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ABSTRACT

Federated Learning (FL) has gained significant attraction due to its ability to en-
able privacy-preserving training over decentralized data. Current literature in FL
mostly focuses on single-task learning. However, over time, new tasks may appear
in the clients and the global model should learn these tasks without forgetting pre-
vious tasks. This real-world scenario is known as Continual Federated Learning
(CFL). The main challenge of CFL is Global Catastrophic Forgetting, which cor-
responds to the fact that when the global model is trained on new tasks, its perfor-
mance on old tasks decreases. There have been a few recent works on CFL to pro-
pose methods that aim to address the global catastrophic forgetting problem. How-
ever, these works either have unrealistic assumptions on the availability of past
data samples or violate the privacy principles of FL. We propose a novel method,
Federated Orthogonal Training (FOT), to overcome these drawbacks and address
the global catastrophic forgetting in CFL. Our algorithm extracts the global input
subspace of each layer for old tasks and modifies the aggregated updates of new
tasks such that they are orthogonal to the global principal subspace of old tasks for
each layer. This decreases the interference between tasks, which is the main cause
for forgetting. We empirically show that FOT outperforms state-of-the-art contin-
ual learning methods in the CFL setting, achieving an average accuracy gain of
up to 15% with 27% lower forgetting while only incurring a minimal computation
and communication cost. Code can be found here.

1 INTRODUCTION

Federated learning (FL) is a decentralized training solution born from the need of keeping the local
data of clients private to train a global model (McMahan et al., 2017)). Most of the FL works focus
on the global learning of a single task (Hard et al.l 2018} Yang et al.,[2021; |Augenstein et al.|[2020).
However, in real life, new tasks might arrive to the clients over time while previous data disappear
due to storage limitations. For instance, assume a malware classifier is trained over multiple FL.
clients. The emergence of new malware families (new tasks) is inevitable, making the update of the
classifier a necessity. Another real-life scenario can be the emergence of new viruses in some clients
due to epidemics. The global model also has to learn to classify these new viruses (new tasks) (Yoon
et al.,[2021)). In both of these scenarios, the model should not forget its prior knowledge.

Continual Learning (CL) addresses this issue in centralized machine learning (ML), the problem of
learning sequentially arrived tasks without forgetting (Kirkpatrick et al., 2017)). Learning a global
model while new tasks appear in the clients in an online manner is a problem of Continual Federated
Learning (CFL) (Ma et al., 2022)). An ideal CFL algorithm solving global catastrophic forgetting
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Figure 1: Overview of Federated Orthogonal Training (FOT). Clients do regular SGD training. The
server projects the aggregated updates into the orthogonal subspace of previous tasks’ activation
subspace. At the end of each task, one communication round is reserved to extract global principal
activation subspace for each layer.

should not require storage of old task data and an unrealistic amount of computation on the client
side because they are already limited in the edge devices. Moreover, it should be compatible with
secure aggregation (Bonawitz et al.l 2017). The latest research has shown that local data can be
extracted from the local updates if there is no protection such as secure aggregation (Boenisch et al.,
2021;|Wang et al.|[2022; |[Fowl et al.| 2022). Lastly, it should be resistant to data heterogeneity across
clients which is mostly the case in real-world scenarios (Wang et al., 2021)).

Continual Federated Learning Challenges: The goal of centralized continual learning algorithms
is to prevent the disruption of knowledge acquired from previous tasks while learning new tasks.
When the network capacity is fixed, this is accomplished by transferring the information of old tasks
to the current learning process and training the model accordingly. Carrying global information of
old tasks is a non-trivial problem in Continual Federated Learning due to decentralization. One
possible solution is that the clients can maintain old tasks’ information according to their local data.
However, maintaining local information on the client side requires extra storage. Considering edge
device limitations, this approach is not feasible in real life. Moreover, even if it is pursued, mitigation
of global forgetting is not guaranteed because clients do not have global information of old tasks.
Clients update the model to prevent forgetting according to their local data. However, aggregation
of these local updates might not result in preventing global forgetting. This becomes a much major
problem in non-1ID settings. This effect is visualized in Figure 2]and demonstrated in Appendix

Our Contributions: In this work, we propose a CFL framework named Federated Orthogonal
Training (FOT) to address the Global Catastrophic Forgetting problem. Our framework (visualized
in Figure |1) modifies the global updates of new tasks so that they are orthogonal to previous tasks’
activation principal subspace. It decreases the interference between tasks therefore learning new
tasks does not disrupt model performance on old tasks. Within FOT, we introduce a novel aggrega-
tion method, named FedProject, which guarantees the orthogonality in a global manner. FedProject
requires the global principal subspace information of old tasks for each layer on the server. There-
fore, FOT has Global Principal Subspace Extraction (GPSE) to obtain that information. Our method
protects the privacy of the clients without any requirement of trusted third parties or representative
data in the server. Also, clients do not store anything and there is no extra computation on the
local training. Furthermore, our method is robust under data heterogeneity. We perform an exten-
sive comparison of our method with state-of-the-art baselines. Our method outperforms all other
methods with a significant margin.

2 RELATED WORK

Aiming to train a global model in federated learning for multiple tasks with online data arrivals, the
primary challenge is mitigating forgetting while preserving privacy (Ma et al.;2022)). Limited prior
efforts address this challenge. One approach involves clients storing and sharing perturbed subsets
of previous task samples (Dong et al.||2022)), but this strains storage and privacy. Knowledge distil-
lation, another solution, relies on a server’s access to task-specific datasets (Ma et al., [2022), which
may not be practical in certain scenarios. Recent proposals (Babakniya et al., [2023};|Qi et al.| 2023
Zhang et al., 2023)) suggest using generative models to generate synthetic samples to prevent forget-
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Figure 2: Dashed lines show each client maintains its local information of old tasks and apply a
continual learning method locally. The local updates try to reach the loss region where old and
new task loss is low locally (red regions). However, some portion of local low-loss regions might
not overlap with the global low-loss regions of both tasks (intersection of gray and yellow regions).
Therefore, aggregated update (shown as solid black arrow) may converge to the point where old task
loss is high (outside of the gray region)

ting, but these add significant computational and communication overhead. Another method (Halbe
et al., |2023) employs foundation models and prompt tuning but requires individual client updates
and an available foundation model at the server, increasing costs substantially. Our approach, in
contrast, combats forgetting without sharing data samples or assuming server-side datasets. It in-
curs minimal additional computation and communication costs. While related to GPM (Saha et al.,
2021) in centralized continual learning, our adaptation introduces a privacy-preserving framework
to extract global principal subspaces at each layer, ensuring orthogonality with a novel aggregation
method. We also account for data distribution heterogeneity across clients. Other works leverage
layer orthogonality in various contexts, such as one-shot federated learning (Su et al., [2023)) and
unlearning (Li et al., [2023)), but differ in their approaches and goals. An extended version of the
related work can be found in Appendix

3 PROBLEM FORMULATION

In a traditional federated learning setup, there is a single task 7 and there are C clients to train a
global model with parameters W in R communication rounds. At each round, clients receive the
global model from the server and perform local training on their local private data. Then clients send
the updated models to the server and the server aggregates the locally updated models (McMahan

et al| [2017). The optimization objective is minw 3., —%—£(D;; W) where D; is the local

1=1 ntotal
private dataset of client i, n; is the number of samples in D; and nypra; = Y , 1 is the total number
of samples across clients.

In Continual Federated Learning (CFL), there are K tasks ({71, 72, - - , Tk }) sequentially arriving
at the C clients. Each client 4, has a labelled private dataset for each task 7; denoted as D;; =
(%t uts)s (K2 y2 )y o (X057 yes") ) where (x},y}) are the feature and label pair of the i-th
data sample for task ¢, and nm is the number of data samples on client ¢ for task 7;. The aim is to
train W in a federated manner to learn the sequentially arrived K tasks. More formally, in CFL we

aim to solve the following optimization problem
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The objective aims to minimize the loss of all tasks among all samples, where each task is eval-
uated separately (i.e. task-incremental learning). We consider that each task 7;, appears for R;
communication rounds, during which only data from 7; is available at the clients.

The challenge in solving (I) stems from the nature of continual learning: D, ; is available only
during the learning of 7;. Neither clients nor the server can access the old tasks data. Furthermore,
we consider that there is no representative data for any of the tasks at the server. Due to the non-
availability of old tasks, the model forgets what it learns from previous tasks. Our central goal is
to solve this global catastrophic forgetting phenomenon while still preserving the privacy of each
of the clients’ local datasets. To study this problem, following the existing literature (van de Ven
& Tolias) 2019} |Saha et al., [2021; |Augenstein et al.| 2020 [Dong et al. 2022} Kirkpatrick et al.,
2017), we focus on the extreme forgetting case where the tasks are clearly separated, i.e., there is no
intersection between rounds where tasks 7; and 7}, Vi # j.
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4 PROPOSED SOLUTION

Let W be composed of L layers, W = {Wl}lf‘:1 where WY is the parameters of layer ¢ and X{ be
the input matrix for layer ¢ at task 7;. Each column corresponds to one input for the layer and these
inputs are distributed among the C' clients X{ = [x;{, X, .., xZ*‘l’l’e, Xt XZSZ’Z, - xZ"éc’é].
Notice that for the first layer, the columns of X} are the samples distributed among clients. Now,
applying the model to all inputs to layer ¢ across the clients can be written as:

H{ = W'X] )

where HY is the output of layer / at task T; before applying non-linearity. Our aim is to not change
HY! as much as possible for each layer while training new tasks ({T;+1, Tes2, -, Tic })-

4.1 FEDERATED ORTHOGONAL TRAINING (FOT)

To present the central idea of FOT, let us focus on the training of the first two tasks 7; and 7s.
With no previous tasks to care about, the training of 77 follows the vanilla FedAvg (McMahan et al |
2017). Let W; = {W{}L_, be the global model parameters for layer ¢ after concluding the training
of 7;. While training 72, WY is updated to W{ + AW*, v/ € [1 : L]. Now consider the layer
outputs at layer £ when applying the new global model parameters on data from 7;:

H{" = (W{ + AW")X{, 3)

where X{ is the inputs to layer £ assuming samples from task 7;. Our goal for task 77 is to achieve

that H‘i* = H¢, V¢ € [1 : L], such that the layer outputs and therefore the model mapping on data
from task 77 is unchanged due to subsequent tasks. From (3)), we can see that this is achieved when
AW?!X{ = 0 as in this case there is no interference from other tasks affecting 7;. More generally,
we would like to remove interference to task 7; by any of its subsequent tasks Ty, with ¢ > ¢, i.e.,
for any task ¢, we have that:

AWIX{ =0, Vgelt+1:T],Vlel:L] (4)

Note, however, that making AW/ X{ = 0 requires the row space of AW/ to be orthogonal to the
column space of X¢. When there are enough training samples for task 7; the column space of X
is full rank, which enforces AWﬁ = 0, effectively blocking learning for any subsequent tasks after
T¢ (no training). Therefore, instead of making Afoﬁ = 0, we will enforce a relaxed condition
by requiring AW‘P% | = 0, where P% | is the low-rank Global Principal Subspace (GPS) of X.
This subspace includes most of the X¢. We use the term “Global” since this subspace is extracted
from the whole data distributed among clients instead of the local data of individual clients.

4.1.1 FEDERATED PROJECTED AVERAGE (FEDPROJECT)

Extracting global principal subspace for each layer in a privacy-preserving manner is a challenging
problem which we address next in Section For now, let us assume that we have O{ which
denotes the set of orthogonal vectors covering the GPS of layer £ after training for 7;. While training
7T, aggregated updates are projected onto the orthogonal subspace of O for each layer  as follows:

c
1
6§lobal G Z 5 %)
i=1
. T
55101;(11 A 5§lobal - O{Of 55101)(11 (6)
W WE— bl (7)

where 6f denotes local update of client i for layer £ and Of is a matrix whose columns correspond
to basis vectors of Of. (5) is done with secure aggregation (Bonawitz et al., 2017). By using
the projection in (6), we remove the component of the updates that can disrupt the previous task
knowledge of the model, and make the model learn the new task in a subspace that is not effectively
used in previous tasks.
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The local training of clients is not modified. They perform regular training on their local data.
After T3 is finished, Of is expanded such that it also covers the global principal subspace of X%
for each layer /¢ and it is denoted as O%. For upcoming tasks, aggregated updates are projected into
to the orthogonal subspace of previous tasks’ GPS for each layer. After the training of each task
is finished, the orthogonal set is expanded again. The orthogonal set expansion and Extraction of
Global Principal Subspace are covered in Sectionf.1.2] Overall FOT is summarized in the Appendix
[D]and visualized in Figure[I]

Remark 1. Note that FedProject is guaranteed to converge for each task under the assumptions
stated in (L1 et al., 2020b). This is due to two key aspects. First, the projection step in FedProject
projects the update onto a set defined by O;. As a result, applying FedProject with gradient updates
is equivalent to applying ProximalSGD (Cohen et al. [2017) for a constrained convex optimization
problem, which is guaranteed to converge if the projection set is convex (we prove that the projection
set in FedProject is convex in Appendix @) Secondly, as shown in (L1 et al.l 2020b)), even when
clients perform a number of local steps locally before aggregation, if we consider a small enough
learning rate, the local updates can be approximated by a single gradient step with a larger learning
rate. This coupled with our equivalence to ProximalSGD, guarantees the convergence even when
projection is performed after a number of local epochs.

4.1.2 GLOBAL PRINCIPAL SUBSPACE EXTRACTION (GPSE)

After the training for task 7; is done, the server and clients go through an additional communication
round in order to extract the global principal subspace information for each layer in the model. In
this additional round, denoted as the GPSE round, the server broadcasts to all clients the global
model parameters W, and orthogonal vector set O; 1 = {O}_;,---,OF ;1 that covers the global
principal subspace (GPS) of each model layer to the clients. Each client ¢ applies the global model
‘W, on its local dataset, then for each layer /, it projects the layer inputs onto the subspace orthogonal
to Of_, as follows:

Xf,i — Xf . —Of_ IO[t 1X )
Where Xf,i is the input matrix of layer ¢ of client  at task ¢t. With (8), Xf.i* across the different
clients span a subspace that was not explored by the tasks up to 7;_. '
I C
The goal now is to estimate the global principal subspace of {Xf i } for each layer in order to
)=t

add it to Of_l. To do this each, we will invoke results from randomized SVD to estimate the global
principal subspace without violating privacy. First, each client ¢+ multiplies projected input vectors
with a random row vector and sums them up:

nt,q

AﬁzeZX“ gJ 9)

where gf is a standard normal random vector of length s (sampling dimension) sampled from
N(0,I). Note that Af; is a matrix of size d* x s* where d* := dim(z*). Each client i sends
{Af’i}szl to the server, which then sums all Af’i matrices for each layer ¢:

C
Al — ZA@ (10)

The summation in (I0) is done with Secure Aggregatlon (Bonawitz et al.,[2017), thus ensuring that
the server only has access to the aggregate At (See the discussion in Section [4.2). Note that the
resulting A£ can be written as:

C Nt
=33 gl =X x Gt (11)
1=15=1

where X{" = [X{,",-- X! "] is the projected X[ to the subspace orthogonal to Of_; and G*

is a standard normal Gaussian matrix with N; x s¢ dimension; N, represents the total number of
samples among all clients at task ¢ (i.e. N, = ch=1 N

With (TT)) in mind, we can now use an important result in randomized linear algebra, which we state
informally in the following theorem for brevity.
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Figure 3: Summary of GPSE. At the end of each task, clients multiply layer inputs with a random
gaussian matrix. These matrices are securely summed in the server. SVD is applied to the resulting
matrix to get the principal subspace.

Theorem 1. |Papadimitriou et al.|(1998) (Informally Stated): Let A be an m x n matrix and G be
a random Gaussian matrix of size n X p where p > k. Let Y = AG. Then, for sufficiently large
n, the principal column space of Y recovers the low-rank column space of A up to rank k with a
negligible error. The error decreases as p increases.

From Theorem I the server can obtain the principal subspace of X" approx1mately by using Af.
To find the subspace where most of the inputs lie on, the server apphes SVD on A for each layer é
Uf,%,V = sVD(AY). Then server finds the sufficient rank for each layer ¢:

IPPTAf|F | |IX{7]]

. ¢ F 0
min 7" €N s.t. > th (12)
1ALl P 1XE]1 e '
o
where P < U[0 : r*] and th{ is a threshold value. ‘\‘I)P(Ct‘ “‘llf measures how much of the input matrix
t

T
is already covered by Of_; and %

layer is approximated. Therefore, the threshold value determlnes how much portion of the input in

X e s
[1X¢llr

After determining the minimum sufficient rank rt, the server extends the orthogonal vector set for
each layer as follows Of « Of_; UU%[:, 1 : rY]. Finally, Of + GramSchmidt (Of) is applied in
order to keep all the vectors orthogonal to each other since the vectors in O¢_; and U%[:, 1 : r*] are
not necessarily orthogonal to each other. The different steps of GPSE are summarized in Appendix
and visualized in Figure 3]

measure how much of the remaining input for each

total for each layer is covered by the subspace. How to find is explained in the Appendix

4.2 DISCUSSION OF FEDERATED ORTHOGONAL TRAINING

Privacy: Our algorithm is privacy-preserving. During the FL training rounds, the clients perform
regular training on their local devices and send only the updates to the server. Our algorithm al-
lows the use of secure aggregation (Bonawitz et al., 2017) at these rounds because FedProject is
applied over aggregated updates. More importantly, GPSE rounds are also compatible with secure
aggregation (Bonawitz et al.|[2017). Each client sends a random Gaussian matrix for each layer and
the server sums these random Gaussian matrices as (I0) with secure aggregation. Secure aggrega-
tion is a well-studied primitive in federated learning that gives information-theoretic guarantees that
the server learns nothing about individual A; except their sum from their encoded values Z;, i.e.,

T{ASN {Z 3N Zl 1 A;) = 0. Recently it has been shown in Elkordy et al. (2022) that the
leakage through the sum is limited and is upper-bounded by a decreasing function in the number
of clients N. These guarantees through secure aggregation ensure the privacy of the proposed ap-
proach towards leakage about any individual clients. Furthermore, from the server’s perspective,
GPSE results in a distributed application of the Johnson-Lindenstrauss (JL) transform, which has
been shown to provide differential privacy guarantees (Blocki et al., 2012]).

Communication Cost: When performing training rounds for task ¢ with FOT, there is no additional
communication overhead since only local model updates are aggregated at the server using secure
aggregation, similar to FedAvg. The server then projects the aggregated update onto the set O;.
When transitioning from task ¢ to task ¢ 4+ 1, an additional communication cost is incurred to update
the orthogonal set from O; to O, 1, by performing an additional secure aggregation round in order to
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compute Oy ;1 (See Section|4.1.2). Since, the size of A! is equal to d* x s, then the communication
overhead in the GPSE step is O(d x s™#%), where d = ), d* and s™** = max(s").

Computation Cost: The computation cost of the algorithm on the client-side is negligible. During
the training of a task, regular training is performed on the clients. At the end of tasks, clients extract
internal activations and multiply with them a random row vector as in (@). This operation is not
computationally heavy. Assume there are at most N data points per task, then the computation
complexity is O(N x d x s™8%), where d = 3", d* and s™** = max(s*). This is close to one local
epoch forward pass complexity which is O(N x d x d™#*), where d™** = max(d"). The difference
comes from the ratio of jl,% which is a constant in our experiments.

Data Heterogeneity: Our algorithm is not negatively affected by data heterogeneity. The server
obtains the Global Principal Subspace of layer inputs by applying SVD on A for 7;. A!, the output
of (TI), is independent of the data distribution because of the commutative property of addition.
That means, for any possible data distribution, the extracted global principal subspace information
remains the same. This makes our algorithm resilient to data heterogeneity.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Here we provide a summary of the experimental setup with additional details on architectures, hy-
perparameters, and further details delegated to Appendix [F

Benchmarks: We evaluate the performance of our algorithm on four different CL benchmarks.
Permuted MNIST (Ebrahimi et al.}[2020) is a variant of MNIST (Lecun et al.l [1998)) containing 10
tasks. Each task is a randomly pixel-wise permuted version of the original MNIST inputs. Split-
CIFAR100 (Krizhevsky, 2009) is created by randomly dividing 100 classes into 10 tasks of 10
classes. Split Mini-Imagenet (Saha et al., [2021; |(Chaudhry et al.|, [2019a)) is created by randomly
dividing 100 classes into 20 tasks of 5 classes. Lastly, we use a sequence of 5-Datasets (Saha et al.}
2021)), where each dataset is considered a different task. These datasets are CIFAR-10 (Krizhevsky),
2009), MNIST, SVHN (Netzer et al.l 2011), notMNIST (Bulatov, [2011) and Fashion MNIST (Xiao!
et al.,|2017), and all of them contain 10 classes.

Baselines: We compare our method with the Federated Learning adaptations of state-of-the-art Con-
tinual Learning solutions, which are EWC (Kirkpatrick et al [2017), ER (Chaudhry et al.l 2019b),
RGO (Liu & Liu, 2022) and GPM (Saha et al., |2021). As a direct CFL approach, we compare
to GLFC (Dong et al., [2022), TARGET (Zhang et al., 2023) and FedCIL (Q1 et al.l |2023). How-
ever, since GLFC and FedCIL are proposed for class-incremental setup, we adapted them to task-
incremental setting with slight changes. We explain the details of the adaptations in the Appendix
Lastly, we only use FedAvg (FL) to demonstrate the worst-case baseline.

Data Distribution: We distribute each task’s data to the clients in both i.i.d. and non-i.i.d manner.
To simulate data heterogeneity, we follow the method of (McMahan et al.,|2017). The data is sorted
according to the labels, then it is divided into equal-sized shards, where the number of shards is
twice the number of clients. Each client is randomly given 2 shards in a non-replicative manner. In
the end, each client has data from at most two classes.

Metrics: We use two metrics to evaluate the performance of the algorithm. First, we measure
the average accuracy (ACC) (Lopez-Paz & Ranzatol |2017) of all tasks at the end of the whole
CFL process. Second, we use average forgetting (FGT) (Chaudhry et al., 2018) to evaluate global
catastrophic forgetting. Let a; ; be the global model accuracy of task 7; after the training of task 7,
FGT and ACC are defined as:

1 XK =
ACC = — ;au{, FGT = —— > aii—aik (13)

K—1 4
=1

5.2 EXPERIMENTAL RESULTS

Table[T] provides average accuracy and forgetting results and Table [2] compares baselines in terms of
storage at the edge and the extra computation on local training. Federated Orthogonal Training, in
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Table 1: Performance results of different methods on various datasets. ACC (higher is better) stands
for average classification accuracy of each task, while FGT (lower is better) denotes average forget-
ting as in (I3]). We run each experiment 3 times and provide mean and standard deviation.

PMNIST CIFAR100 5-Datasets Mini-Imagenet
Method ACC(%)  FGT(%) ACC(%) FGT(%)  ACC(%) FGT(%) ACC(%)  FGT(%)
FL 85.68:0.57 8294062  63.12:048  13.57x1.57  77.95:058  13.46x126 5043197  33.08£1.96
EWC+FL  86.74:097  8.84x140  63.13x065 13.48+1.77  77.68:055  13.76x174  47.00:146  36.68:1.57
ER+FL 88.614050  6.62:006 6542049  11.72+039  80.01x1.17  10.114268 55262295  27.80+323
A RGO+FL 8981020  4.84:055  63.912053 1439+054 84.86+124 3472052 5100188  31.76+1.87
= GPM+FL 88274075  6.88:063  59.43:048  18.13x059  80.28+1.02  10.720.61  50.26£190  30.04x1.22
GLFC 83.76:1.05 1470113 65.16:048  11.74:059  81.64x022  10.07:061  59.26:123  23.73x127
TARGET  89.23x037  3.132036  65.28+058  9.89+063  82.11:044  6.64+057  58.45:133  25.12+1.29
FedCIL 87.43x045 10012059  60.12+1.10  17.03+134  82.432034  7.65:036  55.98+1.67  28.90184
FOT(Ours)  90.35:006  1.75:006  71.90:006  0.87:0.10 8521093 1112031  69.07:073  0.19x0.11
FL 80.06:043 921067 62561017 10492040  67.71x775  21.55:973  41.00:041  32.92:125
EWC+FL  81.14x115  10.78:096 62574047 10412083 6841314 21424419  41.09:233  32.2321.20
A ER+FL 82.77+1.56 9324257  58.57%159  14.78:2.18  70.68+246  18.48:327  49.23:209  24.4040.50
S RGO+FL 79311348 15722396  40.83x286  31.57+1.61  77.92:080  6.89+112  40.43:023  33.24%080
£  GPM+FL 72.17£1.22 22.6+2.54 34.15+2.31 34.60+2.87  72.21x0.97 16.84+2.15  29.63x3.12  40.73+4.20
= GLFC 84.06:024 12132054  59.89+115  15.36:1.69  77.804049  11.06:1.15 5041185  23.46x221
TARGET  84.78:061  3.70:074  63.87+171  8.76x165  78.16:043  7.65+036  53.67+199  26.31x2.12
FedCIL 83.23:0.54  8.65:0.69  56.23x193  21.32:201  77.93x041  8.01:031  51.12:2.11  25.66+235
FOT(Ours)  85.21x0.13  1.97:022  66.312025  0.60:043  79.23:1.02  0.65:027  62.06:059  0.17:027
Table 2: Comparison of base-  Table 3: Percentage of used  Table 4: Running time of
lines in terms of storage on  subspace at the end of whole a GPSE round and 1 Local
the edge devices and extra  (raining for the average of all Epoch on the client side.
computation on local training.
P S . g layers. I Local GPSE
torage at xtra g g
Edge Computation Average  Average Epoch(s) ()
(IID)  (non-IID)
FL X X PMNIST 0.067  0.024
EWCHFL v v PMNIST 62.18%  61.36% CIFAR100 0074 0172
ER+FL Vi i
RGO+FL Vv Vv 5-Datasets 53.97% 45.64% Mini-Imagenet  0.194  0.215
g{ll\;/lgFL y y CIFAR100 4759%  32.96%
FedCIL v v Mini-Imagenet 89.94%  86.44%
FOT(Ours) X X

terms of average accuracy, has considerably better performance than the FL adaptations of state-of-
the-art CL methods in continual federated learning setup. Also, FOT outperforms GLFC and FedCIL
in all the benchmarks without any client storage and extra computation. Besides, FOT achieves very
small forgetting in all datasets in both i.i.d and non-i.i.d settings. These results validate that FOT
successfully transfers old tasks’ GPS information and does orthogonal training accordingly. The
higher accuracy margin in the non-i.i.d setting is mainly because of extraction of the global sub-
space information which is independent of distribution of the data (IT)) and FedProject guarantees
the orthogonality in a global manner. On the other hand, when we apply CL methods locally, in-
formation stored for old tasks does not reflect their global distribution, which is particularly true
when data distributions are heterogeneous. This makes the global model perform worse in hetero-
geneous settings. In addition to data-heterogeneity across clients per task, we explore the effect of
task-heterogeneity across clients (i.e each client does not necessarily train on all tasks) in Appendix
[G.1] More detailed results of Table[I]can be found in Appendix[G.2] Lastly, we provide the running
time and computation cost of GPSE in Table ] and[5] GPSE is performed only once at the end of
each task. The computation cost is close to one epoch training and the communication cost is less
than the model size. Therefore, FOT has a negligible effect on the costs of client side.

5.2.1 ANALYZING THE SUBSPACE OF LAYERS

In this section, we analyze how much portion of the subspace at layers is used by FOT at the end
of each task (Table[3). It is expected that the remaining space might not be sufficient for the proper
learning of new tasks. However, the learning capability is limited by the network capacity as layer
subspace is scaled with network size. Besides, even with 20 tasks in Mini-Imagenet, our method
achieves superior performance while there is still space for new tasks, which shows that our method
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Table 5: Size (in MB) of the model and Table 6: Split Mini-Imagenet results of Gaussian

the matrices used by FOT. Mechanism in GPSE round with (e = 5,5 = 1075)-
Model Size {A‘}L, {O%}E, DP and freezing the first layer after first task (FRZ).
IID non-IID
Resnet-18 2.56 0.64 0.08 ACC(%) FGT(%) | ACC(%) FGT(%)
FRZ 69.30 0.15 ‘ 62.72 0.12

can scale with high number of tasks. The behavior of subspace expansion is controlled by the
threshold value in (I2)). When the threshold is bigger, there is less forgetting but it also restricts the
available space for new tasks. If it is smaller, it will allow the network to learn more task, but by
forgetting old tasks more. The threshold value creates a trade-off between the amount of forgetting
and the number of tasks to learn. We investigate the effect of threshold value in Appendix [G.3]

5.2.2 ADDITIONAL MECHANISMS TO ENHANCE PRIVACY

As discussed in Section[4.2} applying our GPSE mechanism does provide differential privacy since it
is a distributed application of the Johnson-Lindenstrauss (JL) transform. However concrete privacy
guarantees in this case are dependent on the properties of the data matrix X . To further formalize our
privacy guarantees, in this subsection, we apply the Gaussian mechanism to the output of the GPSE
mechanism (See additional details in Appendix [H). As shown in Table [6] applying the Gaussian
mechanism causes a decline in performance. However, our FOT still outperforms other baselines
both in the IID and the non-IID settings. Furthermore, we make additional experiments that we are
freezing the first layer of the model after the first task. In that way, input of the first layer (samples)
does not attend in GPSE rounds and only the internal layer’s input (activations) is processed in
GPSE. This modification does not hurt the performance of FOT as shown in Table [6} Different
versions of FOT can be employed depending on the application’s required privacy.

6 LIMITATIONS

Our work is limited to solving the forgetting problem under the assumption of knowing task bound-
aries in the task incremental setting. The problem of not knowing task boundaries is an ongo-
ing research area in Continual Learning which is known as Task-Free Continual Learning (Aljundi
et al.,2019). Typical continual learning and federated continual learning papers (Ma et al., 2022}
Chaudhry et al., 2019a; Saha et al.l 2021} |van de Ven & Tolias| 2019; |Q1 et al., |2023; |Babakniya
et al., [2023; Zhang et al.| [2023)) assume the boundaries are known and are well-separated. We fol-
low the literature yet acknowledge that finding task boundaries is an important problem and can be
a topic of further research. Lastly, we investigate task-heterogeneity cases where each client sees
different subsets of tasks. These experiments are provided in Appendix [G.I] We observe that once
we know the task boundaries, task heterogeneity is not a problem for FOT.

7 CONCLUSION

In this work, we propose Federated Orthogonal Training to mitigate the Global Catastrophic For-
getting problem in Continual Federated Learning, where FL clients receive new tasks over time and
the global model performance on old tasks diminishes. Alleviating global forgetting is a challenging
problem due to the distributed and privacy-preserving nature of FL. To the best of our knowledge,
our approach is the first solution for CFL that mitigates global forgetting without requiring extra
storage and major additional computation at edge devices. Moreover, we protect the client’s pri-
vacy since FOT is compatible with secure aggregation. We evaluate our algorithm on different CFL
benchmarks with various network architectures and compare it with the FL adaptations of state-of-
the-art CL solutions. Experimental results show that our method mitigates global forgetting while
achieving high accuracy performance. We also present that the extra communication and computa-
tion costs of our algorithm are negligible.
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APPENDIX

A ANALYZING THE EFFECT OF DECENTRALIZATION ON FORGETTING

In this section, we demonstrate the main challenge of CFL which is carrying global information of
old tasks. To demonstrate this, we compare the performance of ER (Chaudhry et al., [2019b)) on
Split-Cifar100 (Krizhevsky, 2009) in centralized and federated settings. Federated ER stores some
samples from past tasks on the client-side while the centralized ER does the storage and training in
a centralized manner. In the federated setup, 125 samples are stored in total among all clients. In the
centralized setting, 100 samples are stored in total. We compute the average forgetting difference
between federated ER over FedAvg and ER over standard SGD. Table [/| shows that there is more
improvement in centralized ER than federated ER in terms of average forgetting with less storage.
The performance gap between federated and centralized ER is due to the fundamental challenge in
CFL. In the federated setting, old tasks’ information is only carried locally and aggregated at the
server. This may not preserve old tasks’ information globally compared to the centralized approach.

Table 7: Performance improvement of ER over baselines

Centralized Federated

Total Number

of Samples 100 125

ER Improvement

. 2.71% 0.48%
over Baselines

B RELATED WORK

Centralized Continual Learning. Several methods for continual learning and dealing with catas-
trophic forgetting have been recently proposed (De Lange et al., [2019). We can categorize these
solutions for the centralized settings into three methods: (1) Rehearsal-based approaches replay
previous tasks’ data that is stored in a limited memory (Lopez-Paz & Ranzato, |2017; |(Chaudhry
et al.| [2019a; Rolnick et al., [2019; |Guo et al.l |2020) or that is generated using generative mod-
els (Shin et al.,2017) to reduce forgetting of older tasks. However, the application of these solutions
in FL may violate federated learning’s data storage and privacy requirements. L1 & Hoiem| (2016)
follows an experience replay based method, where the model at the end of the previous task is stored
and used as a teacher, i.e knowledge distillation is applied on the features before the classification
layer. The application of this method to CFL overperformed by generative based approaches (Q1
et al.| 2023} [Babakniya et al.,|2023). (2) Expansion-based approaches increase the model capacity
to solve the problem of forgetting. The model is a dynamic network that increases in size as tasks
arrive (Rusu et al.l [2016; |Yoon et al., 2018} Sarwar et al., |2020; |Yoon et al., [2020). Distributed
application of these methods in FL may result in excessively big models, especially in scenarios
where client datasets can be highly heterogeneous. (3) Regularization-based approaches modify
the direction of gradients for each task by adding regularization such that the optimal parameters of
the new task are close to the optimal points of previous tasks (Kirkpatrick et al.l 2017; [Liu & Liu,
20225 Serra et al., 2018; Mallya & Lazebnik, 2018). These approaches (Kirkpatrick et al., 2017;
Liu & Liu, 2022; [Serra et al., 2018; Mallya & Lazebnikl, [2018)) require access to information from
previously trained tasks. Another approach for regularization was adopted by GPM (Saha et al.|
2021) which modifies the model gradients per layer for the sequential tasks such that the updates
are orthogonal to the core gradient subspace of previous tasks. When applied distributively in an FL
system, GPM is not guaranteed to achieve orthogonalization in the global model as core gradient
subspaces might differ across clients. It also requires extra computation and storage on the client
side.

Continual Federated Learning aims to train a global model in a federated learning system for
multiple tasks as data for different tasks arrives at the clients in an online manner. Similar to the
centralized continual learning, the main challenge is how to alleviate forgetting of the previous task
by the global model, but while maintaining the privacy requirements of federated learning (Ma
et al.,[2022)). A solution to this problem is not trivial because of the privacy constraints of federated
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learning (Ma et al.| [2022). A limited set of recent works have attempted to solve this non-trivial
problem. Dong et al.| (2022) proposes a solution where clients store a subset of the samples from
previous tasks and share them perturbed with a proxy server, which can be a limiting factor in terms
of storage (particularly for edge devices) and can still leak information through multiple views of
the perturbed task samples. Ma et al.| (2022) follows an approach based on knowledge-distillation
in order to alleviate forgetting of the global model. This assumes that the server has a representative
dataset for each task to be used for knowledge distillation. The availability of these datasets at the
server may not be feasible, particularly in scenarios where FL is used to train models in the absence
of representative centralized distributions.

Recently, (Q1i et al.| 2023} Babakniya et al.l 2023 [Zhang et al., [2023)) propose using generative
models to generate synthetic samples to prevent forgetting. However, these approaches increase
the computation and communication overhead significantly because they require training additional
generative model which is relatively bigger than the classifier model. Besides, the server generates
synthetic samples based on the generative model which can cause privacy leakage. (Halbe et al.,
2023)) uses foundation model and prompt tuning to prevent forgetting but that approach requires
individual updates of clients which cannot preserve privacy, and an available foundation model
at the server which is not always realistic. It also increases the computation and communication
costs a lot because of the size of the foundation models. Lastly, [Yoon et al.| (2021) addresses a
fundamentally distinct problem from ours while categorized under CFL. It is primarily interested
in learning individual local tasks, not learning a global model but utilizing the information of other
clients. It employs federated learning not to train a global model but to enhance the continual
learning process for individual local tasks by leveraging information from other clients.

Our proposed approach for dealing with forgetting in the global model does not require sharing of
the data samples with the server or assumes the availability of a dataset subset at the server. Also,
our method’s additional computation and communication cost is negligible. Perhaps, the closest
related work to ours is GPM (Saha et al., 2021) in centralized continual learning, however unlike
in the adaptation of GPM to FL, we introduce a privacy-preserving framework to extract the global
principal subspaces of each layer and guarantee the orthogonality with a new aggregation method,
while also being resilient to the heterogeneity of data distributions across clients. There are also
several works using layer’s orthogonality in different problems (Li et al.l 2023} [Su et al., [2023).
(Su et al., 2023)) is a one shot federated learning work and does not extract the global subspace of
the global model. It extracts a local subspace for each client at the client-side and sends it to the
server. Also, they do not make a global update; instead, they update each model separately regarding
the local subspace of each client. (Li et al., 2023) uses layer’s orthogonality idea in unlearning
setting. They directly send scaled samples to the server which violates the privacy and scales the
communication cost with number of samples.

C CONVEXITY OF PROJECTION SET IN FEDPROJECT

Throughout this section, we will abuse notation for ease of presentation, by treating all param-
eter updates ¢ in their vectorized form instead of a matrix, i.e., 6* is a vector of size d;, instead
of a matrix whose number of elements is equal to d,.

Let S be the set projected on in (), i.e. the set where 010bar 1lves in. We want to prove that S C RY
is a convex set where d = ), d¢ and dj is the parameter-size of layer £. In other words, we want to
show that Vg1, g(®) € S and o € [0, 1], we have that ag® + (1 — a)g® € S.

Note that the set S C R? is the cartesian product of the sets {S;}%_, and as a result, it is convex if
the individual sets S, are all convex.

Thus, we only need to focus on showing that Sy is convex V¢. Recall that, by definition, the set Sy is
the set of all vectors orthogonal to all the columns of O, i.e.

Sy = {ueRd‘

OZTu:O}.
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Now let gél), gf) € Sy, then we have that

T T T
of (agél) +(1- a)gf)) = aOf gél) +(1- oz)Oe gf)
=0 = agél) +(1- oz)gf) €Sy,

which proves that S is convex.

D ALGORITHMS

The Federated Orthogonal Training is summarized in Algorithm[I] The Global Principal Subspace
Extraction is summarized in Algorithm 2]

Algorithm 1 Federated Orthogonal Training

Let C' be number of clients, 7' be number of tasks, L be number of layers.
&¢ represents update for layer /
§:= {6} 1
Input: Total communication rounds per task I2; and data of the client % for task ¢ is D, ;, where
i€[l:Clandt € [1:T]
Initialize: O° = {},V/ € [1: L].
O+ {0},
for task ¢ = 1to T do
for round r = 1 to R; do
Server runs:
Send the global model W to clients
Each client i runs:
Train model with local data D; ;
Send update J; to Server
Server runs:
FedProject(W,0,{5;}%,)
end for
// End of a task .. Server extracts new principal subspace
O <+ GPSE(W, 0, {D;;}{,)
end for

FedProject(W, 0, {6;},):

5global = % Z'LC:I 52 < SecAgg ({51}?:1)
for layer / =1 to L do
/1 Applying (@) ... O is the orthonormal basis for O*

Ox 7 ot se
Ogtobal —* Ogiobat — O101 giopa
end for

W+ W - /J/(S;lobal

E COMPUTING PROJECTED PORTION OF THE DATA

e . . . . T

After each task is finished, clients project their layer inputs as Xf; =X{-0f Oztlef,i where
X¢ . is the input matrix for client 7 and layer ¢ at task t. After the projection is done, clients send the
X5 |1e

ratio —5———
X5 e

to the server, which is the information of how much portion of the input is already

L *
c 11X e

in Of_,. In the served-side, these rates are summed up > ;_, T e
t,i

. This summation gives an

X" Ilr

approximation of
pp {1

. Note that this summation can be done with secure aggregation.
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Algorithm 2 Global Principal Subspace Extraction (GPSE)

Input: Global model W, orthogonal set O, and set of data of the clients {Di}iczl, where C'is the
number of clients
Output: Updated orthogonal set O
Server runs:
Send global model W and O to the clients
Each client i runs:
A, +RandomizedActivationCollection(W,0,D;)
Send A; to the server
Server runs:
O + ExpandOrthogonalset({A;}{,,0)
return O

RandomizedA ctivationCollection(W, O, D):
Feed local data D to the model
Store inputs of each layer X*, V¢ € [1 : L]
for layer £ = 1 to L do
T

X X~ 0! 0% X! //Projecting input on orthogonal subspace as in

G’ ~ N(0,1) /I Normally distributed Gaussian matrix
Al — XY x G* // Applying
end for

return {A‘}L

ExpandOrthogonalSet({A;}$_ |, 0):
for layer £ = 1 to L do
Al = chﬂ A + sechAgg ({Ai}iczl)
UY, 4 V8« svp(AY)
r¢ < CalculateRank(A¢ U*) // Solving the problem in (T2) to find the minimum rank
¢

T

O + 0*u U0 : 1

Of < GramSchmidt (O)
end for
return {0}l

F EXPERIMENTAL DETAILS.

F.1 DATASETS

Dataset statistics are provided in Table

F.2 BASELINE DETAILS

EWC (Kirkpatrick et al., 2017) is a regularization-based method and defines important weights as
the Fisher Information diagonals. We adapt this approach to FL (EWC+FL) so that each client
calculates and stores its own fisher information matrix and uses it in the local training process. The
server performs regular FedAvg (McMahan et al., 2017) as FL.

ER (Chaudhry et al.,|2019b)) is a memory-based approach, where a certain number of samples from
each task is stored in the memory and the loss of that is equally contributed to the new tasks. For the
FL adaptation of this method (ER+FL), we let each client store a certain number of data points from
each task and do local training with stored samples and new tasks’ samples together. The server
performs regular FedAvg (McMahan et al.|[2017) as FL.

RGO (Liu & Liu, [2022) updates the optimizer iteratively to modify gradients and decreases the
interference of tasks. We adapt this method to FL. (RGO+FL) so that each client calculates the
Hessian matrix on its local data and maintains its own local projection matrix. The server performs
regular FedAvg (McMahan et al.}[2017) as FL.
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Table 8: Dataset statistics.

5-Datasets
PMNIST  (“[EAR10, MNIST, SVHN, notMNIST, FMNIST)
Input Size 1x28x28 3x32x32
# tasks 10 5
# clients 125 150
# training/task 50000 50000, 60000, 73257, 60000, 16853
# test/task 10000 10000, 10000, 26032, 10000, 1873
CIFAR100 Mini-Imagenet
Input Size 3x32x32 3x84x84
# tasks 10 20
# clients 50 50
# training/task 5000 2500
# test/task 1000 500

GPM (Saha et al.,[2021)) is applied locally for each client, i.e. clients compute orthogonal set locally
at the end of each task and apply projection to their local updates in each round. The server performs
regular FedAvg (McMahan et al.}[2017) as FL.

GLFC (Dong et al., [2022)) is designed for class-incremental while our setting is task-incremental.
GLFC proposes a method consisting of 3 parts to prevent forgetting:

1. They make clients store some old tasks data and during the training of new tasks, old
samples are also used with a normalization factor. This is very similar to ER (Rolnick!
et al.,[2019) with normalization difference.

2. Clients store the previous task’s model and calculate KL divergence loss between the out-
put of the new model and old model. This output comes from the last layer. As itis a
class-continuous setting, the output dimension of old models is less than the new model.
Therefore, they add new dimensions to the old task’s model by using the one-hot repre-
sentation of the label. This approach is specific to class-incremental settings because in
task-incremental there are different heads for different tasks so the old model does not have
an output for new tasks.

3. They require an additional proxy server for collecting perturbed gradients to generate sam-
ples of the clients.

In order to fairly compare with GLFC, we drop 2 and 3 because 2 is not proper for task-continual
setting and 3 assumes there is an additional server.

F.3 ARCHITECTURES

We use the same architecture for all of the methods we compare and the network size is fixed
throughout the whole CFL process.

MLP architecture: For Permute MNIST, we use a 4-layer MLP as in (Kirkpatrick et al.l |2017),
where the first 3 fully-connected layers’ hidden size is 400. The last layer is the classification layer
with output size of 10. We use ReLU as non-linearity and dropout of 0.2 after the first layer and 0.5
for the next 2 layers.

AlexNet-like architecture: For Split-CIFAR100 dataset, we use an AlexNet-like architecture sim-
ilar to GPM (Saha et al., 2021). There are 3 convolutional layer in the network with 64, 128 and
256 filters, and with 4x4, 3x3, and 2x2 kernel sizes, respectively. ReLU is used as non-linearity and
2x2 Max-Pooling is applied after each Conv layer. Conv layers are followed by two fully-connected
layers with hidden size of 2048. Dropout of 0.2 is applied for the first 2 layers, and with 0.5 for the
rest of the network. The model is multi-headed, where a separate classification layer for each task
exists at the end of the network. The output size is 10 for each of the heads.
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Reduced ResNetl8 architecture: For 5-Datasets and Split Mini-Imagenet, we use a reduced
ResNet18 architecture similar to the one in (Lopez-Paz & Ranzato) [2017). We subtitute the 4 x
4 Average-Pooling before classifier layer with 2 x 2 Average-Pooling. For Split Mini-Imagenet, we
use convolution with stride 2 in the first layer. The model is multi-headed, where a separate classifi-
cation layer for each task exists at the end of the network. The output size is 5 (Split Mini-Imagenet)
and 10 (5-Datasets) for each of the heads.

F.4 HYPERPARAMETERS

Note that we obtained the optimal hyperparameters presented in our work by performing grid search.

Local Training Details: In all of the experiments, local number of epochs is 1 with SGD optimizer
and learning-rate=0.01. Batch size is set to 64 for Permute MNIST, and 16 for Split-CIFAR100,
5-Datasets and Split Mini-Imagenet.

Number of Communication Rounds: For Permute MNIST, we run vanilla FL for 1100 rounds
in total, where first task is run for 200 and the others for 100 rounds. All of the other methods’
total communication round is set to 2000, divided equally to the tasks. For 5-Datasets, again each
method is run for the same round configuration. Number of rounds are 1000, 100, 200, 100, 100
in the order of 5-Datasets tasks, making in total 1500 rounds. For Split-CIFAR100, total number of
round is the same for each method with being 10000 and shared equally among 10 tasks. For Split
Mini-Imagent, each task is trained for 250 rounds, making in total of 5000 rounds, and this is set the
same for each method.

Number of Clients: For Permute-MNIST dataset, we set the number of total clients to 125 and
select 64 of them randomly. In this setup each client has 480 data points per task. For 5-Datasets, we
consider 150 clients in total and randomly select 64 of them. Local number of data points per client
is as follows in the task order: 333, 400, 488, 400, and 112. For Split-CIFAR100 and Split Mini-
Imagenet, there are 50 clients in total and the selection rate in in round is 0.5. Local number of data
points per client per task is 100 and 50 for Split-CIFAR100 and Split Mini-Imagenet, respectively.

Method Specific Hyperparameters:

« EWC+FL
- regularization coefficient: 40 (PMNIST), 20 (CIFAR100), 1 (5-Datasets), 0.01
(Mini-Imagenet)
« ER+FL
- total number of stored data among all clients: 125 (PMNIST), 50 (CIFAR100 and
Mini-Imagenet), 150 (5-Datasets)
* RGO+FL
- percentage of clients (randomly selected) that store projection matrix per task: 40%
(for all datasets)
* GLFC
- total number of stored data among all clients: 125 (PMNIST), 50 (CIFAR100 and
Mini-Imagenet), 150 (5-Datasets)
« FOT

- sampling dimension s’ is the same as d’ for MNSIT and 5d* for 5-Datasets, CI-
FAR100 and Mini-Imagenet @]) (L1 et al., [2020a)

Threshold values for Federated Orthogonal Training:

Threshold values for Federated Orthogonal Training (see (I2)) are provided in Table [9] Threshold
value is the same for each layer of the network. We do not tune the threshold value for each task,
we solely set the threshold value for the first task and increment it evenly after each task is finished.
The initial threshold values are 0.94, 0.95, 0.93 and 0.90 for PMNIST, 5-Datasets, Split-CIFAR100
and Mini-Imagenet, respectively. The increment value for 5-Datasets, Split-CIFAR100 and Mini-
Imagenet is 0.001 while it is zero for Permute MNIST. Note that there are 5 tasks in 5-Datasets,
while Permute MNIST and Split-CIFAR10 have 10 and Mini-Imagenet has 20.
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Table 9: Threshold values for Federated Orthogonal Training (see (I2)). Threshold is the same for
each layer of the neural network.

Dataset Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10
PMNIST (iid) 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
PMNIST (non-iid) 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
5-Datasets 0.95 0.951 0.952 0.953 0.954 - - - - -
CIFAR100 0.87 0.871 0.872 0.873 0.874 0.875 0.876 0.877 0.878 0.879
Mini-Imagenet 0.90 0.901 0.902 0.903 0.904 0.905 0.906 0.907 0.908 0.909
Task 11 Task 12 Task 13 Task 14 Task 15 Task 16 Task 17 Task 18 Task 19 Task 20
Mini-Imagenet 091 0911 0.912 0913 0.914 0.915 0.916 0917 0.918 0.919

F.5 GPU DEVICES

We measured local epoch training time and GPSE time (in Table ) for computation in NVIDIA
Quadro RTX 5000 GPU. We run our experiments in parallel on 8§ NVIDIA Quadro RTX 5000
GPUs.

G ADDITIONAL RESULTS

G.1 EFFECT OF TASK HETEROGENEITY

We analyze the effect of task heterogeneity across tasks for each client. In other words, a client does
not necessarily see all the tasks. In our experiments, each client see 60% of the tasks on average.
In global manner, we follow continual learning literature that is to separate tasks clearly (i.e. two
different tasks do not arrive to clients simultaneously). Number of rounds and hyperparameters are
set the same as before. However, to simulate the task heterogeneity, we increase the total number of
clients so that 60% of that is equal to the number of clients we set for the main experiments for each
dataset. By this way, the number of clients that have data for each task is the same as before. We
provide the results for task heterogeneity in Table [10]

Table 10: Performance results of different methods on Permute MNIST, Split CIFAR-100, 5-
Datasets and mini-Imagenet under task-heterogeneity setting. ACC (higher is better) stands for
average classification accuracy of each task at the end of whole CFL rounds, while FGT (lower is
better) denotes average forgetting as in (T3).

PMNIST CIFAR100 5-Datasets Mini-Imagenet

Method ACC(%) FGT(%) ACC(%) FGT(%) ACC(%) FGT(%) ACC(%) FGT(%)
FL 86.93 7.15 63.89 13.51 77.86 13.62 48.43 35.34
EWC+FL 87.92 7.92 63.13 14.20 78.38 13.10 47.73 35.92
@ ER+FL 89.97 5.60 65.68 11.84 79.00 12.23 55.80 27.78
RGO+FL 89.27 6.13 62.84 16.24 85.29 2.57 50.89 31.98
GLFC+FL 88.17 9.86 65.17 12.44 81.20 10.53 58.17 25.32
FOT(Ours) 90.18 1.60 71.68 1.13 85.06 0.88 68.95 0.04
FL 79.66 9.81 63.41 9.63 66.24 24.51 43.49 31.72
2 EWC+FL 81.56 10.49 62.41 10.14 63.87 27.90 41.49 33.69
L ER+FL 84.71 7.11 59.43 14.07 67.14 23.47 46.32 27.36
2 RGO+FL 76.68 18.31 45.54 26.18 79.90 5.11 42.95 31.22
GLFC+FL 85.36 9.85 60.74 14.20 77.65 11.42 49.58 24.93
FOT(Ours) 85.61 2.16 66.03 0.93 79.37 1.99 62.10 0.19

G.2 DETAILED RESULTS

In this section, we provide more detailed results on Split CIFAR-100 and Split mini-Imagenet for
each method. In Figure [ we provide curve of average accuracy measured at the end of each task.
For both datasets, FOT outperforms other methods throughout the whole training process. This
shows that our method has better performance independent of the number of tasks.
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In Figure [5] we provide curves of first task accuracy measured at the end of each task for each
method. We can deduce that FOT protects first-task accuracy only with a negligible accuracy drop.
The performance of other methods on the first task degrades significantly when new tasks arrive.

In Table[TT] we provide the results for Single Task. Single Task stands for the training of each task
separately then calculating the average accuracy of each task, i.e. there is different model for each
task.
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Figure 4: Average accuracies of the model at the end of each task for Split-Cifar100 and Split-Mini-
Imagenet Datasets.
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Figure 5: Task 1 and Task 11 accuracies of the model at the end of each tasks for Split-Cifar100
and Split Mini-Imagenet Datasets.

Table 11: Accuracy (%) results of Single Task training on various benchmarks. Please note that
FGT is not applicable.

Method PMNIST CIFARI00 5-Datasets Mini-Imagenet
Single Task (IID) 91.10 67.83 87.74 67.60
Single Task (non-IID) 86.42 61.93 83.86 58.71
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G.3 EFFECT OF THRESHOLD IN FOT

We analyze the effect of threshold value in FOT algorithm (12)) experimentally. For Split Cifar-
100 dataset and under non-IID data distribution among clients, we alter the threshold value of FOT
algorithm ranging from 0.80 to 0.96. We provide accuracy curves of all tasks in Figure[6] In Table
[12] we provide the numerical results of final accuracy for each task as well as final average accuracy
and average forgetting as defined in (T3). Also, we demonstrate how the activation space is utilized
for all the layers of the neural network (Figure 7).

Table 12: Accuracy of each task at the end of whole training for different threshold values of FOT
on Split-Cifar100 benchmark and under non-IID data distribution. ACC and FGT are as defined in

Taskl Task2 Task3 Task4 Task5 Task6 Task7 Task8 Task9 Task 10 | ACC FGT
Threshold | (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

0.80 51.9 57.0 70.9 66.2 69.4 70.2 72.9 70.0 72.6 76.2 67.7 22
0.85 53.8 59.2 72.2 66.2 68.5 67.9 69.7 67.8 69.1 74.2 669 1.3
0.87 53.8 60.5 71.8 65.0 68.9 65.9 69.3 68.0 68.5 715 663 1.1
0.90 57.1 61.5 70.6 64.1 66.6 64.7 65.7 65.1 67.2 69.2 652 0.6
0.93 61.0 62.7 67.0 59.3 65.1 61.4 63.4 62.5 64.1 66.4 633 0.1
0.96 62.4 61.6 64.2 579 61.7 59.3 61.2 61.0 60.6 64.5 614 -0.1
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Figure 6: Accuracy of each task measured at the end of training of each task for different threshold
values of FOT on Split-Cifar100 benchmark and under non-iid data distribution.

G.4 COMMUNICATION COST COMPARISON

As we claim in the main paper, the communication cost of FOT is negligible. This is because the
only additional cost of FOT is GPSE round, which only happens at the end of each task. Besides,
the communicated objects in that round are {A4,}%_, and {O,}}_, which have smaller size than
the model itself as we can see from Table 5] This additional cost of FOT per client is fixed. It
does not scale with the number of data points or the number of tasks. On the other hand, recent
Continual FL work |Q1 et al.| (2023)) adds additional communication cost per round. The server and
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clients has to communicate an additional generative model after the first task. This increases the total
communication cost more than 100%. In Figure[8|and Table[I3] we provide the total communication
cost of one client at the end of each task for Cifar100 and Mini-Imagenet datasets. At the first task,
the communication cost is equal for all methods because they all apply FedAVG. After the first task,
the communication cost of FOT and FedAVG is almost equal but cost of FedCIL increases more
than others because of the generator model communication.
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Figure 7: Percentage of used space at the end of each task on Split-Cifar100 (non-IID data distri-
bution) for different threshold levels of FOT.

Table 13: Cumulative communication cost comparison of FedAvg, FOT and FedCIL measured at
the end of each task on Split-Cifar100 and Split-mini-Imagenet.

Task1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9  Task 10

S FedAvg | 2840.0 5680.0 8520.0 11360.0 14200.0 17040.0 19880.0 22720.0 25560.0 28400.0

& FOT 2840.0 5680.3  8520.6 11360.9 14201.2 17041.4 19881.7 22722.0 25562.3 28402.6

O FedCIL | 2840.0 8880.0 14920.0 20960.0 27000.0 33040.0 39080.0 45120.0 51160.0 57200.0
FedAvg | 1280.0 2560.0 3840.0 51200 6400.0 7680.0 8960.0 10240.0 11520.0 12800.0

5 FOT 1280.0  2560.7 3841.4 51222 64029 7683.6 89643 102450 11525.8 12806.5

=

% FedCIL | 1280.0 4020.0 6760.0 9500.0 12240.0 14980.0 17720.0 20460.0 23200.0 25940.0

g

T Taskll Task 12 Task 13 Task 14 Task 15 Task 16 Task17 Task 18 Task 19 Task 20

g

& FedAvg | 14080.0 15360.0 16640.0 17920.0 19200.0 20480.0 21760.0 23040.0 24320.0 25600.0
FOT 14087.2 15367.9 16648.6 179294 19210.1 20490.8 21771.5 23052.2 24333.0 25613.7
FedCIL | 28680.0 31420.0 34160.0 36900.0 39640.0 42380.0 45120.0 47860.0 50600.0 53340.0

G.5 CONVERGENCE ANALYSIS OF FOT

In this section, we provide the convergence curves of FOT and FedAVG for different tasks in Figure
O] As the reader could approve, the accuracy-round curve of FOT and FedAVG exhibits similar
convergence behaviour in a task training. One difference is that as we do a convex restriction on
the model updates in FOT, the convergence point of FOT is less optimal compared to FedAvg.
Therefore, the accuracy of FOT is less than FedAVG at the end of the task. However, when the
model moves to the next tasks, FOT achieves to keep that accuracy but FedAVG cannot. This is the
reason why FOT have better average accuracy and almost 0 forgetting.
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Figure 8: Communication Cost Comparison of FedAvg, FOT and FedCIL
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Figure 9: Accuracy - Round Curves of FOT and FedAvg for various tasks in Mini-Imagenet and
Cifar100.

G.6 APPLICATION OF FOT TO SUBSET OF LAYERS

FOT can be applied some layers of the model rather than the whole layers. However, if we exclude
some of the layers from FOT, we should choose whether they will be frozen in the later tasks or
continue to be trained. If we freeze these layers, FOT still works well as we show in section 5.2.2.
In that experiment, we freeze the first layer and exclude it from FOT and the result is still as good as
the original FOT. However, if we choose to continue training the excluded layers in the later tasks,
FOT might not work well. The intuition behind this is that, when we fine-tune the excluded layers,
these layers’ activations in response to inputs from earlier tasks could change drastically and this
change can propagate to the activation response in later layers in the model.

To empirically show the affect of this, we use FOT on only a subset of layers. In the first experiment,
we apply FOT on the last half of the layers and fine-tune the early half of the layers. In the second
experiment, we still exclude the first half layers from FOT but we freeze them after the first task.
We also do the same experiment where we apply FOT only on the first half of the layers and fine-
tune/freeze the second half. The experiments are done in mini-Imagenet with IID distribution and
the same hyperparameters as the main experiments are used. Results are shown in Table [T4]
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When we do not freeze the excluded layers, the average accuracy is low which approves our hypoth-
esis. If we freeze these layers, we still get comparable results but the average accuracy is lower. This
is because when we freeze some layers, we restrict the learning of subsequent tasks which leads to
learning those tasks worse and lower average accuracy.

Table 14: Performance of applying FOT to the subset of layers on Mini-Imagenet. (A)-(B) denotes
that method (A) is applied to the first half of the model and method (B) is applied to the second half.

FOT-FOT FOT-frozen FOT-finetune frozen-FOT finetune-FOT

ACC(%) 69.07 67.48 49.79 67.58 47.31
FGT(%) 0.19 0.14 28.15 0.12 3341

H ADDITIVE GAUSSIAN MECHANISM

Instead of relying on the privacy guarantees coming from JL transform (Blocki et al., 2012), we
formalize the privacy guarantees by applying the Gaussian mechanism (Dworkl 2006)) at the clients
and use Secure Aggregation to get central approximate differential privacy guarantees at the server.
In particular, before sending the JL transformed matrices as in (I1]), we first clip the transformed
activates and then add Gaussian noise as shown in[I4] below

M,

Cox T
Af,«—cLte | Y xU gl o] + G, (14)

=1
where CLIP(X|L) = pxqmin(||X||, L) (typically we use L = 1) and G is sampled from

N(0,0%T). If we choose 02 > %, then using standard arguments we can achieve (e, d)-
central differential privacy, where C'is the number of clients in the federated learning system.
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