...,im
8k 6=l. ik 6=il
i2{i1,...,im}

ai1,j1 · · · aim,jmai,jei1 · · · eimei (203)

=

X

i1,...,im,im+1

8k 6=l. ik 6=il

ai1,j1 · · · aim,jmaim+1,jm+1ei1 · · · eimeim+1 (204)

+

nX

i=1

mX

s=1

X

i1,...,im
8k 6=l. ik 6=il

is=i

ai1,j1 · · · aim,jmai,jei1 · · · eimei. (205)
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We have to show that the last term vanishes. The last term can be written as:
nX

i=1

mX

s=1

X

i1,...,im
8k 6=l. ik 6=il

is=i

ai1,j1 · · · aim,jmai,j · ei1 · · · eimei (206)

=

nX

i=1

mX

s=1

X

i1,...,im
8k 6=l. ik 6=il

is=i

ai1,j1 · · · ais,js · · · aim,jmai,j · ei1 · · · eis · · · eimei (207)

=

nX

i=1

mX

s=1

X

i1,...,im
8k 6=l. ik 6=il

is=i

ai1,j1 · · · ais,js · · · aim,jmai,j · ei1 · · ·��eis · · · eimeisei · (�1)
m�s (208)

=

nX

i=1

mX

s=1

X

i1,...,im
8k 6=l. ik 6=il

is=i

ai1,j1 · · · ais,js · · · aim,jmai,j · ei1 · · ·��eis · · · eim · (�1)
m�sq(ei) (209)

=

mX

s=1

nX

i=1

X

i1,...,im
8k 6=l. ik 6=il

is=i

ai1,j1 · · · ais,js · · · aim,jmai,j · ei1 · · ·��eis · · · eim · (�1)
m�sq(ei) (210)

=

mX

s=1

X

i1,...,im
8k 6=l. ik 6=il

ai1,j1 · · · ais,js · · · aim,jmais,j · ei1 · · ·��eis · · · eim · (�1)
m�sq(eis) (211)

=

mX

s=1

X

i1,...,⇢is,...,im
8k 6=l. ik 6=il

nX

is=1
is /2{i1,.,⇢is,.,im}

ai1,j1 · · · ais,js · · · aim,jmais,j · ei1 · · ·��eis · · · eim · (�1)
m�sq(eis)

(212)

=

mX

s=1

X

i1,...,⇢is,...,im
8k 6=l. ik 6=il

nX

is=1

ai1,j1 · · · ais,js · · · aim,jmais,j · ei1 · · ·��eis · · · eim · (�1)
m�sq(eis) (213)

�
mX

s=1

X

i1,...,⇢is,...,im
8k 6=l. ik 6=il

X

is2{i1,.,⇢is,.,im}

ai1,j1 · · · ais,js · · · aim,jmais,j · ei1 · · ·��eis · · · eim · (�1)
m�sq(eis)

(214)

=

mX

s=1

X

i1,...,⇢is,...,im
8k 6=l. ik 6=il

ai1,j1 · · ·⇠⇠⇠ais,js · · · aim,jm · ei1 · · ·��eis · · · eim · (�1)
m�s

nX

is=1

ais,jsais,jq(eis)

| {z }
=b(bj ,bjs )=0

(215)

�
mX

s=1

X

i1,...,⇢is,...,im
8k 6=l. ik 6=il

X

is2{i1,.,⇢is,.,im}

ai1,j1 · · · ais,js · · · aim,jmais,j · ei1 · · ·��eis · · · eim · (�1)
m�sq(eis)

(216)

= �
mX

s=1

X

i1,...,⇢is,...,im
8k 6=l. ik 6=il

X

i2{i1,.,⇢is,.,im}

ai1,j1 · · · ai,js · · · aim,jmai,j · ei1 · · ·��eis · · · eim · (�1)
m�sq(ei)

(217)

= �
mX

s=1

mX

t=1
t 6=s

X

i1,.,⇢is,.,it,.,im
8k 6=l. ik 6=il

ai1,j1 · · · ait,js · · · aim,jmait,j · ei1 · · ·��eis · · · eim · (�1)
m�sq(eit).

(218)
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Note that the positional index t can occure before or after the positional index s. Depending of its
position the elements eit will appear before or after the element eis in the product. We look at both
cases separately and suppress the dots in between for readability.

First consider t > s:

mX

s=1

mX

t=1
t>s

X

i1,.,⇢is,.,it,.,im
8k 6=l. ik 6=il

ai1,j1 · ait,js · ait,jt · aim,jmait,j · ei1 ·��eis · eit · eim · (�1)
m�sq(eit) (219)

=

mX

s=1

mX

t=1
t>s

X

i1,.,⇢is,.,it,.,im
8k 6=l. ik 6=il

ai1,j1 · ait,js · ait,jt · aim,jmait,j · (�1)
t�2

eit · ei1 ·��eis ·⇢⇢eit · eim · (�1)
m�sq(eit)

(220)

=

mX

s=1

mX

t=1
t>s

nX

it=1

ait,js · ait,jt · ait,j(�1)
m�sq(eit)(�1)

t
eit · ⇡s,t(it) (221)

with ⇡s,t(i) :=

X

i1,.,⇢is,.,⇢it,.,im
8k 6=l. ik 6=il
8k. ik 6=i

ai1,j1 ·⇠⇠⇠ait,js ·⇠⇠⇠ait,jt · aim,jm · ei1 ·��eis ·⇢⇢eit · eim (222)

=

mX

s=1

mX

t=1
t>s

nX

i=1

(�1)
m+s+t

ai,js · ai,jt · ai,j · q(ei) · ei · ⇡s,t(i) (223)

=

mX

s=1

mX

t=1
t>s

y(s, t), (224)

with y(s, t) :=

nX

i=1

(�1)
m+s+t

ai,js · ai,jt · ai,j · q(ei) · ei · ⇡s,t(i). (225)

It is important to note that for all s 6= t we have:

y(s, t) = y(t, s). (226)
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Now consider t < s:

mX

s=1

mX

t=1
t<s

X

i1,.,it,.,⇢is,.,im
8k 6=l. ik 6=il

ai1,j1 · ait,jt · ait,js · aim,jmait,j · ei1 · eit ·��eis · eim · (�1)
m�sq(eit) (227)

=

mX

s=1

mX

t=1
t<s

X

i1,.,it,.,⇢is,.,im
8k 6=l. ik 6=il

ai1,j1 · ait,jt · ait,js · aim,jmait,j · (�1)
t�1

eit · ei1 ·⇢⇢eit ·��eis · eim · (�1)
m�sq(eit)

(228)

=

mX

s=1

mX

t=1
t<s

nX

it=1

ait,js · ait,jt · ait,j(�1)
m�sq(eit)(�1)

t�1
eit · ⇡s,t(it) (229)

=

mX

s=1

mX

t=1
t<s

nX

i=1

(�1)
m+s+t+1

ai,js · ai,jt · ai,j · q(ei) · ei · ⇡s,t(i) (230)

= �
mX

s=1

mX

t=1
t<s

y(s, t) (231)

= �
mX

t=1

mX

s=1
s<t

y(t, s) (232)

= �
mX

t=1

mX

s=1
s<t

y(s, t) (233)

= �
mX

s=1

mX

t=1
t>s

y(s, t). (234)

In total we see that both terms appear with a different sign and thus cancel out. This shows the
claim.

Corollary D.28. Let e1, . . . , en and b1, . . . , bn be two orthogonal bases of (V, q) with basis transition
matrix C = (ci,j)i2[n],j2[n]:

8j 2 [n]. bj =

X

i2[n]

ci,j · ei. (235)

Then C is invertible and we have the following matrix relations:

diag(q(b1), . . . , q(bn)) = C
>
diag(q(e1), . . . , q(en))C. (236)

Furthermore, for every subset J ✓ [n] we have the formula:

bJ =

X

I✓[n]
|I|=|J|

detCI,J · eI , (237)

with the submatrix: CI,J = (ci,j)i2I,j2J .
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Proof. For j, l 2 [n] we have:

diag(q(b1), . . . , q(bn))j,l = q(bj) · �j,l (238)
= b(bj , bl) (239)

=

nX

i=1

nX

k=1

ci,j · ck,l · b(ei, ek) (240)

=

nX

i=1

nX

k=1

ci,j · ck,l · q(ei) · �i,k (241)

=
�
C

>
diag(q(e1), . . . , q(en))C

�
j,l

. (242)

This shows the matrix identity:

diag(q(b1), . . . , q(bn)) = C
>
diag(q(e1), . . . , q(en))C. (243)

Furthermore, we have the following identites:

bJ = bj1 · · · bjm (244)

=

0

@
X

i12[n]

ci1,j1 · ei1

1

A · · ·

0

@
X

im2[n]

cim,jm · eim

1

A (245)

=

X

i12[n],...,im2[n]

(ci1,j1 · · · cim,jm) · (ei1 · · · eim) (246)

D.27
=

X

i12[n],...,im2[n]
|{i1,...,im}|=m

(ci1,j1 · · · cim,jm) · (ei1 · · · eim) (247)

=

X

i12[n],...,im2[n]
|{i1,...,im}|=m

sgn(i1, . . . , im) · (ci1,j1 · · · cim,jm) · e{i1,...,im} (248)

=

X

i1,...,im2[n]
i1<···<im

 
X

�2Sm

sgn(�) · ci�(1),j1 · · · ci�(m),jm

!
· e{i1,...,im} (249)

=

X

I✓[n]
|I|=m

detCI,J · eI . (250)

This shows the claim.

Notation D.29. For m /2 {0, . . . , n} it is sometimes convenient to put:

Cl
(m)

(V, q) := 0. (251)

Corollary D.30. We have the following orthogonal sum decomposition (w.r.t. q̄) of the Clifford
algebra Cl(V, q) into its F-vector spaces of multivector components:

Cl(V, q) =
nM

m=0

Cl
(m)

(V, q), (252)

which is independent of the choice of orthogonal basis of (V, q). Also note that for all m = 0, . . . , n:

dimCl
(m)

(V, q) =

✓
n

m

◆
. (253)

Definition D.31. We call an element x 2 Cl
(m)

(V, q) an m-multivector or an element of Cl(V, q) of
pure grade m. For x 2 Cl(V, q) we have a decomposition:

x = x
(0)

+ x
(1)

+ · · ·+ x
(n)

, (254)

with x
(m) 2 Cl

(m)
(V, q), m = 0, . . . , n. We call x(m) the grade-m-component of x.

42



Remark D.32. Note that the multivector grading of Cl(V, q) is only a grading of F-vector spaces,
but not of F-algebras. The reason is that multiplication can make the grade drop. For instance, for
v 2 V = Cl

(1)
(V, q) we have vv = q(v) 2 Cl

(0)
(V, q), while a grading for algebras would require

that vv 2 Cl
(2)

(V, q), which is here not the case.

Remark D.33 (Parity grading and multivector filtation in terms of multivector grading).

1. We clearly have:

Cl
[0]
(V, q) =

M

m=0,...,n
m even

Cl
(m)

(V, q), Cl
[1]
(V, q) =

M

m=1,...,n
m odd

Cl
(m)

(V, q). (255)

2. It is also clear that for general m we have:

Cl
(m)

(V, q) =
mM

l=0

Cl
(m)

(V, q) ✓ Cl(V, q). (256)

A simpler proof of Theorem D.27 can be obtained if we assume that char(F) = 0. We would then
argue as follows.

Definition D.34 (Antisymmetrization). For m 2 N and x1, . . . , xm 2 Cl(V, q) we define their
antisymmetization as:

[x1; . . . ;xm] :=
1

m!

X

�2Sm

sgn(�) · x�(1) · · ·x�(m), (257)

where Sm denotes the group of all permuations of [m]. Note that, due to the division by m! we need
that char(F) = 0 if we want to accommodate arbitrary m 2 N.

Lemma D.35. Let e1, . . . , en be an orthogonal basis of (V, q) and x1, . . . , xm 2 Cl(V, q). Then we
have:

1. [x1; . . . ;xm] is linear in each of its arguments (if the other arguments are fixed).

2. [x1; . . . ;xk; . . . ;xl; . . . ;xm] = �[x1; . . . ;xl; . . . ;xk; . . . ;xm].

3. [x1; . . . ;xk; . . . ;xl; . . . ;xm] = 0 if xk = xl.

4. [ei1 ; . . . ; eim ] = ei1 · · · eim if | {i1, . . . , im} | = m (i.e. if all indices are different).

Definition D.36 (Multivector grading - alternative, basis independent definition). For m = 0, . . . , n

we (re-)define:

Cl
(m)

(V, q) := span {[v1; . . . ; vm] | v1, . . . , vm 2 V } . (258)

Theorem D.37. Let e1, . . . , en be an orthogonal basis of (V, q), char(F) = 0. Then for every
m = 0, . . . , n we have the equality:

Cl
(m)

(V, q) = span {eA |A ✓ [n], |A| = m} . (259)

Note that the rhs is seemingly dependent of the choice of the orthogonal basis while the lhs is defined
in a basis independent way.

Proof. We can write every vk 2 V as a linear combination of its basis vectors:

vk =

X

jk2[n]

ck,jk · ejk . (260)
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With this we get:

[v1; . . . ; vm] =

X

j1,...,jm2[n]

Y

k2[m]

ck,jk · [ej1 ; . . . ; ejm ] (261)

=

X

j1,...,jm2[n]
|{j1,...,jm}|=m

Y

k2[m]

ck,jk · [ej1 ; . . . ; ejm ] (262)

=

X

j1,...,jm2[n]
|{j1,...,jm}|=m

Y

k2[m]

ck,jk · ej1 · · · ejm (263)

=

X

j1,...,jm2[n]
|{j1,...,jm}|=m

±
Y

k2[m]

ck,jk · e{j1,...,jm} (264)

2 span {eA |A ✓ [n], |A| = m} . (265)
This shows the inclusion:

Cl
(m)

(V, q) ✓ span {eA |A ✓ [n], |A| = m} . (266)
The reverse inclusion is also clear as:

eA = [ej1 ; . . . ; ejm ] 2 Cl
(m)

(V, q), (267)
where A = {j1, . . . , jm} and |A| = m. This shows the equality of both sets.

D.7 The Radical Subalgebra of the Clifford Algebra

Again, let (V, q) be a quadratic vector space of finite dimensions dimV = n < 1 over a field F of
char(F) 6= 2. Let b the corresponding bilinear form of q.
Notation D.38. We denote the group of the invertible elements of Cl(V, q):

Cl
⇥
(V, q) := {x 2 Cl(V, q) | 9y 2 Cl(V, q). xy = yx = 1} . (268)

Let R ✓ V be V ’s radical subspace. Recall:
R := {f 2 V | 8v 2 V. b(f, v) = 0} . (269)

Definition D.39 (The radical subalgebra). We define the radical subalgebra of Cl(V, q) to be:
^

(R) := span {1, f1 · · · fk | k 2 N0, fl 2 R, l = 1, . . . , k} ✓ Cl(V, q). (270)

Note that q|R = 0 and that
V
(R) coincides with Cl(R, q|R).

Notation D.40. We make the following further abbreviations:
^[i]

(R) :=

^
(R) \ Cl

[i]
(V, q), (271)

^(�1)
(R) := span {f1 · · · fk | k � 1, fl 2 R, l = 1, . . . , k} , (272)

^⇥
(R) := F⇥

+

^(�1)
(R), (273)

^[⇥]
(R) := F⇥

+ span {f1 · · · fk | k � 2 even, fl 2 R, l = 1, . . . , k} , (274)
^⇤

(R) := 1 +

^(�1)
(R), (275)

^[⇤]
(R) := 1 + span {f1 · · · fk | k � 2 even, fl 2 R, l = 1, . . . , k} . (276)

Here, F⇥ denotes the set of invertible elements of F.

Lemma D.41. 1. For every h 2
V(�1)

(R) there exists a k � 0 such that:

h
k+1

= 0. (277)

In particular, no h 2
V(�1)

(R) is ever invertible.
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2. Every y 2
V⇥

(R) =
V
(R) \

V(�1)
(R) is invertible. Its inverse is given by:

y
�1

= c
�1
�
1� h+ h

2 � · · ·+ (�1)
k
h
k
�
, (278)

where we write: y = c · (1 + h) with c 2 F⇥, h 2
V(�1)

(R), and k is such that hk+1
= 0.

3. In particular, we get:
^⇥

(R) =

^
(R) \ Cl

⇥
(V, q). (279)

Proof. Items 1 and 3 are clear. For item 2 we refer to Example E.21.

Lemma D.42 (Twisted commutation relationships). 1. For every f 2 R and v 2 V we have
the anticommutation relationship:

fv = �vf + 2 b(f, v)| {z }
=0

= �vf. (280)

2. For every f 2 R and x 2 Cl(V, q) we get the following twisted commutation relationship:

↵(x)f = (x
[0] � x

[1]
)f = f(x

[0]
+ x

[1]
) = fx. (281)

3. For every y 2
V
(R) and every x 2 Cl

[0]
(V, q) we get:

xy = yx. (282)

4. For every y 2
V
(R) and v 2 V we get:

↵(y)v = (y
[0] � y

[1]
)v = v(y

[0]
+ y

[1]
) = vy. (283)

5. For every y 2
V[0]

(R) (of even parity) and every x 2 Cl(V, q) we get:

yx = xy. (284)

Remark D.43. A direct consequence from Lemma D.42 is that the even parity parts:
V[0]

(R),V[⇥]
(R) and

V[⇤]
(R) all lie in the center of Cl(V, q), which we denote by Z(Cl(V, q)):

^[⇤]
(R) ✓

^[⇥]
(R) ✓

^[0]
(R) ✓ Z(Cl(V, q)), (285)

i.e. every y 2
V[0]

(R) (of even parity) commutes with every x 2 Cl(V, q). For more detail we refer
to Theorem D.47.

In the following we will study the center of the Clifford algebra Z(Cl(V, q)) more carefully.

D.8 The Center of the Clifford Algebra

In the following final subsections, we study additional properties of the Clifford algebra that will aid
us in studying group representations and actions on the algebra in the upcoming sections.

Let (V, q) be a quadratic space over a field F with char(F) 6= 2 and dimV = n < 1.
Definition D.44 (The center of an algebra). The center of an algebra A is defined to be:

Z(A) := {z 2 A | 8x 2 A. xz = zx} . (286)

Lemma D.45. Let e1, . . . , en be an orthogonal basis of (V, q). For A ✓ [n] := {1, . . . , n} let
eA :=

Q<
i2A ei be the product in Cl(V, q) in increasing index order, e; := 1. Then we get for two

subsets A,B ✓ [n]:

eAeB = (�1)
|A|·|B|�|A\B| · eBeA. (287)
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In particular, for j /2 A we get:

eAej = (�1)
|A| · ejeA, (288)

and:

eAej � ejeA = ((�1)
|A| � 1) · ejeA = (�1)

t
((�1)

|A|+1
+ 1)eA [̇ {j}, (289)

where t is the position of j in the ordered set A [̇ {j}.

For i 2 A we get:

eAei = (�1)
|A|�1 · eieA = (�1)

|A|�sq(ei)eA\{i}, (290)

and:

eAei � eieA = (�1)
s
((�1)

|A|
+ 1)q(ei)eA\{i}, (291)

where s is the position of i in the ordered set A.

Proof. Let B := {j1, . . . , j|B|} ✓ [n].

eAeB =

<Y

i2A

ei

<Y

j2B

ej (292)

= (�1)
|A|� [j12A]

ej1

<Y

i2A

ei

<Y

j2B\j1

ej (293)

= (�1)
|B||A|�

P
j2B [j2A]

eBeA (294)

= (�1)
|B||A|�|A\B|

eBeA (295)

For the other two identities, we similarly make use of the fundamental Clifford identity.
Lemma D.46. Let (V, q) be a quadratic space with dimV = n < 1. Let e1, . . . , en be an
orthogonal basis for (V, q). For x 2 Cl(V, q) we have the equivalence:

x 2 Z(Cl(V, q)) () 8i 2 [n]. xei = eix. (296)

Proof. This is clear as Cl(V, q) is generated by ek1 · · · ekl .

Theorem D.47 (The center of the Clifford algebra). Let (V, q) be a quadratic space with dimV =

n < 1, charF 6= 2, and let R ✓ V be the radical subspace of (V, q). Then for the center of Cl(V, q)
we have the following cases:

1. If n is odd then:

Z(Cl(V, q)) =
^[0]

(R)� Cl
(n)

(V, q). (297)

2. If n is even then:

Z(Cl(V, q)) =
^[0]

(R). (298)

In all cases we have:
^[0]

(R) ✓ Z(Cl(V, q)). (299)

Proof. Let e1, . . . , en be an orthogonal basis for (V, q). The statement can then equivalently be
expressed as:
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1. If n is odd or q = 0 (on all vectors), then:
Z(Cl(V, q)) = span

�
1, eA, e[n]

�� |A| even , 8i 2 A. q(ei) = 0
 

(300)

=

^[0]
(R) + Cl

(n)
(V, q). (301)

2. If n is even and q 6= 0 (on some vector), then:
Z(Cl(V, q)) = span {1, eA | |A| even , 8i 2 A. q(ei) = 0} (302)

=

^[0]
(R). (303)

Note that if n is even and q = 0 then both points would give the same answer, as then V = R and
thus:

Cl
(n)

(V, q) =
^(n)

(R) ✓
^[0]

(R). (304)

We first only consider basis elements eA with A ✓ [n] and check when we have eA 2 Z(Cl(V, q)).

We now consider three cases:

1. A = ;. We always have: e; = 1 2 Z(Cl(V, q)).

2. A = [n]. For every i 2 [n] we have:
e[n]ei = (�1)

n�1 · eie[n] = ±q(ei) · e[n]\{i}. (305)
So e[n] 2 Z(Cl(V, q)) iff either n is odd or q = 0 (on all ei).

3. ; 6= A ( [n]. Note that for i 2 A we have:

eAei = (�1)
|A|�1 · eieA = ±q(ei) · eA\{i}, (306)

while for j /2 A we have:

eAej = (�1)
|A| · ejeA. (307)

The latter implies that for eA 2 Z(Cl(V, q)) to hold, |A| necessarily needs to be even. Since
in that case (�1)

|A|�1
= �1, we necessarily need by the former case that for every i 2 A,

q(ei) = 0.

Now consider a linear combination x =
P

A✓[n] cA · eA 2 Cl(V, q) with cA 2 F. Then abbreviate:

Z := span {eA |A ✓ [n], eA 2 Z(Cl(V, q))} ✓ Z(Cl(V, q)). (308)
We need to show that x 2 Z . We thus write:

x = y + z, y :=

X

A✓[n]
eA /2Z

cA · eA, z :=

X

A✓[n]
eA2Z

cA · eA 2 Z. (309)

So with x, z 2 Z(Cl(V, q)) also y 2 Z(Cl(V, q)) and we are left to show that y = 0.

First note that, since e; = 1 2 Z , there is no e;-component in y.

We now have for every i 2 [n]:
0 = yei � eiy (310)

=

X

A✓[n]
eA /2Z

cA · (eAei � eieA) (311)

=

X

A✓[n]
eA /2Z
i2A

cA · (eAei � eieA) +

X

A✓[n]
eA /2Z
i/2A

cA · (eAei � eieA) (312)

=

X

A✓[n]
eA /2Z
i2A

±((�1)
|A|

+ 1)q(ei)cA · eA\{i} +
X

A✓[n]
eA /2Z
i/2A

±((�1)
|A|+1

+ 1)cA · eA [̇ {i}. (313)
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Note that for A,B ✓ [n] with A 6= B we always have:

A \ {i} 6= B \ {i} , if i 2 A, i 2 B, (314)
A \ {i} 6= B [̇ {i} , if i 2 A, i /2 B, (315)
A [̇ {i} 6= B \ {i} , if i /2 A, i 2 B, (316)
A [̇ {i} 6= B [̇ {i} , if i /2 A, i /2 B. (317)

So the above representation for yei � eiy is already given in basis form. By their linear independence
we then get that for every A ✓ [n] with eA /2 Z and every i 2 [n]:

0 = ((�1)
|A|

+ 1)q(ei)cA, for i 2 A, (318)

0 = ((�1)
|A|+1

+ 1)cA, for i /2 A. (319)

First consider the case e[n] /2 Z . By the previous result we then know that n is even and q 6= 0. So
there exists ei with q(ei) 6= 0. So the above condition for i 2 [n] then reads:

0 = 2q(ei)c[n], for i 2 [n], (320)

which implies c[n] = 0 as q(ei) 6= 0. So y does not have a e[n]-component.

Similarly, for A ✓ [n] with A 6= [n] and eA /2 Z and |A| odd there exists i /2 A and the above
condition reads:

0 = 2cA, for i /2 A, (321)

which implies cA = 0. So y does not have any eA-components with odd |A|.
Now let A ✓ [n] with A 6= [n] and eA /2 Z and |A| even. Then by our previous analysis we know
that there exists i 2 A with q(ei) 6= 0. Otherwise eA 2 Z . So the above condition reads:

0 = 2q(ei)cA, for i 2 A, (322)

which implies cA = 0 as q(ei) 6= 0. This shows that y does not have any eA-component with even
|A|.
Overall, this shows that y = 0 and thus the claim.

D.9 The Twisted Center of the Clifford Algebra

Notation D.48. Let e1, . . . , en be an orthogonal basis of (V, q). For A ✓ [n] := {1, . . . , n} let
eA :=

Q<
i2A ei be the product in Cl(V, q) in increasing index order, e; := 1. Then (eA)A✓[n] forms

a basis for Cl(V, q).
Definition D.49 (The twisted center of a Z/2Z-graded algebra). We define the twisted center of a
Z/2Z-graded algebra A as the following subset:

K(A) :=

n
y 2 A

��� 8x 2 A. yx
[0]

+ (y
[0] � y

[1]
)x

[1]
= xy

o
. (323)

Theorem D.50. We have the following identification of the twisted center with the radical subalgebra
of the Clifford algebra Cl(V, q) and the set:

K(Cl(V, q)) =
^

(R) = {y 2 Cl(V, q) | 8v 2 V. ↵(y)v = vy} . (324)

Proof. Let y 2
V
(R) then by Lemma D.42 we get:

yx
[0]

+ ↵(y)x
[1]

= x
[0]
y + x

[1]
y = xy. (325)

This shows that:

y 2 K(Cl(V, q)), (326)

and thus:
^

(R) ✓ K(Cl(V, q)). (327)
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Note that the following inclusion is clear as V ✓ Cl(V, q):

K(Cl(V, q)) ✓ {y 2 Cl(V, q) | 8v 2 V. ↵(y)v = vy} . (328)

For the final inclusion, let y =
P

B✓[n] cB · eB 2 Cl(V, q) such that for all v 2 V we have
↵(y)v = vy. Then for all orthogonal basis vectors ei we get the requirement:

eiy = ↵(y)ei, (329)

which always holds if q(ei) = 0, and is only a condition for q(ei) 6= 0. For such ei we get:

ei

 
X

B✓[n]
|B| even
i2B

cB · eB +

X

B✓[n]
|B| even
i/2B

cB · eB +

X

B✓[n]
|B| odd
i2B

cB · eB +

X

B✓[n]
|B| odd
i/2B

cB · eB

!
(330)

= eiy (331)
= ↵(y)ei (332)

= ↵

 
X

B✓[n]
|B| even
i2B

cB · eB +

X

B✓[n]
|B| even
i/2B

cB · eB +

X

B✓[n]
|B| odd
i2B

cB · eB +

X

B✓[n]
|B| odd
i/2B

cB · eB

!
ei (333)

=

 
X

B✓[n]
|B| even
i2B

cB · eB +

X

B✓[n]
|B| even
i/2B

cB · eB �
X

B✓[n]
|B| odd
i2B

cB · eB �
X

B✓[n]
|B| odd
i/2B

cB · eB

!
ei (334)

= ei

 
�
X

B✓[n]
|B| even
i2B

cB · eB +

X

B✓[n]
|B| even
i/2B

cB · eB �
X

B✓[n]
|B| odd
i2B

cB · eB +

X

B✓[n]
|B| odd
i/2B

cB · eB

!
. (335)

Since ei with q(ei) 6= 0 is invertible, we can cancel ei on both sides and make use of the linear
independence of (eB)B✓[n] to get that:

cB = 0 if i 2 B. (336)

Since for given B this can be concluded from every ei with q(ei) 6= 0 we can only have cB 6= 0 if
q(ej) = 0 for all j 2 B. Note that elements ej with q(ej) = 0 that are part of an orthogonal basis
satisfy ej 2 R. This shows that:

y =

X

B✓[n]
8j2B. q(ej)=0

cB · eB 2 span {eA |A ✓ [n], 8i 2 A. ei 2 R} =

^
(R). (337)

This shows the remaining inclusion:

{y 2 Cl(V, q) | 8v 2 V. ↵(y)v = vy} ✓
^

(R). (338)

This shows the equality of all three sets.

E The Clifford Group and its Clifford Algebra Representations

We saw that Cartan-Dieudonné (Theorem C.13) generates the orthogonal group of a (non-degenerate)
quadratic space by composing reflections. Considering this, we seek in the following a group
representation that acts on the entire Clifford algebra, but reduces to a reflection when restricted to
V . Further, we ensure that the action is an algebra homomorphism and will therefore respect the
geometric product.

49



E.1 Adjusting the Twisted Conjugation

Recall the notation Cl
⇥
(V, q) := {x 2 Cl(V, q) | 9y 2 Cl(V, q). xy = yx = 1}.

Motivation E.1 (Generalizing reflection operations). For v, w 2 V with q(w) 6= 0 the reflection of v
onto the hyperplane that is normal to w is given by the following formula, which we then simplify:

rw(v) = v � 2
b(w, v)

b(w,w)
w (339)

= wwv/q(w)� 2
b(w, v)

q(w)
w (340)

= �w(�wv + 2b(w, v))/q(w) (341)
= �wvw/q(w) (342)

= �wvw
�1

. (343)

So we have rw(v) = �wvw
�1 for v, w 2 V with q(w) 6= 0. We would like to generalize this to

an operation ⇢ for w from a subgroup of � ✓ Cl
⇥
(V, q) (as large as possible) onto all elements

x 2 Cl(V, q). More explicitely, we want for all w1, w2 2 � and x1, x2 2 Cl(V, q), v, w 2 V ,
q(w) 6= 0:

⇢(w)(v) = �wvw
�1

= rw(v), (344)
(⇢(w2) � ⇢(w1)) (x1) = ⇢(w2w1)(x1), (345)

⇢(w1)(x1 + x2) = ⇢(w1)(x1) + ⇢(w1)(x2), (346)
⇢(w1)(x1x2) = ⇢(w1)(x1)⇢(w1)(x2). (347)

The second condition makes sure that Cl(V, q) will be a group representation of �, i.e. we get a group
homomorphism:

⇢ : � ! Aut(Cl(V, q)), (348)

where Aut(Cl(V, q)) denotes the set of automorphisms Cl(V, q) ! Cl(V, q).

In the literature, the following versions of reflection operations were studied:

⇢0(w) : x 7! wxw
�1

, ⇢1(w) : x 7! ↵(w)xw
�1

, ⇢2(w) : x 7! wx↵(w)
�1

. (349)

Since ⇢0(w) is missing the minus sign it only generalizes compositions of reflections for elements
w = w1 · · ·wk, wl 2 V , q(vl) 6= 0, of even parity k. The map ⇢1(w), on the other hand, takes
the minus sign into account and generalizes also to such elements w = w1 · · ·wk of odd party
k = prt(w) as then: ↵(w) = (�1)

prt(w)
w. However, in contrast to ⇢0(w), which is an algebra

homomorphism for all w 2 Cl
⇥
(V, q), the map ⇢1(w) is not multiplicative in x, as can be seen with

v1, v2 2 V and w 2 V with q(w) 6= 0:

⇢1(w)(v1v2) = ↵(w)v1v2w
�1 (350)

= (�1)
prt(w)

wv1w
�1

(�1)
prt(w)

(�1)
prt(w)

wv2w
�1 (351)

= (�1)
prt(w)

⇢1(w)(v1)⇢1(w)(v2) (352)
6= ⇢1(w)(v1)⇢1(w)(v2). (353)

The lack of multiplicativity means that reflection and taking geometric product does not commute.

To fix this, it makes sense to first restrict ⇢1(w) to V , where it coincides with rw and also still is mul-
tiplicative in w, and then study under which conditions on w it extends to an algebra homomorphism
Cl(V, q) ! Cl(V, q).

More formally, by the universal property of the Clifford algebra, the obstruction for:

⇢(w) : V ! Cl(V, q), ⇢(w)(v) := ↵(w)vw
�1

= w⌘(w)vw
�1

, ⌘(w) := w
�1
↵(w), (354)

with general invertible w 2 Cl
⇥
(V, q), to extend to an F-algebra homomorphism:

⇢(w) : Cl(V, q) ! Cl(V, q), (355)
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is the following:

8v 2 V. q(v)
!
= (⇢(w)(v))

2 (356)
= ⇢(w)(v)⇢(w)(v) (357)

= (w⌘(w)vw
�1

)(w⌘(w)vw
�1

) (358)

= w⌘(w)v⌘(w)vw
�1

, (359)

which reduces to:

8v 2 V. q(v)
!
= ⌘(w)v⌘(w)v. (360)

The latter is, for instance, satisfied if ⌘(w) commutes with every v 2 V and 1 = ⌘(w)
2. In particular,

the above requirement is satisfied for all w 2 Cl
⇥
(V, q) with ⌘(w) 2 {±1}, which is equivalent to

↵(w) = ±w, which means that w is a homogeneous element of Cl(V, q) in the parity grading. This
discussion motivates the following definitions and analysis.
Notation E.2 (The coboundary of ↵). The coboundary ⌘ of ↵ is defined on w 2 Cl

⇥
(V, q) as follows:

⌘ : Cl
⇥
(V, q) ! Cl

⇥
(V, q), ⌘(w) := w

�1
↵(w). (361)

Remark E.3. 1. ⌘ is a crossed group homomorphism (aka 1-cocycle), i.e. for w1, w2 2
Cl

⇥
(V, q) we have:

⌘(w1w2) = ⌘(w1)
w2⌘(w2), with ⌘(w1)

w2 := w
�1
2 ⌘(w1)w2. (362)

2. For w 2 Cl
⇥
(V, q) we have:

↵(⌘(w)) = ↵(w)
�1

w = ⌘(w)
�1

. (363)

3. For w 2 Cl
⇥
(V, q) we have that w is an homogeneous element in Cl(V, q), in the sense of

parity, if and only if ⌘(w) 2 {±1}.
Definition E.4 (The group of homogeneous invertible elements). With the introduced notation we
can define the group of all invertible elements of Cl(V, q) that are also homogeneous (in the sense of
parity) as:

Cl
[⇥]

(V, q) :=
⇣
Cl

⇥
(V, q) \ Cl

[0]
(V, q)

⌘
[
⇣
Cl

⇥
(V, q) \ Cl

[1]
(V, q)

⌘
(364)

=
�
w 2 Cl

⇥
(V, q)

�� ⌘(w) 2 {±1}
 
. (365)

Notation E.5 (The main involution - revisited). We now make the following abbreviations:

↵
0
:= id : Cl(V, q) ! Cl(V, q), ↵

0
(x) := x

[0]
+ x

[1]
= x, (366)

↵
1
:= ↵ : Cl(V, q) ! Cl(V, q), ↵

1
(x) := x

[0] � x
[1]
. (367)

For w 2 Cl(V, q) we then have:

↵
prt(w)

: Cl(V, q) ! Cl(V, q), ↵
prt(w)

(x) = x
[0]

+ (�1)
prt(w)

x
[1]
. (368)

Note that ↵prt(w) is an F-algebra involution of Cl(V, q) that preserves the parity grading of Cl(V, q).

We also need the following slight variation ↵w, which in many, but not all cases, coincides with
↵
prt(w). For w 2 Cl

⇥
(V, q) we define the w-twisted map:

↵
w
: Cl(V, q) ! Cl(V, q), ↵

w
(x) := x

[0]
+ ⌘(w)x

[1]
. (369)

Remark E.6. Note that for w 2 Cl
[⇥]

(V, q) we have that ⌘(w) = (�1)
prt(w) and thus ↵w

= ↵
prt(w),

in which case ↵w is an F-algebra involution of Cl(V, q) that preserves the parity grading of Cl(V, q).

Definition E.7 (Adjusted twisted conjugation). For w 2 Cl
⇥
(V, q) we define the twisted conjugation:

⇢(w) : Cl(V, q) ! Cl(V, q), ⇢(w)(x) := wx
[0]
w

�1
+ ↵(w)x

[1]
w

�1
. (370)

= w

⇣
x
[0]

+ ⌘(w)x
[1]
⌘
w

�1 (371)

= w↵
w
(x)w

�1
. (372)
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We now want to re-investigate the action of ⇢ on Cl(V, q).

Lemma E.8. For every w 2 Cl
[⇥]

(V, q) the map:

⇢(w) : Cl(V, q) ! Cl(V, q), x 7! ⇢(w)(x) = w

⇣
x
[0]

+ ⌘(w)x
[1]
⌘
w

�1
, (373)

is an F-algebra automorphism that preserves the parity grading of Cl(V, q). Its inverse it given by
⇢(w

�1
).

Proof. First note that ↵w agrees with the involution ↵prt(w) for w 2 Cl
[⇥]

(V, q). Since ↵prt(w) is an
F-algebra automorphism that preserves the parity grading of Cl(V, q) so is ↵w for w 2 Cl

[⇥]
(V, q).

Furthermore, the conjugation ⇢0(w) : x 7! wxw
�1 is an F-algebra automorphism, which preserves

the parity grading of Cl(V, q) if w 2 Cl
[⇥]

(V, q). To see this, note that 0 = prt(1) = prt(ww
�1

) =

prt(w) + prt(w
�1

). As such, prt(w) = prt(w
�1

). Then, prt(wxw�1
) = prt(w) + prt(x) +

prt(w
�1

) = 2 prt(w) + prt(x) = prt(x). Here, we use the fact that the Clifford algebra is Z/2Z-
graded.

So, their composition ⇢(w) = ⇢0(w) � ↵w is also an F-algebra automorphism that preserves the
parity grading Cl(V, q) for w 2 Cl

[⇥]
(V, q).

As a direct corollary we get:
Corollary E.9. Let F (T0,1, . . . , T1,`) 2 F[T0,1, . . . , T1,`] be a polynomial in 2` variables with
coefficients in F. Let x1, . . . , x` 2 Cl(V, q) be ` elements of the Clifford algebra and w 2 Cl

[⇥]
(V, q)

be a homogeneous invertible element of Cl(V, q). Then we have the following equivariance property:

⇢(w)

⇣
F (x

[0]
1 , . . . , x

[i]
l , . . . , x

[1]
` )

⌘
= F (⇢(w)(x1)

[0]
, . . . , ⇢(w)(xl)

[i]
, . . . , ⇢(w)(x`)

[1]
). (374)

Proof. This directly follows from Lemma E.8.

Futhermore, we get the following result:
Theorem E.10. The map:

⇢ : Cl
[⇥]

(V, q) ! AutAlg,prt (Cl(V, q)) , w 7! ⇢(w), (375)

is a well-defined group homomorphism from the group of all homogeneous invertible elements of
Cl(V, q) to the group of F-algebra automorphisms of Cl(V, q) that preserve the parity grading of
Cl(V, q). In particular, Cl(V, q), Cl[0](V, q), Cl[1](V, q) are group representations of Cl[⇥]

(V, q) via
⇢.

Proof. By the previous Lemma E.8 we already know that ⇢ is a well-defined map. We only need to
check if it is a group homomorphism. Let w1, w2 2 Cl

[⇥]
(V, q) and x 2 Cl(V, q), then we get:

(⇢(w2) � ⇢(w1)) (x) = ⇢(w2)(⇢(w1)(x)) (376)

= ⇢(w2)

⇣
w1↵

prt(w1)(x)w
�1
1

⌘
(377)

= w2↵
prt(w2)

⇣
w1↵

prt(w1)(x)w
�1
1

⌘
w

�1
2 (378)

= w2↵
prt(w2)(w1)↵

prt(w2)(↵
prt(w1)(x))↵

prt(w2)(w1)
�1

w
�1
2 (379)

= w2(�1)
prt(w2) prt(w1)w1↵

prt(w2)+prt(w1)(x)(�1)
prt(w2) prt(w1)w

�1
1 w

�1
2

(380)

= w2w1↵
prt(w2)+prt(w1)(x)w

�1
1 w

�1
2 (381)

= (w2w1)↵
prt(w2w1)(x)(w2w1)

�1 (382)
= ⇢(w2w1)(x), (383)
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where we used the multiplicativity of ↵prt(w)
(x):

↵
w
(x)↵

w
(y) =

⇣
(�1)

prt(w)
x
[1]

+ x[0]

⌘⇣
(�1)

prt(w)
y
[1]

+ y
[0]
⌘

(384)

= (�1)
prt(w)

⇣
x
[0]
y
[1]

+ x
[1]
y
[0]
⌘
+ x

[1]
y
[1]

+ x
[0]
y
[0] (385)

= ↵
w
⇣
(xy)

[1]
⌘
+ (xy)

[0] (386)

= ↵
w
(xy). (387)

This implies:
⇢(w2) � ⇢(w1) = ⇢(w2w1), (388)

which shows the claim.

Finally, we want to re-check that our newly defined ⇢, despite its different appearance, still has the
proper interpretation of a reflection.
Remark E.11. Let w, v 2 V with q(w) 6= 0. Then ⇢(w)(v) is the reflection of v w.r.t. the hyperplane
that is normal to w:

⇢(w)(v) = w↵
w
(v)w

�1
= �wvw

�1
= rw(v). (389)

Remark E.12. The presented results in this subsection can be slightly generalized as follows. If
w 2 Cl

⇥
(V, q) such that ⌘(w) 2

V
(R) then by Theorem D.50 we get for all v 2 V :

v⌘(w) = ↵(⌘(w))v = ⌘(w)
�1

v. (390)
This implies that for all v 2 V :

⌘(w)v⌘(w)v = ⌘(w)⌘(w)
�1

vv = q(v), (391)
and thus for all v 2 V :

(↵(w)vw
�1

)(↵(w)vw
�1

) = q(v). (392)
By the universal property of the Clifford algebra the map:

⇢(w) : V ! Cl(V, q), v 7! ↵(w)vw
�1

, (393)
uniquely extends to an F-algebra homomorphism:

⇢(w) : Cl(V, q) ! Cl(V, q), (394)
with:

x = c0 +

X

i2I

ci · vi,1 · · · vi,ki (395)

7! c0 +

X

i2I

ci · ↵(w)vi,1w�1 · · ·↵(w)vi,kiw
�1 (396)

= w

 
c0 +

X

i2I

ci · ⌘(w)vi,1 · · · ⌘(w)vi,ki

!
w

�1 (397)

= w

0

B@c0 +

X

i2I
ki even

ci · vi,1 · · · vi,ki + ⌘(w) ·
X

i2I
ki odd

ci · vi,1 · · · vi,ki

1

CAw
�1 (398)

= w

⇣
x
[0]

+ ⌘(w) · x[1]
⌘
w

�1
. (399)

To further ensure that the elements w 2 Cl
⇥
(V, q) with the above property form a group we

might need to further restrict to require that ⌘(w) 2
V[⇥]

(R). At least in this case we get for
w1, w2 2 Cl

⇥
(V, q) with ⌘(w1), ⌘(w2) 2

V[⇥]
(R) ✓ Z(Cl(V, q)), see Remark D.43, that:

⌘(w2w1) = w
�1
1 ⌘(w2)w1⌘(w1) = w

�1
1 w1⌘(w2)⌘(w1) = ⌘(w2)⌘(w1) 2

^[⇥]
(R). (400)

So the following set:

C :=

⇢
w 2 Cl

⇥
(V, q)

���� ⌘(w) 2
^[⇥]

(R)

�
(401)

is a subgroup of Cl⇥(V, q) where every w 2 C defines an algebra homomorphism:

⇢(w) : Cl(V, q) ! Cl(V, q), ⇢(w)(x) = w

⇣
x
[0]

+ ⌘(w)x
[1]
⌘
w

�1
. (402)
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E.2 The Clifford Group

Motivation E.13. We have seen in the last section that if we choose homogeneous invertible elements
w 2 Cl

[⇥]
(V, q) then the action ⇢(w), the (adjusted) twisted conjugation, is an algebra automorphism

of Cl(V, q) that also preserves the parity grading of Cl(V, q), in particular, ⇢(w) is linear and
multiplicative.

We now want to investigate under which conditions on w the algebra automorphism ⇢(w) also
preserves the multivector grading:

Cl(V, q) = Cl
(0)

(V, q)� Cl
(1)

(V, q)� · · ·� Cl
(m)

(V, q)� · · ·� Cl
(n)

(V, q). (403)

If this was the case then each component Cl(m)
(V, q) would give rise to a corresponding group

representation.

To preserve the multivector grading we at least need that for v 2 V = Cl
(1)

(V, q) we have that
also ⇢(w)(v) 2 Cl

(1)
(V, q) = V . We will see that for w 2 Cl

⇥
(V, q) such that ⇢(w) is an algebra

homomorphism, i.e. for w homogeneous and invertible, and such that ⇢(w)(v) 2 V for all v 2 V ,
we already get the preservation of the whole multivector grading of Cl(V, q).

Again, let (V, q) be a quadratic space over a field F with char(F) 6= 2 and dimV = n < 1 and
e1, . . . , en and orthogonal basis of (V, q).
Remark E.14. In the following, we elaborate on the term Clifford group in constrast to previous
literature. First, the unconstrained Clifford group is also referred to as the Lipschitz group or
Clifford-Lipschitz group in honor of its creator Rudolf Lipschitz [LS09]. Throughout its inventions,
several generalizations and versions have been proposed, often varying in details, leading to slightly
non-equivalent definitions. For instance, some authors utilize conjugation as an action, others apply
the the twisted conjugation, while yet another group employs the twisting on the other side of the
conjugation operation. Furthermore, some authors require that the elements are homogeneous in the
parity grading, where others do not. We settle for a definition that requires homogeneous invertible
elements of the Clifford algebra that act via our adjusted twisted conjugation such that elements
from the vector space V land also in V . The reason for our definition is that we want the adjusted
twisted conjugation to act on the whole Clifford algebra Cl(V, q), not just on the vector space V .
Furthermore, we want it to respect, besides the vector space structure of Cl(V, q), also the product
structure, leading to algebra homomorphisms. In addition, we also want that the action to respect the
extended bilinear form b, the orthogonal structure, and the multivector grading. These properties
might not (all) be ensured in other definitions with different nuances.

Also note that the name Clifford group might be confused with different groups with the same name in
other literature, e.g., with the group of unitary matrices that normalize the Pauli group or with the
finite group inside the Clifford algebra that is generated by an orthogonal basis via the geometric
product.
Definition E.15. 1. We denote the unconstrained Clifford group of Cl(V, q) as follows:

�̃(V, q) :=
�
w 2 Cl

⇥
(V, q)

�� 8v 2 V. ⇢(w)(v) 2 V
 
. (404)

2. We denote the Clifford group of Cl(V, q) as follows:

�(V, q) := Cl
[⇥]

(V, q) \ �̃(V, q) (405)

=
�
w 2 Cl

⇥
(V, q)

�� ⌘(w) 2 {±1} ^ 8v 2 V. ⇢(w)(v) 2 V
 
. (406)

3. We define the special Clifford group as follows:

�
[0]
(V, q) := �̃(V, q) \ Cl

[0]
(V, q) = �(V, q) \ Cl

[0]
(V, q). (407)

Theorem E.16. For w 2 �(V, q) and x 2 Cl(V, q) we have for all m = 0, . . . , n:

⇢(w)(x
(m)

) = ⇢(w)(x)
(m)

. (408)

In particular, for x 2 Cl
(m)

(V, q) we also have ⇢(w)(x) 2 Cl
(m)

(V, q).
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Proof. We first claim that for w 2 �(V, q) the set of elements:

b1 := ⇢(w)(e1), . . . , bn := ⇢(w)(en), (409)

forms an orthogonal basis of (V, q). Indeed, since ⇢(w)(et) 2 V , by definition of �(V, q), the
orthogonality relation, i 6= j:

0 = 2b(ei, ej) = eiej + ejei, (410)

transforms under ⇢(w) to:

0 = ⇢(w)(0) = ⇢(w) (eiej + ejei) (411)
= ⇢(w)(ei)⇢(w)(ej) + ⇢(w)(ej)⇢(w)(ei) (412)
= bibj + bjbi (413)
= 2b(bi, bj). (414)

This shows that b1, . . . , bn is an orthogonal system in V . Using ⇢(w�1
) we also see that the system

is linear independent and thus an orthognal basis of V . By the basis-independence of the multivector
grading Cl

(m)
(V, q), see Theorem D.27, we then get for:

x =

X

i1<···<im

ci1,...,im · ei1 · · · eim 2 Cl
(m)

(V, q), (415)

the relation:

⇢(w)(x) =

X

i1<···<im

ci1,...,im · bi1 · · · bim 2 Cl
(m)

(V, q). (416)

This shows the claim.

Corollary E.17. The map:

⇢ : �(V, q) ! AutAlg,grd (Cl(V, q)) , w 7! ⇢(w), (417)

is a well-defined group homomorphism from the Clifford group to the group of F-algebra automor-
phisms of Cl(V, q) that preserve the multivector grading of Cl(V, q). In particular, Cl(V, q) and
Cl

(m)
(V, q) for m = 0, . . . , n, are group representations of �(V, q) via ⇢.

Corollary E.18. Let F (T1, . . . , T`) 2 F[T1, . . . , T`] be a polynomial in ` variables with coefficients
in F and let k 2 {0, . . . , n}. Further, consider ` elements x1, . . . , x` 2 Cl(V, q). Then for every
w 2 �(V, q) we get the equivariance property:

⇢(w)

⇣
F (x1, , . . . , x`)

(k)
⌘
= F (⇢(w)(x1), . . . , ⇢(w)(x`))

(k)
, (418)

where the superscript (k) indicates the projection onto the multivector grade-k-part of the whole
expression.
Example E.19. Let w 2 V with q(w) 6= 0, then w 2 �(V, q).

Proof. It is clear that w is homogeneous in the parity grading, as ⌘(w) = �1. For v 2 V we get:

⇢(w)(v) = rw(v) = v � 2
b(v, w)

q(w)
w 2 V. (419)

This shows w 2 �(V, q).

Example E.20. Let e, f 2 V with b(v, f) = 0 for all v 2 V , and put: � := 1 + ef 2 Cl
[0]
(V, q).

Then � 2 �(V, q).

Proof. First, note that for all v 2 V we get:

fv = �vf + 2b(f, v) = �vf. (420)

Next, we see that:

�
�1

= 1� ef. (421)
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Indeed, we get:

(1 + ef)(1� ef) = 1 + ef � ef � efef (422)
= 1 + effe (423)
= 1 + q(f)|{z}

=0

q(e) (424)

= 1. (425)

Now consider v 2 V . We then have:

⇢(�)(v) = ↵(�)v�
�1 (426)

= (1 + ef)v(1� ef) (427)
= (1 + ef)(v � vef) (428)
= v + efv � vef � efvef (429)
= v � evf � vef � eveff (430)
= v � (ev + ve)f � q(f)|{z}

=0

eve (431)

= v � 2b(e, v)f (432)
2 V. (433)

This shows � 2 �(V, q).

Example E.21. Let f1, . . . , fr 2 V be a basis of the radical subspace R of (V, q). In particular, we
have b(v, fj) = 0 for all v 2 V . Then we put:

g := 1 + h, with h 2 span {fk1 · · · fks | s � 2 even, 1  k1 < k2 < . . . ks  r} ✓ Cl(V, q).
(434)

Then we claim that g 2 �(V, q) and ⇢(g) = idCl(V,q).

Proof. Since we restrict to even products it is clear that g 2 Cl
[0]
(V, q). Furthermore, note that, since

h lives in the radical subalgebra, there exists a number k � 1 such that:

h
k+1

= 0. (435)

Then we get that:

g
�1

= 1� h+ h
2
+ · · ·+ (�1)

k
h
k
. (436)

Indeed, we get:

(1 + h)

 
kX

l=0

(�1)
l
h
l

!
=

kX

l=0

(�1)
l
h
l
+

kX

l=0

(�1)
l
h
l+1 (437)

= 1 +

kX

l=1

(�1)
l
h
l �

kX

l=1

(�1)
l
h
l
+ (�1)

k
h
k+1
| {z }
=0

(438)

= 1. (439)

Furthermore, g lies in the center Z(Cl(V, q)) of Cl(V, q) by Theorem D.47. Then for v 2 V we get:

⇢(g)(v) = ↵(g)vg
�1 (440)

= gvg
�1 (441)

= vgg
�1 (442)

= v (443)
2 V. (444)

So, g 2 �(V, q) and acts as the identity on V , and thus on Cl(V, q), via ⇢.
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E.3 The Structure of the Clifford Group

We have identified the Clifford group and its action on the algebra. In particular, our adjusted twisted
conjugation preserves the parity and multivector grading, and reduces to a reflection when restricted
to V . We now want to further investigate how the Clifford and the Clifford groups act via the twisted
conjugation ⇢ on V and Cl(V, q). We again denote by R ✓ V the radical subspace of V w.r.t. q. We
follow and extend the analysis of [Cru80, Cru90, DKL10].

We first investigate the kernel of the twisted action.
Corollary E.22 (The kernel of the twisted conjugation). 1. We have the following identity for

the twisted conjugation:

ker
�
⇢|Cl⇥(V,q)

�
:=
�
w 2 Cl

⇥
(V, q)

�� ⇢(w) = idCl(V,q)

 !
=

^⇥
(R). (445)

2. For the twisted conjugation restricted to the unconstrained Clifford, group and to V the
kernel is given by:

ker

⇣
⇢ : �̃(V, q) ! GL(V )

⌘
:=

n
w 2 �̃(V, q)

��� ⇢(w)|V = idV

o
!
=

^⇥
(R). (446)

3. For the twisted conjugation restricted to the Clifford group, the kernel is given by:

ker (⇢ : �(V, q) ! AutAlg(Cl(V, q))) :=
�
w 2 �(V, q)

�� ⇢(w) = idCl(V,q)

 
(447)

!
=

^[⇥]
(R). (448)

Proof. This follows directly from the characterizing of the twisted center of Cl(V, q) by Theorem
D.50. Note that we have for w 2 Cl

⇥
(V, q):

⇢(w) = idCl(V,q) () 8x 2 Cl(V, q). ⇢(w)(x) = x (449)

() 8x 2 Cl(V, q). wx[0]
w

�1
+ ↵(w)x

[1]
w

�1
= x (450)

() 8x 2 Cl(V, q). wx[0]
+ ↵(w)x

[1]
= xw (451)

() w 2 K(Cl(V, q)) =
^

(R). (452)

From this follows that:

w 2 Cl
⇥
(V, q) \

^
(R) =

^⇥
(R). (453)

The other points follow similarly with Theorem D.50.

For the last point also note:

�(V, q) = �̃(V, q) \ Cl
[⇥]

(V, q),
^⇥

(R) \ Cl
[⇥]

(V, q) =
^[⇥]

(R). (454)

This shows the claims.

Lemma E.23. 1. For every w 2 Cl
⇥
(V, q) we have:

⇢(w)|R = idR. (455)

2. For every w 2 Cl
[⇥]

(V, q) we have:

⇢(w)|V(R) = idV(R). (456)

3. For every g 2
V⇥

(R) we have:

⇢(g)|V = idV . (457)

4. For every g 2
V[⇥]

(R) we have:

⇢(g)|Cl(V,q) = idCl(V,q). (458)
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Proof. This directly follows from the twisted commutation relationship, see Lemma D.42. For
w 2 Cl

⇥
(V, q) and f 2 R ✓ V we have:

⇢(w)(f) = ↵(w)fw
�1

= fww
�1

= f. (459)

For w 2 Cl
[⇥]

(V, q) the map ⇢(w) is an algebra automorphism of Cl(V, q) and satisfies ⇢(w)(f) = f

for all f 2 R. So for every y 2
V
(R) we have:

⇢(w)(y) = ⇢(w)

 
X

i2I

ci · fki · · · fli

!
(460)

=

X

i2I

ci · ⇢(w)(fki) · · · ⇢(w)(fli) (461)

=

X

i2I

ci · fki · · · fli (462)

= y. (463)

For g 2
V⇥

(R) and v 2 V we get:

⇢(g)(v) = ↵(g)vg
�1

= vgg
�1

= v. (464)

For g 2
V[⇥]

(R) the map ⇢(g) is an algebra automorphism of Cl(V, q) and satisfies ⇢(g)(v) = v for
all v 2 V . As above we see that for x 2 Cl(V, q) we get:

⇢(g)(x) = ⇢(g)

 
X

i2I

ci · vki · · · vli

!
(465)

=

X

i2I

ci · ⇢(g)(vki) · · · ⇢(g)(vli) (466)

=

X

i2I

ci · vki · · · vli (467)

= x. (468)

This shows all the claims.

From Lemma E.23 we see that ⇢(w)|V(R) = idV(R) for w 2 Cl
[⇥]

(V, q). Together with Corollary
E.18 we arrive at a slightly more general version that allows one to parameterize polynomials not just
with coefficients from F, but also with elements from

V
(R), and still get the equivariance w.r.t. the

Clifford group �(V, q):
Corollary E.24. Let F (T1, . . . , T`+s) 2 F[T1, . . . , T`+s] be a polynomial in ` + s variables with
coefficients in F and let k 2 {0, . . . , n}. Further, consider ` elements x1, . . . , x` 2 Cl(V, q) and s

elements y1, . . . , ys 2
V
(R). Then for every w 2 �(V, q) we get the equivariance property:

⇢(w)

⇣
F (x1, , . . . , x`, y1, . . . , ys)

(k)
⌘
= F (⇢(w)(x1), . . . , ⇢(w)(x`), y1, . . . , ys)

(k)
, (469)

where the superscript (k) indicates the projection onto the multivector grade-k-part of the whole
expression.

We now investigate the image/range of the twisted conjugation.
Theorem E.25 (The range of the twisted conjugation). The image/range of the Clifford group �(V, q)
under the twisted conjugation restricted to V coincides with all orthogonal automorphisms of (V, q)
that restrict to the identity idR of the radical subspace R ✓ V of (V, q):

ran (⇢ : �(V, q) ! GL(V )) = OR(V, q). (470)

Again, recall that the kernel is given by:

ker (⇢ : �(V, q) ! GL(V )) =

^[⇥]
(R). (471)
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Proof. We first show that the range of ⇢ when restricted to V will consistute an orthogonal automor-
phism of (V, q). For this let e1, . . . , en be an orthogonal basis of (V, q) and R the radical subspace
of (V, q), r = dimR. W.l.o.g. we can assume that e1, . . . , em, em+1, . . . , em+r with:

R = span {em+1, . . . , em+r} , E := span {e1, . . . , em} . (472)

For w 2 �(V, q) we now apply ⇢(w) 2 GL(V ) to the basis elements ei. Note that by definition of
�(V, q) we have ⇢(w)(ei) 2 V . With this we get:

2b(⇢(w)(ei), ⇢(w)(ej)) = ⇢(w)(ei)⇢(w)(ej) + ⇢(w)(ej)⇢(w)(ei) (473)
= ⇢(w) (eiej + ejei) (474)
= ⇢(w) (2b(ei, ej)) (475)
= 2b(ei, ej). (476)

This shows for v =
Pn

i=1 ai · ei:

q(⇢(w)(v)) = q(
nX

i=1

ai · ⇢(w)(ei)) (477)

=

nX

i=1

a
2
i · q(⇢(w)(ei)) (478)

=

nX

i=1

a
2
i · q(ei) (479)

= q(
nX

i=1

ai · ei) (480)

= q(v). (481)

Since ⇢(w) is also a linear automorphism of V with inverse ⇢(w�1
) we see that:

⇢(w)|V 2 O(V, q). (482)

By Lemma E.23 we also see that:

⇢(w)|R = idR. (483)

Together this shows that:

⇢(w)|V 2 OR(V, q). (484)

This shows the inclusion:

ran (⇢ : �(V, q) ! GL(V )) ✓ OR(V, q). (485)

Recall the definition of the set of radical preserving orthogonal automorphisms:

OR(V, q) := {� 2 O(V, q) |�|R = idR} ⇠=
✓
O(E, q|E) 0m⇥r

M(r,m) idR

◆
(486)

⇠= O(E, q|E)nM(r,m). (487)

So an element � 2 OR(V, q) can equivalently be written as:

� =

✓
O 0

M I

◆
=

✓
O 0

0 I

◆
�
✓

I 0

M I

◆
(488)

=

✓
O1 0

0 I

◆
� · · · �

✓
Ok 0

0 I

◆
�
✓

I 0

M1,1 I

◆
� · · · �

✓
I 0

Mm,r I

◆
, (489)

where O = O1 · · ·Ok is a product of k  m reflection matrices Ol by the Theorem of Cartan-
Dieudonné C.13, and M =

Pm
i=1

Pr
j=1 Mi,j where the matrix Mi,j = ci,j · Ii,j only has the entry

ci,j 2 F at (i, j) (and 0 otherwise). Now let wl 2 V be the normal vector of the reflection Ol with
q(wl) 6= 0 for l = 1, . . . , k, and for i = 1, . . . ,m and j = 1, . . . , r put:

�i,j := 1 + ci,j · eiem+j 2 Cl(V, q), (490)
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and further:

w := w1 · · ·wk · �1,1 · · · �m,r 2 Cl(V, q). (491)

Note that by Examples E.19 and E.20 we have:

{w 2 V | q(w) 6= 0} ✓ �(V, q), (492)
8
<

:�i := 1 + ei

rX

j=1

ci,jem+j

������
ci,j 2 F, i = 1, . . . ,m, j = 1, . . . , r

9
=

; ✓ �(V, q), (493)

which implies that w 2 �(V, q). With this we get:

⇢(w) = ⇢(w1) � · · · � ⇢(wk) � ⇢(�1,1) � · · · � ⇢(�m,r) (494)

=

✓
O1 0

0 I

◆
� · · · �

✓
Ok 0

0 I

◆
�
✓

I 0

M1,1 I

◆
� · · · �

✓
I 0

Mm,r I

◆
(495)

= �. (496)

This thus shows the surjectivity of the map:

⇢ : �(V, q) ! OR(V, q). (497)

This shows the claim.

We can summarize our finding in the following statement.
Corollary E.26. We have the short exact sequence:

1 �!
^[⇥]

(R)
incl�! �(V, q)

⇢�! OR(V, q) �! 1. (498)

From the above Theorem we can now also derive the structure of the elements of the Clifford group.
Corollary E.27 (Elements of the Clifford group). Let (V, q) be a finite dimensional quadratic vector
space of dimension n := dimV < 1 over a fields F with char(F) 6= 2. Let R ✓ V be the radical
vector subspace of (V, q) with dimension r := dimR. Put m := n � r � 0. Let e1, . . . , en be an
orthogonal basis of (V, q) ordered in such a way that em+1, . . . em+r = en are the basis vectors
inside R, while e1, . . . , em are spanning a non-degenerate orthogonal subspace to R inside (V, q).

Then every element of the Clifford group w 2 �(V, q) is of the form:

w = c · v1 · · · vk · �1 · · · �m · g, (499)

with c 2 F⇥, k 2 N0, vl 2 V with q(vl) 6= 0 for l = 1, . . . , k,

�i = 1 + ei

rX

j=1

ci,jem+j , (500)

with ci,j 2 F for i = 1, . . . ,m, j = 1, . . . , r, and some g 2
V[⇤]

(R).

E.4 Orthogonal Representations of the Clifford Group

Lemma E.28. Let e1, . . . , en be an orthogonal basis of (V, q) and w 2 �(V, q). If we put for j 2 [n]:

bj := ⇢(w)(ej), (501)

and for A ✓ [n]:

bA :=

<Y

i2A

bi = ⇢(w)(eA), (502)

then b1, . . . , bn is an orthogonal basis for (V, q) and both (eA)A2[n] and (bA)A2[n] are orthogonal
bases for (Cl(V, q), q̄).
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Proof. First note that b1, . . . , bn is a basis of V . Indeed, the releation:

0 =

nX

i=1

ai · bi, (503)

with ai 2 F implies:

0 = ⇢(w)
�1

(0) (504)

= ⇢(w)
�1

 
nX

i=1

ai · bi

!
(505)

=

nX

i=1

ai · ⇢(w)�1
(bi) (506)

=

nX

i=1

ai · ei. (507)

Since e1, . . . , en is linear independent we get ai = 0 for all i 2 [n]. So also b1, . . . , bn is linear
independent and thus constitute a basis of V .

To show that b1, . . . , bn is an orthogonal basis of (V, q) let i 6= j and then consider the following:

2 · b(bi, bj) = bibj + bjbi (508)
= ⇢(w)(ei)⇢(w)(ej) + ⇢(w)(ej)⇢(w)(ei) (509)
= ⇢(w) (eiej + ejei) (510)
= ⇢(w)(2 · b(ei, ej)| {z }

=0

) (511)

= 0. (512)

This shows that b1, . . . , bn is an orthogonal basis of (V, q).

Theorem D.26 then shows that both (eA)A2[n] and (bA)A2[n] are orthogonal bases for (Cl(V, q), q̄).

Theorem E.29. Let w 2 �(V, q) and x 2 Cl(V, q) then we get:

q̄(⇢(w)(x)) = q̄(x). (513)

In other words, ⇢(w) 2 O(Cl(V, q), q̄). Furthermore, we have:

⇢(w)|V(R) = idV(R). (514)

In other words, ⇢(w) 2 OV
(R)(Cl(V, q), q̄).

Proof. Let e1, . . . , en be an orthogonal basis for (V, q) and bj := ⇢(w)(ej) for j 2 [n]. Then
by Lemma E.28 we know that b1, . . . , bn is an orthogonal basis of (V, q) and both (eA)A✓[n] and
(bA)A✓[n] are orthogonal basis for (Cl(V, q), q̄). Now let x 2 Cl(V, q) and write it as:

x =

X

A✓[n]

xA · eA, ⇢(w)(x) =

X

A✓[n]

xA · ⇢(w)(eA) =
X

A✓[n]

xA · bA. (515)
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Then we get:

q̄(⇢(w)(x)) =
X

A✓[n]

xA ·
Y

i2A

q(bi) (516)

=

X

A✓[n]

xA ·
Y

i2A

q(⇢(w)(ei)) (517)

=

X

A✓[n]

xA ·
Y

i2A

⇢(w)(ei)⇢(w)(ei) (518)

=

X

A✓[n]

xA ·
Y

i2A

⇢(w)(e
2
i ) (519)

=

X

A✓[n]

xA ·
Y

i2A

⇢(w)(q(ei) · 1) (520)

=

X

A✓[n]

xA ·
Y

i2A

q(ei) · ⇢(w)(1) (521)

=

X

A✓[n]

xA ·
Y

i2A

q(ei) (522)

= q̄(x). (523)

This shows the claim. The remaining point follows from Lemma E.23.

Similarly, and more detailed, we also get the following, using Theorem D.27, Corollary E.17 and
Lemma E.23:
Corollary E.30. For every w 2 �(V, q) and m = 0, . . . , n we have:

⇢(w)|Cl(m)(V,q) 2 OV(m)(R)(Cl
(m)

(V, q), q̄). (524)

In words, ⇢(w), when restricted to the m-th homogeneous multivector component Cl(m)
(V, q) of

Cl(V, q) acts as an orthogonal automorphism of Cl(m)
(V, q) w.r.t. q̄. Furthermore, it acts as the

identity when further restricted to the m-th homogeneous multivector component of the radical
subalgebra:

V(m)
(R) ✓ Cl

(m)
(V, q).

Remark E.31. For m 2 [n] we use ⇢(m) to denote the group homomorphism ⇢ when restricted to
act on the subvector space Cl

(m)
(V, q):

⇢
(m)

: �(V, q) ! OV(m)(R)(Cl
(m)

(V, q), q̄), ⇢
(m)

(w) := ⇢(w)|Cl(m)(V,q). (525)

By Theorem D.50 or Corollary E.22 we see that
V[⇥]

(R) always lies inside the kernel of ⇢(m):
^[⇥]

(R) ✓ ker ⇢
(m) ✓ �(V, q). (526)

So we get a well-defined group homorphism on the quotient:

⇢̄
(m)

: �(V, q)/
^[⇥]

(R) ! OV(m)(R)(Cl
(m)

(V, q), q̄), ⇢̄
(m)

([w]) := ⇢(w)|Cl(m)(V,q). (527)

Furthermore, by Theorem E.25 we have the isomorphism:

⇢̄
(1)

: �(V, q)/
^[⇥]

(R) ⇠= OV(1)(R)(Cl
(1)

(V, q), q̄) = OR(V, q), ⇢̄
(1)

([w]) = ⇢(w)|V . (528)

Consequently, for all m 2 [n] we get the composition of group homorphisms:

⇢̃
(m)

: OR(V, q)
(⇢̄(1))�1

⇠= �(V, q)/
^[⇥]

(R)
⇢̄(m)

! OV(m)(R)(Cl
(m)

(V, q), q̄), (529)

⇢̃
(m)

(�) = ⇢(w)|Cl(m)(V,q), for any w 2 �(V, q) with ⇢(1)(w) = �. (530)
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Similarly, we get an (injective) group homomorphism:
⇢̃ : OR(V, q) ! OV

(R)(Cl(V, q), q̄), (531)

⇢̃(�) := ⇢(w), for any w 2 �(V, q) with ⇢(1)(w) = �. (532)

So, the group OR(V, q) acts on Cl(V, q) and all subvector spaces Cl(m)
(V, q), m = 0, . . . , n, in the

same way as �(V, q) does via ⇢, when using the surjective map ⇢(1) to lift elements � 2 OR(V, q) to
elements w 2 �(V, q) with ⇢(1)(w) = �.

Specifically, let x 2 Cl(V, q) be of the form x =
P

i2I ci · vi,1 · · · vi,ki with vi,j 2 V , ci 2 F and
� 2 OR(V, q) is given by � = ⇢̄

(1)
([w]) with w 2 �(V, q), then we have:

⇢(w)(x) =

X

i2I

ci · ⇢(w)(vi,1) · · · ⇢(w)(vi,ki) =

X

i2I

ci · �(vi,1) · · ·�(vi,ki). (533)

This means that the action ⇢̃ of OR(V, q) transforms a multivector x by transforming all its vector
components vi,j by �, acting through the usual orthogonal transformation on vectors.

As such, we have the following equivariance property with respect to OR(V, q).
Corollary E.32. Let F (T1, . . . , T`+s) 2 F[T1, . . . , T`+s] be a polynomial in ` + s variables with
coefficients in F and let k 2 {0, . . . , n}. Further, consider ` elements x1, . . . , x` 2 Cl(V, q) and s

elements y1, . . . , ys 2
V
(R). Then for every � 2 OR(V, q) we get the equivariance property:

⇢̃(�)

⇣
F (x1, , . . . , x`, y1, . . . , ys)

(k)
⌘
= F (⇢̃(�)(x1), . . . , ⇢̃(�)(x`), y1, . . . , ys)

(k)
, (534)

where the superscript (k) indicates the projection onto the multivector grade-k-part of the whole
expression.

E.5 The Spinor Norm and the Clifford Norm

In this subsection we shortly introduce the three slightly different versions of a norm that appear in
the literature: the Spinor norm, the Clifford norm and the extended quadratic form. We are interested
under which conditions do they have multiplicative behaviour.
Definition E.33 (The Spinor norm and the Clifford norm). We define the Spinor norm and the Clifford
norm of Cl(V, q) as the maps:

SN : Cl(V, q) ! Cl(V, q), SN(x) := �(x)x, (535)
CN : Cl(V, q) ! Cl(V, q), CN(x) := �(x)x. (536)

Also recall the extended quadratic form:
q̄ : Cl(V, q) ! F, q̄(x) = ⇣(�(x)x) = ⇣(SN(x)). (537)

As a first preliminary Lemma we need to study when the projection onto the zero-component is
multiplicative:
Lemma E.34. Let x 2

V
(R) and y 2 Cl(V, q) then we have:

⇣(xy) = ⇣(x) ⇣(y). (538)
As a result, the projection onto the zero component induces an F-algebra homomorphism:

⇣ :

^
(R) ! F, y 7! ⇣(y). (539)

Proof. We now use the notations from D.40 and Lemma D.41. We distinguish two cases: x 2V(�1)
(R) and:

x 2
^

(R) \
^(�1)

(R) =

^⇥
(R) = F⇥

+

^(�1)
(R. (540)

In the first case, we have: ⇣(xy) = 0 = ⇣(x) ⇣(y), as multiplying with x 2
V(�1)

(R) can only
increase the grade of occurring terms or make them vanish.

In the second case, we can write x = a+ f with a 2 F⇥ and f 2
V(�1)

(R). Clearly, ⇣(x) = a. We
then get by linearity and the first case:

⇣(xy) = ⇣(ay + fy) = a ⇣(y) + ⇣(fy) = ⇣(x) ⇣(y) + 0. (541)
This shows the claim.
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Lemma E.35. Let x1, x2 2 Cl(V, q).

1. If SN(x1) 2 Z(Cl(V, q)) then we have:
SN(x1x2) = SN(x1) SN(x2). (542)

2. If CN(x1) 2 Z(Cl(V, q)) then we have:
CN(x1x2) = CN(x1) CN(x2). (543)

3. If SN(x1) 2
V[0]

(R) or q = 0 then we have:
q̄(x1x2) = q̄(x1)q̄(x2). (544)

Proof. SN(x1) 2 Z(Cl(V, q)) implies:
SN(x1x2) = �(x1x2)x1x2 (545)

= �(x2)�(x1)x1x2 (546)
= �(x2) SN(x1)x2 (547)
SN(x1)2Z(Cl(V,q))

= SN(x1)�(x2)x2 (548)
= SN(x1) SN(x2). (549)

Similarly for CN.

Together with Lemma E.34 and SN(x1) 2
V[0]

(R) ✓
V
(R) \ Z(Cl(V, q)) we get:

q̄(x1x2) = ⇣ (SN(x1x2)) (550)
= ⇣ (SN(x1) SN(x2)) (551)
= ⇣(SN(x1)) ⇣(SN(x2)) (552)
= q̄(x1)q̄(x2). (553)

This shows the claim.

Lemma E.36. Consider the following subset of Cl(V, q):

�
[�]

(V, q) :=
n
x 2 Cl

[0]
(V, q) [ Cl

[1]
(V, q)

��� 8v 2 V 9v0 2 V.↵(x)v = v
0
x

o
. (554)

Then �
[�]

(V, q) is closed under multiplication and for every x 2 �
[�]

(V, q) we have:

SN(x) 2
^[0]

(R), CN(x) 2
^[0]

(R). (555)

Proof. For x, y 2 �
[�]

(V, q) we also have that xy is homogeneous. Furthermore, we get for v 2 V :
↵(xy)v = ↵(x)↵(y)v (556)

= ↵(x)v
0
y (557)

= ṽxy, (558)

for some v
0
, ṽ 2 V . So, xy 2 �

[�]
(V, q) and �

[�]
(V, q) is closed under multiplication.

With the above conditions on x we get for every v 2 V :
↵(SN(x))v = ↵(�(x))↵(x)v (559)

= ↵(�(x))v
0
x (560)

= ↵(�(x))(�↵(�(v0)))x (561)
= �↵(�(x)�(v0))x (562)
= �↵(�(v0x))x (563)
= �↵(�(↵(x)v))x (564)
= ��(↵(↵(x)v))x (565)
= ��(x↵(v))x (566)
= �(xv)x (567)
= �(v)�(x)x (568)
= v SN(x). (569)
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This implies by Theorem D.50 that:

SN(x) 2
^

(R). (570)

Since for homogeneous x 2 Cl(V, q) we have: prt(�(x)) = prt(x) and thus: SN(x) = �(x)x 2
Cl

[0]
(V, q). This implies:

SN(x) 2
^

(R) \ Cl
[0]
(V, q) =

^[0]
(R). (571)

This shows the claim.

Theorem E.37 (Multiplicativity of the three different norms). Both, the Spinor norm and the Clifford
norm, when restricted to the Clifford group, are well-defined group homomorphisms:

SN : �(V, q) !
^[⇥]

(R), w 7! SN(w) = �(w)w, (572)

CN : �(V, q) !
^[⇥]

(R), w 7! CN(w) = �(w)w. (573)

Furthermore, the extended quadratic form q̄ of Cl(V, q) restricted to the Clifford group is a well-
defined group homomorphism:

q̄ : �(V, q) ! F⇥
, w 7! q̄(w) = ⇣(�(w)w). (574)

Proof. This directly follows from Lemma E.35 and Lemma E.36. Note that �(V, q) ✓ �
[�]

(V, q).

Example E.38. 1. For a 2 F we get:

SN(a) = �(a)a = a
2
. (575)

This also shows: q̄(a) = a
2q̄(1) = a

2.

2. For w 2 V we have:

SN(w) = �(w)w = w
2
= q(w). (576)

This also shows: q̄(w) = q(w).

3. For � = 1 + ef with e 2 V and f 2 R we have:

SN(�) = (1 + fe)(1 + ef) (577)
= 1 + fe+ ef + feef (578)
= 1 + 2b(e, f) + q(f) · q(e) (579)
= 1. (580)

This also shows: q̄(�) = 1.

4. For g = 1 + h 2
V⇤

(R) we get:

SN(g) = (1 + �(h))(1 + h) (581)
= 1 + �(h) + h+ �(h)h, (582)

and thus: q̄(g) = 1.
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E.6 The Pin Group and the Spin Group

We have investigated the Clifford group and its action on the algebra through the twisted conjugation.
In many fields of study, the Clifford group is further restricted to the Pin or Spin group. There can
arise a few issues regarding the exact definition of these groups, especially when also considering
fields other than the reals. We elaborate on these concerns here and leave the general definition for
future discussion.
Motivation E.39 (The problem of generalizing the definition of the Spin group). For a positive
definite quadratic form q on the real vector space V = Rn with n � 3 the Spin group Spin(n) is
defined via the kernel of the Spinor norm (=extended quadratic form on Cl(V, q)) restricted to the
special Clifford group �

[0]
(V, q):

Spin(n) := ker

⇣
q̄ : �

[0]
(V, q) ! R⇥

⌘
=

n
w 2 �

[0]
(V, q)

��� q̄(w) = 1

o
= q̄|�1

�[0](V,q)
(1). (583)

Spin(n) is thus a normal subgroup of the special Clifford group �
[0]
(V, q), and, as it turns out, a

double cover of the special orthogonal group SO(n) via the twisted conjugation ⇢. The latter can be
summarized by the short exact sequence:

1 �! {±1} incl�! Spin(n)
⇢�! SO(n) �! 1. (584)

We intend to generalize this in several directions: 1. from Spin to Pin group, 2. from Rn to vector
spaces V over general fields F with char(F) 6= 2, 3. from non-degenerate to degenerate quadratic
forms q, 4. from positive (semi-)definite to non-definite quadratic forms q. This comes with several
challenges and ambiguities.

If we want to generalize the above to define the Pin group we would allow for elements not just
of (pure) even parity w 2 �

[0]
(V, q). Here the question arises if one should generalize to the

unconstrained Clifford group �̃(V, q) or the (homogeneous) Clifford group �(V, q). As discussed
before, to ensure that the (adjusted) twisted conjugation ⇢ is a well-defined algebra automorphism of
Cl(V, q) the parity homogeneity assumptions is crucial. Furthermore, the elements of �̃(V, q) that
lead to non-trivial orthogonal automorphisms, e.g. v 2 V with q(v) 6= 0 and � = 1+ ef with e 2 V ,
f 2 R, are already homogeneous. So it is arguably safe and reasonable to restrict to the Clifford
group �(V, q) and define the Pin group Pin(V, q) as some subquotient of �(V, q).

In the non-definite (but still non-degenerate, real) case R(p,q), p, q � 1, the special orthogonal
group SO(p, q) contains combinations of reflections r0 � r1 where the corresponding normal vectors
v0, v1 2 V satisfy q(v0) = 1 and q(v1) = �1. Their product v0v1 would lie in the special Clifford
group �

[0]
(V, q). However, their spinor norm would be different from 1:

q̄(v0v1) = q(v0)q(v1) = �1 6= 1. (585)
Here now the question arises if we would like to preserve the former definition of Spin(p, q) as
q̄|�1

�[0](V,q)
(1) and exclude v0v1 from Spin(p, q), or, if we adjust the definition of Spin(p, q) and

include v0v1. The former definition has the effect that Spin(p, q) does, in general, not map surjectively
onto SO(p, q) anymore, and we would only get a short exact sequence:

1 �! {±1} incl�! Spin(p, q)
⇢�! SO(p, q)

¯̄q�! R⇥
/(R⇥

)
2

| {z }
⇠={±1}

. (586)

The alternative would be to define Spin(p, q) as q̄|�1
�[0](V,q)

(±1). This would allow for v0v1 2
Spin(p, q) and lead to the short exact sequence:

1 �! µ4(R)| {z }
={±1}

incl�! Spin(p, q)
⇢�! SO(p, q) �! 1, (587)

which exactly recovers the former behaviour for Spin(n), and, which makes Spin(p, q) a double
cover of SO(p, q).

However, for other fields F, char(F) 6= 2, and non-degenerate (V, q), dimV � 3, one would get,
with the last definition q̄|�1

�[0](V,q)
(±1), the exact sequence:

1 �! µ4(F)
incl�! Spin(V, q)

⇢�! SO(V, q)
¯̄q�! F⇥

/(F⇥
)
2
, (588)
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and one would need to live with the fact that: a) µ4(F) :=
�
x 2 F⇥

��x4
= 1
 

could contain a
number of elements k different from 2, rendering ⇢ a (k : 1)-map, in contrast to a (2 : 1)-map, and,
again, b) the non-surjectivity of ⇢. The latter comes from the fact that a combination of reflections
r0 � r1 where the corresponding normal vectors v0, v1 2 V with q(v0), q(v1) 6= 0 cannot, in general,
be normalized such that the q(vi)’s lie in {±1} by multiplying/dividing the vi’s with some scalars
ci 2 F⇥. Note that we get:

q(vi/ci) = q(vi)/c
2
i . (589)

This shows that we can only normalize the vi’s such that the q(vi)’s lie inside a fixed system of
representatives S ✓ F⇥ of F⇥

/(F⇥
)
2, which is thus of size:

#S = #
�
F⇥

/(F⇥
)
2
�
, (590)

which can be different from 2 = # {±1}.

So, in this general setting, the first definition of Spin(V, q) as q̄|�1
�[0](V,q)

(1) would at least correct the
map ⇢ to be a (2 : 1)-map. We would get the following short exact seequence:

1 �! {±1} incl�! Spin(V, q)
⇢�! SO(V, q)

¯̄q�! F⇥
/(F⇥

)
2
. (591)

The normalization argument around Equation 589 for general fields F now would also give us a third
option: we could, instead of restricting elements to have a fixed value q(vi) 2 S, which depends on
the choice of S, identify elements w1, w2 2 �

[0]
(V, q) if they differ by a scalar c 2 F⇥:

w1 = c · w2. (592)

Then for their spinor norms (modulo (F⇥
)
2) we would get:

q̄(w1) = c
2 · q̄(w2), [q̄(w1)] = [q̄(w2)] 2 F⇥

/(F⇥
)
2
. (593)

So, the spinor norms of w1 and w2 would be represented by the same representative s 2 S, as desired.
However, this definition would just identify Spin(V, q) with SO(V, q) via ⇢:

Spin(V, q) = �
[0]
(V, q)/F⇥ ⇢⇠= SO(V, q), (594)

and nothing new would emerge from this. Note that the latter isomorphisms always holds for
non-degenerate (V, q) with dimV � 3, char(F) 6= 2, and can be expressed as the exact sequence:

1 �! F⇥ incl�! �
[0]
(V, q)

⇢�! SO(V, q) �! 1. (595)

A fourth option would be to mod out the scalar squares (F⇥
)
2 instead of F⇥ and use �[0]

(V, q)/(F⇥
)
2

as the definition of Spin(V, q). This would lead to the exact sequence:

1 �! F⇥
/(F⇥

)
2 incl�! Spin(V, q)

⇢�! SO(V, q) �! 1, (596)

which would again coincide with the real case of Spin(n) as then R⇥
/(R⇥

)
2 ⇠= {±1}. However, in

the general case, again, ⇢ is here a (k : 1)-map instead of a (2 : 1)-map with k := #
�
F⇥

/(F⇥
)
2
�
.

Furthermore, the spinor norm q̄ on Spin(V, q) would not be well-defined anymore, in its current form,
as different representatives of elements [w1] = [w2] 2 �

[0]
(V, q)/(F⇥

)
2 would differ by a scalar

square: w1 = c
2 · w2. Their spinor norms would thus differ by by a forth scalar power:

q̄(w1) = q̄(c2 · w2) = c
4 · q̄(w2). (597)

So, the spinor norm on �
[0]
(V, q)/(F⇥

)
2 would only be well defined modulo (F⇥

)
4 ✓ (F⇥

)
2:

[q̄] : �[0]
(V, q)/(F⇥

)
2 ! F⇥

/(F⇥
)
4
, [w] 7! [q̄(w)]. (598)

Things become even more complicated in the degenerate case. At least we always have a short exact
sequence for m � 3:

1 �!
^[⇥]

(R)
incl�! �

[0]
(V, q)

⇢�! SOR(V, q) �! 1, (599)
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where SOR(V, q) indicates the set of those special orthogonal automorphisms � of (V, q) with
�|R = idR, where R is the radical subspace of (V, q) with r := dimR, n := dimV , m := n� r.
Recall that we have:

^[⇥]
(R) = F⇥ ·

^[⇤]
(R), (600)

^[⇤]
(R) = 1 + span {f1 · · · fk | k � 2 even, fl 2 R, l = 1, . . . , k} . (601)

Note that for g 2
V[⇤]

(R) we have ⇢(g)|V = idV and q̄(g) = 1. So the elements from
V[⇤]

(R) are
only blowing up the kernels of ⇢ and q̄ and can be considered redundant for our analysis. So one can
argue that one can mod out

V[⇤]
(R) in the above groups. We thus get a short exact sequence:

1 �! F⇥ �! �
[0]
(V, q)/

^[⇤]
(R)

| {z }
=:�̃

[0]
(V,q)

⇢�! SOR(V, q) �! 1, (602)

which now looks similar to the non-degenerate case. We can now consider the same 4 options for the
definition of the Spin group as before:

q̄|�1

�̃
[0]

(V,q)
(1), q̄|�1

�̃
[0]

(V,q)
(±1), �̃

[0]
(V, q)/F⇥

, �̃
[0]
(V, q)/(F⇥

)
2
. (603)

As before, the third option can easily be discarded. If we want to preserve generality, we have the
option to either preserve q̄ and the (2 : 1)-property of ⇢ and pick the first option, or, preserve the
surjectivity of ⇢ and take the fourth option. If we are only interested in the R-case, then the second
option preserves all properties. Note that in the R-case the groups of the second and forth option are
isomorphic as groups anyways:

q̄|�1

�̃
[0]

(V,q)
(±1) ⇠= �̃

[0]
(V, q)/(R⇥

)
2
. (604)

The reason is that we always have that: q̄(F⇥
) = (F⇥

)
2, and, in the R-case, the left group already

contains the relevant elements to also map surjectively onto SOR(V, q) via ⇢.

One could further discuss if one wanted to replace the extended quadratic form q̄, which is given by
q̄(x) = ⇣(�(x)x) 2 F⇥, by the other possible definition of the spinor norm SN, which is only given
by SN(x) = �(x)x 2

V[⇥]
(R). However, for all relevant elements of �[0]

(V, q) both definitions
agree, but the description of the set of the rather irrelevant elements, which satisfy SN(x) = 1

and ⇢(x)|V = idV , becomes more complicated than the set
V[⇥]

(R). As we mod those irrelevant
elements out anyways and we prefer to have our “norm map” to map to the scalars F⇥ instead of toV[⇥]

(R), it is safe and reasonable to work with the extended quadratic form q̄ in all definitions.

In this paper we are mostly interested in working with the orthogonal groups and thus are interested
in preserving the surjectivity of ⇢. Since, for computational reasons, we usually restrict ourselves to
the R-case, it is easier to work with (a restricted set of) elements of a group than equivalence classes,
and, the spinor norm/extended quadratic form has computational meaning, we side with the second
definition in this paper, but only state it for the R-case below. We leave the general definition for
future discussion.
Definition E.40 (The real Pin group and the real Spin group). Let V be a finite dimensional R-vector
space V , dimV = n < 1, and q a (possibly degenerate) quadratic form on V . We define the (real)
Pin group and (real) Spin group, resp., of (V, q) as the following subquotients of the Clifford group
�(V, q) and its even parity part �[0]

(V, q), resp.:

Pin(V, q) := {x 2 �(V, q) | q̄(x) 2 {±1}} /
^[⇤]

(R), (605)

Spin(V, q) :=
n
x 2 �

[0]
(V, q)

��� q̄(x) 2 {±1}
o
/

^[⇤]
(R). (606)

If (V, q) = R(p,q,r) is the standard quadratic R-vector space with signature (p, q, r) then we denote:

Pin(p, q, r) := Pin(R(p,q,r)
), (607)

Spin(p, q, r) := Spin(R(p,q,r)
). (608)
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Corollary E.41. Let (V, q) be a finite dimensional quadratic vector space over R. Then the twisted
conjugation induces a well-defined and surjective group homomorphism onto the group of radical
preserving orthogonal automorphisms of (V, q):

⇢ : Pin(V, q) ! OR(V, q), (609)

with kernel:

ker (⇢ : Pin(V, q) ! OR(V, q)) = {±1} . (610)

Correspondingly, for the Spin(V, q) group. In short, we have short exact sequences:

1 �! {±1} incl�! Pin(V, q)
⇢�! OR(V, q) �! 1, (611)

1 �! {±1} incl�! Spin(V, q)
⇢�! SOR(V, q) �! 1. (612)

The examples E.19, E.20, E.21, E.38 allow us to describe the elements of the Pin and Spin group as
follows.
Corollary E.42 (The elements of the real Pin group and the real Spin group). Let (V, q) be a finite
dimensional quadratic vector space over R with signature (p, q, r). We get the following description
of the elements of the Pin group:

Pin(V, q) =

⇢
±v1 · · · vk · �1 · · · �p+q · g

���� k 2 N0, q(vl) 2 {±1} , g 2
^[⇤]

(R)

�
/

^[⇤]
(R),

(613)

where �i = 1 + ei
Pr

j=1 ci,jep+q+j , ci,j 2 R, for i = 1, . . . , p + q and j = 1, . . . , r, and, vl 2 V

with q(vl) 2 {±1} with l = 1, . . . , l and k 2 N0. Note that {ep+q+j | j 2 [r]} is meant to span the
radical subspace R of (V, q).

We similarly can describe the Spin group as follows:

Spin(V, q) =

⇢
±v1 · · · vk · �1 · · · �p+q · g

���� k 2 2N0, q(vl) 2 {±1} , g 2
^[⇤]

(R)

�
/

^[⇤]
(R),

(614)

with the same conditions as above, but where k needs to be an even number.
Corollary E.43. Note that we also get well-defined group representations:

⇢ : Pin(V, q) ! AutAlg,grd(Cl(V, q)) \OV
(R)(Cl(V, q), q̄), (615)

with kernel ker ⇢ = {±1}.

In particular, Cl(V, q) and Cl
(m)

(V, q) for m = 0, . . . , n, are orthogonal group representations of
Pin(V, q) via ⇢:

⇢ : Pin(V, q) ! OV(m)(R)(Cl
(m)

(V, q), q̄). (616)

Also, if F (T1, . . . , T`+s) 2 R[T1, . . . , T`+s] is a polynomial in `+ s variables with coefficients in R
and x1, . . . , x` 2 Cl(V, q), y1, . . . , ys 2

V
(R), and k 2 {0, . . . , n}. Then for every w 2 Pin(V, q)

we have the equivariance property:

⇢(w)

⇣
F (x1, . . . , x`, y1, . . . , ys)

(k)
⌘
= F (⇢(w)(x1), . . . , ⇢(w)(x`), y1, . . . , ys)

(k)
. (617)
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