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Fig. 1: Importance of grasp configuration and placement configuration for the pick and place task success. Top row: Effect of grasp on pick and place success.
Top-left: Target object configuration. Top-center: Good grasp incompatible with the placement. Top-right: Good grasp compatible with placement. Bottom
row: Effect of placement configuration on pick and place success. Bottom-left: Good placement configuration for grasp A. Bottom-center Incompatible
placement configuration. Bottom-right Good placement configuration for grasp B.

I. INTRODUCTION

Pick and place constitutes a fundamental building block of
robotic automation. With a successful place action requiring
a successful pick action, we could think of the success of a
pick and place task to be conditioned on the success of the
pick task in a probabilistic sense. Hence, there is much merit
in considering the pick and place problem as maximization
of the pick and place probabilities jointly. Considerable work
examines grasping objects [1,2], with contemporary methods
capable of grasping novel objects with high success [3–
5]. These recent successes tend to model the problem as
probabilistic inference using some learned neural network
model. This line of thinking enables us to extend these
methods to a joint pick and place pipeline.

Research focused on object placement, though not as
extensive as grasping, investigates various aspects including
stability of placements [6,7], semantic placement [8,9], and
multi-object rearrangement [10,11]. Though pick and place
naturally go hand-in-hand, most research investigates the two
highly related sub-tasks individually.

Treating the problems independently ignores a number
of important issues. In particular, while grasp success is
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necessary for successful placement, it is not sufficient to
guarantee it. A grasp configuration might succeed in lifting
an object, but could end up contributing to placement failure
if the robot collides with other objects in the scene during
placement as shown in Fig. 1. Likewise, if one ensures that
the previously planned grasp does not collide with objects
during placement, it might do so at the expense of object
instability at placement or reachability by the robot arm.
Thus causing either placement planning or execution failure.

Those works that have examined tackling pick and place
jointly, restrict themselves in someway, making simplifying
assumptions not needed in modern grasp planners. These
simplifications include requiring full geometry of the object
and environment in the form of meshes [12], a restricted class
of known object categories [13], or restricting the planner to
use a fixed subset (e.g. overhead) of grasps [14] or simplified
grippers [15]. In contrast, we examine the problem of joint
pick and place planning given only partial view point clouds
of the object and environment. This includes the case of
grasping and placing previously unseen objects. Further, we
plan over arbitrary grasps from the full continuous space
of feasible robot configurations, as done in recent grasping
work [3].

In this paper we formalize the joint pick and place task as
a probabilistic inference problem (Sec. II). Our framework
enables us to jointly solve for both the optimal placement
location of the given object in clutter and a corresponding



grasp configuration suitable with the placement. We do so
using only sensor information of the scene enabling our
approach to work with novel objects. This joint solving
approach makes the grasp and placement configurations to
be flexible to each other’s effects by means of propagating
gradients, this ensures the planned grasp and placement
configurations are compatible with each other. We use a state
of the art grasp learning approach to encode the grasp success
likelihood [3]. Like other works using neural networks for
learning [2,16–19] the ability to compute gradients through
the model allows us to use it within an efficient gradient-
based solver for inference. We detail our proposed solution
in Sec. III.

We validate our approach on a physical robot with a
multi-fingered hand by comparing against baselines that
treat the individual pick and place planning as sequential,
non-interacting problems. Our results in Sec. IV show our
approach outperforms these baseline with improved success
rates and optimality in terms of final placement probabilities.

We make the following contributions.
• Present a framework for reasoning about pick and place

planning jointly
• Provide a concrete implementation of this using a

learned grasp classifier to encode grasp success in the
objective

• We validate the previously proposed grasp learning
method of [3] on a different gripper, further validating
the approach.

II. PICK AND PLACE AS JOINT INFERENCE

Let O be an object to be placed in a cluttered environment
E, with partial-view depth images ZO and ZE respectively.
The grasp configuration θg = [xg, q

h
g ] is a vector including

the robot palm pose xg ∈ SE(3) and preshape joint angles of
the gripper’s fingers qhg ∈ Qh. The placement configuration
xp ∈ SE(3) defines the 6-DOF pose of where the centroid
of object point cloud ZO should be once placed. We can then
define the probability of successfully grasping the object as:

F (θg;ZO, ZE) = P (rg=1|θg, ZO, ZE) (1)

And the probability of the place configuration xp being
successful for object O in environment E conditioned on
grasp success is defined as:

H (xp, qg;ZO, ZE) = P (rp=1|xp, qg, ZO, ZE) (2)

The joint probability for pick and place success is then
obtained as:

P (rg=1, rp=1|θg,xp, ZO, ZE)

= F (θg;ZO)H (xp, qg;ZO, ZE) (3)

Which we visualize as a factor graph in Fig.2. We see that
while the success probabilities are conditionally independent
given the planning parameters, they can not be fully decou-
pled, requiring joint inference over pick and place parameters

We define the pick and place inference problem as find-
ing a tuple of grasp configuration and place configurations

rg

rp

𝞱gZOZE xp

Fig. 2: Factor graph of the pick and place probability distribution.
We see that while the success probability are conditionally inde-
pendent given the planning parameters, they can not fully decouple,
requiring joint inference over pick and place parameters.

(θg,xp), that maximizes the joint probability defined in
Eq. (3). Taking the negative log on Eq. (3), we formalize
this as a constrained optimization in Eq. (4)

min
xp,θg,qag ,q

a
p ,τ
−log

(
H

(
xp, q, Z

+
O ;ZE

))
−log(F (θg;ZO))

(4a)
subject to

xp ∈ P (4b)
xg = φh(qag ); xp = φO(qap) (4c)

q−i ≤ qi ≤ q
+
i ∀ i ∈ {g, p} (4d)

Z+
O = ZO ∪RG(θg) (4e)

ε ≤ SDF
(
xp, Z

+
O (θg) , ZE

)
(4f)

τ(xp,xg) ∈ Ω (4g)

Equation (4a) defines the objective of the optimization as a
log-linear combination of the placement success probability
H (xp, ZO;ZE) and grasp success probability F (θg;ZO).
For simplicity, we restrict the search to be over 2D planar
placement configurations within a predefined region, xp ∈
P ⊂ SE(2) (Eq. 4b). In doing so, we restrict the object to
be placed resting on the same face as it was when picked.
We could easily extend to full 3D poses given an appropriate
models predicting the stability of placement orientations.

The remaining constraints ensure physical validity for
successful execution, i.e., the grasp and placement must be
reachable by the robot and the objects and robot should
not interpenetrate. Equation (4c) encodes the arm forward
kinematics for the grasp and placement, while Eq. (4d)
defines the joint limits, where the superscript, i, denotes
joints associated with the arm.

Equation (4e) augments the object cloud with the robot
gripper geometry, RG(θg), according to the current grasp
pose. We note this is a similar procedure to that in [28].
We visualize the gripper geometry augmentation in Fig. 3.
Using this we define the placement collision constraint in
Eq. (4f). Finally, Eq. (4g) defines that there must be a
feasible, collision-free trajectory from grasp to placement.

III. SOLVING THE JOINT PICK AND PLACE INFERENCE

In this section we discuss our approach to instantiating and
solving the problem defined by Eq. (4). We first discuss the
details of the placement probability, H(·), which we examine
in our experiments. We then briefly review the learning-based
grasp method from [3] and its use as our grasp probability
F (·). Following that we present an efficient algorithm for
SDF-based collision checking built specifically for repeated
placement into clutter.



(a) (b) (c)
Fig. 3: Object-grasp geometric modeling for collision checking. 3a
object geometry. 3b robot geometry. 3b augmented geometry:union
of object and robot geometries at grasp configuration θg .

A. Placement Likelihood

The placement likelihood H(xp) defines the objective to
evaluate object placement locations to achieve a specific
placement task. It accepts a placement configuration in
SE(2) as input and outputs a scalar value ∈ [0, 1] with values
closer to 0 being less desirable for the task and values close
to 1 being more desirable. While having simple analytical
models for H(xp) makes it convenient to derive gradients,
we could also use differentiable, learned models.

We define a Gaussian placement likelihood that prefers
placement configurations xp close to a target pose xt as:

Htarget(xp;xt) ∝ exp

(
−1

2
α (xt − xp)T I (xt − xp)

)
(5)

Here, α is a hyper parameter, higher values of alpha makes
the solver prefer placements closer to the target xt at the
expense of grasp success, lower values of α prefers more
confident grasps. We defer more expressive placement dis-
tributions, including learned likelihoods in future work.

B. Grasp Prediction

Following the success of recent learning-based grasp plan-
ning approaches [3,29] we define our grasp cost as the prob-
ability of grasp success F (·) = P (rg = 1|θg;ZO). A neural
network classifier defines the core of the the grasp prediction
model P (rg = 1|θg;ZO). This outputs a scalar value be-
tween 0 and 1 that represent the grasp success probability for
the given grasp on the observed object. We learn this model
as a 3D convolutional neural network classifier using the
approach proposed in [3]. This takes a voxel representation
of the object, converted from the point cloud, as input to
and passes it through several 3D convolutional layers to
predict grasp success. The only modification we make to the
neural network structure is changing the grasp input model
to accept the one-dimensional preshape configuration (the
finger spread) instead of the higher-dimensional vector used
for the dexterous hand in [3].

In addition to the classifier, the model has a mixture
density network (MDN) which takes the same voxel grid
as input and can generate grasp samples used for initializing
the grasp planning process (Figure 5). We make use of this to
generate initial samples in our planning algorithm described
later in this section. For further details of the method and
network architecture see [3].

C. SDF Collision Constraint Computation

To account for the collision constraints in Eq 4f, we
require signed distances from the partial view points of the
objects in the environment. For efficient computation we
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objects in environment (c) SDF of placement scene

(e) 2D - place scene occupancy(d) 2D - object robot 
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Fig. 4: Steps to generate signed-distance function for place scene
and computing collision-free place initializations.

(a) (b) (c) (d)
Fig. 5: MDN prior used for initialization, showing the top and side
grasp modes for the partial view point clouds of the objects a lego
blocks, b cracker box, c mustard bottle and d pitcher

compute a discrete approximation of the SDF for each object
that we can quickly update as more objects are placed into
the scene. Figure 4 shows the steps in generating the SDF
queries for the collision constraint.

D. Optimization Solver

We perform MAP inference by solving the optimization
problem from Eq. (4) without constraint Eq. (4g). We relax
the forward kinematics Eq. (4c) and the collision SDF
constraints Eq. (4f) into the objective using an Augmented
Lagrangian method. We convert the constraint, x ∈ P , to
bound constrain the 2D planar placement of, xp, within
the table edges. We solve the resulting bound constrained
problem using BFGS [30] with projections to handle the
bounds on the joint angles and placement pose. We ensure
Eq. (4g) when motion planning for the arm.

To handle local minima and infeasibilities, the solver is
initialized with grasp configurations θg0 sampled from the
MDN prior described in III-B and shown in Figure 5. The
place initialization is then obtained by convolving the 2D
binary occupancy of the augmented object-robot geometry
(Figure 4d) over the coarse 2D binary occupancy of the
place scene (Figure 4e), which outputs collision-free place
configurations (Figure 4f), these are then ranked by predicted
place probabilities and filtered by kinematic feasibility, to
obtain the initial place configuration xp0

IV. EXPERIMENTS

We validate the benefits of the joint pick and place
framework by benchmarking against sequential pick and
place baselines on a real KUKA LBR iiwa 14 R820 7-
dof arm, with a Reflex Takktile 2 gripper, we use a Intel
Realsense D455 for sensing the object to be placed.

The following baselines are considered:
1) The pick then place approach: Where we solve for

the best grasp configuration subject to all the constraints
mentioned in the approach that applies, then solving for
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Fig. 6: Grasp and place success rates for the joint inference,
sequential inference and sampling methods across 27 executions.

the placement configuration that suits the grasp. This is
essentially done by solving the optimization problem
described in II and III twice with the grasp and place
costs individually.

2) Sampling: We develop a baseline that generates com-
patible grasp and placement configurations using Monte
Carlo sampling. First we generate a set grasp configura-
tions with high success rate from the trained grasp net,
and a set of placement configurations not in collision
with the environment for both object and robot using the
generated sdf, then the generated grasp and placement
configurations are refined locally for feasibility with
other constraints.

We report the success rate, and predicted placement prob-
abilities for each method with 27 pick and place executions
with 10 different objects in different levels of clutter ranging
from 4 - 7 objects in the placement scene. Figure. 6 shows
grasp and place success rates, we can see that the joint
method significantly out performs the baselines in terms of
place success with 85% of the executions being successful
while also having high grasp success comparable to the
sequential inference.

Figure 7 shows the predicted placement probabilities of
successful executions for each of the 27 executions for
all 3 methods, the predicted probabilities of unsuccessful
executions are set as 0. It can be seen from the plot that the
joint inference method outperforms the baselines in terms
of predicted place probabilities in most of the successful
instances, with most failure instances of the joint method also
failing with the baselines. We observed the leading cause
of failure being the object shifting mid trajectory. Figure
8 shows example placement executions for each method
considered in each place scene.

V. CONCLUSION

We presented an approach for jointly planning a grasp for
picking an unknown object jointly with a downstream place-
ment task. By formalizing this problem as a joint inference
we were able to leverage both model-based geometric and
learning-based costs and constraints into a single framework.
There are many opportunities for future work. Most straight-
forward would be learning a placement classifier, akin to the
grasp classifier, in order to handle placement on non-planar
surfaces. The other major place for improvement is using
haptic and tactile feedback to reason about contact during
placement to account for shifting in the object pose relative
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Fig. 7: Predicted placement probabilities of successful executions
(placement probabilities of failed executions are set as zero)

(a) (b) (c)
Fig. 8: Example pick and place executions for each place scene. a
joint inference, b sequential inference, c sampling.

to the gripper during transport as well as enabling gentler and
tighter placement. This could also be coupled with learning
to predict how the object might move mid-trajectory after
grasping. Finally, we hope to examine task-specific grasp
planning for downstream use other than placement (e.g. tool
use, handover).

In conclusion, our work is the first to show unified plan-
ning of a multi-fingered grasp for pick and place operations.
Our results show the benefit of taking the placement location
into account when planning grasps, in particular enabling
higher success in placement in cluttered scenes relative to
planning placements sequentially after a successful grasp.
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