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Abstract Recent advances in deep learning from probability distributions successfully achieve classi-
fication or regression from distribution samples, thus invariant under permutation of the
samples. The first contribution of the paper is theDida distributional architecture, extending
the state of the art to achieve invariance under permutation of the features, too. The Dida
properties of universal approximation, and robustness with respect to bounded transforma-
tions of the input distribution, are established. The second contribution is to empirically
demonstrate the merits of the Dida architecture on two tasks defined at the dataset level.
The first task consists of predicting whether any two dataset patches are extracted from
the same initial dataset. The second task consists of predicting whether a hyper-parameter
configuration dominates another configuration, in terms of the learning performance of a
fixed learning algorithm on a dataset extracted from the OpenML benchmarking suite. On
both tasks, Dida outperforms the state of the art as well as models based on hand-crafted
meta-features. The penultimate layer neurons can thus be viewed as learned meta-features,
defining an accurate and computationally affordable description of datasets.

1 Introduction

Deep networks architectures, initially devised for structured data such as images and speech,
have been extended to enforce some invariance or equivariance properties (Shawe-Taylor, 1993) for
more complex data representations.1 The merit of invariant or equivariant neural architectures is
twofold. On the one hand, they inherit the universal approximation properties of neural nets (Cy-
benko, 1989; Leshno et al., 1993). On the other hand, the fact that these architectures comply
with the invariances attached to the considered data representation yields more robust and more
general models (through constraining the neural weights and/or reducing the number of weights,
as examplified by convolutional networks). For instance, when considering point clouds (Qi et al.,
2017) or probability distributions (Bie et al., 2019), the network output is required to be invariant
with respect to permutations of the input points.

Related works. Invariance or equivariance properties are relevant to a wide range of applications.
In the sequence-to-sequence framework, one might want to relax the sequence order (Vinyals et al.,
2016). When modelling dynamic cell processes, one might want to follow the cell evolution at
a macroscopic level, in terms of distributions as opposed to, a set of individual cell trajectories
(Hashimoto et al., 2016). In computer vision, one might want to handle a set of pixels, as opposed
to a voxellized representation, for the sake of a better scalability in terms of data dimensionality
and computational resources (Bie et al., 2019).

On the theoretical side, neural architectures enforcing invariance or equivariance properties
have been pioneered by (Hartford et al., 2018). Characterizations of invariance or equivariance
under group actions have been proposed in the finite (Ravanbakhsh et al., 2017) or infinite case

1Function 𝑓 : 𝑋 ↦→ 𝑌 is said to be invariant under operator 𝜎 defined on domain 𝑋 iff 𝑓 (𝜎 (𝑥)) = 𝑓 (𝑥) for all 𝑥 in 𝑋 .
Function 𝑓 : 𝑋 ↦→ 𝑋 is said to be equivariant iff 𝑓 (𝜎 (𝑥)) = 𝜎 (𝑓 (𝑥)) for all 𝑥 in 𝑋 .
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(Kondor and Trivedi, 2018). (Maron et al., 2018; Keriven and Peyré, 2019) have proposed a general
characterization of linear layers enforcing invariance or equivariance properties with respect to
the whole permutation group on the feature set. The universal approximation properties of such
architectures have been established in the case of sets (Zaheer et al., 2017), point clouds (Qi et al.,
2017), discrete measures (Bie et al., 2019), invariant (Maron et al., 2019) and equivariant (Keriven and
Peyré, 2019) graph neural networks. (Maron et al., 2020) presents a neural architecture invariant
w.r.t. the ordering of points and their features, handling point clouds.

Motivations. This paper aims to build representations of datasets through learned meta-features.
Meta-features, meant to represent a dataset as a vector of characteristics, have been mentioned
in the ML literature for over 40 years, in relation with several key ML challenges: a) learning a
performance model, predicting a priori the performance of an algorithm (and the hyper-parameters
thereof) on a dataset (Rice, 1976; Hutter et al., 2019); b) learning a generic model able of quick
adaptation to new tasks, e.g. one-shot or few-shot learning, through the so-called meta-learning
approach (Finn et al., 2017; Baz et al., 2021); c) hyper-parameter transfer learning (Perrone et al.,
2018).

A large number of meta-features have been manually designed along the years (Muñoz et al.,
2018; Rivolli et al., 2022), ranging from sufficient statistics to the so-called landmarks (Pfahringer
et al., 2000), computing the performance of (fast) ML algorithms on the considered dataset. The
challenge is the following: on the one hand meta-features should capture the joint distribution
underlying the dataset in order to help tackling tasks a), b) and c); on the other hand, the meta-
features should be sufficiently fast to compute to make sense using them (compared to tackling the
above tasks using brute force). How to learn meta-features has been first investigated by (Jomaa
et al., 2021) to our best knowledge. The authors build the Dataset2Vec representation by tackling
a supervised learning problem at the dataset level: specifically, given two dataset patches, that is,
two subsets of examples, described by two (different) subsets of features, Dataset2Vec is trained
to predict whether those patches are extracted from the same initial dataset. In the same line of
approach, Meskhi et al. (2021) have proposed to predict algorithm performances, then consider as
meta-features the representations extracted at the last hidden layer.

Contributions. In order to learn meta-features, this paper proposes a new distribution-based
invariant deep architecture (Dida), which is independent of the dimension 𝑑 of the distribution
support. The merits of the Dida architecture are experimentally demonstrated on two tasks defined
at the dataset level, significantly outperforming state of art architectures (Maron et al., 2020; Jomaa
et al., 2021; Muñoz et al., 2018) on these tasks (Section 3).

The novelty of the approach is to handle continuous and discrete probability distributions on
R𝑑 , extending state of art approaches dealing with point clouds (Maron et al., 2020; Jomaa et al.,
2021). This extension yields more general approximation results (Appendix E).

Notations.. ⟦1;𝑚⟧ denotes the set of integers {1, . . .𝑚}. Distributions, including discrete distri-
butions (datasets) are noted in bold font. Vectors are noted in italic, with 𝑥 [𝑘] denoting the 𝑘-th
coordinate of vector 𝑥 .

2 Distribution-Based Invariant Networks for Meta-Feature Learning

This section describes the core of the proposed Dida architecture, specifically the mechanism of
mapping a point distribution onto another one subject to sample and feature permutation invariance,
referred to as invariant layer. The Lipchitzness and universal approximation properties of Dida ,
which guarantee both its robustness and expressiveness, are discussed in Appendix E.
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2.1 Distribution-Based Invariant Layers

The building block of the proposed architecture, the invariant layer meant to satisfy the feature
and label invariance requirements, is defined as follows, taking inspiration from Bie et al. (2019).
Definition 1. (Distribution-based invariant layers) Let an interaction functional 𝜑 : R𝑑 × R𝑑 → R𝑟
be 𝐺-invariant:

∀𝜎, 𝑧1, 𝑧2 ∈ 𝐺 × R𝑑 × R𝑑 , 𝜑 (𝑧1, 𝑧2) = 𝜑 (𝜎 (𝑧1), 𝜎 (𝑧2)) .
The distribution-based invariant layer 𝑓𝜑 is defined as 𝑓𝜑 : z = (𝑧𝑖)𝑖∈⟦1;𝑛⟧ ∈ Z(R𝑑 ) ↦→ 𝑓𝜑 (z) ∈ Z(R𝑟 )
with

𝑓𝜑 (z)
def.
=

(
1
𝑛

𝑛∑︁
𝑗=1

𝜑 (𝑧1, 𝑧 𝑗 ), . . . ,
1
𝑛

𝑛∑︁
𝑗=1

𝜑 (𝑧𝑛, 𝑧 𝑗 )
)

(1)

By construction, 𝑓𝜑 is 𝐺-invariant if 𝜑 is 𝐺-invariant. The construction of 𝑓𝜑 is extended to
the general case of possibly continuous probability distributions by replacing sums with integrals
(Appendix F).

It is important that 𝑓𝜑 invariant layers (in particular the first layer of the neural architecture)
can handle datasets of arbitrary number of features 𝑑𝑋 and number of multi-labels 𝑑𝑌 . An original
approach is to define 𝜑 as follows. Let 𝑧 = (𝑥,𝑦) and 𝑧 ′ = (𝑥 ′, 𝑦 ′) be two samples in R𝑑𝑋 × R𝑑𝑌 .
Considering two functions (to be learned) 𝑢 : R4 ↦→ R𝑡 and 𝑣 : R𝑡 ↦→ R𝑟 , then 𝜑 is obtained by
applying 𝑣 on the sum of 𝑢 (𝑥 [𝑘], 𝑥 ′[𝑘], 𝑦 [ℓ], 𝑦 ′[ℓ]) for 𝑘 ranging in ⟦1; 𝑑𝑋⟧ and ℓ in ⟦1; 𝑑𝑌⟧:

𝜑 (𝑧, 𝑧 ′) = 𝑣

(
𝑑𝑋∑︁
𝑘=1

𝑑𝑌∑︁
ℓ=1

𝑢 (𝑥 [𝑘], 𝑥 ′[𝑘], 𝑦 [ℓ], 𝑦 ′[ℓ])
)

(2)

By construction 𝜑 is invariant to both feature and label permutations; this invariance property
is instrumental to a good empirical performance (Section 3). Note that (after learning 𝑢 and 𝑣 ,
implementation details in Appendix C) 𝑓𝜑 can map a 𝑛-size dataset z onto an 𝑛-size 𝑓𝜑 (z) dataset
for any arbitrary 𝑛. The overall complexity of 𝑓𝜑 is thus O(𝑛2.𝑑𝑋 .𝑑𝑌 ).

As said, 𝑓𝜑 is based on interaction functionals 𝜑 (𝑧𝑖 , 𝑧 𝑗 ). This original architecture is rooted
in theoretical and algorithmic motivations. On the one hand, interaction functionals are crucial
components to reach universal approximation results (see Appendix H, Theorem 2). On the other
hand, the use of local interactions allows to create more expressive architectures; the benefit of
these architectures is illustrated in the experiments (Section 3).

2.2 Learning from distributions

Dida distributional neural architecture, defined on point distributions, maps a multi-labelled
dataset z ∈ Z(R𝑑 ) onto a real-valued vector noted F𝜁 (z), with

F𝜁 (z)
def.
= 𝑓𝜑𝑚 ◦ . . . ◦ 𝑓𝜑𝑜+1 ◦ 𝑓𝜑𝑜 ◦ . . . ◦ 𝑓𝜑1 (z) ∈ R𝑑𝑚+1 (3)

where 𝜁 are the trainable parameters of the architecture (below). This architecture inherits from
Lipschitzness of the interaction functional 𝜑 , which guarantees its robustness to input perturbation,
as well as universal approximation abilities denoting its expressiveness. Both results are detailed in
the general multi-labelled case, in Appendix E. For simplicity, only the single label case (𝑑𝑌 = 1) is
considered in the following.

The first invariant layer is defined from 𝜑1, mapping pairs of vectors in R𝑑 (𝑑1 = 𝑑) onto
R𝑑2 ; it is possibly followed by other invariant layers (the impact of using 1 vs 2 invariant layers is
experimentally studied in Section 3). The last 𝑜-th invariant layer is followed by a first non-invariant
one, defined from some 𝜑𝑜+1 only depending on its second argument; it is possibly followed by
other standard layers. The functions defined from the neural nodes on the penultimate layer are
referred to as meta-features.
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Figure 1: (Left) The Dida architecture (FC for fully connected layer). (Middle) Task 1: Learning meta-
features for patch identification using a Siamese architecture (Appendix B.1). (Right) Task 2:
learning meta-features for ranking hyper-parameter configurations 𝜃1 and 𝜃2 (Appendix B.2).

3 Experimental Validation

All source codes (Dida and baselines) are publicly available at
https://github.com/herilalaina/dida-metafeatures for the sake of reproducibility.

3.1 Experimental setting

Two evaluation tasks are considered:
−→ Task 1 is a patch identification problem inspired from (Jomaa et al., 2021) aiming to identify if
two dataset patches are extracted from a same dataset.
−→ Task 2 aims to rank hyper-parameter configurations for a fixed supervised learning algorithm,
according to their performance on the considered dataset.

Dida is compared to three baselines (detailed in Appendix C): three DSS (Maron et al., 2020)
variants (linear invariant layers, non-linear invariant layers, and equivariant + invariant layers);
Dataset2Vec (Jomaa et al., 2021); and a function of 43 hand-crafted meta-features.

Three benchmarks are used: TOY and UCI, taken from (Jomaa et al., 2021), and OpenML CC-18
(Bischl et al., 2019). The selection and selection of patches are detailed in Appendix A.

Training setups. The same Dida architectures are used for both tasks, involving 1 or 2 invariant
layers followed by 3 fully connected (FC) layers (Figure 1, left). All experiments run on 1 NVIDIA-
Tesla-V100-SXM2 GPU with 32GB memory, using Adam optimizer with base learning rate 10−3

and batch size 32. For all considered architectures, meta-features F𝜁 (z) consist of the output of the
penultimate layer, with 𝜁 denoting the trained parameters.

3.2 Results

Task 1. Table 1 reports the empirical results on TOY andUCI datasets. On TOY,Didawith 2 invariant
layers, referred to as 2L-Dida behaves on a par with Dataset2Vec and DSS. On UCI, the task
appears to be more difficult, which is explained from the higher and more diverse number of features
in the datasets. The fact that 2L-Dida significantly outperforms all other approaches is explained
from the interaction functional structure (Eqs. 1, 2), expected to better grasp contrasts among
examples. Dida with 1 invariant layer (1L-Dida) is much behind 2L-Dida; with a significantly
lesser number of parameters than 2L-Dida, the 1L-Dida architecture might lack representational
power. A fourth baseline, No-FInv-DSS (Zaheer et al., 2017) only differs from DSS as it is not
feature permutation invariant; this additional baseline is used to assess the impact of this invariance
property. The fact that No-FInv-DSS lags behind all DSS variants, all with similar number of
parameters, confirms the importance of this invariance property. Note also that No-FInv-DSS is
outperformed by 1L-Dida, while the latter involves significantly less parameters.

Task 2. The comparative performances are displayed in Table 2, reporting their ranking accuracy.
2L-Dida (respectively 1L-Dida) significantly outperforms all baseline approaches except in the 𝐴𝑙𝑔
= LR case (resp., in the 𝐴𝑙𝑔 = 𝑘-NN case). A higher performance gap is observed for the k-NN case,
which is explained as this algorithm mostly exploits the local geometry of the examples.
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Method # params TOY UCI

Hand-crafted 53,312 77.05 %± 1.63 58.36 %± 2.64
No-FInv-DSS (no inv. in features) 1,297,692 90.49 %± 1.73 64.69 %± 4.89

Dataset2Vec (reported from Jomaa et al. (2021)) - 96.19 %± 0.28 88.20 %± 1.67
Dataset2Vec (our implementation) 257,088 97.90 %± 1.87 77.05 %± 3.49

DSS layers (Linear aggregation) 1,338,684 89.32 %± 1.85 76.23 %± 1.84
DSS layers (Non-linear aggregation) 1,338,684 96.24 %± 2.04 83.97 %± 2.89
DSS layers (Equivariant+invariant) 1,338,692 96.26 %± 1.40 82.94 %± 3.36

Dida (1 invariant layer) 323,028 91.37 %± 1.39 81.03 %± 3.23
Dida (2 invariant layers) 1,389,089 97.20 % ± 0.10 89.70 % ± 1.89

Table 1: Comparative performances (average and std of accuracy over 10 runs) on Task 1 of Dida,
No-FInv-DSS, Dataset2Vec, DSS and functions of hand-crafted meta-features.

Method SGD SVM LR k-NN

Hand-crafted 71.18 %± 0.41 75.39 %± 0.29 86.41 %± 0.419 65.44 %± 0.73

Dataset2Vec (our implementation) 74.43 %± 0.90 81.75 %± 1.85 89.18 %± 0.45 72.90 %± 1.13

DSS (Linear aggregation) 73.46 %± 1.44 82.91 %± 0.22 87.93 %± 0.58 70.07 %± 2.82
DSS (Equivariant+Invariant) 73.54 %± 0.26 81.29 %± 1.65 87.65 %± 0.03 68.55 %± 2.84
DSS (Non-linear aggregation) 74.13 %± 1.01 83.38 %± 0.37 87.92 %± 0.27 73.07 %± 0.77

DIDA (1 invariant layer) 77.31 %± 0.16 84.05 %± 0.71 90.16 %± 0.17 74.41 %± 0.93
DIDA (2 invariant layers) 78.41 %± 0.41 84.14 %± 0.02 89.77 %± 0.50 78.91 %± 0.54

Table 2: Comparative ranking performances (average and std over 3 runs) of Dida, Dataset2Vec, DSS
and functions of hand-crafted meta-features.

4 Conclusion

The contribution of the paper is theDida architecture, able to learn from discrete and continuous
distributions on R𝑑 , invariant w.r.t. feature ordering, agnostic w.r.t. the size and dimension 𝑑

of the considered distribution sample (with 𝑑 less than some upper bound 𝐷). The merits of
Dida are empirically and comparatively demonstrated on two tasks defined at the dataset level.
Task 2 in particular constitutes a first step toward performance modelling Rice (1976), as the
learned (algorithm-dependent) meta-features support an efficient ranking of the configurations for
the current dataset. On the considered tasks, they improve on the considered baselines namely,
Dataset2Vec, DSS and meta-features manually defined in the last two decades (Muñoz et al., 2018).
Besides, this Dida architecture also enjoys universal approximation and robustness properties.

For further work, an initial perspective is to investigate the relationships between two datasets,
and estimate a priori the chances of a successful domain adaptation (Alvarez-Melis and Fusi, 2021).

Limitations and Broader Impact Statement. Amajor limitation of Dida is on handling real datasets
which may include missing values, categorical variables and outliers. An another challenge is that
learning meta-features for AutoML tasks (e.g. recommending hyper-parameters or initializing
optimization algorithms) requires sufficiently many datasets: quite a few of our early attempts
failed due to current ML benchmarks being not sufficiently representative.

Dida requires an extensive compute resources (e.g. circa 4 hours on Task 1.TOY) to be effective.
Nevertheless, the approach opens key perspective for AutoML in overcoming the need for domain
experts, especially, when it comes to describing and comparing datasets.
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5 Reproducibility Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?

[Yes]

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-
tal results, including all requirements (e.g., requirements.txt with explicit version), an
instructive README with installation, and execution commands (either in the supplemental
material or as a url)? [Yes] They are available at https://anonymous.4open.science/r/dida-
metafeatures-5FD5/.

(b) Did you include the raw results of running the given instructions on the given code and
data? [Yes] They are summarized in Tables 1 and 2.

(c) Did you include scripts and commands that can be used to generate the figures and tables
in your paper based on the raw results of the code, data, and instructions given? [N/A]

(d) Did you ensure sufficient code quality such that your code can be safely executed and the
code is properly documented? [No]

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces,
fixed hyperparameter settings, and how they were chosen)? [Yes] They are described in
Appendix A.

(f) Did you ensure that you compared different methods (including your own) exactly on
the same benchmarks, including the same datasets, search space, code for training and
hyperparameters for that code? [Yes]

(g) Did you run ablation studies to assess the impact of different components of your approach?
[Yes]

(h) Did you use the same evaluation protocol for the methods being compared? [Yes]
(i) Did you compare performance over time? [No]
(j) Did you perform multiple runs of your experiments and report random seeds? [Yes]
(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [Yes]
(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A]

(m) Did you include the total amount of compute and the type of resources used (e.g., type of
gpus, internal cluster, or cloud provider)? [Yes]
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(n) Did you report how you tuned hyperparameters, and what time and resources this required
(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and
also hyperparameters of your own method)? [No]Dida and DSS are manually tuned.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a url? [N/A]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-
cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent
on participant compensation? [N/A]

Acknowledgements. The authors have many people to thank!
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Details of Empirical Validation

A Benchmark Details

Three benchmarks are used (Table 3): TOY and UCI, taken from Jomaa et al. (2021), and OpenML
CC-18. TOY includes 10,000 datasets, where instances are distributed along mixtures of Gaussian,
intertwinning moons and rings in R2, with 2 to 7 classes. UCI includes 121 datasets from the
UCI Irvine repository Dua and Graff (2017). Datasets UCI and OpenML are normalized as follows:
categorical features are one-hot encoded; numerical features are normalized; missing values are
imputed with the feature mean (continuous features) or median (for categorical features). Patches
are defined as follows. Given an initial dataset, a number 𝑑𝑋 of features and a number 𝑛 of examples
are uniformly selected in the considered ranges (depending on the benchmark) described in Table
3. A patch is defined by (i) retaining 𝑛 examples uniformly selected with replacement in this initial
dataset; (ii) retaining 𝑑𝑋 features uniformly selected with replacement among the initial features.

Datasets Patches
# datasets # samples # features # samples # features

Toy Dataset 10000 [2048, 8192] 2 200 2
UCI 121 [10, 130064] [3, 262] [200, 500] [2, 15]
OpenML CC-18 71 [500, 100000] [5, 3073] [700, 900] [3, 11]

Table 3: Benchmarks and patches characteristics.

B Evaluation Tasks

B.1 Task 1: Patch identification

In Task 1, patches are extracted from datasets and the task consists in predicting whether two
patches are extracted from the same dataset. Letting u denote a dataset with 𝑛 𝑑-dimensional
examples, patch z is constructed from u, by selecting (uniformly with replacement) 𝑛𝑧 examples
in u and considering their description based on 𝑑𝑧 features selected uniformly with replacement
among u features. Size 𝑛𝑧 and number 𝑑𝑧 of features of the patch are uniformly selected (Table 3).
In Task 1, an example is made of a pair of patches (z, z′), together with its associated label ℓ (z, z′),
set to 1 iff z and z’ are extracted from the same initial dataset u and 𝑛𝑧 = 𝑛𝑧′ .

For all considered architectures, the parameters are trained using a Siamese architecture
(Figure 1, middle; Algorithm 1, Appendix B). The learned classifier ℓ̂𝜁 (z, z′) is the softmax
exp

(
−||F𝜁 (z) − F𝜁 (z′) ||2

)
, with F𝜁 (z) and F𝜁 (z′) the meta-features computed for z and z

′, where
𝜁 is trained to minimize the cross-entropy loss:∑︁

z,z′
ℓ (z, z′) log(ℓ̂𝜁 (z, z′)) + (1 − ℓ (z, z′)) log(1 − ℓ̂𝜁 (z, z′)) (4)

B.2 Task 2: Ranking ML configurations

Task 2 aims to comparatively assess two vectors of hyper-parameters 𝜃 and 𝜃 ′ of a fixed super-
vised learning algorithm 𝐴𝑙𝑔, referred to as configurations of 𝐴𝑙𝑔, depending on their performance
on a dataset patch z. For brevity and by abuse of language, the performance of a configuration 𝜃 on
z is meant for the accuracy of the model learned from z using 𝐴𝑙𝑔 with configuration 𝜃 , computed
using a 3 fold cross validation.
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Algorithm 1: Patch Identification
1 Procedure Task_1(F𝜁 , bench, N)

input :A meta-feature extractor F𝜁 in {Dida, Dataset2Vec, Deep Sets, DSS,
Hand-crafted}, a benchmark 𝑏𝑒𝑛𝑐ℎ in {Toy, UCI, OpenML}, and a number of
iterations 𝑁

2 for 𝑖 = 1.. . . . do
44 z1, z2, 𝑦 ← generate_patches(𝑏𝑒𝑛𝑐ℎ)
66 𝑚1 ← F𝜁 (z1)
88 𝑚2 ← F𝜁 (z2)
1010 Compute loss (Equation 4), and update 𝜁
11 end

The considered ML algorithms are: Logistic regression (LR), SVM, k-Nearest Neighbours (k-
NN), linear classifier learned with stochastic gradient descent (SGD). For each algorithm, a Task 2
problem is defined as follows (Algorithm 2). An example is made of a triplet (z, 𝜃, 𝜃 ′), associated
with a binary label ℓ (z, 𝜃, 𝜃 ′), set to 1 iff 𝜃 ′ yields better performance than 𝜃 on z. Thus, the overall
architecture consists of:

• a meta-feature extractor F𝜁 (z);

• a 2-layer FC network (depending on the considered 𝐴𝑙𝑔 as they have different configuration
spaces) with input vector [F𝜁 (z);𝜃 ;𝜃 ′]

The overall is trained to minimize a cross-entropy loss (Equation 4).

Algorithm 2: Hyper-parameter Ranking
1 Procedure Task_2(F𝜁 , Alg)

input :A meta-feature extractor F𝜁 in {Dida, Dataset2Vec, Deep Sets, DSS,
Hand-crafted}, an algorithm 𝐴𝑙𝑔 in {SGD, SVM, LR, 𝑘-NN}.

33 NN← 2-layer fully connected neural network
4 for 𝑖 = 1, 2, ... do
66 z← generate_patch(OpenML)
88 Sample (𝜃, 𝜃 ′), two configurations of 𝐴𝑙𝑔 (Table 5)
1010 Set binary target 𝑦 as 1 if accuracy(z, 𝜃) > accuracy(z, 𝜃 ′) else 0
1212 Compute loss (Equation 4) between y and NN([F𝜁 (z);𝜃 ;𝜃 ′])
1414 Update 𝜁 and NN

15 end

In each epoch, a batch made of triplets (z, 𝜃, 𝜃 ′) is built, with 𝜃, 𝜃 ′ uniformly drawn in the
algorithm configuration space (Table 5) and z a patch of a dataset in the OpenML CC-2018 (Bischl
et al., 2019), of size 𝑛 uniformly drawn in [700; 900] and number of features 𝑑 in [3; 10]. Dida and
all baselines are trained using Algorithm 2.

C Baselines

Dida details. The functions 𝑢 and 𝑣 are represented by fully connected linear layers. They are
configured as follows: 𝑢 =FC(8) and 𝑣=FC(1024), in both the first and second layers of Dida.
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Dataset2Vec details. The publicly available implementation of Dataset2Vec 2 is implemented
in TensorFlow, which is incompatible with our evaluation pipeline written in PyTorch. For this
reason, we have included as baselines: (i) the reported accuracy from Jomaa et al. (2021), only
available for Task 1; (ii) the computed accuracy from our own implementation of Dataset2Vec.
Our Dataset2Vec implementation uses the same architecture as reported in Jomaa et al. (2021),
Equation 4, namely

𝐷 : z ∈ Z𝑛 (R𝑑 ) ↦→ ℎ

(
1

𝑑𝑋𝑑𝑌

𝑑𝑋∑︁
𝑚=1

𝑑𝑌∑︁
𝑡=1

𝑔

(
1
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑥𝑖 [𝑚], 𝑦𝑖 [𝑡])
))

(5)

where functions 𝑓 , 𝑔, ℎ characterizing the architecture are chosen as depicted in the publicly available
file 𝑐𝑜𝑛𝑓 𝑖𝑔.𝑝𝑦3. More precisely, 𝑓 , 𝑔 are FC(128)-ReLU-ResFC(128, 128, 128)-FC(128) andℎ is FC(128)-
ReLU-FC(128)-ReLU where ResFC is a sequence of fully connected layer with skip connection. We
provide our implementation of Dataset2Vec in the supplementary material.

DSS layer details.. We built our own implementation of invariant DSS layers, as follows. Linear
invariant DSS layers (see Maron et al. (2020), Theorem 5, 3.) are of the form

𝐿𝑖𝑛𝑣 : 𝑋 ∈ R𝑛×𝑑 ↦→ 𝐿𝐻 (
𝑛∑︁
𝑗=1

𝑥 𝑗 ) ∈ R𝐾 (6)

where 𝐿𝐻 : R𝑑 → R𝐾 is a linear 𝐻 -invariant function. Our applicative setting requires that the
implementation accommodates to varying input dimensions 𝑑 as well as permutation invariance,
hence we consider the Deep Sets representation (see Zaheer et al. (2017), Theorem 7)

𝐿𝐻 : 𝑥 = (𝑥1, . . . , 𝑥𝑑 ) ∈ R𝑑 ↦→ 𝜌

(
𝑑∑︁
𝑖=1

𝜑 (𝑥𝑖)
)
∈ R𝐾 (7)

where𝜑 : R→ R𝑑+1 and 𝜌 : R𝑑+1 → R𝐾 aremodelled as (i) purely linear functions; (ii) FC networks,
which extends the initial linear setting (6). In our case, 𝐻 = 𝑆𝑑𝑋 × 𝑆𝑑𝑌 , hence, two invariant layers
of the form (6-7) are combined to suit both feature- and label-invariance requirements. Both
outputs are concatenated and followed by an FC network to form the DSS meta-features. The last
experiments use DSS equivariant layers (see Maron et al. (2020), Theorem 1), which take the form

𝐿𝑒𝑞 : 𝑋 ∈ R𝑛×𝑑 ↦→
(
𝐿1
𝑒𝑞 (𝑥𝑖) + 𝐿2

𝑒𝑞 (
∑︁
𝑗≠𝑖

𝑥 𝑗 )
)
𝑖∈[𝑛]

∈ R𝑛×𝑑 (8)

where 𝐿1
𝑒𝑞 and 𝐿2

𝑒𝑞 are linear 𝐻 -equivariant layers. Similarly, both feature- and label-equivariance
requirements are handled via the Deep Sets representation of equivariant functions (see Zaheer
et al. (2017), Lemma 3) and concatenated to be followed by an invariant layer, forming the DSS
meta-features. All methods are allocated the same number of parameters to ensure fair comparison.
We provide our implementation of the DSS layers in the supplementary material.

No-FInv-DSS baseline (no invariance in feature permutation).. This baseline aims at showcasing
the empirical relevance of the invariance requirement in feature and label permutations, while
retaining invariance in permutation with respect to the datasets. To this end, aggregation with
respect to the examples is performed as exemplified in Zaheer et al. (2017), Theorem 2, namely

𝐿 : z = (z1, . . . , z𝑛) ∈ 𝑍 (R𝑑 ) ↦→
1
𝑛

𝑛∑︁
𝑖=1

𝑔(z𝑖) ∈ R𝐾 (9)

2See https://github.com/hadijomaa/dataset2vec
3See https://github.com/hadijomaa/dataset2vec/blob/master/config.py
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where 𝑔 : R𝑑 → R𝐾 is an MLP with FC(128)-ReLU-FC(64)-ReLU-FC(32)-ReLU layers. To ensure
label information is captured, the output is concatenated to the mean of labels 𝑦 def.

= 1
𝑛

∑𝑛
𝑖=1𝑦𝑖 and

followed by and MLP with FC(1024)-ReLU-FC(700)-ReLU-FC(512) layers. The so-called No-FInv-
DSS baseline defined as such, can be summed up as follows

z ∈ Z(R𝑑 ) ↦→ MLP( [𝐿(z);𝑦]) (10)

Hand-crafted meta-features. For the sake of reproducibility, the list of meta-features used in
Section 3 is given in Table 4. Note that meta-features related to missing values and categorical
features are omitted, as being irrelevant for the considered benchmarks. Hand-crafted meta-features
are extracted using BYU metalearn library. In total, we extracted 43 meta-features.

D Hyper-parameter spaces

In Task 2, the hyper-parameter configuration spaces of each algorithm are summarized in
Table 5.

Parameter Parameter values Scale

LR

warm start True, Fase
fit intercept True, Fase
tol [0.00001, 0.0001]
C [1e-4, 1e4] log
solver newton-cg, lbfgs, liblinear, sag, saga
max_iter [5, 1000]

SVM

kernel linear, rbf, poly, sigmoid
C [0.0001, 10000] log
shrinking True, False
degree [1, 5]
coef0 [0, 10]
gamma [0.0001, 8]
max_iter [5, 1000]

KNN

n_neighbors [1, 100] log
p [1, 2]
weights uniform, distance

SGD

alpha [0.1, 0.0001] log
average True, False
fit_intercept True, False
learning rate optimal, invscaling, constant
loss hinge, log, modified_huber, squared_hinge, perceptron
penalty l1, l2, elasticnet
tol [1e-05, 0.1] log
eta0 [1e-7, 0.1] log
power_t [1e-05, 0.1] log
epsilon [1e-05, 0.1] log
l1_ratio [1e-05, 0.1] log

Table 5: Hyper-parameter configurations
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Meta-features Mean Min Max

Quartile2ClassProbability 0.500 0.75 0.25
MinorityClassSize 487.423 426.000 500.000
Quartile3CardinalityOfNumericFeatures 224.354 0.000 976.000
RatioOfCategoricalFeatures 0.347 0.000 1.000
MeanCardinalityOfCategoricalFeatures 0.907 0.000 2.000
SkewCardinalityOfNumericFeatures 0.148 -2.475 3.684
RatioOfMissingValues 0.001 0.000 0.250
MaxCardinalityOfNumericFeatures 282.461 0.000 977.000
Quartile2CardinalityOfNumericFeatures 185.555 0.000 976.000
KurtosisClassProbability -2.025 -3.000 -2.000
NumberOfNumericFeatures 3.330 0.000 30.000
NumberOfInstancesWithMissingValues 2.800 0.000 1000.000
MaxCardinalityOfCategoricalFeatures 0.917 0.000 2.000
Quartile1CardinalityOfCategoricalFeatures 0.907 0.000 2.000
MajorityClassSize 512.577 500.000 574.000
MinCardinalityOfCategoricalFeatures 0.879 0.000 2.000
Quartile2CardinalityOfCategoricalFeatures 0.915 0.000 2.000
NumberOfCategoricalFeatures 1.854 0.000 27.000
NumberOfFeatures 5.184 4.000 30.000
Dimensionality 0.005 0.004 0.030
SkewCardinalityOfCategoricalFeatures -0.050 -4.800 0.707
KurtosisCardinalityOfCategoricalFeatures -1.244 -3.000 21.040
StdevCardinalityOfNumericFeatures 68.127 0.000 678.823
StdevClassProbability 0.018 0.000 0.105
KurtosisCardinalityOfNumericFeatures -1.060 -3.000 12.988
NumberOfInstances 1000.000 1000.000 1000.000
Quartile3CardinalityOfCategoricalFeatures 0.916 0.000 2.000
NumberOfMissingValues 2.800 0.000 1000.000
Quartile1ClassProbability 0.494 0.463 0.500
StdevCardinalityOfCategoricalFeatures 0.018 0.000 0.707
MeanClassProbability 0.500 0.500 0.500
NumberOfFeaturesWithMissingValues 0.003 0.000 1.000
MaxClassProbability 0.513 0.500 0.574
NumberOfClasses 2.000 2.000 2.000
MeanCardinalityOfNumericFeatures 197.845 0.000 976.000
SkewClassProbability 0.000 -0.000 0.000
Quartile3ClassProbability 0.506 0.500 0.537
MinCardinalityOfNumericFeatures 138.520 0.000 976.000
MinClassProbability 0.487 0.426 0.500
RatioOfInstancesWithMissingValues 0.003 0.000 1.000
Quartile1CardinalityOfNumericFeatures 160.748 0.000 976.000
RatioOfNumericFeatures 0.653 0.000 1.000
RatioOfFeaturesWithMissingValues 0.001 0.000 0.250

Table 4: Hand-crafted meta-features
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Theoritical results

E Theoretical Analysis

This section investigates the properties of invariant-layer based neural architectures, and
establishes their robustness w.r.t. bounded transformations of the involved distributions, and their
approximation abilities w.r.t. the convergence in law. As already said, the discrete distribution
case is considered for the sake of readability; the case of continuous distributions is detailed in
Appendix F.

E.1 Topology on Datasets

Point clouds vs. distributions.. The fact that datasets are preferably seen as probability distributions
(as opposed to point clouds) is motivated as including many copies of a point in a dataset amounts to
increasing its importance, which usually makes a difference in standard machine learning settings.
Accordingly the topological framework used in the following is that of the convergence in law on
distributions, with the distance among two datasets measured using the Wasserstein distance4.

Wasserstein distance.. The standard 1-Wasserstein distance between two discrete probability
distributions z, z′ ∈ Z𝑛 (R𝑑 ) × Z𝑚 (R𝑑 ) is defined after Santambrogio (2015); Peyré and Cuturi
(2019):

W1(z, z′)
def.
= max

𝑓 ∈Lip1 (R𝑑 )

1
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑧𝑖) −
1
𝑚

𝑚∑︁
𝑗=1

𝑓 (𝑧 ′𝑗 )

with Lip1(R𝑑 ) the space of scalar 1-Lipschitz functions on R𝑑 . The 𝐺-invariant 1-Wasserstein
distance is defined to extend the above and account for the invariance under operators in 𝐺 :

W1(z, z′) = min
𝜎 ∈𝐺

W1(𝜎♯z, z′)

Accordingly, W1(z, z′) = 0 iff z and z
′ are equal in the sense of probability distributions up to

sample and feature permutations (Appendix F).

Lipschitz property.. Let z(𝑘) be a sequence of distributions weakly converging toward z (noted
z
(𝑘) ⇀ z). By construction, z(𝑘) ⇀ z iff W1(z(𝑘) , z) → 0. Map 𝑓 from Z(R𝑑 ) onto Z(R𝑟 ) is said to
be continuous iff for any sequence z(𝑘) ⇀ z, then 𝑓 (z(𝑘) ) ⇀ 𝑓 (z). Map 𝑓 is said to be 𝐶-Lipschitz
for W1 iff

∀z, z′ ∈ Z(R𝑑 ), W1(𝑓 (z), 𝑓 (z′)) ⩽ 𝐶W1(z, z′) . (11)

The 𝐶-Lipschitz property entails the continuity of 𝑓 : if two input distributions are close in the
permutation invariant 1-Wasserstein sense, their images by 𝑓 are close too.

E.2 Lipschitzness results

Let us assume the interaction functional 𝜑 to satisfy the Lipschitz property w.r.t. their first and
second arguments (∀𝑧 ∈ R𝑑 , 𝜑 (𝑧, ·) and 𝜑 (·, 𝑧) are 𝐶𝜑 − Lipschitz.). Then invariant layer 𝑓𝜑 also
satisfy the Lipschitz property.

Proposition 1. Invariant layer 𝑓𝜑 of type (Eq. 1) is (2𝑟𝐶𝜑 )-Lipschitz in the sense of (Eq. 11).

4In contrast, the distance among point clouds commonly relies on the Hausdorff distance among sets (see e.g., Qi
et al. (2017)). This distance, that is standard for 2D and 3D data involved in graphics and vision domains, however faces
some limitations in higher dimensional domains, e.g. due to max-pooling being a non-continuous operator w.r.t. the
convergence in law topology.
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A second result regards the case where two datasets z and z
′ are such that z′ is the image of z

through some diffeomorphism 𝜏 (z = (𝑧1, . . . , 𝑧𝑛) and z
′ = 𝜏♯z = (𝜏 (𝑧1), . . . , 𝜏 (𝑧𝑛)). If 𝜏 is close to

identity, then 𝑓𝜑 (𝜏♯z) and 𝑓𝜑 (z) are close too. More generally, if continuous transformations 𝜏 and
𝜉 respectively apply on the input and output space of 𝑓𝜑 , and are close to identity, then 𝜉♯ 𝑓𝜑 (𝜏♯z)
and 𝑓𝜑 (z) are also close.

Proposition 2. Let 𝜏 : R𝑑 → R𝑑 and 𝜉 : R𝑟 → R𝑟 be two Lipschitz maps with respectively Lipschitz
constants 𝐶𝜏 and 𝐶𝜉 . Then, ∀z, z′ ∈ Z(Ω),

W1(𝜉♯ 𝑓𝜑 (𝜏♯z), 𝑓𝜑 (z))
⩽ sup
𝑥 ∈𝑓𝜑 (𝜏 (Ω))

||𝜉 (𝑥) − 𝑥 ||2 + 2𝑟 Lip(𝜑) sup
𝑥 ∈Ω
||𝜏 (𝑥) − 𝑥 ||2

In addition, if 𝜏 is equivariant,

W1(𝜉♯ 𝑓𝜑 (𝜏♯z), 𝜉♯ 𝑓𝜑 (𝜏♯z′)) ⩽ 2𝑟 𝐶𝜑 𝐶𝜏 𝐶𝜉W1(z, z′)

Proofs: in Appendix G.

E.3 Universal Approximation Results

Lastly, the universality of the proposed architecture is established, showing that the compo-
sition of an invariant layer (Eq. (1)) and a fully-connected layer is enough to yield the universal
approximation property, over all functions defined on 𝑍 (R𝑑 ) with dimension 𝑑 less than some
upper bound 𝐷 .

Theorem 1. Let F : Z(Ω) → R be a 𝐺-invariant map on a compact Ω ⊂ R𝑑 , continuous for the
convergence in law. Then ∀𝜀 > 0, there exists two continuous maps𝜓,𝜑 such that

∀z ∈ Z(Ω), |F (z) −𝜓 ◦ 𝑓𝜑 (z) | < 𝜀

where 𝜑 is 𝐺-invariant and independent of F .

Sketch of proof (details in Appendix H). 1. Let us define 𝜑 = 𝑔 ◦ ℎ where ℎ is the collection of 𝑑𝑋
elementary symmetric polynomials in the features and 𝑑𝑌 elementary symmetric polynomials in
the labels, which is invariant under 𝐺 .
2. A discretization of ℎ(Ω) on a grid is then considered, through 𝑔 that aims at collecting integrals
over each cell of the discretization.
3. 𝜓 applies function F on this discretized measure; this requires ℎ to be bijective, and is achieved
by ℎ̃, through a projection on the quotient space 𝑆𝑑/𝐺 and a restriction to its image compact Ω′.
To sum up, 𝑓𝜑 defined as such computes an expectation which collects integrals over each cell of
the grid to approximate measure ℎ♯z by a discrete counterpart ℎ̂♯z. Hence𝜓 applies F to ℎ̃−1

♯
(ℎ̂♯z).

Continuity is obtained as follows: (i) proximity of ℎ♯z and ℎ̂♯z follows from Lemma 1 in Bie et al.
(2019)) and gets tighter as the grid discretization step tends to 0; (ii) Map ℎ̃−1 is 1/𝑑-Hölder, after
Theorem 1.3.1 from Rahman and Schmeisser (2002)); therefore Lemma 2 entails that W1(z, ℎ̃−1

♯
ℎ̂♯z)

can be upper-bounded; (iii) since Ω is compact, by Banach-Alaoglu theorem, Z(Ω) also is. Since F
is continuous, it is thus uniformly weakly continuous: choosing a discretization step small enough
ensures the result. □

After Theorem 1, any invariant continuous function defined on distributions with compact
support can be approximated with arbitrary precision by an invariant neural network. This result
holds for distributions with compact support in R𝑑 for all 𝑑 ≤ 𝐷 , with 𝐷 an upper bound on the
dimension of the considered distribution supports. The proof (Appendix H) involves mainly three
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steps: (i) an invariant layer 𝑓𝜑 can be approximated by an invariant network; (ii) the universal
approximation theorem Cybenko (1989); Leshno et al. (1993); (iii) uniform continuity is used to
obtain uniform bounds. This result generalizes to the cases of finite distributions of any size 𝑛, and
continuous distributions, the universality result established for fixed numbers of dimensions and
points (Maron et al., 2020).

F Extension to arbitrary distributions

General notations.. Let 𝑋 ∈ R(R𝑑 ) denote a random vector on R𝑑 with 𝛼𝑋 ∈ P (R𝑑 ) its law (a
positive Radon measure with unit mass). By definition, its expectation denoted E(𝑋 ) reads E(𝑋 ) =∫
R𝑑 𝑥d𝛼𝑋 (𝑥) ∈ R𝑑 , and for any continuous function 𝑓 : R𝑑 → R𝑟 , E(𝑓 (𝑋 )) =

∫
R𝑑 𝑓 (𝑥)d𝛼𝑋 (𝑥). In

the following, two random vectors 𝑋 and 𝑋 ′ with same law 𝛼𝑋 are considered indistinguishable,
noted 𝑋 ′ ∼ 𝑋 . Letting 𝑓 : R𝑑 ↦→ R𝑟 denote a function on R𝑑 , the push-forward operator by 𝑓 ,
noted 𝑓♯ : P (R𝑑 ) ↦→ P (R𝑟 ) is defined as follows, for any 𝑔 continuous function from R𝑑 to R𝑟 (𝑔
in C (R𝑑 ;R𝑟 )):

∀𝑔 ∈ C (R𝑑 ;R𝑟 )
∫
R𝑟

𝑔d(𝑓♯𝛼)
def.
=

∫
R𝑑

𝑔(𝑓 (𝑥))d𝛼 (𝑥)

Letting {𝑥𝑖} be a set of points in R𝑑 with 𝑤𝑖 ⩾ 0 such that
∑
𝑖 𝑤𝑖 = 1, the discrete measure

𝛼𝑋 =
∑
𝑖 𝑤𝑖𝛿𝑥𝑖 is the sum of the Dirac measures 𝛿𝑥𝑖 weighted by𝑤𝑖 .

Invariances.. In this paper, we consider functions on probability measures that are invariant with
respect to permutations of coordinates. Therefore, denoting 𝑆𝑑 the 𝑑-sized permutation group, we
consider measures over a symmetrized compact Ω ⊂ R𝑑 equipped with the following equivalence
relation: for 𝛼 , 𝛽 ∈ P (Ω), 𝛼 ∼ 𝛽 ⇐⇒ ∃𝜎 ∈ 𝑆𝑑 , 𝛽 = 𝜎♯𝛼 , such that a measure and its permuted
counterpart are indistinguishable in the corresponding quotient space, denoted alternativelyP (Ω)/∼
or R(Ω)/∼. A function 𝜑 : Ω𝑛 → R is said to be invariant (by permutations of coordinates) iff
∀𝜎 ∈ 𝑆𝑑 , 𝜑 (𝑥1, . . . , 𝑥𝑛) = 𝜑 (𝜎 (𝑥1), . . . , 𝜎 (𝑥𝑛)) (Definition 1).

Tensorization.. Letting 𝑋 and 𝑌 respectively denote two random vectors onR(R𝑑 ) andR(R𝑝),
the tensor product vector 𝑋 ⊗ 𝑌 is defined as: 𝑋 ⊗ 𝑌

def.
= (𝑋 ′, 𝑌 ′) ∈ R(R𝑑 × R𝑝), where 𝑋 ′ and

𝑌
′ are independent and have the same law as 𝑋 and 𝑌 , i.e. 𝑑 (𝛼𝑋⊗𝑌 ) (𝑥,𝑦) = 𝑑𝛼𝑋 (𝑥)𝑑𝛼𝑌 (𝑦). In

the finite case, for 𝛼𝑋 = 1
𝑛

∑
𝑖 𝛿𝑥𝑖 and 𝛼𝑌 = 1

𝑚

∑
𝑗 𝛿𝑦 𝑗 , then 𝛼𝑋⊗𝑌 = 1

𝑛𝑚

∑
𝑖, 𝑗 𝛿𝑥𝑖 ,𝑦 𝑗 , weighted sum of

Dirac measures on all pairs (𝑥𝑖 , 𝑦 𝑗 ). The 𝑘−fold tensorization of a random vector 𝑋 ∼ 𝛼𝑋 , with law
𝛼⊗𝑘
𝑋

, generalizes the above construction to the case of 𝑘 independent random variables with law
𝛼𝑋 . Tensorization will be used to define the law of datasets, and design universal architectures
(Appendix H).

Invariant layers.. In the general case, a𝐺-invariant layer 𝑓𝜑 with invariant map 𝜑 : R𝑑 ×R𝑑 → R𝑟
such that 𝜑 satisfies

∀(𝑥1, 𝑥2) ∈ (R𝑑 )2,∀𝜎 ∈ 𝐺,𝜑 (𝜎 (𝑥1), 𝜎 (𝑥2)) = 𝜑 (𝑥1, 𝑥2)

is defined as
𝑓𝜑 : 𝑋 ∈ R(R𝑑 )/∼ ↦→ E𝑋 ′∼𝑋 [𝜑 (𝑋,𝑋 ′)] ∈ R(R𝑟 )/∼

where the expectation is taken over𝑋 ′ ∼ 𝑋 . Note that considering the couple (𝑋,𝑋 ′) of independent
random vectors 𝑋 ′ ∼ 𝑋 amounts to consider the tensorized law 𝛼𝑋 ⊗ 𝛼𝑋 .
Remark 1. Taking as input a discrete distribution 𝛼𝑋 =

∑𝑛
𝑖=1𝑤𝑖𝛿𝑥𝑖 , the invariant layer outputs

another discrete distribution 𝛼𝑌 =
∑𝑛
𝑖=1𝑤𝑖𝛿𝑦𝑖 with 𝑦𝑖 =

∑𝑛
𝑗=1𝑤 𝑗𝜑 (𝑥𝑖 , 𝑥 𝑗 ); each input point 𝑥𝑖 is

mapped onto 𝑦𝑖 summarizing the pairwise interactions with 𝑥𝑖 after 𝜑 .
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Remark 2. (Generalization to arbitrary invariance groups) The definition of invariant 𝜑 can be
generalized to arbitrary invariance groups operating on R𝑑 , in particular sub-groups of the per-
mutation group 𝑆𝑑 . After Maron et al. (2020) (Theorem 5), a simple and only way to design an
invariant linear function is to consider 𝜑 (𝑧, 𝑧 ′) = 𝜓 (𝑧 +𝑧 ′) with𝜓 being𝐺-invariant. How to design
invariant functions in the general non-linear case is left for further work.
Remark 3. Invariant layers can also be generalized to handle higher order interactions functionals,
namely 𝑓𝜑 (𝑋 )

def.
= E𝑋2,...,𝑋𝑁 ∼𝑋 [𝜑 (𝑋,𝑋2, . . . , 𝑋𝑁 )], which amounts to consider, in the discrete case,

𝑁 -uple of inputs points (𝑥 𝑗1, . . . , 𝑥 𝑗𝑁 ).

G Proofs on Regularity

Wasserstein distance.. The regularity of the involved functionals is measured w.r.t. the 1-
Wasserstein distance between two probability distributions (𝛼, 𝛽) ∈ P (R𝑑 )

W1(𝛼, 𝛽)
def.
= min
𝜋1=𝛼,𝜋2=𝛽

∫
R𝑑×R𝑑

||𝑥 − 𝑦 ||𝑑𝜋 (𝑥,𝑦)

def.
= min
𝑋∼𝛼,𝑌∼𝛽

E( ||𝑋 − 𝑌 ||)

where the minimum is taken over measures on R𝑑 ×R𝑑 with marginals 𝛼, 𝛽 ∈ P (R𝑑 ). W1 is known
to be a norm Santambrogio (2015), that can be conveniently computed using

W1(𝛼, 𝛽) = W1(𝛼 − 𝛽) = max
Lip(𝑔)⩽1

∫
R𝑑

𝑔(.𝛼 − 𝛽),

where Lip(𝑔) is the Lipschitz constant of 𝑔 : R𝑑 → Rwith respect to the Euclidean norm (unless
otherwise stated). For simplicity and by abuse of notations, W1(𝑋,𝑌 ) is used instead of W1(𝛼, 𝛽)
when 𝑋 ∼ 𝛼 and 𝑌 ∼ 𝛽 . The convergence in law denoted ⇀ is equivalent to the convergence in
Wasserstein distance in the sense that 𝑋𝑘 ⇀ 𝑋 is equivalent to W1(𝑋𝑘 , 𝑋 ) → 0.

Permutation-invariant Wasserstein distance.. The Wasserstein distance is quotiented according
to the permutation invariance equivalence classes: for 𝛼, 𝛽 ∈ P (R𝑑 )

W1(𝛼, 𝛽)
def.
= min
𝜎 ∈𝑆𝑑

W1(𝜎♯𝛼, 𝛽)

= min
𝜎 ∈𝑆𝑑

max
Lip(𝑔)⩽1

∫
R𝑑

𝑔 ◦ 𝜎𝑑𝛼 −
∫
R𝑑

𝑔𝑑𝛽

such that W1(𝛼, 𝛽) = 0 ⇐⇒ 𝛼 ∼ 𝛽 . W1 defines a norm on P (R𝑑 )/∼.

Lipschitz property.. A map 𝑓 : R(R𝑑 ) → R(R𝑟 ) is continuous for the convergence in law (aka the
weak∗ of measures) if for any sequence 𝑋𝑘 ⇀ 𝑋 , then 𝑓 (𝑋𝑘 ) ⇀ 𝑓 (𝑋 ). Such a map is furthermore
said to be 𝐶-Lipschitz for the permutation invariant 1-Wasserstein distance if

∀(𝑋,𝑌 ) ∈ (R(R𝑑 )/∼)2, W1(𝑓 (𝑋 ), 𝑓 (𝑌 )) ⩽ 𝐶W1(𝑋,𝑌 ) . (12)

Lipschitz properties enable us to analyze robustness to input perturbations, since it ensures that if
the input distributions of random vectors are close in the permutation invariant Wasserstein sense,
the corresponding output laws are close, too.
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Proofs of Section E.2..

Proof. (Proposition 1). For 𝛼, 𝛽 ∈ P (R𝑑 ), Proposition 1 from Bie et al. (2019) yields
W1(𝑓𝜑 (𝛼), 𝑓𝜑 (𝛽)) ⩽ 2𝑟 Lip(𝜑)W1(𝛼, 𝛽), hence, for 𝜎 ∈ 𝐺,

W1(𝜎♯ 𝑓𝜑 (𝛼), 𝑓𝜑 (𝛽)) ⩽ W1(𝜎♯ 𝑓𝜑 (𝛼), 𝑓𝜑 (𝛼))
+W1(𝑓𝜑 (𝛼), 𝑓𝜑 (𝛽))

⩽ W1(𝜎♯ 𝑓𝜑 (𝛼), 𝑓𝜑 (𝛼))
+ 2𝑟 Lip(𝜑)W1(𝛼, 𝛽)

hence, taking the infimum over 𝜎 yields

W1(𝑓𝜑 (𝛼), 𝑓𝜑 (𝛽)) ⩽ W1( 𝑓𝜑 (𝛼), 𝑓𝜑 (𝛼))
+ 2𝑟 Lip(𝜑)W1(𝛼, 𝛽)

⩽ 2𝑟 Lip(𝜑)W1(𝛼, 𝛽)

Since 𝑓𝜑 is invariant, for 𝜎 ∈ 𝐺 , 𝑓𝜑 (z) = 𝑓𝜑 (𝜎♯z),

W1(𝑓𝜑 (𝛼), 𝑓𝜑 (𝛽)) ⩽ 2𝑟 Lip(𝜑)W1(𝜎♯𝛼, 𝛽)

Taking the infimum over 𝜎 yields the result. □

Proof. (Proposition 2). To upper bound W1(𝜉♯ 𝑓𝜑 (𝜏♯𝛼), 𝑓𝜑 (𝛼)) for 𝛼 ∈ P (R𝑑 ), we proceed as follows,
using proposition 3 from Bie et al. (2019) and proposition 1:

W1(𝜉♯ 𝑓𝜑 (𝜏♯𝛼𝜑 (𝛼)), 𝑓𝜑 (𝛼)) ⩽W1(𝜉♯ 𝑓𝜑 (𝜏♯𝛼), 𝑓𝜑 (𝜏♯𝛼))
+W1(𝑓𝜑 (𝜏♯𝛼), 𝑓𝜑 (𝛼))
⩽ ||𝜉 − 𝑖𝑑 ||𝐿1 (𝑓𝜑 (𝜏♯𝛼))

+ Lip(𝑓𝜑 )W1(𝜏♯𝛼, 𝛼)
⩽ sup
𝑦∈𝑓𝜑 (𝜏 (Ω))

||𝜉 (𝑦) − 𝑦 ||2

+ 2𝑟 Lip(𝜑) sup
𝑥 ∈Ω
||𝜏 (𝑥) − 𝑥 ||2

For 𝜎 ∈ 𝐺 , we get

W1(𝜎♯𝜉♯ 𝑓𝜑 (𝜏♯𝛼), 𝑓𝜑 (𝛼)) ⩽ W1(𝜎♯𝜉♯ 𝑓𝜑 (𝜏♯𝛼), 𝜉♯ 𝑓𝜑 (𝜏♯𝛼))
+W1(𝜉♯ 𝑓𝜑 (𝜏♯𝛼), 𝑓𝜑 (𝛼))

Taking the infimum over 𝜎 yields

W1(𝜉♯ 𝑓𝜑 (𝜏♯𝛼), 𝑓𝜑 (𝛼)) ⩽ W1(𝜉♯ 𝑓𝜑 (𝜏♯𝛼), 𝑓𝜑 (𝛼))
⩽ sup

𝑦∈𝑓𝜑 (𝜏 (Ω))
||𝜉 (𝑦) − 𝑦 ||2

+ 2𝑟𝐶 (𝜑) sup
𝑥 ∈Ω
||𝜏 (𝑥) − 𝑥 ||2

Similarly, for 𝛼, 𝛽 ∈ (P (R𝑑 ))2,

W1(𝜉♯ 𝑓𝜑 (𝜏♯𝛼),𝜉♯ 𝑓𝜑 (𝜏♯𝛽)) ⩽ Lip(𝜉)W1(𝑓𝜑 (𝜏♯𝛼), 𝑓𝜑 (𝜏♯𝛽))
⩽ Lip(𝜉) Lip(𝑓𝜑 )W1(𝜏♯𝛼, 𝜏♯𝛽)
⩽ 2𝑟 Lip(𝜑) Lip(𝜉) Lip(𝜏)W1(𝛼, 𝛽)
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hence, for 𝜎 ∈ 𝐺 ,

W1(𝜎♯𝜉♯ 𝑓𝜑 (𝜏♯𝛼), 𝜉♯ 𝑓𝜑 (𝜏♯𝛽)) ⩽ W1(𝜎♯𝜉♯ 𝑓𝜑 (𝜏♯𝛼), 𝜉♯ 𝑓𝜑 (𝜏♯𝛼))
+W1(𝜉♯ 𝑓𝜑 (𝜏♯𝛼), 𝜉♯ 𝑓𝜑 (𝜏♯𝛽))

and taking the infimum over 𝜎 yields

W1(𝜉♯ 𝑓𝜑 (𝜏♯𝛼),𝜉♯ 𝑓𝜑 (𝜏♯𝛽)) ⩽ W1(𝜉♯ 𝑓𝜑 (𝜏♯𝛼), 𝜉♯ 𝑓𝜑 (𝜏♯𝛽))
⩽ 2𝑟 Lip(𝜑) Lip(𝜉) Lip(𝜏)W1(𝛼, 𝛽)

Since 𝜏 is equivariant: namely, for 𝛼 ∈ P (R𝑑 ), 𝜎 ∈ 𝐺, 𝜏♯ (𝜎♯𝛼) = 𝜎♯ (𝜏♯𝛼), hence, since 𝑓𝜑 is invariant,
𝑓𝜑 (𝜏♯ (𝜎♯𝛼)) = 𝑓𝜑 (𝜎♯ (𝜏♯𝛼)) = 𝑓𝜑 (𝜏♯𝛼), hence for 𝜎 ∈ 𝐺,

W1(𝜉♯ 𝑓𝜑 (𝜏♯𝛼),𝜉♯ 𝑓𝜑 (𝜏♯𝛽))
⩽ 2𝑟 Lip(𝜑) Lip(𝜉) Lip(𝜏)W1(𝜎♯𝛼, 𝛽)

Taking the infimum over 𝜎 yields the result. □

H Proofs on Universality

Detailed proof of Theorem 1.. This paragraph details the result in the case of 𝑆𝑑−invariance, while
the next one focuses on invariances w.r.t. products of permutations. Before providing a proof of
Theorem 1 we first state two useful lemmas. Lemma 1 is mentioned for completeness, referring the
reader to Bie et al. (2019), Lemma 1 for a proof.

Lemma 1. Let
(
𝑆 𝑗

)𝑁
𝑗=1 be a partition of a domain including Ω (𝑆 𝑗 ⊂ R𝑑 ) and let 𝑥 𝑗 ∈ 𝑆 𝑗 . Let (𝜑 𝑗 )𝑁𝑗=1 a

set of bounded functions 𝜑 𝑗 : Ω → R supported on 𝑆 𝑗 , such that
∑
𝑗 𝜑 𝑗 = 1 on Ω. For 𝛼 ∈ P (Ω), we

denote 𝛼𝑁
def.
=

∑𝑁
𝑗=1 𝛼 𝑗𝛿𝑥 𝑗 with 𝛼 𝑗

def.
=

∫
𝑆 𝑗
𝜑 𝑗𝑑𝛼 . One has, denoting Δ 𝑗

def.
= max𝑥 ∈𝑆 𝑗 ||𝑥 𝑗 − 𝑥 ||,

W1(𝛼𝑁 , 𝛼) ⩽ max
1⩽ 𝑗⩽𝑁

Δ 𝑗 .

Lemma 2. Let 𝑓 : R𝑑 → R𝑞 a 1/𝑝-Hölder continuous function (𝑝 ⩾ 1), then there exists a constant
𝐶 > 0 such that for all 𝛼, 𝛽 ∈ P (R𝑑 ), W1(𝑓♯𝛼, 𝑓♯𝛽) ⩽ 𝐶 W1(𝛼, 𝛽)1/𝑝 .

Proof. For any transport map 𝜋 with marginals 𝛼 and 𝛽 , 1/𝑝-Hölderness of 𝑓 with constant𝐶 yields∫
| |𝑓 (𝑥) − 𝑓 (𝑦) | |2d𝜋 (𝑥,𝑦) ⩽ 𝐶

∫
| |𝑥 − 𝑦 | |1/𝑝2 d𝜋 (𝑥,𝑦) ⩽ 𝐶

(∫
| |𝑥 − 𝑦 | |2d𝜋 (𝑥,𝑦)

)1/𝑝
using Jensen’s

inequality (𝑝 ⩽ 1). Taking the infimum over 𝜋 yields W1(𝑓♯𝛼, 𝑓♯𝛽) ⩽ 𝐶 W1(𝛼, 𝛽)1/𝑝 . □

Now we are ready to dive into the proof. Let 𝛼 ∈ P (R𝑑 ). We consider:

• ℎ : 𝑥 = (𝑥1, . . . , 𝑥𝑑 ) ∈ R𝑑 ↦→
(∑

1⩽ 𝑗1<...< 𝑗𝑖⩽𝑑 𝑥 𝑗1 · . . . · 𝑥 𝑗𝑖
)
𝑖=1...𝑑 ∈ R

𝑑 the collection of 𝑑 elemen-
tary symmetric polynomials; ℎ does not lead to a loss in information, in the sense that it generates
the ring of 𝑆𝑑 -invariant polynomials (see for instance Cox et al. (2018), chapter 7, theorem 3)
while preserving the classes (see the proof of Lemma 2, appendix D from Maron et al. (2020));

• ℎ is obviously not injective, so we consider 𝜋 : R𝑑 → R𝑑/𝑆𝑑 the projection onto R𝑑/𝑆𝑑 : ℎ = ℎ̃ ◦𝜋
such that ℎ̃ is bijective from 𝜋 (Ω) to its image Ω′ , compact of R𝑑 ; ℎ̃ and ℎ̃−1 are continuous;

• Let (𝜑𝑖)𝑖=1...𝑁 the piecewise affine P1 finite element basis, which are hat functions on a dis-
cretization (𝑆𝑖)𝑖=1...𝑁 of Ω′ ⊂ R𝑑 , with centers of cells (𝑦𝑖)𝑖=1...𝑁 . We then define 𝑔 : 𝑥 ∈ R𝑑 ↦→
(𝜑1(𝑥), . . . , 𝜑𝑁 (𝑥)) ∈ R𝑁 ;
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• 𝑓 : (𝛼1, . . . , 𝛼𝑁 ) ∈ R𝑁 ↦→ F
(∑𝑁

𝑖=1 𝛼𝑖𝛿ℎ̃−1 (𝑦𝑖 )

)
∈ R.

We approximate F using the following steps:

• Lemma 1 (see Lemma 1 from Bie et al. (2019)) yields that ℎ♯𝛼 and ℎ̂♯𝛼 =
∑𝑁
𝑖=1 𝛼𝑖𝛿𝑦𝑖 are close:

W1(ℎ♯𝛼, ℎ̂♯𝛼) ⩽
√
𝑑/𝑁 1/𝑑 ;

• The map ℎ̃−1 is regular enough (1/𝑑-Hölder) such that according to Lemma 2, there exists a
constant 𝐶 > 0 such that

W1(ℎ̃−1
♯
(ℎ♯𝛼), ℎ̃−1

♯
ℎ̂♯𝛼) ⩽ 𝐶 W1(ℎ♯𝛼, ℎ̂♯𝛼)1/𝑑

⩽ 𝐶𝑑1/2𝑑/𝑁 1/𝑑2

Hence

W1(𝛼, ℎ̃−1
♯
ℎ̂♯𝛼)

def.
= inf
𝜎 ∈𝑆𝑑

W1(𝜎♯𝛼, ℎ̃−1
♯
ℎ̂♯𝛼)

⩽ 𝐶𝑑1/2𝑑/𝑁 1/𝑑2
.

Note that ℎ maps the roots of polynomial
∏𝑑
𝑖=1(𝑋 −𝑥 (𝑖) ) to its coefficients (up to signs). Theorem

1.3.1 from Rahman and Schmeisser (2002) yields continuity and 1/𝑑-Hölderness of the reverse
map. Hence ℎ̃−1 is 1/𝑑-Hölder.

• Since Ω is compact, by Banach-Alaoglu theorem, we obtain that P (Ω) is weakly-* compact,
hence P (Ω)/∼ also is. Since F is continuous, it is thus uniformly weak-* continuous: for any
𝜀 > 0, there exists 𝛿 > 0 such that W1(𝛼, ℎ̃−1

♯
ℎ̂♯𝛼) ⩽ 𝛿 implies |F (𝛼) −F (ℎ̃−1

♯
ℎ̂♯𝛼) | < 𝜀. Choosing

𝑁 large enough such that 𝐶𝑑1/2𝑑/𝑁 1/𝑑2
⩽ 𝛿 therefore ensures that |F (𝛼) − F (ℎ̃−1

♯
ℎ̂♯𝛼) | < 𝜀.

Extension of Theorem 1 to products of permutation groups..

Corollary 1. Let F : P (Ω)/∼ → R a continuous 𝑆𝑑1 × . . . × 𝑆𝑑𝑛 -invariant map (
∑
𝑖 𝑑𝑖 = 𝑑), where Ω

is a symmetrized compact over R𝑑 . Then ∀𝜀 > 0, there exists three continuous maps 𝑓 , 𝑔, ℎ such that

∀𝛼 ∈M1
+(Ω)/∼, |F (𝛼) − 𝑓 ◦ E ◦ 𝑔(ℎ♯𝛼) | < 𝜀

where ℎ is invariant; 𝑔, ℎ are independent of F .

Proof. We provide a proof in the case 𝐺 = 𝑆𝑑 × 𝑆𝑝 , which naturally extends to any product group
𝐺 = 𝑆𝑑1 × . . . × 𝑆𝑑𝑛 . We trade ℎ for the collection of elementary symmetric polynomials in the first
𝑑 variables; and in the last 𝑝 variables:

ℎ : (𝑥1, . . . , 𝑥𝑑 , 𝑦1, . . . , 𝑦𝑝) ∈ R𝑑+𝑝

↦→ ([
∑︁

𝑗1<...< 𝑗𝑖

𝑥 𝑗1 . . . 𝑥 𝑗𝑖 ]𝑑𝑖=1; [
∑︁

𝑗1<...< 𝑗𝑖

𝑦 𝑗1 . . . 𝑦 𝑗𝑖 ]
𝑝

𝑖=1)

∈ R𝑑+𝑝

up to normalizing constants (see Lemma 4). Step 1 (in Lemma 3) consists in showing that ℎ does not
lead to a loss of information, in the sense that it generates the ring of 𝑆𝑑 ×𝑆𝑝−invariant polynomials.
In step 2 (in Lemma 4), we show that ℎ̃−1 is 1/max(𝑑, 𝑝)−Hölder. Combined with the proof of
Theorem 1, this amounts to showing that the concatenation of Hölder functions (up to normalizing
constants) is Hölder. With these ingredients, the sketch of the previous proof yields the result. □
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Lemma 3. Let the collection of symmetric invariant polynomials [𝑃𝑖 (𝑋1, . . . , 𝑋𝑑 )]𝑑𝑖=1
def.
=

[∑𝑗1<...< 𝑗𝑖 𝑋 𝑗1 . . . 𝑋 𝑗𝑖 ]𝑑𝑖=1 and [𝑄𝑖 (𝑌1, . . . , 𝑌𝑝)]𝑝𝑖=1 = [∑𝑗1<...< 𝑗𝑖 𝑌𝑗1 . . . 𝑌𝑗𝑖 ]
𝑝

𝑖=1. The 𝑑 + 𝑝−sized fam-
ily (𝑃1, . . . , 𝑃𝑑 , 𝑄1, . . . , 𝑄𝑝) generates the ring of 𝑆𝑑 × 𝑆𝑝−invariant polynomials.

Proof. The result comes from the fact the fundamental theorem of symmetric polynomials (see
Cox et al. (2018) chapter 7, theorem 3) does not depend on the base field. Every 𝑆𝑑 × 𝑆𝑝−invariant
polynomial 𝑃 (𝑋1, . . . , 𝑋𝑑 , 𝑌1, . . . , 𝑌𝑝) is also 𝑆𝑑 × 𝐼𝑝−invariant with coefficients in R[𝑌1, . . . , 𝑌𝑝],
hence it can be written 𝑃 = 𝑅(𝑌1, . . . , 𝑌𝑝) (𝑃1, . . . , 𝑃𝑑 ). It is then also 𝑆𝑝−invariant with coefficients
in R[𝑃1, . . . , 𝑃𝑑 ], hence it can be written 𝑃 = 𝑆 (𝑄1, . . . , 𝑄𝑝) (𝑃1, . . . , 𝑃𝑑 ) ∈ R[𝑃1, . . . , 𝑃𝑑 , 𝑄1, . . . , 𝑄𝑝].

□

Lemma 4. Let ℎ : (𝑥,𝑦) ∈ Ω ⊂ R𝑑+𝑝 ↦→ (𝑓 (𝑥)/𝐶1, 𝑔(𝑦)/𝐶2) ∈ R𝑑+𝑝 where Ω is compact, 𝑓 : R𝑑 →
R𝑑 is 1/𝑑−Hölder with constant 𝐶1 and 𝑔 : R𝑝 → R𝑝 is 1/𝑝−Hölder with constant 𝐶2. Then ℎ is
1/max(𝑑, 𝑝)−Hölder.

Proof. Without loss of generality, we consider 𝑑 > 𝑝 so that max(𝑑, 𝑝) = 𝑑 , and 𝑓 , 𝑔 normalized
(f.i. ∀𝑥, 𝑥0 ∈ (R𝑑 )2, ||𝑓 (𝑥) − 𝑓 (𝑥0) ||1 ⩽ ||𝑥 − 𝑥0 ||1/𝑑1 ). For (𝑥,𝑦), (𝑥0, 𝑦0) ∈ Ω2, ||ℎ(𝑥,𝑦) −ℎ(𝑥0, 𝑦0) ||1 ⩽
||𝑓 (𝑥) − 𝑓 (𝑥0) ||1 + ||𝑔(𝑦) − 𝑔(𝑦0) ||1 ⩽ ||𝑥 − 𝑥0 ||1/𝑑1 + ||𝑦 − 𝑦0 ||1/𝑝1 since both 𝑓 , 𝑔 are Hölder. We
denote 𝐷 the diameter of Ω, such that both ||𝑥 − 𝑥0 ||1/𝐷 ⩽ 1 and ||𝑦 − 𝑦0 ||1/𝐷 ⩽ 1 hold. Therefore
||ℎ(𝑥,𝑦) −ℎ(𝑥0, 𝑦0) ||1 ⩽ 𝐷1/𝑑

(
||𝑥−𝑥0 ||1
𝐷

)1/𝑑
+𝐷1/𝑝

(
||𝑦−𝑦0 ||1
𝐷

)1/𝑝
⩽ 21−1/𝑑𝐷1/𝑝−1/𝑑 || (𝑥,𝑦) − (𝑥0, 𝑦0) ||1/𝑑1

using Jensen’s inequality, hence the result. □

In the next two paragraphs, we focus the case of 𝑆𝑑−invariant functions for the sake of clarity,
without loss of generality. Indeed, the same technique applies to𝐺−invariant functions as ℎ in that
case has the same structure: its first 𝑑𝑋 components are 𝑆𝑑𝑋−invariant functions of the first 𝑑𝑋
variables and its last 𝑑𝑌 components are 𝑆𝑑𝑌−invariant functions of the last variables.

Extension of Theorem 1 to distributions on spaces of varying dimension..

Corollary 2. Let 𝐼 = [0; 1] and, for 𝑘 ∈ [1;𝑑𝑚],F𝑘 : P (𝐼𝑘 ) → R continuous and 𝑆𝑘−invariant.
Suppose (F𝑘 )𝑘=1...𝑑𝑚−1 are restrictions of F𝑑𝑚 , namely, ∀𝛼𝑘 ∈ P (𝐼𝑘 ),F𝑘 (𝛼𝑘 ) = F𝑑𝑚 (𝛼𝑘 ⊗ 𝛿

⊗𝑑𝑚−𝑘
0 ).

Then functions 𝑓 and𝑔 from Theorem 1 are uniform: there exists 𝑓 , 𝑔 continuous,ℎ1, . . . , ℎ𝑑𝑚 continuous
invariant such that

∀𝑘 = 1 . . . 𝑑𝑚,∀𝛼𝑘 ∈ P (𝐼𝑘 ), |F𝑘 (𝛼𝑘 ) − 𝑓 ◦ E ◦ 𝑔(ℎ𝑘 ♯𝛼𝑘 ) | < 𝜀.

Proof. Theorem 1 yields continuous 𝑓 , 𝑔 and a continuous invariant ℎ𝑑𝑚 such that ∀𝛼 ∈
P (𝐼𝑑𝑚 ), |F𝑑𝑚 − 𝑓 ◦ E ◦ 𝑔(ℎ𝑑𝑚 ♯𝛼) | < 𝜀. For 𝑘 = 1 . . . 𝑑𝑚 − 1, we denote ℎ𝑘 : (𝑥1, . . . , 𝑥𝑘 ) ∈ R𝑘 ↦→
((∑1⩽ 𝑗1<...< 𝑗𝑖⩽𝑘 𝑥

( 𝑗1) · . . . · 𝑥 ( 𝑗𝑖 ) )𝑖=1...𝑘 , 0 . . . , 0) ∈ R𝑑𝑚 . With the hypothesis, for 𝑘 = 1 . . . 𝑑𝑚 − 1,
𝛼𝑘 ∈ P (𝐼𝑘 ), the fact that ℎ𝑘 ♯ (𝛼𝑘 ) = ℎ𝑑𝑚 ♯ (𝛼𝑘 ⊗ 𝛿

⊗𝑑𝑚−𝑘
0 ) yields the result. □

Approximation by invariant neural networks.. Based on theorem 1, F is uniformly close to
𝑓 ◦ E ◦ 𝑔 ◦ ℎ:

• We approximate 𝑓 by a neural network 𝑓𝜃 : 𝑥 ∈ R𝑁 ↦→ 𝐶1𝜆(𝐴1𝑥 +𝑏1) ∈ R, where 𝑝1 is an integer,
𝐴1 ∈ R𝑝1×𝑁 ,𝐶1 ∈ R1×𝑝1 are weights, 𝑏1 ∈ R𝑝1 is a bias and 𝜆 is a non-linearity.

• Since each component 𝜑 𝑗 of 𝜑 = 𝑔 ◦ ℎ is permutation-invariant, it has the representation
𝜑 𝑗 : 𝑥 = (𝑥1, . . . , 𝑥𝑑 ) ∈ R𝑑 ↦→ 𝜌 𝑗

(∑𝑑
𝑖=1𝑢 (𝑥𝑖)

)
Zaheer et al. (2017) (which is a special case of our

layers with a base function only depending on its first argument, see Section 2.1), 𝜌 𝑗 : R𝑑+1 → R,
and 𝑢 : R→ R𝑑+1 independent of 𝑗 (see Zaheer et al. (2017), theorem 7).
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• We can approximate 𝜌 𝑗 and 𝑢 by neural networks 𝜌 𝑗,𝜃 : 𝑥 ∈ R𝑑+1 ↦→ 𝐶2, 𝑗𝜆(𝐴2, 𝑗𝑥 + 𝑏2, 𝑗 ) ∈ R
and 𝑢𝜃 : 𝑥 ∈ R𝑑 ↦→ 𝐶3𝜆(𝐴3𝑥 + 𝑏3) ∈ R𝑑+1, where 𝑝2, 𝑗 , 𝑝3 are integers, 𝐴2, 𝑗 ∈ R𝑝2, 𝑗×(𝑑+1) ,𝐶2, 𝑗 ∈
R1×𝑝2, 𝑗 , 𝐴3 ∈ R𝑝3×1,𝐶3 ∈ R(𝑑+1)×𝑝3 are weights and 𝑏2, 𝑗 ∈ R𝑝2, 𝑗 , 𝑏3 ∈ R𝑝3 are biases, and denote
𝜑𝜃 (𝑥) = (𝜑 𝑗,𝜃 (𝑥)) 𝑗

def.
= (𝜌 𝑗,𝜃 (

∑𝑑
𝑖=1𝑢𝜃 (𝑥𝑖))) 𝑗 .

Indeed, we upper-bound the difference of interest |F (𝛼) − 𝑓𝜃 (E𝑋∼𝛼 (𝜑𝜃 (𝑋 ))) | by triangular in-
equality by the sum of three terms:

• |F (𝛼) − 𝑓 (E𝑋∼𝛼 (𝜑 (𝑋 ))) |

• |𝑓 (E𝑋∼𝛼 (𝜑 (𝑋 ))) − 𝑓𝜃 (E𝑋∼𝛼 (𝜑 (𝑋 ))) |

• |𝑓𝜃 (E𝑋∼𝛼 (𝜑 (𝑋 ))) − 𝑓𝜃 (E𝑋∼𝛼 (𝜑𝜃 (𝑋 ))) |

and bound each term by 𝜀
3 , which yields the result. The bound on the first term directly comes

from theorem 1 and yields a constant 𝑁 which depends on 𝜀. The bound on the second term is a
direct application of the universal approximation theorem (UAT) (Cybenko, 1989; Leshno et al.,
1993). Indeed, since 𝛼 is a probability measure, input values of 𝑓 lie in a compact subset of R𝑁 :
||
∫
Ω
𝑔 ◦ ℎ(𝑥)d𝛼 ||∞ ⩽ max𝑥 ∈Ω max𝑖 |𝑔𝑖 ◦ ℎ(𝑥) |, hence the theorem is applicable as long as 𝜆 is a

nonconstant, bounded and continuous activation function. Let us focus on the third term. Uniform
continuity of 𝑓𝜃 yields the existence of 𝛿 > 0 s.t. | |𝑢 − 𝑣 | |1 < 𝛿 implies |𝑓𝜃 (𝑢) − 𝑓𝜃 (𝑣) | < 𝜀

3 . Let us
apply the UAT: each component 𝜑 𝑗 of ℎ can be approximated by a neural network 𝜑 𝑗,𝜃 . Therefore:

||E𝑋∼𝛼 (𝜑 (𝑋 ) − 𝜑𝜃 (𝑋 )) ||1 ⩽ E𝑋∼𝛼 ||𝜑 (𝑋 ) − 𝜑𝜃 (𝑋 ) ||1

⩽
𝑁∑︁
𝑗=1

∫
Ω
|𝜑 𝑗 (𝑥) − 𝜑 𝑗,𝜃 (𝑥) |d𝛼 (𝑥)

⩽
𝑁∑︁
𝑗=1

∫
Ω
|𝜑 𝑗 (𝑥) − 𝜌 𝑗,𝜃 (

𝑑∑︁
𝑖=1

𝑢 (𝑥𝑖)) |d𝛼 (𝑥)

+
𝑁∑︁
𝑗=1

∫
Ω
|𝜌 𝑗,𝜃 (

𝑑∑︁
𝑖=1

𝑢 (𝑥𝑖)) − 𝜌 𝑗,𝜃 (
𝑑∑︁
𝑖=1

𝑢𝜃 (𝑥𝑖)) |d𝛼 (𝑥)

⩽ 𝑁
𝛿

2𝑁 + 𝑁
𝛿

2𝑁 = 𝛿

using the triangular inequality and the fact that 𝛼 is a probability measure. The first term is small
by UAT on 𝜌 𝑗 while the second also is, by UAT on 𝑢 and uniform continuity of 𝜌 𝑗,𝜃 . Therefore, by
uniform continuity of 𝑓𝜃 , we can conclude.

Universality of tensorization.. This complementary theorem provides insight into the benefits of
tensorization for approximating invariant regression functionals, as long as the test function is
invariant.

Theorem 2. The algebra

AΩ
def.
=

{
F : P (Ω)/∼ → R, ∃𝑛 ∈ NN, ∃𝜑 : Ω𝑛 → Rinvariant,∀𝛼,F (𝛼) =

∫
Ω𝑛

𝜑d𝛼⊗𝑛
}

where ⊗𝑛 denotes the 𝑛-fold tensor product, is dense in C (M1
+(Ω)/∼) .

Proof. This result follows from the Stone-Weierstrass theorem. Since Ω is compact, by Banach-
Alaoglu theorem, we obtain that P (Ω) is weakly-* compact, hence P (Ω)/∼ also is. In order
to apply Stone-Weierstrass, we show that AΩ contains a non-zero constant function and is an
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algebra that separates points. A (non-zero, constant) 1-valued function is obtained with 𝑛 = 1
and 𝜑 = 1. Stability by scalar is straightforward. For stability by sum: given (F1,F2) ∈ A2

Ω

(with associated functions (𝜑1, 𝜑2) of tensorization degrees (𝑛2, 𝑛2)), we denote 𝑛
def.
= max(𝑛1, 𝑛2)

and 𝜑 (𝑥1, . . . , 𝑥𝑛)
def.
= 𝜑1(𝑥1, . . . , 𝑥𝑛1) + 𝜑2(𝑥1, . . . , 𝑥𝑛2) which is indeed invariant, hence F1 + F2 =∫

Ω𝑛 𝜑d𝛼⊗𝑛 ∈ AΩ . Similarly, for stability by product: denoting this time 𝑛 = 𝑛1+𝑛2, we introduce the
invariant 𝜑 (𝑥1, . . . , 𝑥𝑛) = 𝜑1(𝑥1, . . . , 𝑥𝑛1) × 𝜑2(𝑥𝑛1+1, . . . , 𝑥𝑛), which shows that F = F1 × F2 ∈ AΩ

using Fubini’s theorem. Finally, AΩ separates points: if 𝛼 ≠ 𝜈 , then there exists a symmetrized
domain 𝑆 such that 𝛼 (𝑆) ≠ 𝜈 (𝑆): indeed, if for all symmetrized domains 𝑆 , 𝛼 (𝑆) = 𝜈 (𝑆), then
𝛼 (Ω) = 𝜈 (Ω) which is absurd. Taking 𝑛 = 1 and 𝜑 = 1𝑆 (invariant since 𝑆 is symmetrized) yields
an F such that F (𝛼) ≠ F (𝜈). □
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