
Supplementary Materials

A Derivation for gradients

A.1 Offline Learning

In the following, we will derive the gradients for t = Tw and t < Tw separately. To derive the
gradients to the weight and bias terms, we first define

�li[t] =
@Ll

@Sl
i[t]

. (12)

1. For t = Tw:

The �li[Tw] can be directly calculated from the layer-wise local loss function, i.e., Eq. (4):

�li[Tw] =
@Ll

@Sl
i[Tw]

= �
2

Tw

✓
ŷli

ylnorm
�

1

Tw
⌃Tw

k=1S
l
i[k]

◆
(13)

With this, we can obtain

@Ll

@U l
i [Tw]

=
@Ll

@Sl
i[Tw]

@Sl
i[Tw]

@U l
i [Tw]

= �li[Tw]
@Sl

i[Tw]

@U l
i [Tw]

(14)

2. For t < Tw:

The �li[t] is obtained following the error backpropagation through time algorithm. By unrolling the
neuronal states along the temporal domain and applying the chain rule, we have

�li[t] =
@Ll

@Sl
i[t]

=
@Ll

@Sl
i[t+ 1]

@Sl
i[t+ 1]

@U l
i [t+ 1]

@U l
i [t+ 1]

@Sl
i[t]

+
@Ll

@Sl
i[Tw]

= �li[t+1]
@Sl

i[t+ 1]

@U l
i [t+ 1]

(�#)+�li[Tw]

(15)

We can further obtain @Ll

@U l
i [t]

as

@Ll

@U l
i [t]

=
@Ll

@Sl
i[t+ 1]

@Sl
i[t+ 1]

@U l
i [t+ 1]

@U l
i [t+ 1]

@U l
i [t]

+
@Ll

@Sl
i[t]

@Sl
i[t]

@U l
i [t]

= �li[t+1]
@Sl

i[t+ 1]

@U l
i [t+ 1]

↵+ �li[t]
@Sl

i[t]

@U l
i [t]
(16)

Finally, the gradients for network weight and bias terms can be computed by substituting Eqs. (14)
and (16) into the following equations:

@Ll

@wl
ij

=
TwX

t

@Ll

@U l
i [t]

@U l
i [t]

@wl
ij

=
TwX

t

@Ll

@U l
i [t]

Sl�1
j [t� 1] (17)

@Ll

@bli
=

TwX

t

@Ll

@U l
i [t]

@U l
i [t]

@bli
=

TwX

t

@Ll

@U l
i [t]

(18)

B Experimental details

B.1 Datasets

CIFAR-10 [29] This dataset contains 60,000 colored images from 10 classes. Each of the images
with the size of 32⇥ 32⇥ 3. All the images are split into 50,000 and 10,000 for training and testing,
respectively.

CIFAR-100 [29] This dataset contains 60,000 colored images from 100 classes. Each of the images
with the size of 32⇥ 32⇥ 3. All the images are split into 50,000 and 10,000 for training and testing,
respectively.

16



Tiny ImageNet [55] This dataset contains 110,000 colored images from 200 classes. Each of the
images with the size of 64⇥ 64⇥ 3. All the images are split into 100,000 and 10,000 for training
and testing, respectively.

For all the datasets, we follow the similar data pre-processing techniques used in [17], including
resize and random crop, random horizontal flip, and data normalization. More details can be found in
our released code.

B.2 Hyper-parameters for SNN

We fine-tuned the SNN hyper-parameters for different datasets as presented in Table 3.

Table 3: Hyper-parameters setting. ⌧m: membrane time constant of LIF neuron (⌧m = 1 for IF
neuron), #: neuronal firing threshold, and p: permission range of membrane potential that allows
gradients to pass through.

Dataset ⌧m # p

CIFAR-10 10 0.6 0.4
CIFAR-100 10 0.5 0.4
Tiny-ImageNet 10 0.5 0.4

B.3 Network architecture and training configuration

To facilitate comparison with other work, we perform experiments with VGG-11, 13, and 16, whose
network architectures are summarized as the following.

Table 4: Summary of network architectures. nC3: convolutional layer with n output channels, 3⇥ 3
kernel size, and stride of 2. nFC: linear layer with n output features.

Network Architecture

VGG-11 Input-64C3-128C3S2-256C3-256C3S2-512C3-512C3S2-512C3-512C3C2-
512FC-512FC-Classes

VGG-13 Input-64C3-64C3-128C3-128C3S2-256C3-256C3S2-512C3-512C3S2-
512C3-512C3C2-4096FC-4096FC-Classes

VGG-16 Input-64C3-64C3-128C3-128C3S2-256C3-256C3-256C3S2-512C3-512C3-
512C3S2-512C3-512C3-512C3C2-4096FC-4096FC-Classes

For VGG, the pooling layers are replaced with convolutional layers that have a stride of 2, and the
dropout is applied after fully connected (FC) layers. We use the Pytorch library to accelerate training
with multi-GPU machines. We train all teacher ANNs for 200 epochs using an SGD optimizer with
a momentum of 0.9 and weight decay of 5e�4. The initial learning rates are set to 0.01, 0.01, and
0.1 for CIFAR-10, Tiny-ImageNet, and CIFAR-100 datasets, respectively; the learning rates decay
by 10 at 60, 120, and 160 epochs. For the LTL training stage, we train the student SNNs with the
Adam optimizer for 100, 50, and 50 epochs for CIFAR-10, CIFAR-100, Tiny-ImageNet, respectively.
The initial learning rate is set to 1e�4 for all SNNs and decays its value by 5 every 10 epochs for
CIFAR-10 and 5 epochs for CIFAR-100 and Tiny-ImageNet, respectively. We train all the models on
Nvidia Geforce GTX 1080Ti GPUs with 12 GB memory for Tw = 16 and below, and we use the
GPU cluster that has GPUs with 40 GB memory for Tw = 32.

C Study of the warm-up period on the online learning performance

To study the effect of the warm-up period Twarm on the online learning performance, we perform a
study by progressively increasing Twarm, during which the parameter updates are not allowed. The
experiments are conducted on CIFAR-10 dataset with VGG-16 and Tw = 16. As the results reported
in Table 5, it is clear that increasing Twarm will lead to better gradient approximation as evidenced
by the improved test accuracy.

17



Table 5: Ablation study on the warm-up time steps Twarm.
Twarm(online) SNN(LIF) SNN(IF)

2 91.07 90.38
4 92.27 92.20
6 92.54 92.37
8 92.71 92.26

10 92.73 92.45
12 92.74 92.15
14 93.00 92.60

D Online LTL rule perform as effectively as the offline version

To further shed light on why the online LTL rule can perform as effectively as the offline version, we
conduct an experiment to analyze the degree of mismatch between their calculated gradients. In this
experiment, we first pre-train a teacher ANN model on the MNIST dataset [33] with a 4-layer MLP
architecture (i.e., 784-800-800-800-10). Then, we randomly initialize a student SNN model and draw
50 random batches of 128 samples to calculate the gradients at each layer. As shown in Figure 5, the
cosine similarities between offline and online calculated gradients remain higher than 0.86 for all the
hidden layers. According to the hyperdimensional computing theory [27], any two high dimensional
random vectors are approximately orthogonal. It suggests the online estimated gradients are very
close to the offline calculated ground truth values and guarantees that the desired learning dynamics
can be well approximated.

Figure 5: Cosine similarities between the online and offline calculated gradients on a MLP architecture.
The error bar indicates the standard deviation across 50 random data batches.

E Rapid and efficient pattern recognition on VGG-16

We show here that similar results as described in Section 3.2 can be also obtained on VGG-16. As
shown in Figure 6(a), both LTL and STBP trained SNNs can maintain a high accuracy even with an
extremely short time window (i.e., Tw = 4), while the quantized ANN degrades significantly when
the quantization level is below 16. In addition, our VGG-16 can achieve competitive accuracy with
only 0.57⇥ total SynOps as compared to its analog counterpart as shown in Figure 6(b).

18



(a) (b)

Figure 6: (a) Comparison of SNN and ANN accuracies under different time windows (SNN) and
quantization levels (ANN). The results are obtained on the CIFAR-10 dataset using the VGG-16
architecture. (b) The ratio of total synaptic operations between SNN and ANN as a function of the
time window.

F Rapid network convergence for VGG-16 architectures

We show here that a similar result of the experiment described in Section 3.3 can be obtained on the
VGG-16 architecture. Both the offline and online LTL rules converge rapidly within 5 epochs on the
CIFAR-10 dataset, which is much faster than the baseline STBP and TET rules.

(a) (b)

Figure 7: Comparison of the learning curves of offline LTL, online LTL, STBP and TET learning
rules. The experiments are performed on the CIFAR-10 dataset with the VGG-16 architecture.

G Empirical analysis on memory and time complexity

We measure the actual memory consumption and training time using the VGG11 architecture and
CIFAR-10 dataset. We present the average results recorded over 10 training epochs in the Table
below. In general, the GPU memory usage scales up almost linearly with the time window size (i.e.,
T=16) for the STBP and Offline LTL methods, which follows our theoretical analysis. Compared to
the STBP rule, the offline LTL rule requires slightly more memory space for the calculation of the
layer-wise loss functions. As for per epoch training time, although both offline and online LTL rules
are significantly faster than STBP rule, the ratios of speed up scale poorer than the theoretical ones.
We would like to acknowledge that we adopt the primitive and unoptimized Pytorch GPU kernels in
our implementation. To achieve the desired theoretical speed up, it requires customized GPU kernels
that can perform the training both in parallel across time and layers and we leave this as future work.

19



Table 6: Comparison of the empirical memory and time complexity of different learning rules.
Method GPU Memory Usage (MB) Training Time per Epoch (s)
STBP 7072 489.80
Offline LTL 7472 389.32
Online LTL 718 103.30

H Comparison with hardware-in-the-loop training approach

We compare the online LTL rule with the hardware-in-the-loop (HIL) training approach in addressing
device-related noises introduced in Section 3.5. Table 7 reports the fine-tuned accuracies under
different noise levels with a pre-trained SNN of 92.11% test accuracy. These results suggest both
approaches can achieve comparable performance in addressing the low and moderate levels of device
noises.

Table 7: Comparison of the test accuracies of online LTL and HIL training rules on CIFAR-10 dataset.
Noise Type Noise Level Before Fine-tuning LTL Fine-tuned HIL Fine-tuned

Device mismatch

� = 0.05 91.67 92.22 92.66
� = 0.10 91.26 92.23 92.23
� = 0.20 88.63 92.21 90.71
� = 0.30 81.96 92.29 87.55
� = 0.40 71.20 92.26 82.11

Quantization noise

7 bits 91.83 92.08 91.58
6 bits 91.71 91.82 91.43
5 bits 91.07 91.51 90.48
4 bits 88.92 90.64 89.37
3 bits 58.22 73.07 55.50

Thermal noise

� = 0.01 91.94 92.20 92.42
� = 0.05 89.25 91.36 91.98
� = 0.10 81.20 90.23 90.40
� = 0.15 69.18 88.51 89.09
� = 0.20 55.03 86.77 86.92

Neuron silence

p = 0.1 90.96 92.14 92.27
p = 0.2 88.32 91.45 92.37
p = 0.3 80.58 90.28 92.03
p = 0.4 62.13 88.42 91.46
p = 0.5 37.38 84.45 90.54

To demonstrate the proposed layer-wise training approach can achieve better noise robustness and
scalability than the HIL training approach, we further increase the level of device noise and tested the
pre-trained SNNs on the MNIST dataset. As the results summarised in Table 8, the LTL rule is highly
robust to different levels of noise and can also scale up freely to deeper VGG-16 architecture. In
contrast, the performance degrades significantly for the HIL learning method with increasing levels of
noise and network depth. This can be explained by the fact that the gradients estimated at each layer
tend to be noisy and the errors accumulated across layers during training. Whereas our layer-wise
training approach can effectively overcome this problem.

20



Table 8: Comparison of the test accuracies of online LTL and HIL training rules on CIFAR-10 dataset
with VGG-9 and VGG-11 architectures.

Architecture Pre-trained Acc. Noise Level Before Fine-tuning LTL Fine-tuned HIL fine-tuned

VGG-9 99.45
� = 0.5 99.00 99.42 99.02
� = 1.0 95.99 99.36 97.31
� = 1.5 70.51 99.34 78.40

VGG-11 99.55
� = 0.5 98.29 99.69 99.40
� = 1.0 87.63 99.60 86.52
� = 1.5 39.21 99.52 10.42

It is beneficial if the learning rules are robust to the choice of hyper-parameters. To further investigate
on this perspective, we compare the performance of the online LTL and HIL rules at different learning
rates. As shown in Table 9, the LTL rule can tolerate a larger learning rate than the HIL rule.

Table 9: Comparison of the test accuracies of LTL (HIL) rule at different learning rates. The
experiments are conducted on CIFAR-10 dataset with VGG-11. lr: learning rate.

Noise Type Noise Level lr = 0.0001 lr = 0.001 lr = 0.01

Device mismatch

� = 0.05 92.05 (90.87) 91.29 (10.00) 74.09 (10.00)
� = 0.10 92.06 (92.59) 91.34 (10.00) 72.96 (10.00)
� = 0.20 92.09 (91.89) 91.69 (10.00) 10.00 (10.00)
� = 0.30 92.22 (89.61) 91.85 (10.00) 77.83 (10.00)
� = 0.40 92.43 (86.02) 92.09 (10.00) 84.75 (10.00)

Quantization noise

7 bits 92.35 (91.25) 92.33 (89.87) 92.38 (35.66)
6 bits 91.84 (91.24) 91.84 (90.22) 91.98 (75.04)
5 bits 91.81 (90.40) 91.96 (87.91) 91.84 (70.99)
4 bits 91.36 (88.90) 91.46 (88.30) 91.53 (77.58)
3 bits 82.35 (56.53) 82.32 (54.17) 82.59 (35.28)

Thermal noise

� = 0.01 91.53 (92.82) 83.91 (10.53) 81.96 (10.00)
� = 0.05 91.37 (92.65) 90.23 (10.28) 70.87 (10.07)
� = 0.10 88.86 (91.65) 83.91 (10.10) 40.35 (10.65)
� = 0.15 87.76 (90.83) 71.09 (10.16) 10.00 (10.27)
� = 0.20 85.77 (89.85) 63.00 (10.37) 10.58 (10.61)

Neuron silence

p = 0.1 92.31 (92.93) 91.87 (10.48) 10.47 (10.33)
p = 0.2 91.82 (92.77) 90.93 (10.40) 10.26 (10.18)
p = 0.3 90.91 (92.72) 89.42 (16.44) 10.39 (10.07)
p = 0.4 89.38 (92.28) 86.31 (28.77) 10.52 (10.24)
p = 0.5 86.53 (91.87) 83.09 (70.35) 10.23 (10.29)

21


	Introduction
	Methods
	Spiking Neuron Model
	Local Tandem Learning

	Experiments
	Accurate and Scalable Image Classification
	Rapid and Efficient Pattern Recognition
	Rapid Learning Convergence
	Low Memory and Time Complexity
	Robust to Hardware-related Noises

	Conclusion
	Derivation for gradients
	Offline Learning

	Experimental details
	Datasets
	Hyper-parameters for SNN
	Network architecture and training configuration

	Study of the warm-up period on the online learning performance
	Online LTL rule perform as effectively as the offline version
	Rapid and efficient pattern recognition on VGG-16
	Rapid network convergence for VGG-16 architectures
	Empirical analysis on memory and time complexity 
	Comparison with hardware-in-the-loop training approach

