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DILATEQUANT: SUPPLEMENTARY MATERIALS
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A SUPPLEMENTARY MATERIAL INTRODUCTION

In this supplementary material, we present the correlative introductions and some experiments men-
tioned in the paper. The following items are provided:

* Detailed experimental implementations for all experiments in Appendix B.
* Robustness of DilateQuant for time steps and samplers in Appendix C.

* Efficiency comparisons of various quantization frameworks in Appendix D
* Thorough comparison with EfficientDM and QuUEST in Appendix E.

* Workflow and effects of Weight Dilation algorithm in Appendix F.

* Different equivalent scaling algorithms for diffusion models in Appendix G.
» Hardware-Friendly quantization in Appendix H.

* Human preference evaluation in Appendix 1.

B DETAILED EXPERIMENTAL IMPLEMENTATIONS

In this section, we present detailed experimental implementations, including the pre-training models,
qunatization settings, and evaluation.

The DDPM' models and LDM? models we used for the experiments are obtained from the official
websites. For text-guided generation with Stable-Diffusion, we use the CompVis codebase’® and
its v1.4 checkpoint. The LDMs consist of a diffusion model and a decoder model. Following the
previous works (Liu et al., 2024; He et al., 2023; Wang et al., 2024), DilateQuant focus only on the
diffusion models and does not quantize the decoder models. We empoly channel-wise asymmet-
ric quantization for weights and layer-wise asymmetric quantization for activations. The input and
output layers of models use a fixed 8-bit quantization, as it is a common practice. The weight and
activation quantization ranges are initially determined by minimizing values error, and then opti-
mized by our knowledge distillation strategy to align quantized models with full-precision models
at block level. Since the two compared methods employ non-standard settings, we modify them to
standard settings for a fair comparison. More specifically, we quantize all layers for EfficientDM,
including Upsample, Skip_connection, and AttentionBlock’s gkvw, which lack quantiza-
tion in open-source code*. However, when these layers, which are important for quantization, are
added, the performance of EfficientDM degrades drastically. To recover performance, we double
the number of training iterations. QUEST utilizes channel-wise quantization for activations at 4-bit
precision in the code’, which is not supported by hardware. Therefore, we adjust the quantization
setting to layer-wise quantization for activations. For experimental evaluation, we use open-source
tool pytorch-OpCounter® to calculate the Size and Bops of models before and after quantization.

lhttps://github.com/ermongroup/ddim
https://github.com/CompVis/latent-diffusion
Shttps://github.com/CompVis/stable-diffusion
4https://github.com/ThisisBillhe/EfficientDM
Shttps://github.com/hatchetProject/QuUEST
®https://github.com/Lykenl7/pytorch-OpCounter
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And following the quantization settings, we only calculate the diffusion model part, not the decoder
and encoder parts. We use the ADM’s TensorFlow evaluation suite guided-diffusion’ to evaluate
FID, sFID, and IS, and use the open-source code clip-score® to evaluate CLIP scores. As the per
practice (Liu et al., 2024; Wang et al., 2024), we employ the zero-shot approach to evaluate Stable-
Diffusion on COCO-val for the text-guided experiments, resizing the generated 512 x 512 images
and validation images in 300 x 300 with the center cropping to evaluate FID score and using text
prompts from COCO-val to evaluate CLIP score.

C ROBUSTNESS OF DILATEQUANT FOR TIME STEPS AND SAMPLERS

To assess the robustness of DilateQuant for samplers, we conduct experiments over LDM-4 on Im-
ageNet with three distant samplers, including DDIMsampler Song et al. (2020), PLMSsampler Liu
et al. (2022), and DPMSolversampler Lu et al. (2022). Given that time step is the most important
hyperparameter for diffusion models, we also evaluate DilateQuant for models with different time
steps, including 20 steps and 100 steps. As shown in Table 5, our method showcases excellent ro-
bustness across different samplers and time steps, leading to significant performance enhancements
compared to previous methods. Specifically, our method outperforms the full-precision models in
terms of FID and sFID at 6-bit quantization, and the advantages of our method are more pronounced
compared to existing methods at the lower 4-bit quantization.

Table 5: The robustness of DilateQuant for time steps and samplers.

Task Method Calib. Prec. (W/A) FID| sFID] IS?T
FP - 32/32 11.69  7.67 364.72
EDA-DM * 1024 6/6 11.52  8.02  360.77
EfficientDM T 102.4K 6/6 8.69 8.10  309.52

LDM-4 — DDIM

{ime steps = 20 DilateQuant 1024 6/6 825 7.66 31230
EDA-DM * 1024 4/4 20.02 36.66 204.93
EfficientDM T 102.4K 4/4 1208 1475 122.12
DilateQuant 1024 4/4 8.01 13.92 257.24
FP - 32/32 1171 7.08  379.19
EDA-DM * 1024 6/6 1127 659  363.00
EfficientDM ' 102.4K 6/6 985 936 32513
LDM-4 — PLMS !
time steps = 20 DilateQuant 1024 6/6 7.68 5.69 315.85
EDA-DM * 1024 4/4 17.56  32.63 203.15
EfficientDM T 102.4K 4/4 1478  9.89  103.34
DilateQuant 1024 4/4 9.56 812 243.72
FP - 32/32 1144 685 373.12
EDA-DM * 1024 6/6 11.14 795 357.16
EfficientDM t 102.4K 6/6 854 930 336.11
LDM-4 — DPM-Solver .
time steps = 20 DilateQuant 1024 6/6 732 6.68 33032
EDA-DM * 1024 4/4 30.86  39.40 138.01
EfficientDM T 102.4K 4/4 1436  13.82  109.52
DilateQuant 1024 4/4 898 997 247.62
FP - 32/32 445 627 23839
EDA-DM * 1024 6/6 1221 1213 71.50
EfficientDM T 102.4K 6/6 557 750  165.15
LDM-4 — DDIM !
{ime steps = 100 DilateQuant 1024 6/6 597 744 16293
EDA-DM * 1024 4/4 N/A  NA N/A
EfficientDM T 102.4K 4/4 2070 11.79  72.67
DilateQuant 1024 4/4 9.85 10.79 147.63

"https://github.com/openai/guided-diffusion
8https ://github.com/Taited/clip—score
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D EFFICIENCY COMPARISONS OF VARIOUS QUANTIZATION FRAMEWORKS

We investigate the efficiency of DilateQuant across data resource, time cost, and GPU memory. We
compare our method with PTQ-based method (Liu et al., 2024) and variant QAT-based method (He
et al., 2023) on the mainstream diffusion models (DDPM, LDM, Stable-Diffusion). As reported in
Table 6, our method performs PTQ-like efficiency, while significantly improving the performance
of the quantized models. This provides an affordable and efficient quantization process for diffusion
models.

Table 6: Efficiency comparisons of various quantization frameworks with 4-bit quantization across
data resource, time cost, and GPU memory.

Model Method Calib. Time Cost (hours) GPU Memory (MB) FID |
DDPM PTQ 5120 0.97 3019 120.24
CIEAR.10 V-QAT  1.6384M 2.98 9546 81.27
Ours 5120 1.08 3439 9.13
LDM PTQ 1024 6.43 13831 20.02
ImaseNet V-QAT  102.4K 5.20 22746 12.08
mageine Ours 1024 6.56 14680 8.01
e PTQ 512 7.23 30265 236.31
SupleDItuson  V.QAT  12.8K 30.25 46082 216.43
Ours 512 7.41 31942 42.97

E THOROUGH COMPARISON WITH EFFICIENTDM AND QUEST

EfficientDM (He et al., 2023) and QuEST (Wang et al., 2024) are two variance QAT-based meth-
ods, which achieve 4-bit quantization of the diffusion models with efficiency. However, both of
them are non-standard. Specifically, EfficientDM preserves some layers at full-precision, notably
the Upsample, Skip_connection, and the matrix multiplication of AttentionBlock’s gkvw.
These layers have been demonstrated to have the most significant impact on the quantization of
diffusion models in previous works (Shang et al., 2023; Li et al., 2023a; Liu et al., 2024). QuEST
employs standard channel-wise quantization for weights and layer-wise quantization for activations
at 6-bit precision. However, at 4-bit precision, it uses channel-wise quantization for the activations
of all conv and Linear layers, which is hardly supported by the hardware because it cannot factor
the different scales out of the accumulator summation (please see Appendix H for details), leading
to inefficient acceleration.

Table 7: Comparison with EfficientDM and QuEST in both standard and non-standard settings.

Task Mode Method Prec. (W/A) Size MB) FID |
- FP 32/32 1514.5 4.06
EfficientDM 6/6 315.0 6.29

Non-standard

. DilateQuant 6/6 315.0 4.73

LSUN-Church Not quantize for all
(Yuotal 7‘3; ) layers EfficientDM 4/4 2227 1434
256 % 256 DilateQuant 4/4 222.7 8.68
EfficientDM 6/6 284.9 6.92
LDM-8 Standard DilateQuant 6/6 284.9 5.33
steps = 100 Quantize for all layers ~pee © Sy 44 190.3 15.08
eta=0.0 DilateQuant 4/4 1903  10.10
Non-standard QuEST 4/4 190.3 11.76
Channel-wise for A DilateQuant 4/4 190.3 8.94
Standard QuEST 4/4 190.3 13.03
Layer-wise for A DilateQuant 4/4 190.3 10.10
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To thoroughly compare DilateQuant with EfficientDM and QuEST, we conduct experiments on
LSUN-church with standard and non-standard quantization settings. When neglecting these layers
that are important for quantization, DilateQuant extremely reduces the FID to 8.68 with 4-bit quan-
tization. Compared to the standard setting, the performance improvement is more noticeable. When
setting channel-wise quantization for activations, DilateQuant also reduces a 2.84 FID compared
with QuEST. Conclusively, DilateQuant significantly outperforms EfficientDM and QuEST at dif-
ferent quantization precisions for both standard and non-standard settings, which demonstrates the
stability and standards of DilateQuant.

F WORKFLOW AND EFFECTS OF WEIGHT DILATION ALGORITHM

The comprehensive workflow of Weight Dilation is illustrated in Algorithm 1. We implement WD in
three steps: searching unsaturated channels for scaling (Lines 2-3), calculating scaling factor (Lines
5-10), and scaling activations and weights (Line 12). WD alleviates the wide range activations for
diffusion models through a novel equivalent scaling algorithm. In addition, all operations of WD
can be implemented simply, making it efficient.

Algorithm 1 Overall workflow of WD

Input: full-precision X € RV*¢" and W € R¢"*¢”
Qutput: scaled X "and W',
searching unsaturated channels for scaling:
obtain Wy, € RY” and W5, € RE”
record in-channel indexes of W,,, 4, and W,,,;,, as set A

1:
2
3
4: calculating scaling factor:
5. fork=1toC"do
6
7
8

if k € A:
set s, = 1
else:
9: calculate scaling factor sy with W, ., and W,,,;,, as constraints
10: end for

11: scaling X and WW:
12: calculate X = X /sand W' =W - s
13: return X and W'

We assess the effects of WD on various quantization tasks. As reported in Table 8, WD stably
achieves s > 1 while maintaining A, ~ A,,. It effectively improves performance at different
quantized models by losslessly reducing the activation quantization error.

Table 8: Effects of WD on different tasks with 4-bit quantization.

Tasks CIFAR-10  LSUN-Bedroom LSUN-Church ImageNet MSCOCO
Al /Ay 1.02 1.02 1.01 1.01 1.02

Ech-p/ / Eciip 0.83 0.92 0.92 0.93 0.92
proportionof s > 1 39.2% 52.4% 32.8% 36.5% 43.8%
A;/Az 091 0.92 0.91 0.92 0.90

FID | 9.13 (-0.50)  8.99 (-0.25) 10.10 (-0.20)  8.01 (-0.27) 44.82(-0.79)

G DIFFERENT EQUIVALENT SCALING ALGORITHMS FOR DIFFUSION MODELS

In this section, we start by analyzing the differences between LLMs and diffusion models in terms
of the challenges of activation quantization. As shown in Figure 2(b), the activation outliers of the
diffusion models are present in all channels, unlike in LLMs where the activation outliers only exist
in fixed channels. Additionally, the range of activations for diffusion models is also larger than that
of the LLMs. Therefore, it is essential to scale the number of channels as much as possible for the
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diffusion models. Some equivalent scaling algorithms are proposed to smooth out the activation
outliers in LLMs, and these methods have achieved success. SmoothQuant (Xiao et al., 2023a)
scales all channels using a hand-designed scaling factor. AWQ (Lin et al., 2024) only scales a few of
channels based on the salient weight. OmniQuant (Shao et al., 2023) proposes a learnable equivalent
transformation to optimize the scaling factors in a differentiable manner. DGQ (Zhang et al., 20232)
devises a percentile scaling scheme to select the scaled channels and calculate the scaling factors.
OS+ conducts channel-wise shifting and scaling across all channels.

Unfortunately, when we applied methods similar to these previous equivalent scaling algorithms
to diffusion models, we find that none of them work. Specifically, we employ these five methods
for diffusion models as follows: (1) For the method similar to SmoothQuant, we scale all channels
before quantization using a smoothing factor o = 0.5; (2) For the method similar to AWQ, we scale
1% of channels based on the salient weight, setting smoothing factor the same as SmoothQuant;
(3) For the method similar to OmniQuant, we modify the scaling factors to be learnable variants
and train them block by block with a learning rate of le-5; (4) For the method similar to DGQ, we
scale the top 0.5% of quantization-sensitive channels, setting scaling factor based on the clipping
threshold. (5) For OS+, we perform shifting and scaling across all channels, consistent with the
original work. However, as shown in Table 9, all of these methods result in higher FID and sFID
scores compared to no scaling. The reason for this result is that although the range of activations
decreases, the range of weights also increases significantly, making it more difficult for the model
to converge during the training stage. In contrast, the Weight Dilation algorithm we proposed scales
the number of channels as much as possible. It searches for unsaturated in-channel weights and
dilates them to a constrained range based on the max-min values of the out-channel weights. The
algorithm reduces the range of activations while maintaining the weights range unchanged. This
effectively makes activation quantization easier and ensures model convergence, reducting the FID
and sFID scores to 9.13 and 6.92 in 4-bit quantization, respectively.

Table 9: The results of various equivalent scaling algorithms for DDIM on CIFAR-10.

Prec. \ Metrics No scaling SmoothQuant OmniQuant AWQ DGQ OS+  Ours
proportion of s > 1 0% 100% 100% 1% 05% 100% 39.2%

W4A4 FID | 9.63 9.99 9.86 1034 9.72 9.78  9.13
sFID | 7.08 7.29 7.34 7.53 7.78 723 6.92
ISt 8.45 8.46 8.50 838 852 836 8.56
proportion of s > 1 0% 100% 100% 1% 0.5% 100% 39.2%

W6A6 FID | 5.75 5.44 5.56 5.85 5.09 5.81 4.46
sFID | 4.96 4.87 4.89 5.19 484 499 4.64
ISt 8.80 8.86 8.81 878 889 876 8.92

H HARDWARE-FRIENDLY QUANTIZATION

In this section, we investigate the correlation between quantization settings and hardware accelera-
tion. We start with the principle of quantization to achieve hardware acceleration. A matrix-vector
multiplication, y = Wx + b, is calculated by a neural network accelerator, which comprises two
fundamental components: the processing elements C), ,,, and the accumulators A,,. The calcula-
tion operation of accelerator is as follows: firstly, the bias values b,, are loaded into accumulators;
secondly, the weight values W), ,,, and the input values x,, are loaded into C), ,,, and computed in
a single cycle; finally, their results are added in the accumulators. The overall operation is also
referred to as Multiply-Accumulate (MAC):

Ap =Y Womm + by (19)

where n and m represent the out-channel and in-channel of the weights, respectively. The pre-trained
models are commonly trained using FP32 weights and activations. In addition to MAC calculations,
data needs to be transferred from memory to the processing units. Both of them severely impact
the speed of inference. Quantization transforms floating-point parameters into fixed-point parame-
ters, which not only reduces the amount of data transfer but also the size and energy consumption
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of the MAC operation. This is because the cost of digital arithmetic typically scales linearly to
quadratically with the number of bits, and fixed-point addition is more efficient than its floating-
point counterpart. Quantization approximates a floating-point tensor x as:

T=A-x;pm T (20)
where x;,; and & are integer tensors and quantized tensors, respectively, and A is scale factor.
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Figure 5: A schematic of matrix-multiply logic in accelerator for quantized inference.

Quantization settings have different granularity levels. Figure 5 shows the accelerator operation after
the introduction of quantization. If we set both activations and weights to be layer-wise quantization,
the new MAC operation can be represented as:

Z (AW ) (Ag@iT) + by,

= Ay, ZW&"&W +by @1

where A, and A, are scale factors for weights and activations, respectively, Wﬁ",fl and 2" are in-
teger values. The bias is typically stored in higher bit-width (32-bits), so we ignore bias quantization
for now. As can be seen, this scheme factors out the scale factors from the summation and performs
MAC operations in fixed-point format, which accelerates the calculation process. The activations
are quantized back to integer values 2™ through a requantization step, which reduces data transfer
and simplifies the operations of the next layer.

To approximate the operations of quantization to full-precision, channel-wise quantization for
weights is widely used, which sets quantization parameters to each out-channel. With this setting,
the MAC operation in Eq. 21 can be represented as:

A = (A, W) (An@i") + by
= Ay, Ay > WG 4 by, (22)

where A, is scale factor for the n4;, out-channel of weights. However, the channel-wise quantiza-
tion for activations sets quantization parameters to each in-channel. This setting is hardly supported
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by hardware, as the MAC operation is performed as follows:

An = Z(Awwfzn%)(Armﬂgt) + bn

m

=0y Y A, Wit a4 b, (23)
m

where A, is scale factor for the my, in-channel of activations. Due to its inability to factor out

the different scales from the accumulator summation, it is not hardware-friendly, leading to invalid
acceleration.

I HUMAN PREFERENCE EVALUATION

In this section, we use an open-source aesthetic predictor’ to evaluate Aesthetic Score 1, mimicking
human preference assessment of the generated images. As reported in Table 10, DilateQuant has
a better aesthetic representation compared to EfficientDM, which demonstrates that the quantized
models with our method are more aesthetically pleasing to humans. For the large text-to-image
model, we use the convincing DrawBench benchmark to evaluate human performance, as shown in
Figure 6. Additionally, we visualize the random samples of quantization results in Figure 7 (LSUN-
church), 8 (LSUN-Bedroom), and 9 (ImageNet). As can be seen, DilateQuant outperforms previous
methods in terms of image quality, fidelity, and diversity.

Table 10: Aesthetic assessment of the different quantized models with 4-bit quantization.

Method LSUN-Bedroom ImageNet DrawBench
FP 5.91 5.32 5.80
EfficientDM 5.47 3.51 2.84
DilateQuant 5.72 4.85 5.23
A green apple and a A sphere with the
A pink colored giraffe. black backpack. A blue coloured pizza. texture of kitchen tile.

Full-precision

EfficientDM

DilateQuant

Figure 6: Random samples of different quantized models on DrawBench with 6-bit quantization.

*https://github.com/shunk031/simple-aesthetics-predictor
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Full-precision(W32A32) DilateQuant(W6A6) DilateQuant(W4A4)

Figure 7: Random samples of quantized models with DilateQuant on LSUN-Church.

Full-precision(W32A32) EfficientDM(W4A4) DilateQuant(W4A4)

Figure 8: Random samples of different quantized models on LSUN-Bedroom with 4-bit quantiza-
tion.

Full-precision(W32A32) EfficientDM(W4A4) DilateQuant(W4A4)

Figure 9: Random samples of different quantized models on ImageNet with 4-bit quantization.
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