
A Analyzing and Visualizing the Results of the Reconstruction Optimization402

The analysis of the results of the various reconstruction losses Eqs. (6), (12) and (15), involve403

verifying and checking which of the training samples were reconstructed. In this section we provide404

further details on our method for analyzing the reconstruction results, and how we measure the quality405

of our reconstructions.406

A.1 Analyzing the Results of the Reconstruction Optimization407

In order to match between samples from the training set and the outputs of the reconstruction408

algorithm (the so-called "candidates") we follow the same protocol of Haim et al. [2022]. Note that409

before training our models, we subtract the mean image from the given training set. Therefore the410

training samples are d-dimensional objects where each entry is in [−1, 1].411

First, for each training sample we compute the distance to all the candidates using a normalized L2412

score:413

d(x,y) =

∥∥∥∥x− µx

σx
− y − µy

σy

∥∥∥∥2
2

(16)

Where x,y ∈ Rd are a training sample or an output candidate from the reconstruction algorithm,414

µx = 1
d

∑d
i=1 x(i) is the mean of x and σx =

√
1

d−1

∑d
i=1(x(i)− µx)2 is the standard deviation415

of x (and the same goes for y, µy, σy).416

Second, for each training sample, we take C candidates with the smallest distance according to417

Eq. (16). C is determined by finding the first candidate whose distance is larger than B times the418

distance to the closest nearest neighbour (where B is a hyperparameter). Namely, for a training sample419

x, the nearest neighbour is y1 with a distance d(x,y1), then C is determined by finding a candidate420

yC+1 whose distance is d(x,yC+1) > B · d(x,y1), and for all j ≤ C, d(x,yj) ≤ B · d(x,y1). B421

was chosen heuristically to be B = 1.1 for MLPs, and B = 1.5 for convolutional models. The C422

candidates are then summed to create the reconstructed sample x̂ = 1
C

∑C
j=1 yj . In general, we can423

also take only C = 1 candidate, namely just one nearest neighbour per training sample, but choosing424

more candidates improve the visual quality of the reconstructed samples.425

Third, the reconstructed sample x̂ is scaled to an image in [0, 1] by adding the training set mean and426

linearly "stretching" the minimal and maximal values of the result to [0, 1]. Finally, we compute427

the SSIM between the training sample x and the reconstructed sample x̂ to measure the quality of428

reconstruction.429

A.2 Deciding whether a Reconstruction is “Good”430

Here we justify our selection for SSIM=0.4 as the threshold for what we consider as a “good"431

reconstruction. In general, the problem of deciding whether a reconstruction is the correct match to a432

given sample, or whether a reconstruction is a “good" reconstruction is equivalent to the problem of433

comparing between images. No “synthetic" metric (like SSIM, l2 etc.) will be aligned with human434

perception. A common metric for this purpose is LPIPS Zhang et al. [2018] that uses a classifier435

trained on Imagenet Deng et al. [2009], but since CIFAR images are much smaller than Imagenet436

images (32× 32 vs. 224× 224) it is not clear that this metric will be better than SSIM.437

As a simple rule of thumb, we use SSIM>0.4 for deciding that a given reconstruction is “good".438

To justify, we plot the best reconstructions (in terms of SSIM) in Fig. 8. Note that almost all439

samples with SSIM>0.4 are also visually similar (for a human). Also note that some of the samples440

with SSIM<0.4 are visually similar, so in this sense we are “missing" some good reconstructions.441

In general, determining whether a candidate output of a reconstruction algorithm is a match to a442

training sample is an open question and a problem in all other works for data reconstruction, see for443

example Carlini et al. [2023] that derived a heuristic for reconstructed samples from a generative444

model. This cannot be dealt in the scope of this paper, and is an interesting future direction for our445

work.446
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Figure 8: Justifying the threshold of SSIM= 0.4 as good rule-of-thumb for a threshold for a “good"
reconstruction. The SSIM values are shown above each train-reconstruction pair. Note that samples
with SSIM> 0.4 (blue) are visually similar. Also some of the samples with SSIM< 0.4 (red) are
similar. In general deciding whether a reconstruction is “good" is an open question beyond the scope
of this paper.

B Implementation Details447

Further Training Details. The models that were reconstructed in the main part of the paper were448

trained with learning rates of 0.01 for binary classifiers (both MLP and convolutional), and 0.5 in the449

case of multi-class classifier ( Section 4). The models were trained with full batch gradient descent450

for 106 epochs, to guarantee convergence to a KKT point of Eq. (1) or a local minima of Eq. (13).451

We note that Haim et al. [2022] observed that models trained with SGD can also be reconstructed.452

The experiment in Appendix G (large models with many samples) also uses SGD and results with453

similar conclusion, that some models trained with SGD can be reconstructed. In general, exploring454

reconstruction from models trained with SGD is an interesting direction for future works.455

Runtime and Hardware. Runtime of a single reconstruction run (specific choice of hyperparame-456

ters) from a model D-1000-1000-1 takes about 20 minutes on a GPU Tesla V-100 32GB or NVIDIA457

Ampere Tesla A40 48GB.458

Hyperparameters of the Reconstruction Algorithm. Note that the reconstruction loss contains the459

derivative of a model with ReLU layers, which is flat and not-continuous. Thus, taking the derivative460

of the reconstruction loss results in a zero function. To address this issue we follow a solution461

presented in Haim et al. [2022]. Namely, given a trained model, we replace in the backward phase462

of backpropogation the ReLU function with the derivative of a softplus function (or SmoothReLU)463

f(x) = α log(1+ e−x), where α is a hyperparameter of the reconstruction scheme. The functionality464

of the model itself does not change, as in the foraward phase the function remains a ReLU. Only465

the backward function is replaced with a smoother version of the derivative of ReLU which is466

f ′(x) = ασ(x) = α
1+e−x (here σ is the Sigmoid function). To find good reconstructions we run the467

algorithm multiple times (typically 100 times) with random search over the hyperparameters (using468
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the Weights & Biases framework Biewald [2020]). The exact parameters for the hyperparameters469

search are:470

• Learning rate: log-uniform in [10−5, 1]471

• σx: log-uniform in [10−6, 0.1]472

• λmin: uniform in [0.01, 0.5]473

• α: uniform in [10, 500]474

B.1 Small Initialisation475

Models whose first layer was initialized with a small (non-standard) initialization plays several roles476

in our paper. These include models that were trained following the approach in Haim et al. [2022],477

as in Section 4, or comparison of such models to models trained with weight-decay, as discussed478

in Section 6.1. The models whose results appear in Fig. 2 and Fig. 5 were initialized with a scale of479

10−3. After submitting the paper we noticed that the initialization used in Haim et al. [2022] was480

in fact smaller - 10−4. In order to make a fair comparison, we re-run the baselines shown in Fig. 5481

(red-dashed lines). As seen in Fig. 9, the corrected initialisation increase the number of reconstructed482

samples in the case of the binary classifier ( Fig. 9a) and decrease in the case of multiclass classifier483

( Fig. 9b). In both cases, this does not change the main claim in Section 6.1, that using weight decay484

terms during training changes the reconstructability and in some cases dramatically increase the485

number of samples that are vulnerable to reconstruction. We will make sure to update Fig. 5 with the486

corrected version.487

10 5 10 4 10 3 10 2 10 1
Weight-Decay Value ( WD)

0

20

40

60

# 
Go

od
 R

ec
on

st
ru

ct
io

ns
(o

ut
 o

f t
ot

al
 1

00
)

WD = 0, Small initialization
       (Haim et al. 2022)

WD = 0, Standard initialization

MLP (2 Classes, 50 Samples per Class)

10 7 10 6 10 5 10 4 10 3
Weight-Decay Value ( WD)

0

50

100

# 
Go

od
 R

ec
on

st
ru

ct
io

ns
(o

ut
 o

f t
ot

al
 5

00
)

WD = 0, Small initialization
       (Haim et al. 2022)

WD = 0, Standard initialization

MLP (10 Classes, 50 Samples per Class)

10 4 10 3 10 2 10 1
Weight-Decay Value ( WD)

0

25

50

75

100

# 
Go

od
 R

ec
on

st
ru

ct
io

ns
(o

ut
 o

f t
ot

al
 5

00
)

WD = 0, Small initialization

CNN (2 Classes, 250 Samples per Class)

(a) (b) (c)

Figure 9: Corrected version of Fig. 5. The correction of the baselines in red did not affect the claims
in Section 6.1.
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C Experiments with Different Number of Classes and Fixed Training Set Size489
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Figure 10: Experiments of reconstruction from models trained on a a fixed training set size (500
samples) for different number of classes. Number of “good" reconstruction is shown for each model.

To complete the experiment shown in Fig. 3, we also perform experiments on models trained on490

various number of classes (C ∈ {2, 3, 4, 5, 10}) and with a fixed training set size of 500 samples491

(distributed equally between classes), see Fig. 10. It can be seen that as the number of classes492

increases, also does the number of good reconstructions, where for 10 classes there are more than 6493

times good reconstructions than for 2 classes. Also, the quality of the reconstructions improves as the494

number of classes increase, which is depicted by an overall higher SSIM score. We also note, that495

the number of good reconstructions in Fig. 10 is very similar to the number of good reconstructions496

from Fig. 3 for 50 samples per class. We hypothesize that although the number of training samples497

increases, the number of "support vectors" (i.e samples on the margin which can be reconstructed)498

that are required for successfully interpolating the entire dataset does not change by much.499
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D General Losses - More Results500

Following the discussion in Section 5 and Fig. 4, Figures 11, 12, 13 present visualizations of training501

samples and their reconstructions from models trained with L2, L2.5 and Huber loss, respectively.502

Figure 11: Reconstruction using L2 loss. Training samples (red) and their best reconstructions
(blue) using an MLP classifier that was trained on 300 CIFAR10 images using an L2 regression loss,
as described in Section 5 and Fig. 4.

Figure 12: Reconstruction using L2.5 loss. Training samples (red) and their best reconstructions
(blue) using an MLP classifier that was trained on 300 CIFAR10 images using an L2.5 regression
loss, as described in Section 5 and Fig. 4.
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Figure 13: Reconstruction using Huber loss. Training samples (red) and their best reconstructions
(blue) using an MLP classifier that was trained on 300 CIFAR10 images using Huber loss, as described
in Section 5 and Fig. 4.

E Further Analysis of Weight Decay503

By looking at the exact distribution of reconstruction quality to the distance from the margin, we504

observe that weight-decay (for some values) results in more training samples being on the margin of505

the trained classifier, thus being more vulnerable to our reconstruction scheme.506

This observation is shown in Fig. 14 where we show the scatter plots for all the experiments from Fig. 5507

(a). We also provide the train and test errors for each model. It seems that the test error does not508

change significantly. However, an interesting observation is that reconstruction is possible even for509

models with non-zero training errors, i.e. models that do not interpolate the data, for which the510

assumptions of Lyu and Li [2019] do not hold.511
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Figure 14: Scatter plots of the 12 experiments from Fig. 5 (a). Each plot is model trained with a
different value of weight decay on 2 classes with 50 samples in each class. Certain values of weight
decay make the model more susceptible to our reconstruction scheme.

512

F Convolutional Neural Networks - Ablations and Observations513

In this section we provide more results and visualizations to the experiments on convolutional neural514

network in Section 6.1.515

In Fig. 15 we show ablations for the choice of the kernel-size (k) and number of output channels516

(Cout) for models with architecture CONV(kernel-size=k,output-channels=Cout)-1000-1. All models517

were trained on 500 images (250 images per class) from the CIFAR10 dataset, with weight-decay518
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term λWD=0.001. As can be seen, for such convolutional models we are able to reconstruct samples519

for a wide range of choices.520

Note that the full summary of reconstruction quality versus the distance from the decision boundary521

for the model whose reconstucted samples are shown in Fig. 6, is shown in Fig. 15 for kernel-size 3522

(first row) and number of output channels 32 (third column).523

Further analysis of Fig. 15. As expected for models with less parameters, the reconstructability524

decreases as the number of output channels decrease. An interesting phenomenon is observed for525

varying the kernel size: for a fixed number of output channel, as the kernel size increases, the526

susceptibility of the model to our reconstruction scheme decreases. However, as the kernel size527

approaches 32 (the full resolution of the input image), the reconstructability increases once again.528

On the one hand it is expected, since for kernel-size=32 the model is essentially an MLP, albeit529

with smaller hidden dimension than usual (at most 64 here, whereas the typical model used in the530

paper had 1000). On the other hand, it is not clear why for some intermediate values of kernel size531

(in between 3 and 32) the reconstructability decreases dramatically (for many models there are no532

reconstructed samples at all). This observation is an interesting research direction for future works.533
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Figure 15: Ablating the choice of the kernel size and output-channels for reconstruction from
neural binary classifiers with architecture CONV(kernel-size=k,output-channels=Cout)-1000-1.
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Visualizing Kernels. In Haim et al. [2022], it was shown that some of the training samples can534

be found in the first layer of the trained MLPs, by reshaping and visualizing the weights of the first535

fully-connected layer. As opposed to MLPs, in the case of a model whose first layer is a convolution536

layer, this is not possible. For completeness, in Fig. 16 we visualize all 32 kernels of the Conv layer.537

Obviously, full images of shape 3x32x32 cannot be found in kernels of shape 3x3x3, which makes538

reconstruction from such models (with convolution first layer) even more interesting.539

Figure 16: The kernels of the model whose reconstructions are shown in Fig. 6, displayed as RGB
images.

G Reconstruction From a Larger Number of Samples540

One of the major limitations of Haim et al. [2022] is that they reconstruct from models that trained on541

a relatively small number of samples. Specifically, in their largest experiment, a model is trained with542

only 1,000 samples. Here we take a step further, and apply our reconstruction scheme for a model543

trained on 5,000 data samples.544

To this end, we trained a 3-layer MLP, where the number of neurons in each hidden layer is 10,000.545

Note that the size of the hidden layer is 10 times larger than in any other model we used. Increasing546

the number of neurons seems to be one of the major reasons for which we are able to reconstruct547

from such large datasets, although we believe it could be done with smaller models, which we leave548

for future research. We used the CIFAR100 dataset, with 50 samples in each class, for a total of 5000549

samples.550

In Fig. 17a we give the best reconstructions of the model. Note that although there is a degradation in551

the quality of the reconstruction w.r.t a model trained on less samples, it is still clear that our scheme552

can reconstruct some of the training samples to some extent. In Fig. 17b we show a scatter plot of the553

SSIM score w.r.t the distance from the boundary, similar to Fig. 3a. Although most of the samples554

are on or close to the margin, only a few dozens achieve an SSIM> 0.4. This may indicate that there555

is a potential for much more images to reconstruct, and possibly with better quality.556
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(a) Full Images. Original samples from the training set (red) and reconstructed results (blue)
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(b) Scatter plot (similar to Fig. 3) .

Figure 17: Reconstruction from a model trained on 50 images per class from the CIFAR100 dataset
(100 classes, total of 5000 datapoints). The model is a 3-layer MLP with 10000 neurons in each
layer.
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