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APPENDIX

A CALCULATION OF GENUINE ADVERSARIAL ACCURACY ON ONE-DIMENSIONAL TOY
EXAMPLE

Here, we explain the calculation of genuine adversarial accuracies for f1(x), f2(x) and f3(x) (see
Figure 6). First, we calculate required sets and regions. The topological closure of X is X̄ =
[−2,−1]∪ [1, 2]. Voronoi boundary V B(X ) = {0}. When 0 < ε < 1, previously allowed perturba-
tion region Xε = (−2− ε,−1 + ε) ∪ (1− ε, 2 + ε) and Sexact(ε) = {−2,−1, 1, 2}. When ε ≥ 1,
previously allowed perturbation region Xε = (−2− ε, 0)∪ (0, 2 + ε) and Sexact(ε) = {−2, 2}. For
calculation of genuine adversarial accuracies, we will consider four points −2 − ε,−1 + ε, 1 − ε
and 2 + ε when 0 < ε < 1, and two points −2 − ε and 2 + ε when ε ≥ 1. (If we use the
definition of Rgen;exact(ε) which will be introduced in Lemma 3 in Section B, Rgen;exact(ε) =
{−2− ε,−1 + ε, 1− ε, 2 + ε}when 0 < ε < 1, andRgen;exact(ε) = {−2− ε, 2 + ε}when ε ≥ 1.)
Note that if we did not use closure X̄ in the definition of Sexact(ε), Sexact(ε) = {−2, 1} and we will
only consider points −2− ε and 1− ε when 0 < ε < 1. Likewise, when ε ≥ 1, Sexact(ε) = {−2}
and we will only consider one point −2− ε. This will ignore many points and can not measure the
proper robustness of classifiers.

In the change of genuine adversarial accuracy for f1(x) (shown in Figure 6. f1(x) is shown in Figure
3.), when 0 < ε < 1, points−2−ε,−1+ε and a point 2+εwill be non-adversarial perturbed samples
and 1 − ε will be adversarial example (Biggio et al., 2013), and thus agen;exact(ε) = 3

4 = 0.75.
When ε ≥ 1, points−2−ε and 2+ε will be non-adversarial perturbed samples, and thus its genuine
adversarial accuracy is 1.

When considering the change of genuine adversarial accuracy for f2(x) (shown in Figure 6. f2(x)
is shown in Figure 3.), for 0 < ε < 1, points −2− ε, −1 + ε, 1− ε and 2 + ε will be non-adversarial
perturbed samples, and thus agen;exact(ε) = 1. When 1 ≤ ε ≤ 2, points −2 − ε and 2 + ε will
be non-adversarial perturbed samples, and thus agen;exact(ε) = 1. However, when ε > 2, only one
point 2 + ε will be non-adversarial perturbed samples, and the other point−2− ε will be adversarial
example (Biggio et al., 2013), and thus agen;exact(ε) = 1

2 = 0.5.

Through a similar process, one can understand the change of genuine adversarial accuracy for f3(x).

B LEMMAS USED IN THE PROOFS OF THEOREMS

Lemma 1. Let Aε =
{
x′′ ∈ Rd|∃xclean ∈ X̄ : ‖x′′ − xclean‖ < ε

}
. Then, the following holds.

Xεc ∩ V B(X )c = Ac
ε ∩ V B(X )c (1)

Proof.
Xε = Aε ∩ V B(X )c (∵ The definition of Xε)
Xεc ∩ V B(X )c = (Ac

ε ∪ V B(X )) ∩ V B(X )c (∵ De Morgan’s law)

= (Ac
ε ∩ V B(X )c) ∪ (V B(X ) ∩ V B(X )c) (∵ Distributive law)

= (Ac
ε ∩ V B(X )c) ∪∅ = Ac

ε ∩ V B(X )c

Lemma 2. If ε > 0, then the following holds.
x′ ∈ Xεc ∩ V B(X )c ⇐⇒ ∀xclean ∈ X̄ : ‖x′ − xclean‖ ≥ ε and x′ ∈ V B(X )c (2)

Proof.
x′ ∈ Xεc ∩ V B(X )c ⇐⇒ x′ ∈ Ac

ε ∩ V B(X )c (∵ Equation (1) of Lemma 1)

⇐⇒ x′ /∈
{
x′′ ∈ Rd|∃xclean ∈ X̄ : ‖x′′ − xclean‖ < ε

}
and x′ ∈ V B(X )c

⇐⇒ x′ ∈
{
x′′ ∈ Rd|@xclean ∈ X̄ : ‖x′′ − xclean‖ < ε

}
and x′ ∈ V B(X )c

⇐⇒ x′ ∈
{
x′′ ∈ Rd|∀xclean ∈ X̄ : ‖x′′ − xclean‖ ≥ ε

}
and x′ ∈ V B(X )c

⇐⇒ ∀xclean ∈ X̄ : ‖x′ − xclean‖ ≥ ε and x′ ∈ V B(X )c
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Lemma 3. When ε > 0, by changing ε, x′ that satisfies x′ ∈ Xεc ∩ V B(X )c and ‖x′ − x‖ = ε can
fill up Rd− X̄ except for V B(X ). In other words,

(
Rd − X̄

)
− V B(X ) ⊂

⋃
ε>0

Rgen;exact(ε) where

Rgen;exact(ε) is the region of points that will be used for calculating genuine adversarial accuracy
for ε. It is defined as follows.

Rgen;exact(ε) =

{{
x′ ∈ R| ‖x′ − x‖ = ε where x ∈ X̄

}
∩ X c

ε ∩ V B(X )c, when ε > 0,

X , when ε = 0
.

Proof. Part 1
As X is a nonempty set, ∃x ∈ X̄ .

x′ ∈ Rd − X̄ =⇒ (‖x′ − x‖ = c > 0) ∨ (‖x′ − x‖ = 0) (∵ Non-negativity axiom of a metric)

=⇒ (‖x′ − x‖ = c > 0) ∨
(
x′ = x ∈ X̄

)
(∵ Identity of indiscernibles axiom of a metric)

=⇒ (‖x′ − x‖ = c > 0) ∨
(
x′ ∈ X̄ ∩

(
Rd − X̄

)
= ∅

)
=⇒ ‖x′ − x‖ = c > 0

=⇒ x′ ∈
{
x′′ ∈ Rd| ‖x′′ − xclean‖ = c where xclean ∈ X̄

}
for c > 0

=⇒ x′ ∈
⋃
ε>0

{
x′′ ∈ Rd| ‖x′′ − xclean‖ = ε where xclean ∈ X̄

}
=⇒ x′,∃ε > 0 : ‖x′ − xclean‖ = ε where xclean ∈ X̄

Let εmin;x′ = min
xclean∈X̄

‖x′ − xclean‖ > 0.

=⇒ x′ ∈
{
x′′ ∈ Rd| ‖x′′ − xclean‖ = εmin;x′ where xclean ∈ X̄

}
∩Ac

εmin;x′

(∵ x′ /∈ Aεmin;x′ because of the definition of εmin;x′)

=⇒ x′ ∈
⋃
ε>0

({
x′′ ∈ Rd| ‖x′′ − xclean‖ = ε where xclean ∈ X̄

}
∩Ac

ε

)
We proved the following relation.

Rd − X̄ ⊂
⋃
ε>0

({
x′′ ∈ Rd| ‖x′′ − x‖ = ε where x ∈ X̄

}
∩Ac

ε

)
(3)

Part 2
We finalize the proof of the Lemma 3.⋃
ε>0

Rgen;exact(ε) =
⋃
ε>0

{
x′ ∈ Xεc ∩ V B(X )c| ‖x′ − x‖ = ε where x ∈ X̄

}
=
⋃
ε>0

{
x′ ∈ Aεc ∩ V B(X )c| ‖x′ − x‖ = ε where x ∈ X̄

}
(∵ Equation (1) of Lemma 1)

=
⋃
ε>0

({
x′ ∈ Rd| ‖x′ − x‖ = ε where x ∈ X̄

}
∩Aεc ∩ V B(X )c

)
=

{⋃
ε>0

({
x′ ∈ Rd| ‖x′ − x‖ = ε where x ∈ X̄

}
∩Aεc

)}
∩ V B(X )c

(∵ Distributive law)

⊃
(
Rd − X̄

)
− V B(X ) (∵ Relation (3) )

Combing the fact that Rgen;exact(0) = X and Lemma 3 results in Rd −
(
X̄ − X

)
− V B(X ) ⊂⋃

ε≥0

Rgen;exact(ε). It indicates that even though genuine adversarial accuracy does not allow overlaps

by Theorem 1, in practice, genuine adversarial accuracy uses almost all points in Rd by changing ε
(Note that, in l2 norm, X̄ − X and V B(X ) are regions with measure zero in practice.).
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C PROOF OF THEOREM 1 (NO OVERLAP IN GENUINE ADVERSARIAL ACCURACY)

Proof. Part 1
First, we prove that the regions of points will be used for calculation of genuine adversarial accuracy
for different ε values have no intersection. We need to prove the following when we use the definition
of Rgen;exact(ε) introduced in Lemma 3.

ε1 6= ε2 =⇒ Rgen;exact(ε1) ∩Rgen;exact(ε2) = ∅ (4)

Let x′ ∈ Rgen;exact(ε1), Rgen;exact(ε2) for ε1 6= ε2.
First, we consider when ε1, ε2 > 0.
Then, ∃x1 ∈ X̄ : ‖x′ − x1‖ = ε1 and ∃x2 ∈ X̄ : ‖x′ − x2‖ = ε2.

If x1 = x2, then ‖x′ − x1‖ = ε1 6= ε2 = ‖x′ − x1‖. It is a contradiction.

We now consider the case when x1 6= x2. Without loss of generality, we can assume ε1 < ε2.
As x′ ∈ Rgen;exact(ε2), x′ ∈ X c

ε2 ∩ V B(X )c.
∀xclean ∈ X̄ : ‖x′ − xclean‖ ≥ ε2 and x′ ∈ V B(X )c (∵ Equivalence relation (2) of Lemma 2 in
Section B)
As x1 ∈ X̄ , ‖x′ − x1‖ = ε1 ≥ ε2 and it is a contradiction. Hence, there is no x′ that satisfies
x′ ∈ Rgen;exact(ε1) and x′ ∈ Rgen;exact(ε2).
Prove for (ε1 = 0, ε2 > 0) ∨ (ε1 > 0, ε2 = 0) can be done similarly, and we finished the prove for
the statement (4).

Part 2
Now, we prove that the regions of points will be used for different x ∈ Sexact(ε) have no intersec-
tion.

Let Rgen;exact(ε;x) =

{
{x′ ∈ R| ‖x′ − x‖ = ε} ∩ X c

ε ∩ V B(X )c, when ε > 0,

{x} , when ε = 0
.

We need to prove the following.

x1 6= x2 =⇒ Rgen;exact(ε;x1) ∩Rgen;exact(ε;x2) = ∅ (5)

This is obvious when ε = 0 as Rgen;exact(0;x1) = {x1} and Rgen;exact(0;x2) = {x2}.
We consider when ε > 0.
Let x′ ∈ Rgen;exact(ε;x1), Rgen;exact(ε;x2) for x1 6= x2. Then, ‖x′ − x1‖ = ε = ‖x′ − x2‖
and x′ ∈ V B(X ). However, as x′ ∈ Rgen;exact(ε;x1), x′ ∈ V B(X )c. It is a contradiction that
x′ ∈ V B(X ) and x′ ∈ V B(X )c, and Rgen;exact(ε;x1) ∩ Rgen;exact(ε;x2) needs to be ∅. We
finished the prove for the statement (5).
Because of statements 4 and 5, there will be no overlap when we choose different ε or different
x ∈ Sexact(ε), and thus we proved Theorem 1.

D PROOF OF THEOREM 2 (1-NN CLASSIFIER IS THE CLASSIFIER THAT MAXIMIZES GENUINE
ADVERSARIAL ACCURACY)

Proof. Part 1
First, we prove that a 1-NN classifier maximizes genuine adversarial accuracy. We denote the 1-NN
classifier as f1−NN .

When ε = 0, agen; exact(0) = Ex∈X [1 (f1−NN (x) = cx)] = Ex∈X [1] = 1.

When ε > 0, let x ∈ Sexact(ε).
Then, ∃x′ ∈ Xεc ∩ V B(X )c : ‖x′ − x‖ = ε.
∀xclean ∈ X̄ : ‖x′ − xclean‖ ≥ ε and x′ ∈ V B(X )c (∵ Equivalence relation (2) in Section B)
Because of that and ‖x′ − x‖ = ε, x and x′ are nearest neighbors. Thus, f1−NN (x′) = cx. As x∗ is
a special case for x′, f1−NN (x∗) = cx and 1 (f1−NN (x∗) = cx) = 1.
Hence, agen; exact(ε) = 1 and f1−NN maximizes genuine adversarial accuracy.

Part 2
Now, we prove that if f∗ maximizes genuine adversarial accuracy, then f∗ becomes a 1-NN classifier
(almost everywhere) except for X̄ − X and Voronoi boundary V B(X ). As we know that a 1-NN
classifier maximizes genuine adversarial accuracy from part 1, we only need to show that f∗ is
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almost everywhere unique (except for X̄ − X and Voronoi boundary V B(X ) ).
Let f∗1 be a function that maximizes genuine adversarial accuracy.

When ε = 0, Ex∈X [1 (f1−NN (x) = cx)] = 1 = Ex∈X
[
1
(
f∗1(x) = cx

)]
. We get

1
(
f∗1(x) = cx

)
= 1 almost everywhere for x ∈ X . It is equivalent to f∗1(x) = cx = f1−NN (x)

almost everywhere for x ∈ X .

When ε > 0, let x ∈ Sexact(ε).
With similar process (when ε = 0), we get f∗1(x∗) = cx and f1−NN (x∗∗) = cx almost everywhere
for x ∈ Sexact(ε), x∗ and x∗∗.
As x∗ and x∗∗ are worst case adversarially perturbed samples, i.e., samples that output mostly
different from cx, f∗1(x′) = cx and f1−NN (x′′) = cx almost everywhere where x′, x′′ ∈ Xεc ∩
V B(X )c, ‖x′ − x‖ = ε = ‖x′′ − x‖.
We can consider when x′ = x′′ and we get f∗1(x′) = cx = f1−NN (x′) almost everywhere where
x′ ∈ Xεc ∩ V B(X )c, ‖x′ − x‖ = ε.
By changing ε, x′ that satisfies x′ ∈ Xεc ∩V B(X )c and ‖x′ − x‖ = ε can fill up Rd−X̄ except for
V B(X ) (∵ Lemma 3 in Section B.). Hence, f∗1 is almost everywhere same with f1−NN except
for X̄ − X and Voronoi boundary V B(X ).

E GENUINE ADVERSARIAL ACCURACY BY MAXIMUM PERTURBATION NORM

Even though the advantages of genuine adversarial accuracy by exact perturbation norm, it
can be hard to calculate it in practice. That is due to the complex calculation in the pro-
jected gradient descent (PGD) method (Madry et al., 2017) when non-path-connected regions
are used. This problem can be solved when we use genuine adversarial accuracy by max-
imum perturbation norm because, for each x ∈ X , it uses the intersection of Ball(x, ε)
and V or(x) − V B(X ) where Ball(x, ε) =

{
x′ ∈ Rd| ‖x− x′‖ ≤ ε

}
and Voronoi cell

V or(x) =
{
x′ ∈ Rd| ‖x− x′‖ ≤ ‖xclean − x′‖ ,∀xclean ∈ X − {x}

}
. The intersection is

convex as both Ball(x, ε) and V or(x) − V B(X ) are convex. Hence, it is path-connected. When
applying projections for the PGD method, for each iteration, one needs to apply projection on
Ball(x, ε) first, then apply projection using V or(x)− V B(X ).

Definition 4 (Genuine adversarial accuracy by maximum perturbation norm). We de-
fine genuine adversarial accuracy that uses the maximum perturbation norm. Note that 1 ()
is an indicator function that has value 1 if the condition in the bracket holds and value
0 if the condition in the bracket does not hold. Voronoi boundary V B(X ) is defined as{
x′ ∈ Rd|∃x1, x2 ∈ X̄ : x1 6= x2, ‖x′ − x1‖ = ‖x′ − x2‖

}
. Then, genuine adversarial accuracy

(by maximum perturbation norm) agen;max(ε) is defined as follows.

• agen;max(ε) = Ex∈X [1 (f(x∗) = cx)]
where x∗ = arg max

x′∈V or(x)−V B(X ):‖x′−x‖≤ε
L(θ, x′, cx).

Genuine adversarial accuracy by maximum perturbation norm does not satisfy Theorem 1 (It sat-
isfies similar property with part 2 property in the proof in Section D.). But, it satisfies Theorem 2
(Proof is omitted, but can be done similarly with the proof of genuine adversarial accuracy by exact
perturbation norm.). As it still satisfies Theorem 2, when measuring adversarial robustness of clas-
sifiers, it can replace the genuine adversarial accuracy by exact perturbation norm. Figure 7 shows
changes of genuine adversarial accuracy by maximum perturbation norm for the three classifiers
defined in Section 1.2.1. Decreasing genuine adversarial accuracy by maximum perturbation norm
ε indicates that genuine adversarial accuracy by exact perturbation norm ε will be smaller than 1 (In
general, the converse of this statement does not hold).

F GRADUAL NEAREST NEIGHBOR CLASSIFIERS

In this section, we introduce gradual nearest neighbor (gradual 1-NN) classifiers which can take
non-discrete values in their prediction values. These classifiers can be used for adversarial training
with Voronoi constraints (Khoury & Hadfield-Menell, 2019) as gradual 1-NN classifiers have the
same decision boundaries with standard (discrete) single nearest neighbor (1-NN) classifiers. Using
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Figure 7: Change of genuine adversarial accuracy for f1(x), f2(x) and f3(x) by maximum pertur-
bation norm ε from top to bottom. Details for calculation is omitted.

soft labels based on gradual 1-NN classifiers might help to mitigate the over-confidence of deep
networks (Guo et al., 2017).

For each point x′ ∈ Rd, gradual 1-NN classifiers use the nearest distances to clean samples for each
class. Let us denote the nearest distance to clean samples in class c as dx′;c. Then, for score of

class c, gradual 1-NN classifiers output gc(x′) =


1

d
x′;c∑

y∈Y

1
d
x′;y

, if dx′;c 6= 0,

1, if dx′;c = 0

. (It is not necessary to

use inverse value of dx′;c. One can use other decreasing non-negative functions whose right-hand
limit at zero is infinity. For example, 1

d2
x′;c

or 1
ln(1+dx′;c)

can also be used instead.) Notice that∑
y∈Y

gy(x′) = 1 for any x′ ∈ Rd, i.e., scores of gradual 1-NN classifiers are normalized, and the

score of class c will approach maximum score 1 as dx′;c approach zero.

The formula of gradual 1-NN classifiers is similar to that of neighbourhood components analysis
(NCA) (Goldberger et al., 2005) and matching network (Vinyals et al., 2016). However, their for-
mulas may not be proper relaxations of 1-NN classifiers as they do not output 1 when dx′;c = 0
for score of class c, and it is even possible that the score of class c is higher when dx′;c 6= 0 than
dx′;c = 0. Also, the output for dx′;c = 0 may vary depending on the data points. (Like NCA and
matching network, one can also use the formula of gradual 1-NN classifier for metric learning.)

The prediction values given by gradual 1-NN classifiers are equivalent with implicit scores of
Nearest Neighbor Distance Ratio (NNDR)-based Open-Set Nearest Neighbor (OSNN) (Júnior
et al., 2017) which was devised to handle open-set classification problems (Geng et al.,
2020). One can consider the values of gradual 1-NN classifiers as a normalized form of
OSNN for known classes. Gradual 1-NN classifier can solve open-set classification prob-
lems using a different method for estimating the probability of getting samples from unknown

classes. Let gopen−set(x′) =

{
(1− gunknown(x′)) gc(x

′), if x′ is from a known class c ∈ Y,
gunknown(x′), if x′ is from unknown classes

where gunknown(x′) = −α
∑
y∈Y

gy(x′) log|Y| gy(x′) and α is a parameter that satisfies 0 ≤ α ≤ 1.

(In order for some samples to be classified as unknown classes, α needs to be larger than 1
1+|Y| .).

Then, gunknown(x′) uses entropy to estimate the probability of getting samples from unknown
classes. (If gunknown(x′) is defined as gunknown(x′) = α

∏
y∈Y

gy(x′)
1
|Y| instead, where α is a

parameter that satisfies 0 ≤ α ≤ |Y|, then the cross entropy loss of gopen−set(x′) becomes similar
to the Entropic Open-Set loss (Dhamija et al., 2018). Note that their loss is based on cross entropy
instead of entropy. In order for some samples to be classified as unknown classes, α needs to be
larger than |Y|

1+|Y| .)
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G DETAILS OF THE MODELS AND FURTHER ANALYSIS RESULTS ON MNIST AND CIFAR-10
DATA

Pretrained non-adversarially trained model and PGD-AT model for MNIST data (LeCun et al.,
2010) were from https://github.com/MadryLab/mnist_challenge. Pretrained non-
adversarially trained model and PGD-AT model for CIFAR-10 data (Krizhevsky, 2009) were from
(Engstrom et al., 2019). Pretrained TRADES models were from https://github.com/
yaodongyu/TRADES. Non-adversarially trained models compared with TRADES models were
obtained by non-adversarially training models with the default settings.

Let Xtrain be the training input dataset. For each sample x ∈ Xtrain, the smallest distance to
xclean ∈ Xtrain with different class is denoted as dx;diff . Note that standard adversarial training
(Goodfellow et al., 2014) with ε smaller than half of minimum dx;diff satisfy the condition of
properly applied adversarial training. Adversarially trained models used in the analyses satisfy
properly applied adversarial training based on Table 4.

While many number of prediction changes were changed to same predictions with 1-NN classifiers
(see tables 7 to 13), there were many converse changes. This could be due to the limited capacities
of convolutional neural networks that encourage translation invariance.

Table 4: Minimum of dx;diff values of MNIST (LeCun et al., 2010) and CIFAR-10 (Krizhevsky,
2009) training data.

Data MNIST CIFAR-10

l2 norm 2.399 2.7501

l∞ norm 0.7569 (= 193
255 ) 0.2118 (= 54

255 )

Table 5: Proportions of agreements with 1-NN classifiers on whole predictions on test samples with
non-adversarially trained models and adversarially trained models (Engstrom et al., 2019; Zhang
et al., 2019) for MNIST (LeCun et al., 2010) training data.

Model

(Distance metric, training ε)
PGD-AT (l∞ norm, ε = 0.3) TRADES (l∞ norm, ε = 0.3)

Non-adversarially trained model 0.6144 (0.8431) 0.6143 (0.8422)

Adversarially trained model 0.6130 (0.8422) 0.6147 (0.8425)

Table 6: Proportions of agreements with 1-NN classifiers on whole predictions on test samples with
non-adversarially trained models and adversarially trained models (Engstrom et al., 2019; Zhang
et al., 2019) for CIFAR-10 (Krizhevsky, 2009) training data.

Model

(Distance metric,

training ε)

PGD-AT

(l2 norm,

ε = 0.25)

PGD-AT

(l2 norm,

ε = 0.5)

PGD-AT

(l2 norm,

ε = 1.0)

PGD-AT

(l∞ norm,

ε = 0.03137

= 8
255 )

TRADES

(l∞ norm,

ε = 0.031)

Non-adversarially
trained model 0.3515 0.3515 0.3515 0.1738 (0.1787) 0.1717 (0.1764)

Adversarially
trained model 0.3590 0.3632 0.3691 0.1771 (0.1821) 0.1851 (0.1907)
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Table 7: Division of the change of different predictions on test samples from non-adversarially
trained model to PGD-AT model (l∞ norm, ε = 0.3) (Engstrom et al., 2019) for MNIST (LeCun
et al., 2010)

PGD-AT

(l∞ norm,

ε = 0.3)

Non 1-NN

to 1-NN

1-NN to

non 1-NN

Non 1-NN

for both models
Total

Increased error 10 (28) 28 (36) 75 (49) 113

Decreased error 5 (9) 2 (13) 29 (14) 36

Errors on both models 1 (3) 0 (0) 4 (2) 5

Total 16 (40) 30 (49) 108 (65) 154

Table 8: Division of the change of different predictions on test samples from non-adversarially
trained model to TRADES model (l∞ norm, ε = 0.3) (Engstrom et al., 2019) for MNIST (LeCun
et al., 2010)

TRADES

(l∞ norm,

ε = 0.3)

Non 1-NN

to 1-NN

1-NN to

non 1-NN

Non 1-NN

for both models
Total

Increased error 7 (9) 4 (7) 17 (12) 28

Decreased error 4 (6) 3 (6) 18 (13) 25

Errors on both models 0 (1) 0 (0) 1 (0) 1

Total 11 (16) 7 (13) 36 (25) 54

Table 9: Division of the change of different predictions on test samples from non-adversarially
trained model to PGD-AT model (l2 norm, ε = 0.25) (Engstrom et al., 2019) for CIFAR-10
(Krizhevsky, 2009)

PGD-AT

(l2 norm,

ε = 0.25)

Non 1-NN

to 1-NN

1-NN to

non 1-NN

Non 1-NN

for both models
Total

Increased error 111 75 267 453

Decreased error 55 25 125 205

Errors on both models 20 11 37 68

Total 186 111 429 726

Table 10: Division of the change of different predictions on test samples from non-adversarially
trained model to PGD-AT model (l2 norm, ε = 0.5) (Engstrom et al., 2019) for CIFAR-10
(Krizhevsky, 2009)

PGD-AT

(l2 norm,

ε = 0.5)

Non 1-NN

to 1-NN

1-NN to

non 1-NN

Non 1-NN

for both models
Total

Increased error 178 115 365 658

Decreased error 67 29 120 216

Errors on both models 26 10 53 89

Total 271 154 538 963
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Table 11: Division of the change of different predictions on test samples from non-adversarially
trained model to PGD-AT model (l2 norm, ε = 1.0) (Engstrom et al., 2019) for CIFAR-10
(Krizhevsky, 2009)

PGD-AT

(l2 norm,

ε = 1.0)

Non 1-NN

to 1-NN

1-NN to

non 1-NN

Non 1-NN

for both models
Total

Increased error 434 332 763 1529

Decreased error 59 21 86 166

Errors on both models 52 16 86 154

Total 545 369 935 1849

Table 12: Division of the change of different predictions on test samples from non-adversarially
trained model to PGD-AT model (l∞ norm, ε = 8

255 ) (Engstrom et al., 2019) for CIFAR-10
(Krizhevsky, 2009)

PGD-AT

(l∞ norm,

ε = 8
255 )

Non 1-NN

to 1-NN

1-NN to

non 1-NN

Non 1-NN

for both models
Total

Increased error 169 (171) 120 (123) 726 (721) 1015

Decreased error 20 (23) 21 (21) 152 (149) 193

Errors on both models 7 (7) 22 (23) 87 (86) 116

Total 196 (201) 163 (167) 965 (956) 1324

Table 13: Division of the change of different predictions on test samples from non-adversarially
trained model to TRADES (l∞ norm, ε = 0.031) (Engstrom et al., 2019) for CIFAR-10 (Krizhevsky,
2009)

PGD-AT

(l∞ norm,

ε = 0.031)

Non 1-NN

to 1-NN

1-NN to

non 1-NN

Non 1-NN

for both models
Total

Increased error 233 (239) 114 (117) 892 (883) 1239

Decreased error 29 (33) 18 (19) 146 (141) 193

Errors on both models 18 (21) 14 (14) 96 (93) 128

Total 280 (293) 146 (150) 1134 (1117) 1560

H SPECULATED OPTIMALLY ROBUST CLASSIFIERS WHEN DATA CONTAIN INPUT NOISE

In our analysis, we assumed the exclusive class assumption in the problem setting in order to simplify
the analysis. This section describes how to get speculated optimally robust classifiers when certain
input noises were added. Notice that such classifiers can also be used for adversarial training with
Voronoi constraints (Khoury & Hadfield-Menell, 2019) by replacing exclusive labels with soft labels
(as optimally robust classifiers would output probabilities). When input noises were added, we can
represent that as x = xno-noise +nx where xno-noise is an original point of the sample x before additive
noise nx was added.

Let us consider the case when noise nx follows Gaussian distribution with zero mean and scalar
covariance matrix σ2I for a fixed σ ≥ 0. As xno-noise = x − nx and Gaussian distribution with
zero mean is symmetric with respect to the zero, we know the distribution of the estimated position
of xno-noise. That is Gaussian distribution with mean x and covariance matrix σ2I . Based on the
estimated position of xno-noise, we can generate sets of estimated points of xno-noise for each x, and
there will be a corresponding 1-NN classifier for each set. If we take the average (ensemble) on
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these 1-NN classifiers, we get the speculated optimally robust classifier when Gaussian input noises
were added.

Figure 8 shows a two-dimensional example with different metrics and varying σ (Figure 9 shows
corresponding results combined with gradual 1-NN classifiers explained in Section F). Notice that
we will get different decision boundaries depending on the metrics and noise even though we are
using the same data. As σ gets large, the decision boundaries become more smooth, and they can
allow misclassifications of some data samples.

Single nearest
neighbor classifiers

(σ = 0)
σ = 0.25 σ = 0.5 σ = 0.75 σ = 1

l1
norm

l2
norm

l∞
norm

Figure 8: Contour plots of speculated optimally robust classifiers for a two-dimensional example
when points (1, 1), (2,−1), (2,−2), (−1,−1) and (−2, 1) were provided for class A: red and points
(2, 1), (1,−1), and (0, 0) were provided for class B: blue. Dashed black curves show decision
boundaries for different cases. Figures on the left show single nearest neighbor classifiers for l1,
l2, and l∞ norms. Ensemble of 50000 1-NN classifiers were used for each ensemble classifier. For
noise added cases of l1 and l∞ norms, we used normalized radial basis function (Moody & Darken,
1989) with Gaussian radial kernels as noise distributions. Uniform prior probability is assumed for
all cases.
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Single nearest
neighbor classifiers

(σ = 0)
σ = 0.25 σ = 0.5 σ = 0.75 σ = 1

l1
norm

l2
norm

l∞
norm

Figure 9: Contour plots of speculated optimally robust classifiers combined with gradual 1-NN
classifiers (explained in Section F) for the same example in Figure 8. Dashed black curves show
decision boundaries for different cases. Figures on the left show single nearest neighbor classifiers
for l1, l2, and l∞ norms. Ensemble of 50000 1-NN classifiers were used for each ensemble classifier.
For noise added cases of l1 and l∞ norms, we used normalized radial basis function (Moody &
Darken, 1989) with Gaussian radial kernels as noise distributions. Uniform prior probability is
assumed for all cases.
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