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A METHOD

In this appendix we provide more details on cryoSPHERE.

A.1 LOSS

In our experience it is not necessary to add any regularization term to the loss Equation 4, except for
the datasets featuring a very high level of conformational heterogeneity. In that case, we offer the
option to add a continuity loss, which prevents the network from breaking the protein, as well as a
clashing loss, which prevents clashing between different residues. The idea of a continuity loss has
been introduced in (Jumper et al., 2021) and exploited in cryoEM in (Li et al., 2023; Rosenbaum
et al., 2021). The clashing loss has also been introduced in (Jumper et al., 2021) and has been
exploited in (Li et al., 2023).

For two subsequent residues belonging to a same chain, we define the continuity loss as:

Lcont =
1

Ncont

Ncont∑
i

||di − d̂i||2 (9)

where Ncont is the number of pairs of residues that are subsequent in the entire protein, di is the
distance between the two residues in pair i in the base structure S0 and d̂i is the predicted distance
for the corresponding pair. The form of our continuity loss is similar to (Li et al., 2023).

We define the clashing loss as:

Lclash =
1

Nclash

Nclash∑
i

||d̂i − kclash||2 (10)

where Nclash denotes the number of clashing residues in the protein, where two residues are said
to clash if d̂i < kclash, with kclash = 4 by default. For very large proteins with a high number of
residues, computing this clashing loss is impractical. In that case, we compute it for pairs of residues
that are distant from 4 to 10Å in the base structure S0. Note that our clashing loss takes into account
all of the residues. This is not the case of Li et al. (2023), who implements a similar form as our
clashing loss for big proteins while they describe the same loss as we do their paper.

B EXPERIMENTS

In this appendix, we provide more details on the experiments of Section 5. We followed the same
approach to create all the images of the synthetic datasets. We first pose the ground truth structure,
which we then convert into a volume, which we then project into a 2D image according to our image
formation model in (2) with σ = 2. After that, we corrupt all the images according to the same CTF
parameters described in Table 1. Finally Gaussian noise is added to achieve different SNRs. Here,
SNR is defined as the ratio of the variance of the images to the variance of the noise. In this context,
the poses are assumed to be exactly known. However, since we use a structure S0, which is different
from the structures used to generate the datasets (unless stated otherwise), these poses can only be
an approximation. This will not be the case of cryoDRGN, for which these poses will indeed be
exact, as this method does not use a base structure. Consequently, in this context, the comparison
may introduce a bias in favor of cryoDRGN.

B.1 TOY DATASET

For this experiment, we predict the phytochrome structure using AlphaFold multimer Evans et al.
(2021) on its amino acid sequence with the UniProt The UniProt Consortium (2021) entry Q9RZA4.
This protein forms a dimer with 755 residues on each chain. We define two domains for simulation
purposes. The first domain comprises the first chain and the first 598 residues of the second chain.
The second domain consists of the remaining 157 residues of the second chain. We rotate the second
domain around the (0, 1, 0) axis, sampling 104 rotation angles from the Gaussian mixture:

0.5×N (−π/3, 0.04) + 0.5×N (−2π/3, 0.04) (11)
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Parameter Value
dfU 15301.1 Å
dfV 14916.4 Å

dfang 5.28 degrees
spherical aberration 2.7 mm
accelerating voltage 300 keV

amplitude contrast ratio 0.07

Table 1: Table of the parameters used to CTF corrupt the generated images. The same values were
used for all images of all datasets.

Figure 8: Toy dataset. Leftmost: Histograms of the predicted and true angles of rotation in radians.
The true angles are in green. The recovered distances are in blue. Left: Predicted against true angles
in Ångström. The black line represent x = y. Middle: Base structure with the two domains, also
used to generate the images. The domain in blue is rotated according to the axis (0, 1, 0) with angles
of rotations sampled from the green distribution on the leftmost figure. Note that the segments
predicted by cryoSPHERE exactly match the two domains. The fourth segment is in blue and
corresponds to the last 157 residues of chain B, matching exactly the ground truth domain. Right:
First mode structure. Rightmost: Second mode structure.

In Figure 8, we present the base structure, the decomposition into the two domains as well as the
structures corresponding to the deformed base. These deformations represent the mean rotation of
each mode. This gives 104 structures. For each structure, we uniformly sample 15 rotation poses
and 15 translation poses on [−10, 10]2. The structure undergoes rotation, translation, and is then
turned into an image according to image formation model 2. Subsequently, the images undergo CTF
corruption, and noise is added to achieve SNR ≈ 0.1. This process generates a total of 150k images,
each of size Npix = 220.

We run cryoSPHERE with Nsegm = 4 for 48 hours on a single NVIDIA A100 GPU, equivalent to
779 epochs. The encoder has 4 hidden layers of size 2048, 1024, 512, 512 and the decoder has two
hidden layers of size 350, 350.We use a learning rate of 0.00003 for the parameters of the decoder
and encoder and a learning rate of 0.0003 for the segmentation GMM parameters.

Due to computational constraints, the plots in this section are based on only 10000 images, one per
conformation.

Testing the segment decomposition, we then run cryoSPHERE by requesting division into Nsegm =
4. The program learnt a first and third segment with 0 residues, a second segment with 1353 residues
and a fourth segment with 157 residues (Figure 8). Thus, cryoSPHERE learnt segments according
to the ground truth.

Moreover, Figure 8 shows that most of the predicted angles of rotation for the fourth segment are in
excellent agreement with the ground truth structural changes. In addition, the predicted translations
for both segments are close to 0, the predicted axis of rotation of the moving segments is close to
(0, 1, 0) and the predicted rotation angles for non moving segment are null, see Figure 10.

Finally, Figure 9 illustrates the predicted angles against the latent means, demonstrating that the
model effectively learns rotational motion.
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Figure 9: Toy dataset. Predicted angle against latent mean for cryoSPHERE. Note that for clarity
0.3 percent of the points were removed.

Figure 10: Toy dataset. Leftmost: Boxplot of the norm of the translations predicted for the fourth
segment. Middle left: Boxplot of the norm of the translations predicted for the second segment.
Middle right: Boxplot of the predicted angle of rotation for the second segment, in radians. Right-
most: Boxplot of the dot product between the predicted axis of rotation for the fourth segment and
the true axis of rotation. CryoSPHERE recovers the right axis of rotation almost perfectly.

B.2 MOLECULAR DYNAMICS DATASET

We take the structure of a phytochrome with PDB ID 4Q0J Burgie et al. (2014) and define two
domains: residues 321 to 502 of the first chain and residues 321 to 502 of the second chain. To sim-
ulate the dissociation process of the two upper domains, we perform MetadynamicsBarducci et al.
(2011) simulations in GROMACS Abraham et al. (2015); Pronk et al. (2013) with the PLUMED
2 implementation Tribello et al. (2014). The collective variable chosen is the distance between the
self-defined centers of mass (COMs) of the upper domains (residues 321-502 of chain A and B). A
100 ns simulation is conducted using the NpT ensemble, maintaining pressure control through the
Parrinello-Rahman barostat. Gaussian deposition occurs every 5000 steps, featuring a height of 0.1
kJ/mol and a width of 0.05 nm. Afterwards, we extract 104 structures along the dry trajectory. See
Figure 11 for examples of structures. The closed conformation is the starting conformation of the
MD simulation and the most open one corresponds to the end.

For each structure, we sample 15 rotation poses uniformly together with translations uniformly on
[−10, 10]2. This results in a dataset of 150k images. We use Npix = 190, and each pixel is of
size 1Å. We finally add Gaussian noise to create three datasets: a SNR = 0.1, a SNR = 0.01 and
SNR = 0.001 dataset. The results for SNR = 0.001 are described in Section 5.1 and this appendix
describes the results for the SNR = 0.1 and SNR = 0.01 datasets.

For cryoSPHERE on all three datasets, the encoder is a 4-hidden-layer neural network with fully
connected hidden layers of dimension of 512, 256, 64, 64. The decoder is a 2-hidden-layer neural
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Figure 11: From left to right. 1/ The starting close conformation of the MD simulation. 2/ A
medium-open structure arising from the MD simulation. 3/ An open conformation towards the end
of the MD simulation. 4/ The AlphaFold structure used as a base structure.

network with fully connected hidden layers of dimension 512, 512. We set the batch size to 128 and
use the ADAM optimizer Kingma & Ba (2017) with a learning rate of 0.00003 for the encoder and
decoder parameters, while we set a learning rate of 0.0003 for the GMM segmentation parameters.
The latent dimension is set to 8 and we run the program with Nsegm = 10, Nsegm = 20 and Nsegm =
25 for all datasets. We train for 24 hours on a single NVIDIA A100 GPU.

We use the default parameters for both cryoStar and cryoDRGN but disable the structural loss of
cryoStar, except for the elastic network loss. We train both methods for 24 hours on the same GPU
as cryoSPHERE. To maintain consistency when comparing volumes generated from cryoDRGN,
our methods, cryoStar and the ground truth, we convert the structures (ground truth, predicted with
cryoStar and predicted with cryoSPHERE) into volumes using the same image formation model
employed to generate the dataset, see 1. Since cryoStar also proposes a volume method similar
to cryoDRGN, after training the structure method of cryoStar for 24 hours, we train their volume
methods for the same amount of time. We report the results for this volume method in this appendix.

Since cryoSPHERE and cryoStar are structural methods, we can compute the predicted distance
between the two domains defined earlier for each image, both for cryoStar and cryoSPHERE.

For computational efficiency, the FSC plots and distances plots are not based on all structures: only
one image per structure is used to compute the distances. Consequently, the distance plots are
based on 10k images. For the computation of the FSC curves, we select only 1000 images evenly
distributed among these 10000 structures.

B.2.1 SNR 0.1

This subsection describes the results for cryoSPHERE, cryoStar and cryoDRGN on our molecular
dynamics simulation dataset with SNR 0.1. We use Nsegm = 25 in this section.

Figures 13 and 14 show that both cryoSPHERE and cryoStar recover the ground truth distribution
of distances very well. They are also able to identify the correct conformation conditionally on an
image, as illustrated by the predicted versus true distances plot.

Figure 15, shows that both cryoStar and cryoSPHERE outperform cryoDRGN at both the 0.5 and
0.143 cutoffs. It seems cryoStar slightly outperforms cryoSPHERE at both cutoffs. This might be
because the SNR is rather high, hence moving each residue individually offers a greater flexibility
than moving segments, while the risk of overfitting is low. In addition, we can see that the volume
method of cryoStar perform similarly, if not worse, than cryoDRGN. That seems to indicate that
this volume method does not benefit from the information gained by the structural method. Figure
12 shows three examples of volumes predicted by the volume method of cryoStar, together with the
corresponding ground truth.

Figure 16 and 17 show a set of predicted structures compared to the ground truth for cryoSPHERE
and cryoStar. Both methods are able to recover the ground truth almost perfectly.

Figure 18 shows examples of cryoDRGN predicted volume together with the corresponding ground
truth. The method is able to recover the ground truth volumes almost perfectly.
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Figure 12: SNR 0.1. Example volumes produced by the volume method of cryoStar with the corre-
sponding ground truth. Top: ground truth. Bottom: corresponding volumes predicted by the volume
method of cryoStar.

Figure 13: Results for cryoSPHERE on SNR 0.1 with Nsegm = 25. Left: distribution of distances
predicted by cryoSPHERE compared to the ground truth distribution. Middle: true versus predicted
distances for cryoSPHERE. Right: segments decomposition.

Figure 14: Results for cryoStar on SNR 0.1. Left: distribution of distances predicted by cryoStar
compared to the ground truth distribution. Right: true versus predicted distances for cryoStar
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Figure 15: SNR 0.1. Mean Fourier shell correlation (± std) comparison for cryoSPHERE with
Nsegm = 25, cryoStar and cryoDRGN. Top left: cryoSPHERE versus cryoDRGN. Top right:
cryoSPHERE vs cryoStar. Bottom left: cryoDRGN vs cryoStar. Bottom right: cryoStar volume
method vs cryoDRGN

Figure 16: SNR 0.1. Examples of reconstructed structures by cryoSHERE. Blue is predicted, green
is ground truth. CryoSPHERE is able to recover the right conformation. Left to right: image number
11, 5001 and 9999.

20



Published as a conference paper at ICLR 2025

Figure 17: SNR 0.1. Examples of reconstructed structures by cryoStar. Red is predicted, green is
ground truth. cryoStar is able to recover the right conformation. Left to right: image number 11,
5001 and 9999.

Figure 18: SNR 0.1. Examples of reconstructed volumes by cryoDRGN. Green is cryoDRGN and
gray is the corresponding ground truth volume.

Figure 19: Results for cryoSPHERE on SNR 0.1 with Nsegm = 10. Left: distribution of distances
predicted by cryoSPHERE compared to the ground truth distribution. Middle: true versus predicted
distances for cryoSPHERE. Right: FSC comparison between cryoSPHERE with Nsegm = 20 and
Nsegm = 10.

21



Published as a conference paper at ICLR 2025

Figure 20: Results for cryoSPHERE on SNR 0.01 with Nsegm = 25. Left: distribution of distances
predicted by cryoSPHERE compared to the ground truth distribution. Middle: true versus predicted
distances for cryoSPHERE. Right: segments decomposition.

Figure 21: Results for cryoStar on SNR 0.01. Left: distribution of distances predicted by cryoStar
compared to the ground truth distribution. Right: true versus predicted distances for cryoStar

B.2.2 SNR 0.01

This subsection describes the results for cryoSPHERE, cryoStar and cryoDRGN on our molecular
dynamics simulation dataset with SNR 0.01.

Figures 20 and 21 show that both cryoSPHERE and cryoStar are able to recover the ground truth
distribution of distance. Also, given an image, both methods are able to recover the correct confor-
mation.

Figure 22 shows that both cryoSPHERE and cryoStar are outperforming cryoDRGN at the 0.5 and
0.143 cutoffs while having very similar performances. In addition, we can see that the volume
method of cryoStar perform similarly, if not worse, than cryoDRGN. That seems to indicate that
this volume method does not benefit from the information gained by the structural method. Figure
23 shows three examples of volumes reconstructed with the volume method of cryoStar, together
with the corresponding ground truth.

Figure 24 and 25 shows a set of predicted structures compared to the ground truth. Both
cryoSPHERE and cryoStar are able to recover the ground truth almost perfectly.

Finally, Figure 26 shows examples of cryoDRGN predicted volume together with the corresponding
ground truth. The method is able to recover the ground truth volumes almost perfectly, with a
somewhat lower resolution compared to Figure 18.

B.2.3 SNR 0.001

This subsection complements the results of Section 5.1.

Figure 27 shows that cryoStar is also able to recover the rough distribution of conformations as well
as the correct conformation given an image. The comparisons of FSC shows that cryoStar perform
similarly to cryoDRGN at the 0.5 cutoff but better at the 0.143. In addition, Figure 28 shows that
cryoStar volume method does not perform significantly better than cryoDRGN, in spite of using the
information given by the structural method of cryoStar. Figure 31 shows a set of example volumes
reconstructed by the volume method of cryoStar and the corresponding ground truth.
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Figure 22: SNR 0.01. Mean Fourier shell correlation (± std) comparison for cryoSPHERE with
Nsegm = 25, cryoStar and cryoDRGN. Top left: cryoSPHERE versus cryoDRGN. Top right:
cryoSPHERE vs cryoStar. Bottom left: cryoDRGN vs cryoStar. Bottom right: cryoStar volume
method vs cryoDRGN.

Figure 23: SNR 0.01. Example volumes produced by the volume method of cryoStar with the
corresponding ground truth. Top: ground truth. Bottom: corresponding volumes predicted by the
volume method of cryoStar.
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Figure 24: SNR 0.01. Examples of reconstructed structures by cryoSHERE. Blue is predicted, green
is ground truth. cryoSPHERE is able to recover the right conformation. Left to right: image number
11, 5001 and 9999.

Figure 25: SNR 0.01. Examples of reconstructed structures by cryoStar. Red is predicted, green is
ground truth. cryoStar is able to recover the right conformation. Left to right: image number 11,
5001 and 9999.

Figure 26: SNR 0.01. Examples of reconstructed volumes by cryoDRGN. Green is cryoDRGN and
gray is the corresponding ground truth volume.
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Figure 27: Results for cryoStar on SNR 0.001. Left: distribution of distances predicted by cryoStar
compared to the ground truth distribution. Middle: true vs predicted distances for cryoStar. Right:
FSC comparison between cryoStar and cryoDRGN

Figure 28: SNR 0.001. Mean Fourier shell correlation (± std) comparison for cryoStar and cryo-
DRGN. Left: cryoStar versus cryoDRGN. Right: cryoStar volume method vs cryoDRGN.

Figure 29 and 30 show a set of predicted structures compared to the ground truth. Both cryoSPHERE
and cryoStar are able to recover the ground truth, but in a more approximate fashion than for the
higher SNR datasets.

Figure 32 shows examples of cryoDRGN predicted volume together with the corresponding ground
truth. The method underestimates the opening of the protein and predicts low resolution volumes
with a lot of noise. It seems it is overfitting.

B.2.4 DEBIASING CRYOSPHERE

When deforming an atomic model to recover different conformations, one should be careful not
to bias the results. CryoStar (Li et al., 2023) developed a volume method to help assess the bias

Figure 29: SNR 0.001. Examples of reconstructed structures by cryoSHERE. Blue is predicted,
green is ground truth. CryoSPHERE is able to recover the right conformation. Left to right: image
number 11, 5001 and 9999.
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Figure 30: SNR 0.001. Examples of reconstructed structures by CryoStar. Red is predicted, green
is ground truth. CryoStar is able to recover the right conformation. Left to right: image number 11,
5001 and 9999.

Figure 31: SNR 0.001. Example volumes produced by the volume method of cryoStar with the
corresponding ground truth. Top: ground truth. Bottom: corresponding volumes predicted by the
volume method of cryoStar.
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Figure 32: SNR 0.001. Examples of reconstructed volumes by cryoDRGN. Green is cryoDRGN
and gray is the corresponding ground truth volume.

induced by the atomic model. However, we demonstrate here that this two stages of training are
nothing specific to cryoStar and can, in fact, be applied to any structural method just by using
DRGN-AI Levy et al. (2024).

We remove the last 40 residues of chain B of the 10 000 structures obtained through molecular
dynamics simulations, see Appendix B.2. We then follow the exact same process to generate 150k
images with SNR 0.01. Again, see Appendix B.2.

We run cryoSPHERE with Nsegm = 20 for 24 hours using the same base structure as the other ex-
periments of Appendix B.2, that we obtained through AlphaFold. In other words, our base structure
has 40 more residues than the structures on the images, see Figure 33.

Figure 33: Left: example of a structure used to to generate the images. The missing part is high-
lighted in a red ellipsoid. Right: the base structure used, with the residues that were removed for the
image generation highlighted in a black ellipsoid.
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Figure 34: Debiasing the atomic model. Left: Distribution of ground truth and predicted distances.
Right: True versus predicted distances.

Figure 35: Debiasing the atomic model. Top, from left to right: example of 3 structures predicted
by cryoSPHERE. The red ellipses show the alpha helix that is present in the base structure but is not
on the images. Bottom, from left to right: corresponding volumes reconstructed by DRGN-AI.

This discrepancy does not affect the predicted distances by cryoSPHERE, as shown in Figure 34.
Figure 35 shows 3 structures predicted by cryoSPHERE. Even though the opening motion is cor-
rectly recovered, the algorithm tries to remove the missing alpha helix from where there should not
be any density. In a sense, cryoSPHERE detects that the atomic model has too many residues, but it
cannot temove them, by design. We leave to future work the ability to learn the amplitude of each
Gaussian mode of Equation 1. Here, we propose to debias the atomic model by running, in a second
step, DRGN-AI with the final latent space of the cryoSPHERE run and fixed poses, similar to what
cryoStar proposes. Figure 35 shows the reconstructed volumes by DRGN-AI corresponding to the
plotted structures predicted by cryoSPHERE. The alpha helix is not present, which permits to detect
the bias brought by the base structure for cryoSPHERE.

In terms of computational cost, on a dataset of 150k images of size 190× 190, DRGN-AI performs
one epoch in 10 minutes while the volume method of cryoStar perform one epoch in 6 minutes.
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Figure 36: Segmentation of cryoSphere withNsegm = 10. Left: SNR 0.1. Middle: SNR 0.01. Right:
SNR 0.001.

Figure 37: Comparison, for each method, of the Fourier shell correlation for different SNR. Left to
right: cryoSPHERE, cryoStar, cryoDRGN.

B.2.5 COMPARISON ACCROSS SNR FOR CRYOSPHERE, CRYODRGN AND CRYOSTAR.

In this section, we look at the change of performance for each method accross the different SNR.

Figure 37 shows that all three methods experience a drop in FSC with decreasing SNR.
CryoSPHERE and cryoStar show a drop of one standard deviation between SNR 0.1 and 0.01 while
cryoStar experience a much bigger drop than cryoSPHERE between SNR 0.01 and 0.001, which
confirms that cryoSPHERE is more resilient to a high level of noise.

CryoDRGN shows a steady decrease in its FSC with decreasing SNR.

The fact that for a SNR of 0.1 cryoStar is slightly outperforming cryoSPHERE (see Appendix B.2.1),
that for a SNR of 0.01 cryoSPHERE outperforms cryoStar (see Appendix B.2.2), and that for a SNR
of 0.001 cryoSPHERE outperforms cryoStar by one standard deviation (see Section 5.1) confirms
that moving big chunks of the protein as rigid bodies is more resilient to low SNR than moving each
residue individually.

B.2.6 COMPARISON FOR DIFFERENT VALUES OF NSEGM .

In this subsection, we compare the results of cryoSPHERE for three different values of Nsegm =
10, 20, 25, for the different SNR of the MD dataset in 5.1.

Figure 38 shows the evolution of the FSC curves with different values of Nsegm for different SNR.
As we can expect, the high the number of segments, the more flexible cryoSPHERE and the better
FSC. The lower the SNR, the greater we gain in FSC by increasing Nsegm. This is because with
decreasing SNR, the initial fitting of the structure in a consensus reconstruction is less accurate.
Hence, the method benefits from a greater flexibility to adjust the protein on a smaller scale.

Figures 39, 40 41,42,43,44 show the distributions of the predicted and true distances and the true
versus the predicted distances for each value of SNR and Nsegm. This shows that the choice of Nsegm
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Figure 38: FSC curves for different Nsegm values. From left to right: SNR 0.1, SNR 0.01, SNR
0.001.

Figure 39: MD dataset, SNR 0.1. Distribution of the predicted distances. From left to right: 10
segments, 20 segments, 25 segments.

is not so critical for cryoSPHERE to work well. The higher Nsegm, the better it is in terms of FSC,
but a value of 10 still gives a good performance.

Finally, Figures 45,46and 47 show the segment decomposition for different values of Nsegm.
CryoSPHERE always learns a segmentation differentiating the two chains and the top and bottom
parts of the protein.

B.3 EMPIAR-10180

This section gives more details on the experiment with the EMPIAR-10180 datasets described in
Section 5.2. The data was processed by Relion, hence the poses and CTF are assumed to be known.
We use an encoder with 4 hidden layers of size 512, 256, 64, 64 and a decoder with 2 hidden layers
with size 512, 512.

We train cryoSPHERE with no clashing nor continuity loss, with Nsegm = 20. We use the ADAM
optimizer with a learning rate of 0.00003 for the parameters of the encoder and decoder, while we
set the learning rate to 0.0003 for the parameters of the GMM segmentation.

We low pass filter the images with a bandwith of 23.4Å, we apply a mask of radius 0.9375 to the
input images and we apply a mask of radius 1 to the true and predicted images for the computation
of the correlation loss.

Figure 49 shows 4 structures taken from the principal component traversal depicted in Figure 48. The
structures contain only the Cα atoms. We provide a movie of the traversals of principal component
1 and principal component 2 by clicking here.

We subsequently train DRGN-AI on the latent space provided by cryoSPHERE, similar to cryoStar
Phase II of training. We show volumes taken along the first principal component in Figure 50. We
recover the correct bending of the protein toward its ”foot”. In addition, this second step detects the
compositional heterogeneity and the density is zero in this region. This is a detail that the structural
method of cryoSPHERE could not detect. We successfully identified a bias in the base structure.

We provide a movie of the motion recovered by DRGN-AI trained on the latent variable of
cryoSPHERE here.
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Figure 40: MD dataset, SNR 0.01. Distribution of the predicted distances. From left to right: 10
segments, 20 segments, 25 segments.

Figure 41: MD dataset, SNR 0.001. Distribution of the predicted distances. From left to right: 10
segments, 20 segments, 25 segments.

B.4 EMPIAR-12093

This experiment demonstrates that cryoSPHERE is applicable to real data with high noise levels. We
applied cryoDRGN, cryoSTAR and cryoSPHERE to a bacterial phytochrome (Bódizs et al., 2024)
dataset (medium-sized protein, 120 kDa). This dataset comprises two distinct subsets of 200 000
images of size 400 x 400 each, representing the protein in its light-activated state (red-absorbing
state, called Pr) and its resting state (far-red-absorbing state, called Pfr). The pre-processing steps
are detailed in Bódizs et al. (2024). We downgrade the images to a size of 256 x 256. We give
a computational budget of 24 hours on the same single GPU to cryoDRGN, cryoStar structural
method and cryoSphere and compare their results. We subsequently run cryoStar volume method
on the latent space obtained by cryoStar and cryoStar volume method on the latent space obtained
by cryoSPHERE.

We provide PC 1 traversal movies for both cryoSPHERE and cryoStar structures and volumes for
both Pr and Pfr here.

B.4.1 PFR STATE

We provide the first PC traversal for cryoDRGN in Figure 51. CryoDRGN does not recover the
upper part of the protein at all. In addition, there is no motion through the principal component.
This might indicate that the recovered motion is in fact noise in the top part. We additionally plot
3 structures taken evenly along the first principal component of the cryoStar volume method in
Figure 52. The method is also unable to reconstruct the very mobile top part, in spite of using the
latent space of the structural method. For Pfr, the debiasing technique of cryoStar through a volume
method is ineffective for the top part.

Finally, we run cryoStar volume method on the latent space recovered by cryoSPHERE and show
the first principal component traversal in Figure 53. Similar to cryoDRGN and cryoStar Phase II,
this procedure is unable to reconstruct the top part of the protein. Hence this allows debiasing on the
bottom part of the protein only.

We provide a movie of the first PC traversal of cryoStar volume method with cryoSPHERE latent
variables here and the same movie with cryoStar latent variables here.
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Figure 42: MD dataset, SNR 0.1. True versus predicted distances. From left to right: 10 segments,
20 segments, 25 segments.

Figure 43: MD dataset, SNR 0.01. True versus predicted distances. From left to right: 10 segments,
20 segments, 25 segments.

B.4.2 PR STATE

We provide three structures taken evenly along the first principal component of cryoDRGN in Figure
54. There is no motion in the bottom part as expected. However, the method is unable to recover the
top part.

We also run cryoStar volume method on the latent space recovered by cryoSPHERE and display
the first principal component traversal in Figure 56. We encounter the same difficulties as cryoStar
volume method and cryoDRGN, see Figures 54, 55. CryoDRGN is not able to recover the top
part of the protein. While cryoStar volume method does recover some motion for this top part, the
resolution is too low to debias the base structure. Therefore, this debiasing procedure is only useful
for the lower part of the protein.

We provide a movie of the first PC traversal of cryoStar volume method with cryoSPHERE latent
variables here and the same movie with cryoStar latent variables here.

B.5 COMPUTATIONAL COSTS

CryoStar and cryoSPHERE share the same way of turning a structure into a volume. This is a
computationally expensive procedure, reduced by the sperability of Gaussian kernels, see e.g (Chen
et al., 2023).For an of sizeNpix×Npix, it involves computing two times the distance of each residues
to Npix pixels and taking the product of these vectors to obtain a matrix representing the images
for each residue, then summing over the residues. This is one of the computational bottlenecks of
the structural methods. In spite of sharing the same bottleneck, cryoSPHERE tends to be slightly
more computationally demanding. This is because cryoSPHERE needs to compose Nsegm rotations
for each residue, while cryoStar only translates each residue. For example, for the experiments of
Section 5.3, in 24 hours, cryoStar performs roughly 190 epochs and cryoSPHERE with Nsegm = 20
performs roughly 130 epochs. Similarly, for the experiment of Section 5.2, cryoStar performs 184
epochs while cryoSPHERE withNsegm performs 95 epochs. However, owing to the reduced number
of freedom of cryoSPHERE compared to cryoStar, we observe that cryoSPHERE performs as well
or better as cryoStar for the same computational budget.
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Figure 44: MD dataset, SNR 0.001. True versus predicted distances. From left to right: 10 segments,
20 segments, 25 segments.

Figure 45: MD dataset, SNR 0.001. Segments decomposition. From left to right: 10 segments, 20
segments, 25 segments.

Figure 46: MD dataset, SNR 0.01. Segments decomposition. From left to right: 10 segments, 20
segments, 25 segments.
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Figure 47: MD dataset, SNR 0.1. Segments decomposition. From left to right: 10 segments, 20
segments, 25 segments.

Figure 48: Empiar 10180: kernel density plot of the first and second principal components of that
latent space of cryoSPHERE. The red dots are the point selected for the traversal of the first principal
component.

Figure 49: Empiar 10180. Four structures taken along the first principal component, from blue to
white to red. Top: view from the ”back”. Bottom: view from the ”top”.
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Figure 50: Empiar 10180, DRGN-AI is trained on the latent space of cryoSPHERE. Three Volumes
taken evenly along the principal component.

Figure 51: Pfr: 3 volumes taken evenly along the first principal component of cryoDRGN.
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Figure 52: Pfr: 3 volumes taken evenly along the first principal component of cryoStar volume
method.

Figure 53: Pfr state. CryoStar volume method is trained on the latent space of cryoSPHERE. From
left to right: three volumes taken evenly along the first principal component.
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Figure 54: Pr: 3 volumes taken evenly along the first principal component of cryoDRGN volume
method. The top and bottom volumes are the same with a different density threshold.

Figure 55: Pr: 3 volumes taken evenly along the first principal component of cryoStar volume
method.
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Figure 56: Pr state. CryoStar volume method is trained using the latent space of cryoSPHERE.
From left to right: volumes taken evenly along the first principal component.
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