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ABSTRACT

Diffusion models have shown excellent performance on various image generation
tasks, but the substantial computational costs and huge memory footprint hinder
their low-latency applications in real-world scenarios. Quantization is a promising
way to compress and accelerate models. Nevertheless, due to the wide range and
time-varying activations in diffusion models, existing methods cannot maintain
both accuracy and efficiency simultaneously for low-bit quantization. To tackle
this issue, we propose DilateQuant, a novel quantization framework for diffu-
sion models that offers comparable accuracy and high efficiency. Specifically, we
keenly aware of numerous unsaturated in-channel weights, which can be cleverly
exploited to reduce the range of activations without additional computation cost.
Based on this insight, we propose Weight Dilation (WD) that maximally dilates
the unsaturated in-channel weights to a constrained range through a mathemati-
cally equivalent scaling. WD costlessly absorbs the activation quantization errors
into weight quantization. The range of activations decreases, which makes acti-
vations quantization easy. The range of weights remains constant, which makes
model easy to converge in training stage. Considering the time-varying activa-
tions, we design a Temporal Parallel Quantizer (TPQ), which sets time-step quan-
tization parameters and supports parallel quantization for different time steps by
utilizing an indexing approach, significantly improving the performance and re-
ducing time cost. To further enhance performance while preserving efficiency, we
introduce a Block-wise Knowledge Distillation (BKD) to align the quantized mod-
els with the full-precision models at a block level. The simultaneous training of
time-step quantization parameters and weights minimizes the time required, and
the shorter backpropagation paths decreases the memory footprint of the quanti-
zation process. Extensive experiments demonstrate that DilateQuant significantly
outperforms existing methods in terms of accuracy and efficiency.

1 INTRODUCTION

Recently, diffusion models have shown excellent performance on image generation (Li et al., 2022;
Zhang et al., 2023b;c), but the substantial computational costs and huge memory footprint hinder
their low-latency applications in real-world scenarios. Numerous methods (Nichol & Dhariwal,
2021; Song et al., 2020; Lu et al., 2022) have been proposed to find shorter sampling trajectories
for the thousand iterations of the denoising process, effectively reducing latency. However, complex
networks with a large number of parameters used in each denoising step are computational and
memory intensive, which slow down inference and consume high memory footprint. For instance,
the Stable-Diffusion (Rombach et al., 2022) with 16GB of running memory still takes over one
second to perform one denoising step, even on the high-performance A6000.

Model quantization is one of the most popular compression methods. By quantizing the weights and
activations with low-bit integers, we can reduce memory requirements and accelerate computational
operations. The effects become more noticeable as the bit-width decreases. For example, employing
8-bit models can achieve up to a 4× memory compression and 2.35× speedup compared to 32-bit
full-precision models on a T4 GPU (Kim et al., 2022). Adopting 4-bit models can further deliver
an additional 2× compression and 1.59× speedup compared to 8-bit models. Thus, quantization
is a highly promising way to facilitate the low-latency applications of diffusion models on source-
constrained hardware.
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Figure 1: An overview of the cost-vs-
performance trade-off across various ap-
proaches. Data is collected from DDIM
with 4-bit quantization on CIFAR-10.

Typically, existing quantization techniques are imple-
mented through two main approaches: Post-Training
Quantization (PTQ) and Quantization-Aware Training
(QAT). As shown in Figure 1, PTQ (Liu et al., 2024) cal-
ibrates the quantization parameter with a small calibra-
tion dataset and does not rely on end-to-end retraining,
making it data- and time-efficient. However, it brings
severe performance degradation at low bit-width. In
contrast, QAT (Esser et al., 2019) can maintain perfor-
mance at lower bit-width, but it requires retraining the
whole model, which is time-consuming and resource-
intensive. For instance, when applying both standard
approaches to DDIM (Song et al., 2020) on CIFAR-10,
QAT (Esser et al., 2019) results in a 3.3× increase in
GPU memory footprint (9.97 GB vs. 3.01 GB) and
an 14.3× extension of quantization time (13.89 GPU-
hours vs. 0.97 GPU-hours) compared to PTQ (Liu et al.,
2024). Due to the huge gap in time cost and GPU con-
sumption, PTQ is more preferred despite the fact that
QAT outperforms PTQ.

Unfortunately, while previous methods (Xiao et al., 2023c; Li & Gu, 2023; Xiao et al., 2023b; Li
et al., 2023b) of quantization have achieved remarkable success in single-time networks, the wide
range and time-varying activations caused by the unique temporal network of diffusion models make
them fail. Specifically, since the diffusion models infer in pixel space or latent space, the absence
of layer normalization results in a wide range of activations, complicating activation quantization.
For example, in the same UNet network, the range of activations is almost 2.5× larger than that of
the segmentation models (Ronneberger et al., 2015), as shown in Figure 2(a). Equivalent scaling
techniques address the wide range of activations by shifting the quantization difficulty from activa-
tions to weights. Some methods (Xiao et al., 2023a; Shao et al., 2023; Lin et al., 2024; Zhang et al.,
2023a) utilizing equivalent scaling have shown success in large language models (LLMs) by tack-
ling outliers in certain channels, but these methods are not appropriate for diffusion models, where
outliers exist in all channels, as shown in Figure 2(b). Unconstrained scaling of all outlier chan-
nels significantly alters the weight range, making it difficult for model to converge in training stage.
In addition, the temporal network induces a highly dynamic distribution of activations that varies
across time steps, as shown in Figure 2(c), further diminishing the performance of quantization.
Numerous PTQ methods (Li et al., 2023a; Liu et al., 2024) have been explored to enhance results
based on the properties of diffusion models, none of them break through the 6-bit quantization for
activations. And the QAT methods(Esser et al., 2019) retrain the whole model separately for each
time step using the original datasets, which is not practical due to the significant time and resources.

In this paper, we propose DilateQuant, a novel quantization framework that can achieve QAT-like
performance with PTQ-like efficiency. Specifically, we propose a weight-aware equivalent scaling
algorithm, called Weight Dilation (WD), which searches for unsaturated in-channel weights and
dilates them to the boundary of the quantized range, using the max-min values of the out-channel
weights as constraints. WD narrows the range of activations while keeping the weights range un-
changed, making activation quantization easier and ensuring model convergence during the training
stage. This approach effectively alleviates the wide range activations. To address the difficulty of
quantization for time-varying activations, previous methods (He et al., 2023; Wang et al., 2024) set
multiple activation quantizers for one layer and trains them individually using different time-step
calibration sets, which is data- and time-inefficient. On the other hand, we design a Temporal Paral-
lel Quantizer (TPQ), which sets time-step quantization parameters and supports parallel quantization
for different time steps by utilizing an indexing approach, significantly improving performance and
training efficiency, as evidenced by a 160× reduction in calibration and a 2× reduction in training
time compared to the SoTA method (He et al., 2023) for DDIM on CIFAR-10. To further enhance
performance while preserving efficiency, we introduce a Block-wise Knowledge Distillation (BKD)
to avoids data- and time-consuming retraining of the whole model, distilling the full-precision model
to its quantized counterpart at block level using a data-free approach. Additionally, it further min-
imizes the time and memory footprint required by training the time-step quantization parameters
simultaneously and using the shorter backpropagation paths, respectively.
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Figure 2: (a) showcases a wider range of activations in diffusion model (DM) compared to segmen-
tation model (Seg). (b) demonstrates the different outlier challenges for DM and LLM. (c) shows
the dynamic distribution activations of DM. The activations of DM and Seg are from the first block
output of the upsample stage of UNet network. The activations of LLM come from the output of the
penultimate layer.

The contributions of our works are summarized as follows. 1) We formulate a novel quantiza-
tion framework for diffusion models, DilateQuant, which offers comparable accuracy and high
efficiency. 2) The WD and TPQ address the wide range and time-varying activations for diffu-
sion models. And the BKD efficiently enhances performance. 3) Through extensive experiments,
we demonstrate that DilateQuant outperforms existing methods across lower quantization settings
(6-bit, 4-bit), various models (DDPM, LDM-4, LDM-8, Stable-Diffusion), and different datasets
(CIFAR-10, LSUN-Bedroom, LSUN-Church, ImageNet, MS-COCO). The reproduction of Dilate-
Quant is robust and easy as no hyper-parameters are introduced.

2 RELATED WORK

2.1 DIFFUSION MODEL ACCELERATION

While diffusion models have generated high-quality images, the substantial computational costs and
huge memory footprint hinder their low-latency applications in real-world scenarios. To reduce the
inference computation, numerous methods have been proposed to find shorter sampling trajectories,
efficiently accelerating the denoising process. For example, (Nichol & Dhariwal, 2021) shortens the
denoising steps by adjusting variance schedule; (Song et al., 2020) generalizes diffusion process to a
non-Markovian process by modifying denoising equations; (Lu et al., 2022) uses high-order solvers
to approximate diffusion generation. These methods have achieved significant success, obtaining
comparable performance with nearly 10% of the denoising steps. However, they involve expensive
retraining and complex computations. Conversely, we focus on the complex networks of diffusion
models, accelerating them at each denoising step with a quantization method, which not only reduces
the computational cost but also compresses the model size.

2.2 MODEL QUANTIZATION

Model quantization, which represents the original floating-point parameters with low-bit values,
compresses model size and accelerates inference. Depending on whether the model’s weights
are fine-tuned or not, it generally falls into two categories: Post-Training Quantization (PTQ)
and Quantization-Aware Training (QAT). PTQ calibrates the quantization parameters with a small
dataset and does not require fine-tuning the model’s weights, making it data- and time-efficient. The
reconstruction-based PTQ techniques, such as BRECQ (Li et al., 2021), utilize gradient descent
algorithms to optimize quantization parameters, which have yielded remarkable results in conven-
tional models. Nevertheless, the unique temporal networks of diffusion models cause them to fail.
To address the issues, PTQ4DM (Shang et al., 2023) and Q-diffusion (Li et al., 2023a) design a
specialized calibration dataset, and EDA-DM (Liu et al., 2024) refines the reconstruction loss. Al-
though these PTQ methods enhance results based on the properties of diffusion models, none of

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

them break through the 6-bit quantization. On the other hand, QAT retrains the whole model after
the quantization operation, maintaining performance at lower bit-width. However, the significant
training resources (original dataset, training time, and GPU consumption) make it not practical for
diffusion models. For instance, the recent work TDQ (So et al., 2023) requires 200K training iter-
ations on a 50K original dataset. To efficiently quantize diffusion models to lower precision, Effi-
cientDM (He et al., 2023) fine-tunes all of the model’s weights with an additional LoRA module,
while QuEST (Wang et al., 2024) selectively trains some sensitive layers. Unfortunately, although
they achieve 4-bit quantization of the diffusion models, both of them are non-standard (please refer
to Appendix E for detail). Hence, the standard quantization of low-bit diffusion models with high
accuracy and efficiency is still an open question.

3 PRELIMINARIES

3.1 QUANTIZATION

The uniform quantizer is one of the most hardware-friendly choices, and we use it in our work. The
quantization-dequantization process of it can be defined as:

Quant : xint = clip
(⌊ x

∆

⌉
+ z, 0, 2b − 1

)
(1)

DeQuant : x̂ = ∆ · (xint − z) ≈ x (2)

where x and xint are the floating-point and quantized values, respectively, ⌊·⌉ represents the round-
ing function, and the bit-width b determines the range of clipping function clip(·). In the dequan-
tization process, the dequantized value x̂ approximately recovers x. Notably, the upper and lower
bounds of x determine the quantization parameters: scale factor ∆ and zero-point z, as follows:

∆ =
max(x)−min(x)

2b − 1
, z =

⌊
−min(x)

∆

⌉
(3)

Combining the two processes, we can provide a general definition for the quantization function,
Q(x), as:

Q(x) = ∆ ·
(
clip

(⌊ x
∆

⌉
+ z, 0, 2b − 1

)
− z

)
(4)

As can be seen, quantization is the process of introducing errors: ⌊·⌉ and clip(·) result in rounding
error (Eround ) and clipping error (Eclip), respectively. To set the quantization parameters, we com-
monly use two calibration methods: Max-Min and MSE. For the former, quantization parameters
are calibrated by the max-min values of x, eliminating the Eclip , but resulting in the largest ∆; for
the latter, quantization parameters are calibrated with appropriate values, but introduce the Eclip .

3.2 EQUIVALENT SCALING

Equivalent scaling is a mathematically equivalent per-channel scaling transformation that offline
shifts the quantization difficulty from activations to weights. For a linear layer in diffusion model,
the output Y = XW , Y ∈ RN×Co

, X ∈ RN×Ci

, W ∈ RCi×Co

, where N is the batch-size, Ci is
the input channel, and Co is the output channel. The activation X divides a per-in-channel scaling
factor s ∈ RCi

, and weight W scales accordingly in the reverse direction to maintain mathematical
equivalence:

Y = (X/s)(s ·W ) (5)

The formula also suits the conv layer. By ensuring that s > 1, the range of activations can be
made smaller and the range of weights larger, thus in transforming the difficulty of quantization
from activations to weights. In addition, given that the X is usually produced from previous linear
operations, we can easily fuse the scaling factor into previous layers’ parameters offline so as not
to introduce additional computational overhead in the inference. Currently, equivalent scaling is
primarily used in the quantization of LLMs to smooth out activation outliers in certain channels.
While some methods (Xiao et al., 2023a; Lin et al., 2024; Shao et al., 2023; Zhang et al., 2023a) have
achieved success in LLMs, they fail in diffusion models due to different quantization challenges,
please see Appendix G for details.
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Figure 3: An overview of DilateQuant. WD narrows the activations range while maintaining the
weights range unchanged. TPQ sets time-step quantization parameters and supports parallel training.
BKD aligns the quantized network with the full-precision network at block level.

4 METHOD

4.1 WEIGHT DILATION

Analyzing quantization error. We start by analyzing the error from weight-activation quantization.
Taking a linear layer with X ∈ RN×Ci

and W ∈ RCi×Co

as example, considering that we calibrate
the quantization parameters of X and W with a MSE and Max-Min manner, respectively, the
quantization function (Eq. 4) for activations and weights can be briefly written as:

Q(X) = ∆x · clip
(⌊

X

∆x

⌉)
, Q(W ) = ∆w ·

⌊
W

∆w

⌉
(6)

where ∆x and ∆w are scale factors for activations and weights, respectively. Thus, the quantization
error can be defined as:

E(X,W ) = ∥XW −Q(X)Q(W )∥F (7)

where ∥ · ∥F denotes Frobenius Norm. The formula can be further decomposed as:

E(X,W ) ≤∥X∥F ∥W −Q(W )∥F + ∥X −Q(X)∥F (∥W∥F + ∥W −Q(W )∥F ) (8)

Please see Appendix 6 for the proof. Ultimately, the quantization error is influenced by four
elements–the magnitude of the weight and activation, ∥W∥F and ∥X∥F , and their respective
quantization errors, ∥W − Q(W )∥F and ∥X − Q(X)∥F . Furthermore, the ∥W − Q(W )∥F and
∥X − Q(X)∥F result from rounding (denoted as Eround ) and cliping (denoted as Eclip) function,
and they can be represented in finer granularity as:

∥X −Q(X)∥F = ∆x · (Eround + Eclip), ∥W −Q(W )∥F = ∆w · Eround (9)

Since the rounding function maps a floating-point number to an integer, Eround does not vary, as
demonstrated in AWQ (Lin et al., 2024). Previous methods scale the X and W using a simply
scaling factor s ∈ RCi

, which consider both the magnitudes of activations and weights, to obtain
the scaled X

′
and W

′
. The quantization functions and errors after scaling are as follows:

Q(X
′
) = Q(X/s) = ∆

′

x · clip
(⌊

X/s

∆′
x

⌉)
, Q(W

′
) = Q(s ·W ) = ∆

′

w ·
⌊
s ·W
∆′

w

⌉
(10)

∥X −Q(X)∥
′

F = ∆
′

x · (Eround + Eclip

′
), ∥W −Q(W )∥

′

F = ∆
′

w · Eround (11)

where ∆
′

x and ∆
′

w are new scale factors, and Eclip

′
is the new error of cliping function. By ensuring

that s > 1, which results in Eclip

′
/Eclip < 1, ∆

′

x/∆x < 1, and ∆
′

w/∆w > 1 (according to Eq. 3),
the ∥X −Q(X)∥F and ∥X −Q(X)∥F decrease while the ∥W∥F and ∥W −Q(W )∥F equivalently
increasing. Consequently, there are no overall change in E(X,W ) and the excessive disruption
of the initial weight range hinders the model’s ability to converge during training. Therefore, the
perfect scaling we desired is to decrease activations range while maintaining weights range.
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Figure 4: (a) WD searches for unsaturated in-channel weights and determines scaling factor com-
pletely dependent on the max-min values of each out-channel of the weights. (b) WD alleviates the
wide range activations by dilating unsaturated channels to a constrained range.

Searching channel for scaling. Given that the dimension of weights quantization is per-out-channel
and the dimension of scaling is per-in-channel, we ensure the max-min values (Wmax ∈ RCo

,
Wmin ∈ RCo

) of each out-channel unchanged and record their indexes of in-channel to form a
set A. For example, the A in Figure 4(a) is {1,4,6,8}. Iterating through the index of in-channel
k ∈

{
1, . . . , Ci

}
, if k ∈ A, we set sk = 1, representing no scaling; if k /∈ A, the Wk denotes as

unsaturated in-channel weights, and we set sk by dilating Wk to Wmax or Wmin:

sk1 = min(Wmax/Wk.clamp(min = ϵ)) (12)
sk2 = min(Wmin/Wk.clamp(max = −ϵ)) (13)
sk = min(sk1, sk2) (14)

where ϵ = 1e − 5 and clamp function specify the range of the kth in-channel of weight Wk, sk1
and sk2 denote the maximum s with Wmax and Wmin as constraints, respectively. Consequently,
as shown in Figure 4(b), we maximize s > 1 while keeping W

′

max = Wmax and W
′

min = Wmin.
The workflow and effects of WD are detailed in Appendix F.

4.2 TEMPORAL PARALLEL QUANTIZER

Previous methods (He et al., 2023; Wang et al., 2024) utilize multiple activation quantizers for a
layer to quantize activations at different time steps. However, since each quantizer is independent,
these methods optimize each quantizer individually using time-step calibration sets, which is data-
and time-inefficient. For example, EfficientDM uses 819.2K samples for a total of 12.8K iterations
for DDIM on CIFAR-10 (Krizhevsky et al., 2009).

Different from previous methods, as shown in Figure 3, we design a novel quantizer, denotes as
Temporal Parallel Quantizer (TPQ), which sets time-step quantization parameters for activations,
instead of simply stacking quantizers. Specifically, it utilizes an indexing approach to call the cor-
responding quantization parameters for samples at different time steps. This enables support for
parallel training of different quantization parameters, significantly reducing the data and time costs
of training. For a model with T time steps, the quantization parameters of TPQ are as follows:

∆x =
{
∆1

x,∆
2
x,∆

3
x, . . . ,∆

T
x

}
, zx =

{
z1x, z

2
x, z

3
x, . . . , z

T
x

}
(15)

We detail TPQ design for the different layers of the diffusion models. For the conv and linear layers,
they take input x ∈ R|T|×Ci

and x ∈ R|T|×Ci×H×W , respectively, where T is a set containing
different time-step indexes, T ⊂ {1, . . . , T}, |·| represents the number of set elements. The quanti-
zation operation of them can be represented as:

Q(x) = ∆T
x ·

(
clip

(⌊
x

∆T
x

⌉
+ zTx , 0, 2

b − 1

)
− zTx

)
(16)
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where ∆T
x and zTx denote the quantization parameters corresponding to T, respectively. For the

attention layers, they take input x ∈ R|T∗H|×Ci×M due to the H heads, where “ ∗ ” represents cat
operation and M is the number of tokens. So the quantization parameters in Eq. 16 are replaced
with ∆T∗H

x and zT∗Hx , respectively.

4.3 BLOCK-WISE KNOWLEDGE DISTILLATION

QAT significantly alleviates accuracy degradation in low-bit cases, but it has several limitations
for diffusion models: (1) QAT typically requires original training data, which can sometimes be
challenging or even impossible to obtain due to privacy or copyright concerns; (2) QAT involves
end-to-end retraining of the whole complex networks, which is training-unstable and time-intensive.

To address these limitations, inspired by the reconstruction method in PTQ (Li et al., 2021), we
propose a novel distillation strategy called Block-wise Knowledge Distillation (BKD). Assume the
target model for quantization has K blocks (B1, . . . , BK), and the input samples of model are x,
which is generated by the full-precision model. BKD trains the quantized network block-by-block
and aligns it with full-precision network at block level. More specifically, assume that block Bk

is going to be quantized, and its quantized version is B̂k. We update the quantization parameters
(∆T

x, z
T
x ,∆w) and weights (w) of B̂k using the mean square loss L:

L∆T
x,z

T
x,∆w,w = MSE

(
Bk ·Bk−1 ·Bk−2 · ... ·B1(x)− B̂k · B̂k−1 · B̂k−2 · ... · B̂1(x)

)
(17)

As can be seen, (1) BKD does not rely on original training data; (2) BKD shortens the gradient back-
propagation path by aligning blocks, which enhances training stability and decreases the memory
footprint of the quantization process. In addition, BKD trains quantization parameters and weights
in parallel, which not only further saves training time but adapts the weights to each time step.

Table 1: Results of unconditional image generation. The “Calib.” presents the number of calibration
samples and “Prec. (W/A)” indicates the bit-width. ⋆ denotes our implementation according to
open-source codes and † represents results directly obtained by rerunning open-source codes.

Task Method Calib. Prec. (W/A) TBops Size (MB) FID ↓ sFID ↓ IS ↑

CIFAR-10
32 × 32

DDPM
steps = 100

FP - 32/32 6.2 143.0 4.26 4.46 9.03

EDA-DM ⋆ 5120 6/6 0.2 27.0 26.68 14.10 9.35
EfficientDM † 1.6384M 6/6 0.2 27.0 17.29 9.38 8.85
DilateQuant 5120 6/6 0.2 27.0 4.46 4.64 8.92

EDA-DM ⋆ 5120 4/4 0.1 18.1 120.24 36.72 4.42
EfficientDM † 1.6384M 4/4 0.1 18.1 81.27 30.95 6.68
DilateQuant 5120 4/4 0.1 18.1 9.13 6.92 8.56

LSUN-Bedroom
(Yu et al., 2015)

256 × 256

LDM-4
steps = 100

eta = 1.0

FP - 32/32 98.4 1317.4 3.02 7.21 2.29

EDA-DM ⋆ 5120 6/6 3.5 247.8 10.56 16.22 2.12
EfficientDM † 102.4K 6/6 3.5 247.8 5.43 15.11 2.15

QuEST † 5120 6/6 3.5 247.8 10.1 19.57 2.20
DilateQuant 5120 6/6 3.5 247.8 3.92 8.90 2.17

EDA-DM ⋆ 5120 4/4 1.6 165.5 N/A N/A N/A
EfficientDM † 102.4K 4/4 1.6 165.5 15.27 19.87 2.11

QuEST † 5120 4/4 1.6 165.5 N/A N/A N/A
DilateQuant 5120 4/4 1.6 165.5 8.99 14.88 2.13

LSUN-Church
(Yu et al., 2015)

256 × 256

LDM-8
steps = 100

eta = 0.0

FP - 32/32 19.1 1514.5 4.06 10.89 2.70

EDA-DM ⋆ 5120 6/6 0.7 284.9 10.76 18.23 2.43
EfficientDM † 102.4K 6/6 0.7 284.9 6.92 12.84 2.65

QuEST † 5120 6/6 0.7 284.9 6.83 11.93 2.65
DilateQuant 5120 6/6 0.7 284.9 5.33 11.61 2.66

EDA-DM ⋆ 5120 4/4 0.3 190.3 N/A N/A N/A
EfficientDM † 102.4K 4/4 0.3 190.3 15.08 16.53 2.67

QuEST † 5120 4/4 0.3 190.3 13.03 19.50 2.63
DilateQuant 5120 4/4 0.3 190.3 10.10 16.22 2.62
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Table 2: Quantization results of conditional image generation.

Task Method Calib. Prec. (W/A) TBops Size (MB) FID ↓ sFID ↓ CLIP ↑

MS-COCO
(Lin et al., 2014)

512 × 512
Stable-Diffusion

steps = 50
eta = 0.0

scale = 7.5

FP - 32/32 347.2 4112.5 21.96 33.86 26.88

EDA-DM ⋆ 512 6/6 12.4 772.8 N/A N/A N/A
EfficientDM ⋆ 12.8K 6/6 12.4 772.8 154.61 74.50 19.01
DilateQuant 512 6/6 12.4 772.8 24.69 33.06 26.62

EDA-DM ⋆ 512 4/4 5.6 515.9 N/A N/A N/A
EfficientDM ⋆ 12.8K 4/4 5.6 515.9 216.43 111.76 14.35
DilateQuant 512 4/4 5.6 515.9 44.82 42.97 23.51

Task Method Calib. Prec. (W/A) TBops Size (MB) FID ↓ sFID ↓ IS ↑

ImageNet
(Deng et al.,

2009)
256 × 256

LDM-4
steps = 20
eta = 0.0

scale = 3.0

FP - 32/32 102.3 1824.6 11.69 7.67 364.72

EDA-DM ⋆ 1024 6/6 3.7 343.2 11.52 8.02 360.77
EfficientDM † 102.4K 6/6 3.7 343.2 8.69 8.10 309.52

QuEST † 5120 6/6 3.7 343.2 8.45 9.36 310.12
DilateQuant 1024 6/6 3.7 343.2 8.25 7.66 312.30

EDA-DM ⋆ 1024 4/4 1.7 229.2 20.02 36.66 204.93
EfficientDM † 102.4K 4/4 1.7 229.2 12.08 14.75 122.12

QuEST † 5120 4/4 1.7 229.2 38.43 29.27 69.58
DilateQuant 1024 4/4 1.7 229.2 8.01 13.92 257.24

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Models and metrics. The comprehensive experiments include DDPM, LDM (Song et al., 2020;
Rombach et al., 2022) and Stable-Diffusion on 5 datasets. The performance of the quantized models
is evaluated with FID (Heusel et al., 2017), sFID (Salimans et al., 2016), IS (Salimans et al., 2016),
and CLIP score (Hessel et al., 2021). Following the common practice, the Stable-Diffusion generates
10,000 images, while all other models generate 50,000 images. Besides, we also calculate the Bit
Operations and Size of models to visualize the effects of model acceleration and compression.

Quantization and comparison settings. We employ DilateQuant with the standard channel-wise
quantization for weights and layer-wise quantization for activations. To highlight the efficiency, Di-
lateQuant selects 5120 samples for calibration and trains for 5K iterations with a batch size of 32,
aligning with PTQ-based method (Liu et al., 2024). The Adam (Kingma & Ba, 2014) optimizer is
adopted, and the learning rates for quantization parameters and weights are set as 1e-4 and 1e-2, re-
spectively. For the experimental comparison, we compare DilateQuant with PTQ-based method (Liu
et al., 2024) and variant QAT-based methods (He et al., 2023; Wang et al., 2024). Since these two
variant QAT-based methods employ non-standard settings, we modify them to standard settings for
a fair comparison. To further compare with them, we also employ the same non-standard settings on
DilateQuant to conduct experiments in the Appendix E. All experiments are performed on one RTX
A6000. The more detailed experimental implementations are showcased in Appendix B.

5.2 MAIN RESULT

Unconditional generation. We focus on the performance of low-bit quantization to highlight the
advantages of DilateQuant. As reported in Table 1, in 4-bit quantization, previous works all suffer
from non-trivial performance degradation. For instance, EDA-DM and QuEST become infeasible
on LSUN-Bedroom, and EfficientDM remains far from practical usability on LSUN-Church. In
sharp contrast, DilateQuant achieves a substantial improvement in quantization performance, with
encouraging 6.28 and 4.98 FID improvement over EfficientDM on two LSUN datasets, respectively.
Additionally, in 6-bit quantization, DilateQuant can achieve a fidelity comparable to that of the
full-precision baseline.

Conditional generation. The quantization results for conditional generation are reported in Ta-
ble 2. For text-guided generation with 6-bit precision, DilateQuant improves the FID to 24.69 with
5.3× Model size compression and 27.9× Bit Operations reduction, effectively advancing the low-
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latency applications of Stable-Diffusion in real-world scenarios. Besides, DilateQuant achieves sig-
nificant improvements at all bit-width settings on class-guided generation. We add human preference
assessments in Appendix I.

Table 3: The efficacy of different component proposed in this paper.

Method Prec.
(W/A)

Time Cost
(hours)

GPU Memory
(MB) FID ↓ sFID ↓ IS ↑WD TPQ BKD Framework

✗ ✗ ✗ PTQ 4/4 0.97 3019 120.24 36.72 4.42
✗ ✓ ✗ PTQ 4/4 0.97 3278 31.49 17.95 7.67
✓ ✗ ✗ PTQ 4/4 1.08 3076 26.26 16.73 7.78
✓ ✓ ✗ PTQ 4/4 1.08 3439 16.27 11.83 8.09

✗ ✗ ✓ QAT 4/4 0.98 3019 18.45 11.53 8.67
✗ ✓ ✓ QAT 4/4 0.98 3278 9.63 7.08 8.45
✓ ✗ ✓ QAT 4/4 1.08 3076 9.66 7.06 8.58
✓ ✓ ✓ QAT 4/4 1.08 3439 9.13 6.92 8.56

5.3 ABLATION STUDY

The ablation experiments are conducted over DDIM on CIFAR-10 with 4-bit quantization. We start
by analysing the efficacy of each proposed component, as reported in Table 3. We use the SoTA
PTQ-based framework, EDA-DM (Liu et al., 2024), as the baseline, which fails to maintain perfor-
mance. By incorporating WD and TPQ, we push the performance limits of PTQ methods to achieve
an FID score of 16.27. The introduction of BKD transforms the approach into a QAT framework, as
it involves retraining the quantized weight of models. By combining BKD, DilateQuant reduces the
FID score to 9.13, achieving a generation quality comparable to that of full-precision models.

Table 4: Efficiency comparisons of various quantization frameworks.

Task Method Framework Calib. Training Data Time Cost GPU Memory FID ↓

CIFAR-10
32 × 32

EDA-DM PTQ 5120 0 0.97 h 3019 MB 120.24
LSQ QAT - 50K 13.89 h 9974 MB 7.30

EfficientDM V-QAT 1.6384M 0 2.98 h 9546 MB 81.27
Ours V-QAT 5120 0 1.08 h 3439 MB 9.13

ImageNet
256 × 256

QuEST V-QAT 5120 0 15.25 h 20642 MB 38.43
Ours V-QAT 1024 0 6.56 h 14680 MB 8.01

We also conduct the efficiency analysis of DilateQuant by comparing it with PTQ (Liu et al., 2024),
QAT (Esser et al., 2019), and variant QAT (He et al., 2023; Wang et al., 2024) methods. As reported
in Table 4, the PTQ method fails to maintain performance and the QAT method requires significant
resources. In sharp contrast, DilateQuant achieves QAT-like accuracy with PTQ-like time cost and
GPU memory. The efficiency comparisons on other models are reported in Appendix D. We also
add the ablation experiments of DilateQuant for time steps and samplers in Appendix C.

6 CONCLUSION

In this work, we propose DilateQuant, a novel quantization framework for diffusion models that
offers comparable accuracy and high efficiency. Specifically, we find the unsaturation property of
the in-channel weights and exploit it to alleviate the wide range of activations. By dilating the
unsaturated channels to a constrained range, our method costlessly absorbs the activation quantiza-
tion errors into weight quantization. Furthermore, we design a flexible quantizer that sets time-step
quantization parameters to time-varying activations and supports parallel quantization for training
process, significantly improving the performance and reducing time cost. We also introduce a novel
knowledge distillation strategy to enhance performance, which aligns the quantized models with
the full-precision models at a block level. The simultaneous training of parameters and shorter
backpropagation paths minimize the time and memory footprint required. Exhaustive experiments
demonstrate that DilateQuant significantly outperforms existing methods in low-bit quantization.
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DILATEQUANT: SUPPLEMENTARY MATERIALS

P.1
E(X,W ) =∥XW −Q(X)Q(W )∥F

=∥XW −XQ(W ) +XQ(W )−Q(X)Q(W )∥F
≤∥X(W −Q(W ))∥F + ∥(X −Q(X))Q(W )∥F
≤∥X∥F ∥W −Q(W )∥F + ∥X −Q(X)∥F ∥Q(W )∥F
≤∥X∥F ∥W −Q(W )∥F + ∥X −Q(X)∥F ∥W − (W −Q(W ))∥F
≤∥X∥F ∥W −Q(W )∥F + ∥X −Q(X)∥F (∥W∥F + ∥W −Q(W )∥F )

(18)

A SUPPLEMENTARY MATERIAL INTRODUCTION

In this supplementary material, we present the correlative introductions and some experiments men-
tioned in the paper. The following items are provided:

• Detailed experimental implementations for all experiments in Appendix B.

• Robustness of DilateQuant for time steps and samplers in Appendix C.

• Efficiency comparisons of various quantization frameworks in Appendix D

• Thorough comparison with EfficientDM and QuEST in Appendix E.

• Workflow and effects of Weight Dilation algorithm in Appendix F.

• Different equivalent scaling algorithms for diffusion models in Appendix G.

• Hardware-Friendly quantization in Appendix H.

• Human preference evaluation in Appendix I.

B DETAILED EXPERIMENTAL IMPLEMENTATIONS

In this section, we present detailed experimental implementations, including the pre-training models,
qunatization settings, and evaluation.

The DDPM1 models and LDM2 models we used for the experiments are obtained from the official
websites. For text-guided generation with Stable-Diffusion, we use the CompVis codebase3 and
its v1.4 checkpoint. The LDMs consist of a diffusion model and a decoder model. Following the
previous works (Liu et al., 2024; He et al., 2023; Wang et al., 2024), DilateQuant focus only on the
diffusion models and does not quantize the decoder models. We empoly channel-wise asymmet-
ric quantization for weights and layer-wise asymmetric quantization for activations. The input and
output layers of models use a fixed 8-bit quantization, as it is a common practice. The weight and
activation quantization ranges are initially determined by minimizing values error, and then opti-
mized by our knowledge distillation strategy to align quantized models with full-precision models
at block level. Since the two compared methods employ non-standard settings, we modify them to
standard settings for a fair comparison. More specifically, we quantize all layers for EfficientDM,
including Upsample, Skip_connection, and AttentionBlock’s qkvw, which lack quantiza-
tion in open-source code4. However, when these layers, which are important for quantization, are
added, the performance of EfficientDM degrades drastically. To recover performance, we double
the number of training iterations. QuEST utilizes channel-wise quantization for activations at 4-bit
precision in the code5, which is not supported by hardware. Therefore, we adjust the quantization
setting to layer-wise quantization for activations. For experimental evaluation, we use open-source
tool pytorch-OpCounter6 to calculate the Size and Bops of models before and after quantization.

1https://github.com/ermongroup/ddim
2https://github.com/CompVis/latent-diffusion
3https://github.com/CompVis/stable-diffusion
4https://github.com/ThisisBillhe/EfficientDM
5https://github.com/hatchetProject/QuEST
6https://github.com/Lyken17/pytorch-OpCounter
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And following the quantization settings, we only calculate the diffusion model part, not the decoder
and encoder parts. We use the ADM’s TensorFlow evaluation suite guided-diffusion7 to evaluate
FID, sFID, and IS, and use the open-source code clip-score8 to evaluate CLIP scores. As the per
practice (Liu et al., 2024; Wang et al., 2024), we employ the zero-shot approach to evaluate Stable-
Diffusion on COCO-val for the text-guided experiments, resizing the generated 512 × 512 images
and validation images in 300 × 300 with the center cropping to evaluate FID score and using text
prompts from COCO-val to evaluate CLIP score.

C ROBUSTNESS OF DILATEQUANT FOR TIME STEPS AND SAMPLERS

To assess the robustness of DilateQuant for samplers, we conduct experiments over LDM-4 on Im-
ageNet with three distant samplers, including DDIMsampler Song et al. (2020), PLMSsampler Liu
et al. (2022), and DPMSolversampler Lu et al. (2022). Given that time step is the most important
hyperparameter for diffusion models, we also evaluate DilateQuant for models with different time
steps, including 20 steps and 100 steps. As shown in Table 5, our method showcases excellent ro-
bustness across different samplers and time steps, leading to significant performance enhancements
compared to previous methods. Specifically, our method outperforms the full-precision models in
terms of FID and sFID at 6-bit quantization, and the advantages of our method are more pronounced
compared to existing methods at the lower 4-bit quantization.

Table 5: The robustness of DilateQuant for time steps and samplers.

Task Method Calib. Prec. (W/A) FID ↓ sFID ↓ IS ↑

LDM-4 — DDIM
time steps = 20

FP - 32/32 11.69 7.67 364.72

EDA-DM ⋆ 1024 6/6 11.52 8.02 360.77
EfficientDM † 102.4K 6/6 8.69 8.10 309.52
DilateQuant 1024 6/6 8.25 7.66 312.30

EDA-DM ⋆ 1024 4/4 20.02 36.66 204.93
EfficientDM † 102.4K 4/4 12.08 14.75 122.12
DilateQuant 1024 4/4 8.01 13.92 257.24

LDM-4 — PLMS
time steps = 20

FP - 32/32 11.71 7.08 379.19

EDA-DM ⋆ 1024 6/6 11.27 6.59 363.00
EfficientDM † 102.4K 6/6 9.85 9.36 325.13
DilateQuant 1024 6/6 7.68 5.69 315.85

EDA-DM ⋆ 1024 4/4 17.56 32.63 203.15
EfficientDM † 102.4K 4/4 14.78 9.89 103.34
DilateQuant 1024 4/4 9.56 8.12 243.72

LDM-4 — DPM-Solver
time steps = 20

FP - 32/32 11.44 6.85 373.12

EDA-DM ⋆ 1024 6/6 11.14 7.95 357.16
EfficientDM † 102.4K 6/6 8.54 9.30 336.11
DilateQuant 1024 6/6 7.32 6.68 330.32

EDA-DM ⋆ 1024 4/4 30.86 39.40 138.01
EfficientDM † 102.4K 4/4 14.36 13.82 109.52
DilateQuant 1024 4/4 8.98 9.97 247.62

LDM-4 — DDIM
time steps = 100

FP - 32/32 4.45 6.27 238.39

EDA-DM ⋆ 1024 6/6 12.21 12.13 71.50
EfficientDM † 102.4K 6/6 5.57 7.50 165.15
DilateQuant 1024 6/6 5.97 7.44 162.93

EDA-DM ⋆ 1024 4/4 N/A N/A N/A
EfficientDM † 102.4K 4/4 20.70 11.79 72.67
DilateQuant 1024 4/4 9.85 10.79 147.63

7https://github.com/openai/guided-diffusion
8https://github.com/Taited/clip-score
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D EFFICIENCY COMPARISONS OF VARIOUS QUANTIZATION FRAMEWORKS

We investigate the efficiency of DilateQuant across data resource, time cost, and GPU memory. We
compare our method with PTQ-based method (Liu et al., 2024) and variant QAT-based method (He
et al., 2023) on the mainstream diffusion models (DDPM, LDM, Stable-Diffusion). As reported in
Table 6, our method performs PTQ-like efficiency, while significantly improving the performance
of the quantized models. This provides an affordable and efficient quantization process for diffusion
models.

Table 6: Efficiency comparisons of various quantization frameworks with 4-bit quantization across
data resource, time cost, and GPU memory.

Model Method Calib. Time Cost (hours) GPU Memory (MB) FID ↓

DDPM
CIFAR-10

PTQ 5120 0.97 3019 120.24
V-QAT 1.6384M 2.98 9546 81.27
Ours 5120 1.08 3439 9.13

LDM
ImageNet

PTQ 1024 6.43 13831 20.02
V-QAT 102.4K 5.20 22746 12.08
Ours 1024 6.56 14680 8.01

Stable-Diffusion
MS-COCO

PTQ 512 7.23 30265 236.31
V-QAT 12.8K 30.25 46082 216.43
Ours 512 7.41 31942 42.97

E THOROUGH COMPARISON WITH EFFICIENTDM AND QUEST

EfficientDM (He et al., 2023) and QuEST (Wang et al., 2024) are two variance QAT-based meth-
ods, which achieve 4-bit quantization of the diffusion models with efficiency. However, both of
them are non-standard. Specifically, EfficientDM preserves some layers at full-precision, notably
the Upsample, Skip_connection, and the matrix multiplication of AttentionBlock’s qkvw.
These layers have been demonstrated to have the most significant impact on the quantization of
diffusion models in previous works (Shang et al., 2023; Li et al., 2023a; Liu et al., 2024). QuEST
employs standard channel-wise quantization for weights and layer-wise quantization for activations
at 6-bit precision. However, at 4-bit precision, it uses channel-wise quantization for the activations
of all Conv and Linear layers, which is hardly supported by the hardware because it cannot factor
the different scales out of the accumulator summation (please see Appendix H for details), leading
to inefficient acceleration.

Table 7: Comparison with EfficientDM and QuEST in both standard and non-standard settings.

Task Mode Method Prec. (W/A) Size (MB) FID ↓

LSUN-Church
(Yu et al., 2015)

256 × 256

LDM-8
steps = 100

eta = 0.0

- FP 32/32 1514.5 4.06

Non-standard
Not quantize for all

layers

EfficientDM 6/6 315.0 6.29
DilateQuant 6/6 315.0 4.73

EfficientDM 4/4 222.7 14.34
DilateQuant 4/4 222.7 8.68

Standard
Quantize for all layers

EfficientDM 6/6 284.9 6.92
DilateQuant 6/6 284.9 5.33

EfficientDM 4/4 190.3 15.08
DilateQuant 4/4 190.3 10.10

Non-standard
Channel-wise for A

QuEST 4/4 190.3 11.76
DilateQuant 4/4 190.3 8.94

Standard
Layer-wise for A

QuEST 4/4 190.3 13.03
DilateQuant 4/4 190.3 10.10
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To thoroughly compare DilateQuant with EfficientDM and QuEST, we conduct experiments on
LSUN-church with standard and non-standard quantization settings. When neglecting these layers
that are important for quantization, DilateQuant extremely reduces the FID to 8.68 with 4-bit quan-
tization. Compared to the standard setting, the performance improvement is more noticeable. When
setting channel-wise quantization for activations, DilateQuant also reduces a 2.84 FID compared
with QuEST. Conclusively, DilateQuant significantly outperforms EfficientDM and QuEST at dif-
ferent quantization precisions for both standard and non-standard settings, which demonstrates the
stability and standards of DilateQuant.

F WORKFLOW AND EFFECTS OF WEIGHT DILATION ALGORITHM

The comprehensive workflow of Weight Dilation is illustrated in Algorithm 1. We implement WD in
three steps: searching unsaturated channels for scaling (Lines 2-3), calculating scaling factor (Lines
5-10), and scaling activations and weights (Line 12). WD alleviates the wide range activations for
diffusion models through a novel equivalent scaling algorithm. In addition, all operations of WD
can be implemented simply, making it efficient.

Algorithm 1 Overall workflow of WD

Input: full-precision X ∈ RN×Ci

and W ∈ RCi×Co

Output: scaled X
′

and W
′
.

1: searching unsaturated channels for scaling:
2: obtain Wmax ∈ RCo

and Wmin ∈ RCo

3: record in-channel indexes of Wmax and Wmin as set A
4: calculating scaling factor:
5: for k = 1 to Ci do
6: if k ∈ A:
7: set sk = 1
8: else:
9: calculate scaling factor sk with Wmax and Wmin as constraints

10: end for
11: scaling X and W :
12: calculate X

′
= X / s and W

′
= W · s

13: return X
′

and W
′

We assess the effects of WD on various quantization tasks. As reported in Table 8, WD stably
achieves s > 1 while maintaining ∆

′

w ≈ ∆w. It effectively improves performance at different
quantized models by losslessly reducing the activation quantization error.

Table 8: Effects of WD on different tasks with 4-bit quantization.

Tasks CIFAR-10 LSUN-Bedroom LSUN-Church ImageNet MSCOCO

∆
′
w/∆w 1.02 1.02 1.01 1.01 1.02

Eclip
′
/Eclip 0.83 0.92 0.92 0.93 0.92

proportion of s > 1 39.2% 52.4% 32.8% 36.5% 43.8%
∆

′
x/∆x 0.91 0.92 0.91 0.92 0.90

FID ↓ 9.13 (-0.50) 8.99 (-0.25) 10.10 (-0.20) 8.01 (-0.27) 44.82 (-0.79)

G DIFFERENT EQUIVALENT SCALING ALGORITHMS FOR DIFFUSION MODELS

In this section, we start by analyzing the differences between LLMs and diffusion models in terms
of the challenges of activation quantization. As shown in Figure 2(b), the activation outliers of the
diffusion models are present in all channels, unlike in LLMs where the activation outliers only exist
in fixed channels. Additionally, the range of activations for diffusion models is also larger than that
of the LLMs. Therefore, it is essential to scale the number of channels as much as possible for the
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diffusion models. Some equivalent scaling algorithms are proposed to smooth out the activation
outliers in LLMs, and these methods have achieved success. SmoothQuant (Xiao et al., 2023a)
scales all channels using a hand-designed scaling factor. AWQ (Lin et al., 2024) only scales a few of
channels based on the salient weight. OmniQuant (Shao et al., 2023) proposes a learnable equivalent
transformation to optimize the scaling factors in a differentiable manner. DGQ (Zhang et al., 2023a)
devises a percentile scaling scheme to select the scaled channels and calculate the scaling factors.
OS+ conducts channel-wise shifting and scaling across all channels.

Unfortunately, when we applied methods similar to these previous equivalent scaling algorithms
to diffusion models, we find that none of them work. Specifically, we employ these five methods
for diffusion models as follows: (1) For the method similar to SmoothQuant, we scale all channels
before quantization using a smoothing factor α = 0.5; (2) For the method similar to AWQ, we scale
1% of channels based on the salient weight, setting smoothing factor the same as SmoothQuant;
(3) For the method similar to OmniQuant, we modify the scaling factors to be learnable variants
and train them block by block with a learning rate of 1e-5; (4) For the method similar to DGQ, we
scale the top 0.5% of quantization-sensitive channels, setting scaling factor based on the clipping
threshold. (5) For OS+, we perform shifting and scaling across all channels, consistent with the
original work. However, as shown in Table 9, all of these methods result in higher FID and sFID
scores compared to no scaling. The reason for this result is that although the range of activations
decreases, the range of weights also increases significantly, making it more difficult for the model
to converge during the training stage. In contrast, the Weight Dilation algorithm we proposed scales
the number of channels as much as possible. It searches for unsaturated in-channel weights and
dilates them to a constrained range based on the max-min values of the out-channel weights. The
algorithm reduces the range of activations while maintaining the weights range unchanged. This
effectively makes activation quantization easier and ensures model convergence, reducting the FID
and sFID scores to 9.13 and 6.92 in 4-bit quantization, respectively.

Table 9: The results of various equivalent scaling algorithms for DDIM on CIFAR-10.

Prec. Metrics No scaling SmoothQuant OmniQuant AWQ DGQ OS+ Ours

W4A4

proportion of s > 1 0% 100% 100% 1% 0.5% 100% 39.2%
FID ↓ 9.63 9.99 9.86 10.34 9.72 9.78 9.13
sFID ↓ 7.08 7.29 7.34 7.53 7.78 7.23 6.92
IS ↑ 8.45 8.46 8.50 8.38 8.52 8.36 8.56

W6A6

proportion of s > 1 0% 100% 100% 1% 0.5% 100% 39.2%
FID ↓ 5.75 5.44 5.56 5.85 5.09 5.81 4.46
sFID ↓ 4.96 4.87 4.89 5.19 4.84 4.99 4.64
IS ↑ 8.80 8.86 8.81 8.78 8.89 8.76 8.92

H HARDWARE-FRIENDLY QUANTIZATION

In this section, we investigate the correlation between quantization settings and hardware accelera-
tion. We start with the principle of quantization to achieve hardware acceleration. A matrix-vector
multiplication, y = Wx + b, is calculated by a neural network accelerator, which comprises two
fundamental components: the processing elements Cn,m and the accumulators An. The calcula-
tion operation of accelerator is as follows: firstly, the bias values bn are loaded into accumulators;
secondly, the weight values Wn,m and the input values xm are loaded into Cn,m and computed in
a single cycle; finally, their results are added in the accumulators. The overall operation is also
referred to as Multiply-Accumulate (MAC):

An =
∑
m

Wn,mxm + bn (19)

where n and m represent the out-channel and in-channel of the weights, respectively. The pre-trained
models are commonly trained using FP32 weights and activations. In addition to MAC calculations,
data needs to be transferred from memory to the processing units. Both of them severely impact
the speed of inference. Quantization transforms floating-point parameters into fixed-point parame-
ters, which not only reduces the amount of data transfer but also the size and energy consumption
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of the MAC operation. This is because the cost of digital arithmetic typically scales linearly to
quadratically with the number of bits, and fixed-point addition is more efficient than its floating-
point counterpart. Quantization approximates a floating-point tensor x as:

x̂ = ∆ · xint ≈ x (20)

where xint and x̂ are integer tensors and quantized tensors, respectively, and ∆ is scale factor.

W1,1 W1,2 W1,3 W1,4

W2,1 W2,2 W2,3 W2,4

W3,1 W3,2 W3,3 W3,4
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Figure 5: A schematic of matrix-multiply logic in accelerator for quantized inference.

Quantization settings have different granularity levels. Figure 5 shows the accelerator operation after
the introduction of quantization. If we set both activations and weights to be layer-wise quantization,
the new MAC operation can be represented as:

Ân =
∑
m

Ŵn,mx̂m + bn

=
∑
m

(∆wŴ
int
n,m)(∆xx̂

int
m ) + bn

= ∆w∆x

∑
m

Ŵ int
n,mx̂int

m + bn (21)

where ∆w and ∆x are scale factors for weights and activations, respectively, Ŵ int
n,m and x̂int

m are in-
teger values. The bias is typically stored in higher bit-width (32-bits), so we ignore bias quantization
for now. As can be seen, this scheme factors out the scale factors from the summation and performs
MAC operations in fixed-point format, which accelerates the calculation process. The activations
are quantized back to integer values x̂int

n through a requantization step, which reduces data transfer
and simplifies the operations of the next layer.

To approximate the operations of quantization to full-precision, channel-wise quantization for
weights is widely used, which sets quantization parameters to each out-channel. With this setting,
the MAC operation in Eq. 21 can be represented as:

Ân =
∑
m

(∆wn
Ŵ int

n,m)(∆xx̂
int
m ) + bn

= ∆wn
∆x

∑
m

Ŵ int
n,mx̂int

m + bn (22)

where ∆wn
is scale factor for the nth out-channel of weights. However, the channel-wise quantiza-

tion for activations sets quantization parameters to each in-channel. This setting is hardly supported
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by hardware, as the MAC operation is performed as follows:

Ân =
∑
m

(∆wŴ
int
n,m)(∆xm

x̂int
m ) + bn

= ∆w

∑
m

∆xm
Ŵ int

n,mx̂int
m + bn (23)

where ∆xm
is scale factor for the mth in-channel of activations. Due to its inability to factor out

the different scales from the accumulator summation, it is not hardware-friendly, leading to invalid
acceleration.

I HUMAN PREFERENCE EVALUATION

In this section, we use an open-source aesthetic predictor9 to evaluate Aesthetic Score ↑, mimicking
human preference assessment of the generated images. As reported in Table 10, DilateQuant has
a better aesthetic representation compared to EfficientDM, which demonstrates that the quantized
models with our method are more aesthetically pleasing to humans. For the large text-to-image
model, we use the convincing DrawBench benchmark to evaluate human performance, as shown in
Figure 6. Additionally, we visualize the random samples of quantization results in Figure 7 (LSUN-
church), 8 (LSUN-Bedroom), and 9 (ImageNet). As can be seen, DilateQuant outperforms previous
methods in terms of image quality, fidelity, and diversity.

Table 10: Aesthetic assessment of the different quantized models with 4-bit quantization.

Method LSUN-Bedroom ImageNet DrawBench

FP 5.91 5.32 5.80

EfficientDM 5.47 3.51 2.84
DilateQuant 5.72 4.85 5.23
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A pink colored giraffe.
A green apple and a 

black backpack. A blue coloured pizza.
A sphere with the 

texture of kitchen tile.

Figure 6: Random samples of different quantized models on DrawBench with 6-bit quantization.

9https://github.com/shunk031/simple-aesthetics-predictor
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Full-precision(W32A32) DilateQuant(W6A6) DilateQuant(W4A4)

Figure 7: Random samples of quantized models with DilateQuant on LSUN-Church.

Full-precision(W32A32) EfficientDM(W4A4) DilateQuant(W4A4)

Figure 8: Random samples of different quantized models on LSUN-Bedroom with 4-bit quantiza-
tion.

Full-precision(W32A32) EfficientDM(W4A4) DilateQuant(W4A4)

Figure 9: Random samples of different quantized models on ImageNet with 4-bit quantization.
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