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A Overview

Due to space constraints in the main paper, we elaborate the following here: additional details of the
32 datasets, including useful links to find their license statements and other ethics concerns in Sec. B;
additional details of the architecture, training and finetuning stages in Sec. C; additional experiments
and analyses on dataset distributions, training schemes, finetuning strategies, sampling strategies,
and training domains in Sec. D; individual dataset ranking on the training sets of key evaluation
benchmarks, and complete results of the foundation models on evaluation benchmarks in Sec. E.

B Additional Details of Datasets

B.1 Dataset Descriptions

This section describes the 32 datasets we study. Note that all these are public academic datasets, each
holding a license. We follow the common practice to use them in our non-commercial research and
refer readers to their homepages or papers for more details regarding licenses and their policies to
ensure personal information protection.

3DPW [37] (Fig. 1a) is the first in-the-wild dataset with a considerable amount of data, captured
with a moving phone camera and IMU sensors. It features accurate SMPL annotations and 60 video
sequences captured in diverse environments. We follow the official definition of train, val, and test
splits. Homepage: https://virtualhumans.mpi-inf.mpg.de/3DPW/.

AGORA [34] (Fig. 1b) is a synthetic dataset, rendered with high-quality human scans and realistic
3D scenes. It consists of 4240 textured human scans with diverse poses and appearances, each fitted
with accurate SMPL-X annotations. There are 14K training images and 3K test images, and 173K
instances. Homepage: https://agora.is.tue.mpg.de/index.html

ARCTIC [12] (Fig. 1c) is a lab-based hand-object interaction dataset. It features 10 subjects
manipulating 11 objects. There are 210K frames of video sequences captured from 8 static cameras
and one egocentric camera. Each frame is fitted with accurate SMPL-X annotations. We exclude
the egocentric frames in our training as they only capture hands, and use 153.9K images in training.
Homepage: https://arctic.is.tue.mpg.de/

BEDLAM [5] (Fig. 1d) is a synthetic dataset that includes a wide range of variations in terms of
body shapes, motions, skin tones, hair, and clothing. It is created by combining 271 different body
models, 27 hairstyles, and 111 types of clothing. The dataset includes 1691 clothing textures and
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Figure 1: Visualization of dataset images and ground truth annotation. a) 3DPW. b) AGORA. c)
ARCTIC. d) BEDLAM.

Figure 2: Visualization of dataset images and ground truth annotation. a) BEHAVE. b) EgoBody
(EgoSet). c) CrowdPose. d) CHI3D.

2311 human motions set in 95 HDRI and 8 3D scenes. Each scene typically consists of 1 to 10 people
and offers diverse camera poses. Homepage: https://bedlam.is.tue.mpg.de/index.html

BEHAVE [3] (Fig. 2a) is a body human-object interaction dataset with multi-view RGB-D frames,
SMPL-H parameters, object fits, and contacts information. BEHAVE includes about 15k frames in 5
locations with 8 subjects performing a range of interactions with 20 common objects. Homepage:
https://github.com/xiexh20/behave-dataset.

CHI3D [13] (Fig. 2d) is a studio-based 3D motion capture dataset (Vicon) under multiple interaction
scenarios, which includes 631 multi-view sequences with 2,525 contact events and 728,664 ground
truth instances of 3D poses annotated with SMPL-X parameters. We use the open-source train set.
Homepage: https://ci3d.imar.ro.

CrowdPose [25] (Fig. 2c) is an in-the-wild dataset focused on crowded cases. It contains 20K
images in total and 80K human instances. In this paper, we use the annotations generated by
NeuralAnnot [32], which fits the SMPL to the GT 2D joints and includes a total of ~35.7K annotated
data. Homepage: https://github.com/Jeff-sjtu/CrowdPose

EgoBody [40] is a large-scale dataset that features 3D human motions and interaction with scenes.
The data is captured by a multi-view rig for third-person view (MVSet, in Fig. 3a) and a head-
mounted device for egocentric view (EgoSet, in Fig. 2b). The dataset consists of 125 sequences, 36
subjects, and 15 indoor scenes. We follow the official splits of training and test sets. Homepage:
https://sanweiliti.github.io/egobody/egobody.html.

EHF [35] (Fig. 3b) contains 100 curated frames of one subject in an indoor studio setup. It provides
SMPL-X aligned 3D mesh as the ground truth that accurately reflects the subject’ diverse body, hand,
and face articulations. It is usually used as a test set. The images are captured from a single camera. It
is published along with SMPL-X. Homepage: https://smpl-x.is.tue.mpg.de/index.html.

FIT3D [15] (Fig. 3c) is a studio-based 3D motion capture dataset including 611 multi-view sequences
with 2,964,236 images and corresponding ground truth instances of 3D shapes and poses annotated
with SMPL-X parameters. Motion clips include 37 repeated exercises. We use the open-source train
set. Homepage: https://fit3d.imar.ro/.
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Figure 3: Visualization of dataset images and ground truth annotation. a) EgoBody (MVSet). b)
EHF. c) FIT3D. d) GTA-Human.

Figure 4: Visualization of dataset images and ground truth annotation. a) Human3.6M. b) Hu-
manSC3D. c) InstaVariety. d) LSPET.

GTA-Human II (Fig. 3d) is an extended version of GTA-Human [8], a large-scale synthetic 3D
single-human dataset generated with the GTA-V game engine, which features diversity. GTA-
Human provides more than 1.4M of SMPL annotations in single-person scenes. In comparison,
GTA-Human II includes multi-human scenarios with SMPL-X ground truth, obtained through
SMPLify-X [35], which estimates SMPL-X parameters from ground truth keypoints collected in-
game. The toolchain is provided by MMHuman3D [10]. The extended version contains 1.8M
SMPL-X instances. Images are captured in 4K multi-person sequences, with about 600 subjects
in different shapes and clothing, performing 20K daily human activity motion clips in six distinct
categories of backgrounds, captured by camera angles in realistic distributions. Homepage: https:
//caizhongang.github.io/projects/GTA-Human/.

Human3.6M [18] (Fig. 4a) is a studio-based 3D motion capture dataset including 3.6M human
poses and corresponding images captured by a high-speed motion capture system. In this paper, we
use the annotation generated by NeuralAnnot [32], which fits the SMPL-X to the GT 2D joints and
includes a total of ~312.2K annotated data. Homepage: http://vision.imar.ro/human3.6m/
description.php

HumanSC3D [14] (Fig. 4b) is a studio-based 3D motion capture dataset including 1,032 multiple-
view sequences featuring 5K contact events and 1.2M ground truth instances of 3D poses annotated
with SMPL-X parameters. We use the open-source train set. Homepage: https://sc3d.imar.ro/.

InstaVariety [22] (Fig. 4c) is an in-the-wild dataset, containing 2.1M images collected from
Instagram using 84 hashtags. We use the annotation generated by NeuralAnnot [32], which fits the
SMPL to the GT 2D joints and includes a total of ~218.5K annotated data. Homepage: https:
//github.com/akanazawa/human_dynamics/blob/master/doc/insta_variety.md

LSPET [19] (Fig. 4d) is an in-the-wild dataset, and it contains 10K images. In this paper, we use the
annotation generated by EFT [21], which fits the SMPL to the GT 2D joints and includes a total of
2,946 annotated data. Homepage: http://sam.johnson.io/research/lspet.html.

MPI-INF-3DHP [29] ((Fig. 5a) is captured with a multi-camera markerless motion capture system
in constrained indoor and complex outdoor scenes. It records 8 actors performing 8 activities
from 14 camera views. We use the annotations generated by NeuralAnnot [32], which fits the
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Figure 5: Visualization of dataset images and ground truth annotation. a) MPI-INF-3DHP. b) MPII.
c) MSCOCO. d) MTP.

Figure 6: Visualization of dataset images and ground truth annotation. a) MuCo-3DHP. b) OCHuman.
c) PoseTrack. d) PROX.

SMPL-X to the GT 2D joints and includes a total of 939,847 annotated data. Homepage: https:
//vcai.mpi-inf.mpg.de/3dhp-dataset/

MPII [2] ((Fig. 5b) is a widely used in-the-wild dataset that offers a diverse collection of approxi-
mately 25K images. Each image within the dataset contains one or more instances, resulting in a
total of over 40K annotated people instances. Among the 40K samples, ~28K samples are used for
training, while the remaining samples are reserved for testing. We use the annotations generated
by NeuralAnnot [32], which fits the SMPL-X to the GT 2D joints and includes a total of ~28.9K
annotated data. Homepage: http://human-pose.mpi-inf.mpg.de/

MSCOCO [27] (Fig. 5c) is a large-scale object detection, segmentation, keypoint detection, and
captioning dataset. The subset for the keypoint detection contains more than 200K images and
250K person instances. We use the annotations generated by NeuralAnnot [32], which fits the
SMPL-X to the GT 2D joints and includes a total of ~149.8K annotated data. Homepage: https:
//cocodataset.org/#home

MTP [33] (Fig. 5d) is an in-door dataset containing images of actors mimicking different hard
SMPL-X poses with self-contact. There are 3.7K images from 148 subjects with pseudo ground-
truth SMPL-X parameters and 2D keypoints. We use 3.2K instances in training. Homepage:
https://tuch.is.tue.mpg.de/

MuCo-3DHP [30] (Fig. 6a) is an in-door multi-person dataset composited by cropping and overlaying
person in MPI-INF-3DHP[29] with segmentation masks. It has 400K frames and contains 8 subjects
with 2 different clothing for each subject. It is shot with 12 different camera positions. It has
ground truth 3D keypoints and fitted SMPL parameters. We use 465.3K annotated data in training.
Homepage: https://vcai.mpi-inf.mpg.de/projects/SingleShotMultiPerson/.

OCHuman [41] (Fig. 6b) is an in-the-wild datset, and it focuses on heavily occluded human.
This dataset contains 8,110 detailed annotated human instances within 4,731 images. We use the
annotations generated by EFT [21], which fits the SMPL to the GT 2D joints and includes a total of
2,495 annotated data. Homepage: https://github.com/liruilong940607/OCHumanApi
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Figure 7: Visualization of dataset images and ground truth annotation. a) DNA-Rendering. b)
SSP3D. c) SPEC. d) RICH.

Figure 8: Visualization of dataset images and ground truth annotation. a) UBody. b) SynBody. c)
UP3D. d) Talkshow.

PoseTrack [1] (Fig. 6c) is a large-scale benchmark for multi-person pose estimation and tracking
in videos. It contains 514 videos and includes 66,374 frames. We use the annotations generated by
EFT [21], which fits the SMPL to the GT 2D joints and includes a total of ~28.5K annotated data.
Homepage: https://posetrack.net

PROX [16] (Fig. 6d) qualitative dataset is a human-scene interaction dataset that showcases 12
indoor scenes and 20 subjects engaging with these scenes. It comprises 100K RGB-D frames with
pseudo-ground-truth SMPL-X fittings. During training, only the RGB images are utilized, and they
are horizontally flipped to align with the SMPL-X annotations. We use 88.1K instances for training.
Homepage: https://prox.is.tue.mpg.de/.

DNA-Rendering [9] (Fig. 7a) is a large-scale multi-view studio-based dataset with different reso-
lutions (main set and HiRes set) that features diversity in motion, clothing, and object interactions.
DNA-Rendering has more than 1.5K human instances and 5K motion sequences with up to 60
RGB views and 4 Kinect views. Corresponding SMPL-X annotation is based on HuMMan [7]. We
separate the 60 RGB views into 48 and 12 views based on different camera distributions and captured
resolutions. Homepage: https://dna-rendering.github.io/.

SPEC [23] (Fig. 7c) is a synthetic dataset featuring diverse and unique camera viewpoints. It has
22,191 images with 71,982 ground truth instances with SMPL parameters as a train set and 3,783
images with 12,071 ground truth instances as the test set. Homepage: https://spec.is.tue.mpg.
de/index.html.

RICH [17] (Fig. 7d) is a human-scene contact dataset. It includes a comprehensive collection of 142
single or multi-person multiview videos capturing 22 subjects in 5 static indoor or outdoor scenes
with 6-8 static cameras. RICH comprises a rich set of resources, including a total of 90K posed 3D
body meshes, each associated with dense full-body contact labels in both SMPL-X and SMPL mesh
topology. We convert the original image from .png and .bmp to .jpg and train the model with the train
set, which includes ~243.4K instances. Homepage: https://rich.is.tue.mpg.de/index.html

SSP3D [36] SSP-3D (Fig. 7b) is a small-scale dataset consisting of 311 images of persons in
tight-fitted clothes in sports, with a variety of body shapes and poses. Pseudo-ground-truth SMPL
body model parameters obtained via multi-frame optimization with shape consistency. Homepage:
https://github.com/akashsengupta1997/SSP-3D.
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SynBody [38] (Fig. 8b) is a large-scale synthetic dataset featuring a massive number of diverse
subjects and high-accuracy annotations which includes multi-person image instances with 3D pose
and shape annotations. SynBody covers 10K human body models, 1K actions, and many viewpoints.
Annotations include both accurate SMPL and SMPL-X parameters. Synbody also features layered
human body models and clothes. We sample a set with ~600K instances in our study. Homepage:
https://maoxie.github.io/SynBody/.

Talkshow [39] (Fig. 8d) is a large-scale dataset featuring talking videos of 4 subjects in 4 different
scenarios. It contains 26.9 hours of video clips at 30 FPS and has synchronized audio and fitted SMPL-
X annotations. We obtain the video clips from the author and convert them to images, including of
332.7K instances. Homepage: https://talkshow.is.tue.mpg.de/.

UBody [26] (Fig. 8b) is a large-scale dataset that features a diverse range of real-life scenarios that
cater to various downstream tasks, such as fitness videos, VLOGs, movies, online classes, video
conferences, talk shows, and sign languages. In these scenarios, typically only the subject’s upper
body is visible. Heavy truncation and a focus on expressive gestures and facial expressions make
UBody especially challenging. Homepage: https://github.com/IDEA-Research/OSX.

UP3D [24] (Fig. 8c) is an in-the-wild dataset containing 7,126 images. To obtain 3D high-quality
annotations, it extends the SMPLify [6] and fits a pseudo label (SMPL) for each image. Homepage:
https://files.is.tuebingen.mpg.de/classner/up/

C Additional Details of Foundation Model

C.1 Architecture

SMPLer-X utilizes a minimalistic design. Before entering the backbone, the image is cropped by
a whole body bounding box and resized to I with (height, width) as (512, 384). The image is then
tokenized into 32×24 patches with patch size 16, and undergoes patch embedding, and positional
encoding is added to obtain image tokens Timg . Ttask is additional learnable tokens (task tokens) that
are concatenated with Timg . The tokens are processed with backbone (denoted as ViT). Leveraging
the scalability of ViT [11], we are able to experiment with various model sizes. In the neck, the
processed image tokens, T

′

img are used to predict face and hand bounding boxes. The predicted
bounding boxes are used in the ROI (regions of interest) module to crop features from T

′

img, which
is re-organized and undergoes transposed convolution (deconv), and fed into hand and face heads.
The body head takes in both T

′

img (omitted in the illustration) and T
′

task. The hand and body heads
consist of a positional module to predict 3D keypoints, and a regressor module to predict parameters,
whereas for the face head, we follow OSX [26] to include only a regressor module. We highlight that
training foundation models are very expensive. Hence, we do not conduct extensive architectural
searches in our study. We use SMPLer-X as a simple baseline with the essential components, which
(e.g., backbone) can be directly used in future research. In addition, the data selection strategies in
our study are likely to be applicable to any other architectures.

C.2 Training Details

The training is conducted on 16 V100 GPUs, with a total batch size of 512 (256 for ViT-Huge) for 10
epochs. Specifically, SMPLer-X-L20 takes more than 400 GPU hours to train and SMPLer-X-H32
takes more than 700 GPU hours to train. We use Adam optimizer with cosine annealing for both
training and fine-tuning. The learning rate for training is 1× 10−5 with the minimum learning rate
set to 1× 10−6, while the learning rate for finetuning is 1× 10−5 with the minimum learning rate set
to 5× 10−7.

C.3 Adaption of SMPL/SMPL-X Annotations.

While we strive to utilize as many datasets as possible in our study, we find that there are only a few
datasets with neutral SMPL-X annotations and many datasets with female/male (gendered) SMPL-X
annotations or SMPL annotations. An intuitive solution is to use the official fitting tool [35], however,
this optimization-based tool is relatively slow to convert a large number of annotations (fitting takes
241±126 seconds per frame). Hence, we experiment with a new approach.
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Figure 9: Comparisons of hand pose, shape beta, and facial expression parameters distributions
among different datasets. We illustrate these distributions with UMAP [28]. The two axes are the
two dimensions of the embedded space and have no unit.

For gendered SMPL-X annotations, we train a small adapter network A (consisting of three layers of
fully-connected layers) that takes in gendered body shape parameters βf/m and converts it neutral
body shape parameters such that the following loss is minimized:

L = ||Mf/m(θ, βf/m)−Mn(θ,A(βf/m)||2 (1)

where Mf/m are gendered SMPL-X body model, and Mn is the neutral SMPL-X body model, θ
is body pose is obtained by random sampling in the embedding space of VPoser [35]. We test our
adapter on AGORA [34] and find that the vertex-to-vertex error between ground truth gendered
SMPL-X mesh and neutral SMPL-X with adapted neutral β is 8.4 mm, which we consider to be
sufficiently small. This approach is very fast (0.09 seconds per frame). Hence, we apply our adapter
on AGORA, EgoBody, DNA-Rendering, and RICH.

However, we empirically find that the adapter does not work well across significantly different
topologies (i.e. SMPL and SMPL-X), training similar adapters results in a 27.1 mm vertex-to-vertex
error. Hence, for datasets with SMPL annotations, we only supervise ground truth global orientation
and body pose. Although this is a slight abuse of the parameters (SMPL and SMPL-X parameters are
not directly transferable), we find in our experiments that such a strategy leads to performance gains.

D Additional Experiments and Analyses

D.1 More Distribution Comparisons

In Fig. 9, we plot more distributions of additional parameters: a) hand poses, b) betas (body shape),
and c) facial expression, all via UMAP dimension reduction. Datasets without proper SMPL-X
parameters (e.g., SMPL annotation only, or pseudo-annotated that typically have invalid hand poses)
are not included in the study. For hand poses, we concatenate both left and right-hand parameters in
rotation matrix representation. For betas and expression, we directly use their first 10 components.
It is observed that datasets such as DNA-Rendering, CHI3D, HumanSC3D, and Talkshow form
distinct clusters for hand poses and betas, and it is difficult to find any dataset to provide a well-spread
coverage. For expression, there is still a lack of diverse datasets.

D.2 Training Schemes

As shown in Table 1, we perform the ablation study for the training scheme. We investigate the effect
of dataset selection. We selecte the bottom 5 and bottom 10 datasets according to our individual
dataset benchmark rankings and trained the SMPLer-X-B model with the same number of instances
as used in training with the top 5 and top 10 datasets.

It is proved that our training scheme is efficient. Selecting the top 5 or top 10 datasets according to
the single dataset benchmark leads to a much better performance compared to selecting the bottom 5
or bottom 10 datasets. The foundation model can benefit from adding higher-ranked (i.e., Top 5/10)
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Table 1: Training schemes. We study the different training schemes by comparing the model trained
with the Top 5 / Top 10 datasets with the Bottom 5 / Bottom 10 datasets according to our individual
dataset benchmark rankings.

Method Dataset #Instance MPE(mm)

SMPLer-X-B Top5 0.75M 103.47
SMPLer-X-B Bottom5 0.75M 115.61
SMPLer-X-B Top10 1.5M 89.20
SMPLer-X-B Bottom10 1.5M 115.10

Table 2: Finetuning strategies. We study the different finetuning strategies by freezing the parameters
in different parts of the network. Models are tested on UBody test set, and † denotes the models that
are finetuned on UBody train set.

PA-PVE (mm) PVE (mm)

Method Finetune #Param. All Hands Face All Hands Face

SMPLer-X-H32 - 662M 29.9 9.8 2.6 54.5 36.4 20.6
SMPLer-X-H32† Full network 662M 27.8 9.0 2.3 51.3 32.6 19.1
SMPLer-X-H32† Neck+Head 31M 27.8 9.0 2.3 51.1 32.5 19.1
SMPLer-X-H32† Head 5M 29.9 9.7 2.6 54.2 35.9 20.6

data into training, while lower-ranked data (i.e., Bottom 5/10) is not as effective in improving the
model’s performance. Despite this, we finetune the entire network in all other finetuning experiments.

D.3 Finetuning Strategies

In Table 2, we evaluate different strategies that finetune different parts of our foundation model. We
observe that finetuning only the neck and head is very efficient: it achieves even slightly better perfor-
mance than finetuning the entire network, with much fewer learnable parameters. We speculate that
after training with a large number of datasets, the backbone is already very strong and generalizable.
Hence, finetuning the backbone does not yield much performance improvement.

D.4 Data Sampling Strategies

As for the sampling strategy, we did the ablation study on three different strategies, including 1)
Balanced: we set all the datasets to have the same length; 2) Weighted: we set the dataset length
according to the individual dataset benchmark rankings. Specifically, we sort the datasets based on
their rankings and then assign weights to each dataset. As a result of this weighting, the datasets are
upsampled or downsampled so that the lengths of the datasets are adjusted to an arithmetic sequence.
The length of the dataset with the highest ranking is 4 times that of the dataset with the lowest ranking,
and the sum of the total lengths of all datasets is fixed; 3) Concat: we simply concatenate all the
datasets with their original length.

The performance of the foundation model is not sensitive to the sampling strategy as shown in Table 3,
while the balanced strategy is more intuitive, easy to implement, and efficient, the weighted strategy
may have more potential with more effort in weight tuning.

D.5 Training Domains

In Table 4, we further study the impact of training domains. It is clear that in-domain training
(including the training split of a dataset in the training, and testing on the test split of the same dataset)
is highly effective, as “seeing" the dataset always brings significant performance improvement.
However, we highlight that having out-of-domain training sets in the training is also highly effective:
with 4 seen datasets fixed, SMPLer-X benefits tremendously from having 10, 20, and 32 datasets in
training in terms of MPE. It is worth noting that training with a lot of datasets especially benefits out-of-
domain (“unseen" benchmarks) performance as errors on EHF, ARCTIC, and DNA-Rendering-HiRes
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Table 3: Data sampling strategies. We trained SMPLer-X-H32 models with different data sampling
strategies.

Method Strategy #Instance MPE(mm)

SMPLer-X-H32 balanced 4.5M 63.08
SMPLer-X-H32 weighted 4.5M 62.12
SMPLer-X-H32 concat 5.6M 63.32

Table 4: Impact of training domains. We investigate the impact of seeing the train split of a
benchmark dataset during training and how this may affect the generalizability of a model. MPE:
mean primary error of AGORA-val, EgoBody-EgoSet, UBody, 3DPW, and EHF. The yellow shaded
numbers denote that the corresponding train split is used in training. Top-1 values are bolded, and
the second best values are underlined. Except for 3DPW using MPJPE as the metric, other datasets
are evaluated via PVE. Unit: mm. #Data.: number of datasets used in the training. #Seen: number
of evaluation benchmarks’ used in the training, note here that only benchmarks that are included
in the MPE computation are counted, thus excluding ARCTIC and DNA-Rendering-HiRes. *: not
following the standard dataset selection scheme.

#Data. #Seen Model MPE AGORA [34] EgoBody [40] UBody [26] 3DPW [37] EHF [36] ARCTIC [12] DNA-R-HiRes [9]

5 1 SMPLer-X-L5 100.8 89.1 101.6 114.0 102.8 96.7 99.8 90.6
5 4 SMPLer-X-L* 85.2 96.7 81.9 68.1 95.5 83.6 103.6 98.2
10 2 SMPLer-X-L10 80.6 82.6 69.7 104.0 82.5 64.0 76.9 76.2
10 4 SMPLer-X-L* 72.7 84.0 71.6 62.8 81.7 63.4 80.8 75.8
20 4 SMPLer-X-L20 70.5 80.7 66.6 61.5 78.3 65.4 52.2 77.7
32 4 SMPLer-X-L32 66.2 74.2 62.2 57.3 75.2 62.3 48.6 54.4

decrease with more datasets in the training set. Lastly, training on 32 datasets with our SMPLer-X-L
obtains the best performance with 66.2 mm MPE, making it a strong and effective SMPL-X estimator.

E Complete Results

E.1 Benchmarking EHPS Datasets on Training Sets

In the main paper, we benchmark individual datasets on the testing sets of the key EHPS evaluation
benchmarks. However, this dataset benchmark is unsuitable for selecting top datasets for training
EHPS, as the ranking leaks information about the testing sets to some extent. Hence, we construct
a new benchmark that ranks EHPS datasets on the training set of AGORA, UBody, EgoBody, and
3DPW (EHF is omitted as it does not have a training set) in Table 12.

E.2 Complete Results of Foundation Models on Evaluation Benchmarks

We show complete results including our strongest foundation model SMPLer-X-H32 on AGORA
validation set (Table 5), UBody (Table 7), EgoBody-EgoSet (Table 8), EHF (Table 6), ARCTIC
(Table 9) and DNA-Rendering-HiRes (Table 10).
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Table 5: AGORA Val set. † denotes methods
that are finetuned on the AGORA training set.

PA-PVE↓ (mm) PVE↓ (mm)

Method All Hands Face All Hands Face

Hand4Whole [31]† 73.2 9.7 4.7 183.9 72.8 81.6
OSX [26]∗ 45.0 8.5 3.9 79.6 48.2 37.9

SMPLer-X-S5 72.1 10.2 5.1 119.0 66.8 58.9
SMPLer-X-S10 67.5 10.2 4.8 116.0 65.2 57.5
SMPLer-X-S20 62.1 10.0 4.4 109.2 63.3 55.2
SMPLer-X-S32 58.7 9.8 4.2 105.2 61.9 53.9

SMPLer-X-B5 63.8 9.6 4.8 102.7 59.0 50.8
SMPLer-X-B10 58.4 9.5 4.6 97.8 57.8 49.1
SMPLer-X-B20 56.9 9.3 4.3 95.6 56.5 47.9
SMPLer-X-B32 52.0 9.2 4.1 88.0 54.5 45.9

SMPLer-X-L5 56.1 9.2 4.3 88.3 53.0 43.3
SMPLer-X-L10 50.6 9.1 4.1 82.6 51.9 42.3
SMPLer-X-L20 48.6 8.9 4.0 80.7 51.0 41.3
SMPLer-X-L32 45.1 8.7 3.8 74.2 47.8 38.7

SMPLer-X-H5 57.8 9.1 4.2 89.0 52.6 42.6
SMPLer-X-H10 51.0 9.0 4.0 81.4 51.4 40.5
SMPLer-X-H20 47.1 8.8 3.9 77.5 49.5 39.4
SMPLer-X-H32 42.9 8.5 3.7 69.5 45.6 35.9
SMPLer-X-H32† 41.0 8.2 3.7 65.4 43.8 34.0

Table 6: EHF. As EHF does not have a training
set, we do not perform finetuning.

PA-PVE↓ (mm) PVE↓ (mm)

Method All Hands Face All Hands Face

Hand4Whole [31] 50.3 10.8 5.8 76.8 39.8 26.1
OSX [26] 48.7 15.9 6.0 70.8 53.7 26.4

SMPLer-X-S5 70.7 16.0 5.9 100.5 64.0 27.1
SMPLer-X-S10 60.5 16.0 5.7 89.9 59.1 22.3
SMPLer-X-S20 51.0 15.5 5.5 86.6 54.7 22.1
SMPLer-X-S32 50.5 14.8 5.2 74.1 54.6 20.0

SMPLer-X-B5 61.4 15.4 5.8 96.1 58.4 27.1
SMPLer-X-B10 46.7 15.7 5.6 74.7 55.1 21.3
SMPLer-X-B20 41.9 15.9 5.3 73.0 53.7 20.8
SMPLer-X-B32 40.7 14.5 5.2 67.3 52.1 20.6

SMPLer-X-L5 53.9 14.7 5.9 89.5 57.8 29.9
SMPLer-X-L10 40.7 15.6 5.3 64.0 52.9 18.1
SMPLer-X-L20 37.8 15.0 5.1 65.4 49.4 17.4
SMPLer-X-L32 37.1 14.1 5.0 62.4 47.1 17.0
SMPLer-X-H5 47.0 14.3 5.9 68.3 55.6 25.0
SMPLer-X-H10 40.1 15.6 5.2 56.6 50.2 18.9
SMPLer-X-H20 39.0 14.4 5.0 59.4 47.1 17.8
SMPLer-X-H32 39.0 14.8 5.0 56.8 42.2 19.0

Table 7: UBody. † denotes the methods that are
finetuned on the UBody training set.

PA-PVE↓ (mm) PVE↓ (mm)

Method All Hands Face All Hands Face

Hand4Whole [31] 42.2 8.3 3.1 95.7 39.0 31.2
OSX [26]† 42.2 8.6 2.0 81.9 41.5 21.2

SMPLer-X-S5 53.9 11.8 3.9 110.1 59.4 34.5
SMPLer-X-S10 50.4 11.5 3.7 107.7 57.4 32.8
SMPLer-X-S20 37.5 11.1 3.2 70.7 49.6 26.1
SMPLer-X-S32 36.4 10.7 3.0 68.1 47.8 25.0

SMPLer-X-B5 52.3 11.9 3.8 105.8 56.9 32.6
SMPLer-X-B10 49.7 12.0 3.6 107.3 57.1 31.7
SMPLer-X-B20 35.5 11.0 3.0 65.3 46.9 23.4
SMPLer-X-B32 33.7 10.8 2.8 63.3 43.9 22.7

SMPLer-X-L5 51.8 12.5 3.6 110.8 56.3 37.5
SMPLer-X-L10 48.0 12.8 3.5 104.0 56.1 32.0
SMPLer-X-L20 33.2 10.6 2.8 61.5 43.3 23.1
SMPLer-X-L32 30.9 10.2 2.7 57.3 39.2 21.6

SMPLer-X-H5 48.1 12.1 3.7 102.1 53.3 33.4
SMPLer-X-H10 48.5 12.6 3.5 100.7 54.8 30.9
SMPLer-X-H20 32.8 10.3 2.8 59.9 41.0 22.7
SMPLer-X-H32 29.9 9.8 2.6 54.5 36.4 20.6
SMPLer-X-H32† 27.8 9.0 2.3 51.3 32.6 19.1

Table 8: EgoBody-EgoSet. † are finetuned on
the EgoBody-EgoSet training set.

PA-PVE↓ (mm) PVE↓ (mm)

Method All Hands Face All Hands Face

Hand4Whole [31] 58.8 9.7 3.7 121.9 50.0 42.5
OSX [26]† 45.3 10.0 3.0 82.3 46.8 35.2

SMPLer-X-S5 62.8 10.8 4.1 114.2 53.3 44.3
SMPLer-X-S10 52.2 10.0 3.4 88.6 48.6 37.6
SMPLer-X-S20 48.1 10.0 3.3 84.3 47.2 37.8
SMPLer-X-S32 46.0 10.0 3.1 82.5 46.0 36.2

SMPLer-X-B5 59.4 10.6 4.0 108.1 48.0 40.0
SMPLer-X-B10 45.3 10.1 3.2 76.4 45.5 32.4
SMPLer-X-B20 43.8 9.9 3.2 75.5 44.6 32.7
SMPLer-X-B32 40.7 9.9 3.1 72.7 43.7 32.4

SMPLer-X-L5 52.9 10.5 3.8 98.7 45.2 39.1
SMPLer-X-L10 40.5 10.0 3.0 69.7 43.1 32.0
SMPLer-X-L20 38.9 9.9 3.0 66.6 42.7 31.8
SMPLer-X-L32 36.3 9.8 2.9 62.2 41.4 30.7

SMPLer-X-H5 48.0 10.5 3.4 87.4 43.5 37.5
SMPLer-X-H10 38.8 10.0 2.9 65.7 42.6 31.1
SMPLer-X-H20 36.7 9.8 2.9 63.5 41.3 30.8
SMPLer-X-H32 34.3 9.8 2.7 59.5 39.6 28.7
SMPLer-X-H32† 33.9 10.0 2.5 57.0 40.2 27.1

Table 9: ARCTIC. † denotes the methods that
are finetuned on the ARCTIC training set.

PA-PVE↓ (mm) PVE↓ (mm)

Method All Hands Face All Hands Face

Hand4Whole [31] 63.4 18.1 4.0 136.8 54.8 59.2
OSX [26]† 33.0 18.8 3.3 58.4 39.4 30.4

SMPLer-X-S5 66.1 16.7 4.0 117.3 58.7 46.5
SMPLer-X-S10 58.8 17.5 3.2 104.6 56.6 41.1
SMPLer-X-S20 37.6 18.9 2.7 58.7 45.2 30.5
SMPLer-X-S32 34.5 18.9 2.7 55.3 42.9 28.9

SMPLer-X-B5 66.3 16.9 3.4 105.4 55.6 41.4
SMPLer-X-B10 54.0 17.9 2.5 85.2 53.4 35.0
SMPLer-X-B20 34.9 18.9 2.7 56.3 40.9 29.6
SMPLer-X-B32 31.9 19.0 2.8 52.6 40.1 27.4

SMPLer-X-L5 57.2 17.0 2.9 95.1 52.8 37.7
SMPLer-X-L10 46.9 18.1 2.3 76.9 50.8 33.2
SMPLer-X-L20 31.9 18.9 2.5 52.2 39.3 27.0
SMPLer-X-L32 29.4 18.9 2.7 48.6 38.8 26.8

SMPLer-X-H5 49.3 17.4 2.5 79.9 49.3 33.9
SMPLer-X-H10 41.4 18.8 2.1 71.6 49.3 30.9
SMPLer-X-H20 29.3 18.9 2.5 48.5 38.3 26.3
SMPLer-X-H32 27.6 18.7 2.6 44.6 36.9 24.6
SMPLer-X-H32† 27.7 18.8 2.6 44.7 37.0 24.7

Table 10: DNA-Rendering-HiRes. † are fine-
tuned on the DNA-Rendering-HiRes training set.

PA-PVE↓ (mm) PVE↓ (mm)

Method All Hands Face All Hands Face

Hand4Whole [31] 62.8 11.0 4.2 111.4 56.4 52.6
OSX [26]† 43.5 7.5 3.5 67.1 43.3 38.2

SMPLer-X-S5 70.9 10.4 4.7 104.9 57.6 49.7
SMPLer-X-S10 63.9 11.0 4.4 98.4 57.0 47.3
SMPLer-X-S20 55.6 10.2 4.4 87.3 53.3 46.2
SMPLer-X-S32 47.1 7.7 3.5 70.1 46.9 39.0

SMPLer-X-B5 59.9 10.5 4.3 91.1 50.5 44.6
SMPLer-X-B10 53.3 11.5 4.1 83.7 50.9 42.4
SMPLer-X-B20 50.7 11.7 4.2 83.3 50.9 43.5
SMPLer-X-B32 40.9 7.4 3.4 61.9 40.5 36.6

SMPLer-X-L5 52.4 10.3 4.0 85.9 47.6 44.5
SMPLer-X-L10 47.0 11.2 3.8 76.2 47.8 41.7
SMPLer-X-L20 44.4 11.1 4.5 77.7 47.5 43.2
SMPLer-X-L32 35.8 7.2 3.2 54.4 36.7 34.0

SMPLer-X-H5 53.9 10.3 3.9 81.9 46.3 40.7
SMPLer-X-H10 47.4 10.9 3.7 76.2 47.0 39.0
SMPLer-X-H20 43.0 11.2 3.8 72.8 45.6 40.5
SMPLer-X-H32 34.0 7.1 3.1 51.4 34.5 32.0
SMPLer-X-H32† 32.7 7.1 3.1 49.8 33.2 30.8
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Table 11: 3DPW. †denotes the models that are finetuned on the 3DPW training set. Only whole-body
(SMPL-X) methods are listed. Unit: mm.

Method MPJPE PA-MPJPE

Hand4Whole [31] 86.6 54.4
OSX [26]† 86.2 60.6

SMPLer-X-S5 110.2 79.1
SMPLer-X-S10 97.4 69.0
SMPLer-X-S20 87.4 60.0
SMPLer-X-S32 83.2 57.1

SMPLer-X-B5 104.8 72.0
SMPLer-X-B10 89.9 62.7
SMPLer-X-B20 83.5 57.6
SMPLer-X-B32 80.3 53.4

SMPLer-X-L5 97.8 62.6
SMPLer-X-L10 82.5 56.0
SMPLer-X-L20 78.3 52.1
SMPLer-X-L32 75.2 50.5

SMPLer-X-H5 88.3 60.3
SMPLer-X-H10 78.7 54.8
SMPLer-X-H20 74.4 50.9
SMPLer-X-H32 75.0 50.6
SMPLer-X-H32† 71.7 48.0

Table 12: Selection of training datasets by ranking on the training set of key benchmarks. For
each dataset, we evaluate a model trained on the training set and on the training sets of four major
benchmarks: AGORA, UBody, EgoBody (EgoSet), and 3DPW. Datasets are then ranked by MPE. ⋆:
ranking on MPE. Top 1 values on each benchmark are bolded, and the rest of Top-5 are underlined.

Dataset MPE↓ AGORA [34]↓ UBody [26]↓ EgoBody [40]↓ 3DPW [37]↓
BEDLAM [5] 124.7 167.8 126.7 106.3 98.1
AGORA [34] 129.9 131.7 124.4 134.2 131.2
GTA-Human [8] 135.1 164.2 137.6 135.2 103.5
SynBody [38] 138.6 172.3 146.0 129.7 106.3
InstaVariety [22] 139.6 198.2 128.4 131.6 100.6

MSCOCO [27] 139.7 196.8 110.4 130.5 121.1
SPEC [23] 150.0 166.2 138.8 155.4 139.7
EgoBody-MVSet [40] 151.8 193.3 194.7 119.7 99.3
MPII [2] 152.0 205.5 127.3 143.3 131.9
RICH [17] 155.7 198.9 171.8 136.9 115.2

Egobody-EgoSet [40] 157.1 213.6 123.5 63.6 134.1
CrowdPose [25] 162.3 213.0 133.7 146.2 156.3
MuCo-3DHP [30] 163.4 193.2 189.7 151.1 119.7
UBody [26] 166.6 212.9 61.5 137.6 149.2
PROX [16] 167.3 205.1 186.8 145.2 132.1
MPI-INF-3DHP [29] 167.5 221.3 167.4 150.0 131.4
PoseTrack [1] 177.0 219.2 165.4 173.2 150.2
BEHAVE [4] 179.0 204.8 212.3 167.2 131.8
HumanSC3D [14] 184.8 213.8 237.7 174.8 112.9
CHI3D [13] 192.3 209.2 256.7 180.7 122.5

Human3.6M [18] 207.4 224.5 282.4 210.7 112.1
DNA-R.-HiRes [9] 207.5 231.1 275.4 189.4 134.0
ARCTIC [12] 222.5 303.6 205.9 177.3 203.2
Talkshow [39] 225.3 290.0 132.2 188.1 290.8
UP3D [24] 226.0 257.4 226.8 208.4 211.6
3DPW [37] 230.6 231.3 266.0 194.5 140.6
DNA-Rendering [9] 253.2 288.7 342.5 234.4 147.2
MTP [33] 270.5 272.8 284.8 259.2 265.4
FIT3D [15] 272.9 323.5 392.8 242.7 132.5
OCHuman [41] 282.3 307.7 266.7 261.5 293.4
LSPET [20] 330.2 361.6 301.8 317.3 340.2
SSP3D [36] 512.0 545.9 533.4 529.7 439.1
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