
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

DILATEQUANT: SUPPLEMENTARY MATERIALS

P.1
E(X,W ) =∥XW −Q(X)Q(W )∥F

=∥XW −XQ(W ) +XQ(W )−Q(X)Q(W )∥F
≤∥X(W −Q(W ))∥F + ∥(X −Q(X))Q(W )∥F
≤∥X∥F ∥W −Q(W )∥F + ∥X −Q(X)∥F ∥Q(W )∥F
≤∥X∥F ∥W −Q(W )∥F + ∥X −Q(X)∥F ∥W − (W −Q(W ))∥F
≤∥X∥F ∥W −Q(W )∥F + ∥X −Q(X)∥F (∥W∥F + ∥W −Q(W )∥F )

(18)

A SUPPLEMENTARY MATERIAL INTRODUCTION

In this supplementary material, we present the correlative introductions and some experiments men-
tioned in the paper. The following items are provided:

• Detailed experimental implementations for all experiments in Appendix B.

• Robustness of DilateQuant for time steps and samplers in Appendix C.

• Efficiency comparisons of various quantization frameworks in Appendix D

• Thorough comparison with EfficientDM and QuEST in Appendix E.

• Workflow and effects of Weight Dilation algorithm in Appendix F.

• Different equivalent scaling algorithms for diffusion models in Appendix G.

• Hardware-Friendly quantization in Appendix H.

• Human preference evaluation in Appendix I.

B DETAILED EXPERIMENTAL IMPLEMENTATIONS

In this section, we present detailed experimental implementations, including the pre-training models,
qunatization settings, and evaluation.

The DDPM1 models and LDM2 models we used for the experiments are obtained from the official
websites. For text-guided generation with Stable-Diffusion, we use the CompVis codebase3 and
its v1.4 checkpoint. The LDMs consist of a diffusion model and a decoder model. Following the
previous works (Liu et al., 2024; He et al., 2023; Wang et al., 2024), DilateQuant focus only on the
diffusion models and does not quantize the decoder models. We empoly channel-wise asymmet-
ric quantization for weights and layer-wise asymmetric quantization for activations. The input and
output layers of models use a fixed 8-bit quantization, as it is a common practice. The weight and
activation quantization ranges are initially determined by minimizing values error, and then opti-
mized by our knowledge distillation strategy to align quantized models with full-precision models
at block level. Since the two compared methods employ non-standard settings, we modify them to
standard settings for a fair comparison. More specifically, we quantize all layers for EfficientDM,
including Upsample, Skip_connection, and AttentionBlock’s qkvw, which lack quantiza-
tion in open-source code4. However, when these layers, which are important for quantization, are
added, the performance of EfficientDM degrades drastically. To recover performance, we double
the number of training iterations. QuEST utilizes channel-wise quantization for activations at 4-bit
precision in the code5, which is not supported by hardware. Therefore, we adjust the quantization
setting to layer-wise quantization for activations. For experimental evaluation, we use open-source
tool pytorch-OpCounter6 to calculate the Size and Bops of models before and after quantization.

1https://github.com/ermongroup/ddim
2https://github.com/CompVis/latent-diffusion
3https://github.com/CompVis/stable-diffusion
4https://github.com/ThisisBillhe/EfficientDM
5https://github.com/hatchetProject/QuEST
6https://github.com/Lyken17/pytorch-OpCounter

12

https://github.com/ermongroup/ddim
https://github.com/CompVis/latent-diffusion
https://github.com/CompVis/stable-diffusion
https://github.com/ThisisBillhe/EfficientDM
https://github.com/hatchetProject/QuEST
https://github.com/Lyken17/pytorch-OpCounter


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

And following the quantization settings, we only calculate the diffusion model part, not the decoder
and encoder parts. We use the ADM’s TensorFlow evaluation suite guided-diffusion7 to evaluate
FID, sFID, and IS, and use the open-source code clip-score8 to evaluate CLIP scores. As the per
practice (Liu et al., 2024; Wang et al., 2024), we employ the zero-shot approach to evaluate Stable-
Diffusion on COCO-val for the text-guided experiments, resizing the generated 512 × 512 images
and validation images in 300 × 300 with the center cropping to evaluate FID score and using text
prompts from COCO-val to evaluate CLIP score.

C ROBUSTNESS OF DILATEQUANT FOR TIME STEPS AND SAMPLERS

To assess the robustness of DilateQuant for samplers, we conduct experiments over LDM-4 on Im-
ageNet with three distant samplers, including DDIMsampler Song et al. (2020), PLMSsampler Liu
et al. (2022), and DPMSolversampler Lu et al. (2022). Given that time step is the most important
hyperparameter for diffusion models, we also evaluate DilateQuant for models with different time
steps, including 20 steps and 100 steps. As shown in Table 5, our method showcases excellent ro-
bustness across different samplers and time steps, leading to significant performance enhancements
compared to previous methods. Specifically, our method outperforms the full-precision models in
terms of FID and sFID at 6-bit quantization, and the advantages of our method are more pronounced
compared to existing methods at the lower 4-bit quantization.

Table 5: The robustness of DilateQuant for time steps and samplers.

Task Method Calib. Prec. (W/A) FID ↓ sFID ↓ IS ↑

LDM-4 — DDIM
time steps = 20

FP - 32/32 11.69 7.67 364.72

EDA-DM ⋆ 1024 6/6 11.52 8.02 360.77
EfficientDM † 102.4K 6/6 8.69 8.10 309.52
DilateQuant 1024 6/6 8.25 7.66 312.30

EDA-DM ⋆ 1024 4/4 20.02 36.66 204.93
EfficientDM † 102.4K 4/4 12.08 14.75 122.12
DilateQuant 1024 4/4 8.01 13.92 257.24

LDM-4 — PLMS
time steps = 20

FP - 32/32 11.71 7.08 379.19

EDA-DM ⋆ 1024 6/6 11.27 6.59 363.00
EfficientDM † 102.4K 6/6 9.85 9.36 325.13
DilateQuant 1024 6/6 7.68 5.69 315.85

EDA-DM ⋆ 1024 4/4 17.56 32.63 203.15
EfficientDM † 102.4K 4/4 14.78 9.89 103.34
DilateQuant 1024 4/4 9.56 8.12 243.72

LDM-4 — DPM-Solver
time steps = 20

FP - 32/32 11.44 6.85 373.12

EDA-DM ⋆ 1024 6/6 11.14 7.95 357.16
EfficientDM † 102.4K 6/6 8.54 9.30 336.11
DilateQuant 1024 6/6 7.32 6.68 330.32

EDA-DM ⋆ 1024 4/4 30.86 39.40 138.01
EfficientDM † 102.4K 4/4 14.36 13.82 109.52
DilateQuant 1024 4/4 8.98 9.97 247.62

LDM-4 — DDIM
time steps = 100

FP - 32/32 4.45 6.27 238.39

EDA-DM ⋆ 1024 6/6 12.21 12.13 71.50
EfficientDM † 102.4K 6/6 5.57 7.50 165.15
DilateQuant 1024 6/6 5.97 7.44 162.93

EDA-DM ⋆ 1024 4/4 N/A N/A N/A
EfficientDM † 102.4K 4/4 20.70 11.79 72.67
DilateQuant 1024 4/4 9.85 10.79 147.63

7https://github.com/openai/guided-diffusion
8https://github.com/Taited/clip-score

13

https://github.com/openai/guided-diffusion
https://github.com/Taited/clip-score


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

D EFFICIENCY COMPARISONS OF VARIOUS QUANTIZATION FRAMEWORKS

We investigate the efficiency of DilateQuant across data resource, time cost, and GPU memory. We
compare our method with PTQ-based method (Liu et al., 2024) and variant QAT-based method (He
et al., 2023) on the mainstream diffusion models (DDPM, LDM, Stable-Diffusion). As reported in
Table 6, our method performs PTQ-like efficiency, while significantly improving the performance
of the quantized models. This provides an affordable and efficient quantization process for diffusion
models.

Table 6: Efficiency comparisons of various quantization frameworks with 4-bit quantization across
data resource, time cost, and GPU memory.

Model Method Calib. Time Cost (hours) GPU Memory (MB) FID ↓

DDPM
CIFAR-10

PTQ 5120 0.97 3019 120.24
V-QAT 1.6384M 2.98 9546 81.27
Ours 5120 1.08 3439 9.13

LDM
ImageNet

PTQ 1024 6.43 13831 20.02
V-QAT 102.4K 5.20 22746 12.08
Ours 1024 6.56 14680 8.01

Stable-Diffusion
MS-COCO

PTQ 512 7.23 30265 236.31
V-QAT 12.8K 30.25 46082 216.43
Ours 512 7.41 31942 42.97

E THOROUGH COMPARISON WITH EFFICIENTDM AND QUEST

EfficientDM (He et al., 2023) and QuEST (Wang et al., 2024) are two variance QAT-based meth-
ods, which achieve 4-bit quantization of the diffusion models with efficiency. However, both of
them are non-standard. Specifically, EfficientDM preserves some layers at full-precision, notably
the Upsample, Skip_connection, and the matrix multiplication of AttentionBlock’s qkvw.
These layers have been demonstrated to have the most significant impact on the quantization of
diffusion models in previous works (Shang et al., 2023; Li et al., 2023a; Liu et al., 2024). QuEST
employs standard channel-wise quantization for weights and layer-wise quantization for activations
at 6-bit precision. However, at 4-bit precision, it uses channel-wise quantization for the activations
of all Conv and Linear layers, which is hardly supported by the hardware because it cannot factor
the different scales out of the accumulator summation (please see Appendix H for details), leading
to inefficient acceleration.

Table 7: Comparison with EfficientDM and QuEST in both standard and non-standard settings.

Task Mode Method Prec. (W/A) Size (MB) FID ↓

LSUN-Church
(Yu et al., 2015)

256 × 256

LDM-8
steps = 100

eta = 0.0

- FP 32/32 1514.5 4.06

Non-standard
Not quantize for all

layers

EfficientDM 6/6 315.0 6.29
DilateQuant 6/6 315.0 4.73

EfficientDM 4/4 222.7 14.34
DilateQuant 4/4 222.7 8.68

Standard
Quantize for all layers

EfficientDM 6/6 284.9 6.92
DilateQuant 6/6 284.9 5.33

EfficientDM 4/4 190.3 15.08
DilateQuant 4/4 190.3 10.10

Non-standard
Channel-wise for A

QuEST 4/4 190.3 11.76
DilateQuant 4/4 190.3 8.94

Standard
Layer-wise for A

QuEST 4/4 190.3 13.03
DilateQuant 4/4 190.3 10.10

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

To thoroughly compare DilateQuant with EfficientDM and QuEST, we conduct experiments on
LSUN-church with standard and non-standard quantization settings. When neglecting these layers
that are important for quantization, DilateQuant extremely reduces the FID to 8.68 with 4-bit quan-
tization. Compared to the standard setting, the performance improvement is more noticeable. When
setting channel-wise quantization for activations, DilateQuant also reduces a 2.84 FID compared
with QuEST. Conclusively, DilateQuant significantly outperforms EfficientDM and QuEST at dif-
ferent quantization precisions for both standard and non-standard settings, which demonstrates the
stability and standards of DilateQuant.

F WORKFLOW AND EFFECTS OF WEIGHT DILATION ALGORITHM

The comprehensive workflow of Weight Dilation is illustrated in Algorithm 1. We implement WD in
three steps: searching unsaturated channels for scaling (Lines 2-3), calculating scaling factor (Lines
5-10), and scaling activations and weights (Line 12). WD alleviates the wide range activations for
diffusion models through a novel equivalent scaling algorithm. In addition, all operations of WD
can be implemented simply, making it efficient.

Algorithm 1 Overall workflow of WD

Input: full-precision X ∈ RN×Ci

and W ∈ RCi×Co

Output: scaled X
′

and W
′
.

1: searching unsaturated channels for scaling:
2: obtain Wmax ∈ RCo

and Wmin ∈ RCo

3: record in-channel indexes of Wmax and Wmin as set A
4: calculating scaling factor:
5: for k = 1 to Ci do
6: if k ∈ A:
7: set sk = 1
8: else:
9: calculate scaling factor sk with Wmax and Wmin as constraints

10: end for
11: scaling X and W :
12: calculate X

′
= X / s and W

′
= W · s

13: return X
′

and W
′

We assess the effects of WD on various quantization tasks. As reported in Table 8, WD stably
achieves s > 1 while maintaining ∆

′

w ≈ ∆w. It effectively improves performance at different
quantized models by losslessly reducing the activation quantization error.

Table 8: Effects of WD on different tasks with 4-bit quantization.

Tasks CIFAR-10 LSUN-Bedroom LSUN-Church ImageNet MSCOCO

∆
′
w/∆w 1.02 1.02 1.01 1.01 1.02

Eclip
′
/Eclip 0.83 0.92 0.92 0.93 0.92

proportion of s > 1 39.2% 52.4% 32.8% 36.5% 43.8%
∆

′
x/∆x 0.91 0.92 0.91 0.92 0.90

FID ↓ 9.13 (-0.50) 8.99 (-0.25) 10.10 (-0.20) 8.01 (-0.27) 44.82 (-0.79)

G DIFFERENT EQUIVALENT SCALING ALGORITHMS FOR DIFFUSION MODELS

In this section, we start by analyzing the differences between LLMs and diffusion models in terms
of the challenges of activation quantization. As shown in Figure 2(b), the activation outliers of the
diffusion models are present in all channels, unlike in LLMs where the activation outliers only exist
in fixed channels. Additionally, the range of activations for diffusion models is also larger than that
of the LLMs. Therefore, it is essential to scale the number of channels as much as possible for the

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

diffusion models. Some equivalent scaling algorithms are proposed to smooth out the activation
outliers in LLMs, and these methods have achieved success. SmoothQuant (Xiao et al., 2023a)
scales all channels using a hand-designed scaling factor. AWQ (Lin et al., 2024) only scales a few of
channels based on the salient weight. OmniQuant (Shao et al., 2023) proposes a learnable equivalent
transformation to optimize the scaling factors in a differentiable manner. DGQ (Zhang et al., 2023a)
devises a percentile scaling scheme to select the scaled channels and calculate the scaling factors.
OS+ conducts channel-wise shifting and scaling across all channels.

Unfortunately, when we applied methods similar to these previous equivalent scaling algorithms
to diffusion models, we find that none of them work. Specifically, we employ these five methods
for diffusion models as follows: (1) For the method similar to SmoothQuant, we scale all channels
before quantization using a smoothing factor α = 0.5; (2) For the method similar to AWQ, we scale
1% of channels based on the salient weight, setting smoothing factor the same as SmoothQuant;
(3) For the method similar to OmniQuant, we modify the scaling factors to be learnable variants
and train them block by block with a learning rate of 1e-5; (4) For the method similar to DGQ, we
scale the top 0.5% of quantization-sensitive channels, setting scaling factor based on the clipping
threshold. (5) For OS+, we perform shifting and scaling across all channels, consistent with the
original work. However, as shown in Table 9, all of these methods result in higher FID and sFID
scores compared to no scaling. The reason for this result is that although the range of activations
decreases, the range of weights also increases significantly, making it more difficult for the model
to converge during the training stage. In contrast, the Weight Dilation algorithm we proposed scales
the number of channels as much as possible. It searches for unsaturated in-channel weights and
dilates them to a constrained range based on the max-min values of the out-channel weights. The
algorithm reduces the range of activations while maintaining the weights range unchanged. This
effectively makes activation quantization easier and ensures model convergence, reducting the FID
and sFID scores to 9.13 and 6.92 in 4-bit quantization, respectively.

Table 9: The results of various equivalent scaling algorithms for DDIM on CIFAR-10.

Prec. Metrics No scaling SmoothQuant OmniQuant AWQ DGQ OS+ Ours

W4A4

proportion of s > 1 0% 100% 100% 1% 0.5% 100% 39.2%
FID ↓ 9.63 9.99 9.86 10.34 9.72 9.78 9.13
sFID ↓ 7.08 7.29 7.34 7.53 7.78 7.23 6.92
IS ↑ 8.45 8.46 8.50 8.38 8.52 8.36 8.56

W6A6

proportion of s > 1 0% 100% 100% 1% 0.5% 100% 39.2%
FID ↓ 5.75 5.44 5.56 5.85 5.09 5.81 4.46
sFID ↓ 4.96 4.87 4.89 5.19 4.84 4.99 4.64
IS ↑ 8.80 8.86 8.81 8.78 8.89 8.76 8.92

H HARDWARE-FRIENDLY QUANTIZATION

In this section, we investigate the correlation between quantization settings and hardware accelera-
tion. We start with the principle of quantization to achieve hardware acceleration. A matrix-vector
multiplication, y = Wx + b, is calculated by a neural network accelerator, which comprises two
fundamental components: the processing elements Cn,m and the accumulators An. The calcula-
tion operation of accelerator is as follows: firstly, the bias values bn are loaded into accumulators;
secondly, the weight values Wn,m and the input values xm are loaded into Cn,m and computed in
a single cycle; finally, their results are added in the accumulators. The overall operation is also
referred to as Multiply-Accumulate (MAC):

An =
∑
m

Wn,mxm + bn (19)

where n and m represent the out-channel and in-channel of the weights, respectively. The pre-trained
models are commonly trained using FP32 weights and activations. In addition to MAC calculations,
data needs to be transferred from memory to the processing units. Both of them severely impact
the speed of inference. Quantization transforms floating-point parameters into fixed-point parame-
ters, which not only reduces the amount of data transfer but also the size and energy consumption

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

of the MAC operation. This is because the cost of digital arithmetic typically scales linearly to
quadratically with the number of bits, and fixed-point addition is more efficient than its floating-
point counterpart. Quantization approximates a floating-point tensor x as:

x̂ = ∆ · xint ≈ x (20)

where xint and x̂ are integer tensors and quantized tensors, respectively, and ∆ is scale factor.

W1,1 W1,2 W1,3 W1,4

W2,1 W2,2 W2,3 W2,4

W3,1 W3,2 W3,3 W3,4

W4,1 W4,2 W4,3 W4,4

C1,1 C1,2 C1,3 C1,4

x1 x2 x3 x4

C2,1 C2,2 C2,3 C2,4

C3,1 C3,2 C3,3 C3,4

C4,1 C4,2 C4,3 C4,4

A1

A2

A3

A4

R
equantization

Memory

Activation

Weight

In-channel

O
ut

-c
ha

nn
el

∆𝑥𝑥. �𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

∆𝑤𝑤. �𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖

�𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

Figure 5: A schematic of matrix-multiply logic in accelerator for quantized inference.

Quantization settings have different granularity levels. Figure 5 shows the accelerator operation after
the introduction of quantization. If we set both activations and weights to be layer-wise quantization,
the new MAC operation can be represented as:

Ân =
∑
m

Ŵn,mx̂m + bn

=
∑
m

(∆wŴ
int
n,m)(∆xx̂

int
m ) + bn

= ∆w∆x

∑
m

Ŵ int
n,mx̂int

m + bn (21)

where ∆w and ∆x are scale factors for weights and activations, respectively, Ŵ int
n,m and x̂int

m are in-
teger values. The bias is typically stored in higher bit-width (32-bits), so we ignore bias quantization
for now. As can be seen, this scheme factors out the scale factors from the summation and performs
MAC operations in fixed-point format, which accelerates the calculation process. The activations
are quantized back to integer values x̂int

n through a requantization step, which reduces data transfer
and simplifies the operations of the next layer.

To approximate the operations of quantization to full-precision, channel-wise quantization for
weights is widely used, which sets quantization parameters to each out-channel. With this setting,
the MAC operation in Eq. 21 can be represented as:

Ân =
∑
m

(∆wn
Ŵ int

n,m)(∆xx̂
int
m ) + bn

= ∆wn
∆x

∑
m

Ŵ int
n,mx̂int

m + bn (22)

where ∆wn
is scale factor for the nth out-channel of weights. However, the channel-wise quantiza-

tion for activations sets quantization parameters to each in-channel. This setting is hardly supported

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

by hardware, as the MAC operation is performed as follows:

Ân =
∑
m

(∆wŴ
int
n,m)(∆xm

x̂int
m ) + bn

= ∆w

∑
m

∆xm
Ŵ int

n,mx̂int
m + bn (23)

where ∆xm
is scale factor for the mth in-channel of activations. Due to its inability to factor out

the different scales from the accumulator summation, it is not hardware-friendly, leading to invalid
acceleration.

I HUMAN PREFERENCE EVALUATION

In this section, we use an open-source aesthetic predictor9 to evaluate Aesthetic Score ↑, mimicking
human preference assessment of the generated images. As reported in Table 10, DilateQuant has
a better aesthetic representation compared to EfficientDM, which demonstrates that the quantized
models with our method are more aesthetically pleasing to humans. For the large text-to-image
model, we use the convincing DrawBench benchmark to evaluate human performance, as shown in
Figure 6. Additionally, we visualize the random samples of quantization results in Figure 7 (LSUN-
church), 8 (LSUN-Bedroom), and 9 (ImageNet). As can be seen, DilateQuant outperforms previous
methods in terms of image quality, fidelity, and diversity.

Table 10: Aesthetic assessment of the different quantized models with 4-bit quantization.

Method LSUN-Bedroom ImageNet DrawBench

FP 5.91 5.32 5.80

EfficientDM 5.47 3.51 2.84
DilateQuant 5.72 4.85 5.23

Fu
ll-

pr
ec

isi
on

Ef
fic

ie
nt

DM
Di

la
te

Q
ua

nt

A pink colored giraffe.
A green apple and a 

black backpack. A blue coloured pizza.
A sphere with the 

texture of kitchen tile.

Figure 6: Random samples of different quantized models on DrawBench with 6-bit quantization.

9https://github.com/shunk031/simple-aesthetics-predictor

18

https://github.com/shunk031/simple-aesthetics-predictor


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Full-precision(W32A32) DilateQuant(W6A6) DilateQuant(W4A4)

Figure 7: Random samples of quantized models with DilateQuant on LSUN-Church.

Full-precision(W32A32) EfficientDM(W4A4) DilateQuant(W4A4)

Figure 8: Random samples of different quantized models on LSUN-Bedroom with 4-bit quantiza-
tion.

Full-precision(W32A32) EfficientDM(W4A4) DilateQuant(W4A4)

Figure 9: Random samples of different quantized models on ImageNet with 4-bit quantization.

19


