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A PROOFS

Theorem A.1 (Denoising score matching on time-series). l1(n, s) can be replaced by the following
l2(n, s):

l2(n, s) = EX0
n
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1:n
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]
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where X0
n and Xs

1:n are sampled from p(X0
n|X0

1:n−1) and p(Xs
1:n|X0

1:n). Therefore, we can use an

alternative objective, L2 = EsEX1:N

[∑N
n=1 λ(s)l2(n, s)

]
instead of L1

Proof. At first, if n = 1, it can be substituted with the naive denoising score loss by Vincent (2011)
since x00 = 0.

Next, let us consider n > 1. l1(n, s) can be decomposed as follows:
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Here, C1 is a constant that does not depend on the parameter θ, and ⟨·, ·⟩ means the inner product.
Then, the first part’s expectation of the right-hand side can be expressed as follows:
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Similarly, the second part’s expectation of the right-hand side can be rewritten as follows:
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Finally, by using above results, we can derive following result:
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C is a constant that does not depend on the parameter θ.

Corollary A.2. Our target objective function, Lscore, is defined as follows:
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Then, L2 = Lscore is satisfied.

proof. Whereas one can use the law of total expectation, which means E[X] = E[E[X|Y ]] if X,Y
are on an identical probability space to show the above formula, we calculate directly. At first, let us
simplify the expectation of the inner part with a symbol f(x0

1:n) for our computational convenience,
i.e., f(x01:n) = EsExs1:n

[
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At last, the expectation part can be further simplified as follows:
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Since
∑N

n=1 Ex01:N
[f(x01:n)] = Ex01:N

[
∑N

n=1 f(x
0
1:n)] = Lscore, we prove the corollary. □

B EXISTING TIME-SERIES DIFFUSION MODELS

B.1 DIFFUSION MODELS FOR TIME-SERIES FORECASTING AND IMPUTATION

TimeGrad (Rasul et al., 2021) is a diffusion-based method for time-series forecasting, and
CSDI (Tashiro et al., 2021) is for time-series imputation.

In TimeGrad (Rasul et al., 2021), they used a diffusion model for forecasting future observations given
past observations. On each sequential order n ∈ {2, ..., N} and diffusion step s ∈ {1, ..., T}, they
train a neural network ϵθ(·,x1:n−1, s) with a time-dependent diffusion coefficient ᾱs by minimizing
the following objective function:

Ex0n,ϵ,s[
∥∥ϵ− ϵθ(

√
ᾱsx

0
n +

√
1− ᾱsϵ,x1:n−1, s)

∥∥2
2
], (24)

where ϵ ∼ N (0, I). The above formula assumes that we already know x1:n−1, and by using an RNN
encoder, x1:n−1 can be encoded into hn−1. After training, the model forecasts future observations
recursively. More precisely speaking, x1:n−1 is encoded into hn−1 and the next observation xn is
forecast from the previous condition hn−1.

CSDI (Tashiro et al., 2021) proposed a general diffusion framework which can be applied mainly
to time-series imputation. CSDI reconstructs an entire sequence at once, not recursively. Let
x0 ∈ Rdim(X)×N be an entire time-series sequence with N observations in a matrix form. They
define x0

co and x0ta as conditions and imputation targets which are derived from x0, respectively. They
then train a neural network ϵθ(·, x0co, s) with a corresponding diffusion coefficient ᾱs and a diffusion
step s ∈ {1, ..., T} by minimizing the following objective function:

Ex0,ϵ,s[
∥∥ϵ− ϵθ(s, xsta, x0

co)
∥∥2
2
], (25)

where xsta =
√
ᾱsx0ta+(1− ᾱs)ϵ. By training the network using the above loss, it generates missing

elements from the partially filled matrix x0co.
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Figure 4: Graphical representation of TimeGrad (left) and TSGM (right). We adapt TimeGrad to our
generation task but its results are not comparable even to other baselines’ results (see Appendix C.1).

B.2 DIFFERENCE BETWEEN EXISTING AND OUR WORKS

Although they have earned state-of-the-art results for forecasting and imputation, we found that they
are not suitable for our generative task due to the fundamental mismatch between their model designs
and our task (cf. Table 6 and Fig. 4).

Table 6: Comparison among various recent GAN, diffusion, and SGM-based methods for time-series.
xt (resp. x̂t) means a raw (resp. synthesized) observation at time t. For CSDI, xco means a set of
known values and xta means a set of target missing values — it is not necessary that xco precedes xta
in time in CSDI.

Method Type Task Description
TimeGrad Diffusion From x1:N−K , infer x̂N−K+1:N .

CSDI Diffusion Given known values xco, infer missing values x̂ta.
TimeGAN GAN Synthesize x̂1:N from scratch.
GT-GAN GAN Synthesize x̂1:N from scratch.
TSGM SGM Synthesize x̂1:N from scratch.

TimeGrad generates future observations given the hidden representation of past observations hn−1,
i.e., a typical forecasting problem. Since our task is to synthesize from scratch, past known observa-
tions are not available. Thus, TimeGrad cannot be directly applied to our task.

In CSDI, there are no fixed temporal dependencies between x0
co and x0ta since its task is to impute

missing values, i.e., x0ta, from known values, i.e., x0co, in the matrix x0. It is not necessary that x0co
precedes x0ta in time, according to the CSDI’s method design. Our synthesis task can be considered
as x0co = ∅, which is the most extreme case of the CSDI’s task. Therefore, it is not suitable to be used
for our task.

To our knowledge, we are the first proposing an SGM-based time-series synthesis method. We
propose to train a conditional score network by using the denoising score matching loss proposed by
us, which is denoted as LH

score. Unlike other methods (Rasul et al., 2021; Tashiro et al., 2021) that
resort to existing known proofs, we design our denoising score matching loss in Eq. equation 12 and
prove its correctness. Meanwhile, TimeGrad and CSDI can be somehow modified for time-series
synthesis but their generation quality is mediocre (see Appendix C).

C EXPERIMENTAL RESULTS FOR INAPPLICABILITY OF EXISTING
TIME-SERIES DIFFUSION MODELS TO OUR WORK

In this section, we provide experimental results to show inapplicability of the existing time-series
diffusion models, TimeGrad and CSDI, to the time-series generation task.

C.1 ADAPTING TIMEGRAD TOWARD GENERATION TASK

In this section, TimeGrad (Rasul et al., 2021) is modified for the generation task. We simply add an
artificial zero vector 0 in front of the all time-series samples of Energy. Therefore, TimeGrad’s task
becomes given a zero vector, forecasting (or generating) all other remaining observations. For the
stochastic nature of its forecasting process, it can somehow generate various next observations given
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Table 7: Comparison between TSGM and modified TimeGrad in Energy for its regular time-series
setting

Method Disc. Pred.
TSGM-VP .221±.025 .257±.000

TSGM-subVP .198±.025 .252±.000
Modified TimeGrad .500±.000 .287±.003

Table 8: Comparison between TSGM and modified CSDI in Stock and Energy for its regular time-
series setting

Method Energy AI4I
Disc. Pred. Disc. Pred.

TSGM-VP .221±.025 .257±.000 .147±.005 .217±.000
TSGM-subVP .198±.025 .252±.000 .150±.010 .217±.000
Modified CSDI .500±.000 .641±.000 .500±.000 .640±.000

the sample input 0. Table 7 shows the experimental comparison between modified TimeGrad and
TSGM in Energy for its regular time-series setting. TSGM gives outstanding performance, compared
to modified TimeGrad. When checked in Table 2, modified TimeGrad is even worse than some
baselines. Therefore, unlike TSGM, TimeGrad is not appropriate for the generation task.

C.2 ADAPTING CSDI TOWARD GENERATION TASK

In this section, we apply CSDI to the time-series generation task by regarding all observations as
missing values (i.e., x0co = 0). However, as demonstrated in Table 8, CSDI fails to generate reliable
time series samples in the Energy and AI4I datasets for its regular time series setting. Hence, we
conclude that CSDI is unsuitable for the time-series generation task.

D TRAINING ALGORITHM

Algorithm 1: Training algorithm
Input: x0

1:N ; usealt is a Boolean parameter to set whether to use the alternating training method; iterpre is
the number of iterations for pre-training; itermain is the number of iterations for training.

1 for iter ∈ {1, ..., iterpre} do
2 Train Encoder and Decoder by using Led

3 end
4 for iter ∈ {1, ..., itermain} do
5 Train Mθ by using LH

score

6 if usealt then
7 Train the Encoder and Decoder by using Led

8 end
9 end

10 return Encoder,Decoder,Mθ

E DATASETS AND BASELINES

We use 4 datasets from various fields as follows. We summarize their data dimensions, the number of
training samples, and their time-series lengths (window sizes) in Table 9.

• Stock (Yoon et al., 2019): The Google stock dataset was collected irregularly from 2004 to
2019. Each observation has (volume, high, low, opening, closing, adjusted closing prices),
and these features are correlated.

• Energy (Candanedo et al., 2017): This dataset is from the UCI machine learning repository
for predicting the energy use of appliances from highly correlated variables such as house
temperature and humidity conditions.

17



Under review as a conference paper at ICLR 2024

• Air (De Vito et al., 2008): The UCI Air Quality dataset was collected from 2004 to 2005.
Hourly averaged air quality records are gathered using gas sensor devices in an Italian city.

• AI4I (Matzka, 2020): AI4I means the UCI AI4I 2020 Predictive Maintenance dataset. This
data reflects the industrial predictive maintenance scenario with correlated features including
several physical quantities.

We use several types of generative methods for time-series as baselines. At first, we consider
autoregressive generative methods: T-Forcing (teacher forcing) (Graves, 2013; Sutskever et al.,
2011) and P-Forcing (professor forcing) (Goyal et al., 2016). Next, we use GAN-based methods:
TimeGAN (Yoon et al., 2019), RCGAN (Esteban et al., 2017), C-RNN-GAN (Mogren, 2016), COT-
GAN (Xu et al., 2020), GT-GAN (Jeon et al., 2022). We also test VAE-based methods into our
baselines: TimeVAE (Desai et al., 2021). Finally, we treat flow-based methods. Among the array
of flow-based models designed for time series generation, we have chosen to compare our TSGM
against CTFP (Deng et al., 2020). This choice is informed by the fact that CTFP possesses the
capability to handle both regular and irregular time series samples, aligning well with the nature of
our task which involves generating both regular and irregular time series data.

Table 9: Characteristics of the datasets we use for our experiments

Dataset Dimension #Samples Length
Stocks 6 3685

24Energy 28 19735
Air 13 9357

AI4I 5 10000

F HYPERPARAMETERS AND ITS SEARCH SPACE

Table 10 shows the best hyperparameters for our conditional score network Mθ on regular time-series,
and we explain its neural network architecture in Appendix J.2. Mθ has various hyperparameters and
for key hyperparameters, we set them as listed in Table 10. For other common hyperparameters with
baselines, we reuse the default configurations of TimeGAN (Yoon et al., 2019) and VPSDE (Song
et al., 2021) to conduct the regular time-series generation.

We give our search space for the hyperparameters of TSGM. iterpre is in {50000,100000}. The
dimension of hidden features, dhidden, ranges from 2 times to 5 times the dimension of input features.
On regular time-series generation, we follow the default values in TimeGAN (Yoon et al., 2019)
and VPSDE (Song et al., 2021). For irregular time-series tasks, we search the hidden dimension of
decoder from 2 times to 4 times the dimension of input dimension, and follow GTGAN (Jeon et al.,
2022) for other settings of NCDE-encoder and GRU-ODE-decoder. We give our best hyperparameters
for irregular time-series on Table 11.

For baselines, we check their hyperparameters as follow:

• T-forcing (Graves, 2013): We control batch size among {256, 512, 1024}.

• P-forcing (Goyal et al., 2016): We control batch size among {256, 512, 1024}.

• TimeGAN (Yoon et al., 2019): The dimension of hidden features range from 2 times to 4
times the dimension of input features.

• RCGAN (Esteban et al., 2017): We control learning rate of generator’s optimizer and
discriminator’s optimizer from {1e-4, 2e-4} and {1e-3, 5e-3}, respectively.

• C-RNN-GAN (Mogren, 2016): We control learning rate of generator’s optimizer and
discriminator’s optimizer from {1e-4, 2e-4} and {3e-4, 4e-4}, respectively. We also use
label smoothing which is stated in the paper.

• TimeVAE (Desai et al., 2021): We control its latent dimension among {5, 10, 20}.

• COT-GAN (Xu et al., 2020): We calculate score every 250 epoch during 1000 epochs and
get the best experimental results.
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• CTFP (Deng et al., 2020): The dimension of hidden features range from 2 times to 4 times
the dimension of input features.

• GT-GAN (Jeon et al., 2022): For encoder-decoder pair, we test from exactly the same search
space as TSGM. We calculate score every 5000 iteration during 40000 iterations and get the
best score.

Especially for COT-GAN, since it is on video generation, modifying the architecture to one dimen-
sional form was difficult. So, we augment our time-series data into two dimensional ones by stacking
them. After generating two-dimensional data, we extract the first row of the synthesized one and
calculate the score. We search every hyperparameter from {0.5, 1, 2} times of default value. Through
the experiment, we acquire compatible result but lower than TimeGAN in several datasets.

We follow default values for miscellaneous settings which are not explained on the above. Addition-
ally, to deal with irregular time-series, we search the hyperparameters of GRU-D, which substitutes
for RNN or are added to the head of baselines. We test the hidden dimension of GRU-D from 2 times
to 4 times the dimension of input features.

Table 10: The best hyperparameter setting for our method on regular time-series.

Dataset dim(h) usealt iterpre itermain

Stocks 24 True 50000

40000Energy 56 False 100000
Air 40 True 50000

AI4I 24 True 50000

Table 11: The best hyperparameter setting for our method on irregular time-series. Dhidden denotes
the hidden dimension of GRU-ODE-decoder.

Dataset Dhidden dim(h) usealt iterpre itermain

Stocks 48 24 True

50000 40000Energy 112 56 False
Air 40 40 True

AI4I 48 24 True

G MISCELLANEOUS EXPERIMENTAL ENVIRONMENTS

We give detailed experimental environments. The following software and hardware environments
were used for all experiments: UBUNTU 18.04 LTS, PYTHON 3.9.12, CUDA 9.1, NVIDIA Driver
470.141, i9 CPU, and GEFORCE RTX 2080 TI.

In the experiments, we report only the VP and subVP-based TSGM and exclude the VE-based one for
its lower performance. For baselines, we reuse their released source codes in their official repositories
and rely on their designed training and model selection procedures. For our method, we select the
best model for every 5000 iterations. For this, we synthesize samples and calculate the mean and
standard deviation scores of the discriminative and predictive scores.

H EMPIRICAL SPACE AND TIME COMPLEXITY ANALYSES

We report the memory usage during training in Table 12 and the wall-clock time for generating
1,000 time-series samples in Table 13. We compare TSGM to TimeGAN (Yoon et al., 2019) and
GTGAN (Jeon et al., 2022). Our method is relatively slower than TimeGAN and GTGAN, which
is a fundamental drawback of all SGMs. For example, the original score-based model (Song et al.,
2021) requires 3,214 seconds for sampling 1,000 CIFAR-10 images while StyleGAN (Karras et al.,
2019) needs 0.4 seconds. However, we also emphasize that this problem can be relieved by using the
techniques suggested in (Xiao et al., 2022; Jolicoeur-Martineau et al., 2021) as we mentioned in the
conclusion section.
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Table 12: The memory usage for training

Method Stock Energy
TimeGAN 1.1 (GB) 1.6 (GB)
GTGAN 2.3 (GB) 2.3 (GB)
TSGM 3.8 (GB) 3.9 (GB)

Table 13: The sampling time of TSGM, TimeGAN and GTGAN for generating 1,000 samples on
each dataset. The original score-based model (Song et al., 2021) requires 3,214 seconds for sampling
1000 CIFAR-10 images while StyleGAN (Karras et al., 2019) needs 0.4 seconds, which is similar to
the case between TSGM and TimeGAN.

Method Stocks Energy
TimeGAN 0.43 (s) 0.47 (s)
GTGAN 0.43 (s) 0.47 (s)
TSGM 3318.99 (s) 1620.84 (s)

I ENCODER AND DECODER FOR IRREGULAR TIME-SERIES

To process irregular time-series, one can use continuous-time methods for constructing the encoder
and the decoder. In our case, we use neural controlled differential equations (NCDEs) for designing
the encoder and GRU-ODEs for designing the decoder, respectively (Kidger et al., 2020; Brouwer
et al., 2019). Our encoder based on NCDEs can be defined as follows:

h(tn) = h(tn−1) +

∫ tn

tn−1

f(t,h(t); θf )
dX(t)

dt
dt, (26)

where X(t) is an interpolated continuous path from x1:N — NCDEs typically use the natural cubic
spline algorithm to define X(t), which is twice differentiable and therefore, there is not any problem
to be used for forward inference and backward training. In other words, NCDEs evolve the hidden
state h(t) by solving the above Riemann-Stieltjes integral.

For the decoder, one can use the following GRU-ODE-based definition:

d(tn) = d(tn−1) +

∫ tn

tn−1

g(t,d(t); θg)dt, d(tn) = GRU(h(tn),d(tn)), x̂n = FC(d(tn)),

(27)

where FC denotes a fully-connected layer-based output layer. The intermediate hidden representation
d(tn) is jumped into the hidden representation d(tn) by the GRU-based jump layer. At the end, there
is an output layer.

For our irregular time-series experiments, i.e, dropping 30%, 50%, and 70% of observations from
regular time-series, we use the above encoder and decoder definitions and have good results.

J NEURAL NETWORK ARCHITECTURE

J.1 ARCHITECTURAL DETAILS OF NCDES AND GRU-ODES

As mentioned in Appendix I, we take the following architecture for functions f , g of (26) and (27) in
Table 14.

J.2 CONDITIONAL SCORE NETWORK

Unlike other generation tasks, e.g., image generation (Song et al., 2021) and tabular data synthe-
sis (Kim et al., 2022), where each sample is independent, time-series observations are dependent to
their past observations. Therefore, the score network for time-series generation must be designed to
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Table 14: Architecture of functions f (upper) and g(lower). Each layer of encoder and gate of decoder
takes (σ ◦Linear) form where σ denotes activation function. We describe which activation and Linear
function are used.

Layer Activation function Linear
1 ReLU dim(x)→ 4 dim(x)
2 ReLU 4 dim(x)→ 4 dim(x)
3 ReLU 4 dim(x)→ 4 dim(x)
4 Tanh 4 dim(x)→ dim(x)

Layer Gate Activation function Linear

1
rt ReLU

dim(h)→ dim(h)zt ReLU
ut Tanh

Table 15: Experimental results in terms of the discriminative and predictive scores. The best scores
are in boldface. The left and right ones denote experimental results on irregular time-series with 50%
and 70% missing rates, respectively.

Method Stocks Energy Air AI4I

D
is

c.
sc

or
e

TSGM-VP .051±.014 .398±.003 .272±.012 .156±.106
TSGM-subVP .031±.012 .421±.008 .213±.025 .137±.102
T-Forcing-D .407±.034 .376±.046 .499±.001 .473±.045
P-Forcing-D .500±.000 .500±.000 .494±.012 .437±.079
TimeGAN-D .477±.021 .473±.015 .500±.001 .500±.000
RCGAN-D .500±.000 .500±.000 .500±.000 .500±.000

C-RNN-GAN-D .500±.000 .500±.000 .500±.000 .450±.150
TimeVAE-D .411±.110 .436±.088 .423±.153 .389±.113
COT-GAN-D .499±.001 .500±.000 .500±.000 .500±.000

CTFP .499±.000 .500±.000 .500±.000 .499±.001
GT-GAN .265±.073 .317±.010 .434±.035 .276±.033

Pr
ed

.s
co

re

TSGM-VP .011±.000 .051±.001 .041±.001 .060±.001
TSGM-subVP .011±.000 .051±.001 .042±.002 .065±.013
T-Forcing-D .038±.003 .090±.000 .121±.003 .143±.005
P-Forcing-D .089±.010 .198±.005 .101±.003 .116±.007
TimeGAN-D .254±.047 .339±.029 .325±.005 .251±.010
RCGAN-D .333±.044 .250±.010 .335±.023 .276±.066

C-RNN-GAN-D .273±.000 .438±.000 .289±.033 .373±.037
TimeVAE-D .195±.012 .143±.007 .103±.002 .144±.004
COT-GAN-D .246±.000 .475±.000 .557±.000 .449±.000

CTFP .084±.005 .469±.008 .476±.235 .412±.024
GT-GAN .018±.002 .064±.001 .061±.003 .113±.024
Original .011±.002 .045±.001 .044±.006 .059±.001

Method Stocks Energy Air AI4I

D
is

c.
sc

or
e

TSGM-VP .065±.010 .482±.003 .337±.025 .327±.104
TSGM-subVP .035±.009 .213±.025 .329±.027 .235±.123
T-Forcing-D .404±.068 .336±.032 .499±.001 .493±.010
P-Forcing-D .449±.150 .494±.011 .498±.002 .440±.125
TimeGAN-D .485±.022 .500±.000 .500±.000 .500±.000
RCGAN-D .500±.000 .500±.000 .500±.000 .500±.000

C-RNN-GAN-D .500±.000 .500±.000 .500±.000 .500±.000
TimeVAE-D .444±.148 .498±.003 .426±.148 .371±.092
COT-GAN-D .498±.001 .500±.000 .500±.000 .500±.000

CTFP .500±.000 .500±.000 .500±.000 .499±.000
GT-GAN .230±.053 .325±.047 .444±.019 .362±.043

Pr
ed

.s
co

re

TSGM-VP .011±.000 .053±.001 .043±.000 .092±.024
TSGM-subVP .012±.000 .042±.002 .042±.001 .097±.020
T-Forcing-D .031±.002 .091±.000 .116±.003 .144±.004
P-Forcing-D .107±.009 .193±.006 .107±.002 .125±.007
TimeGAN-D .228±.000 .443±.000 .425±.008 .323±.011
RCGAN-D .441±.045 .349±.027 .359±.008 .346±.029

C-RNN-GAN-D .281±.019 .436±.000 .306±.040 .262±.053
TimeVAE-D .199±.009 .134±.004 .108±.004 .142±.008
COT-GAN-D .278±.000 .456±.000 .556±.000 .435±.000

CTFP .084±.005 .469±.008 .476±.235 .412±.024
GT-GAN .020±.005 .076±.001 .059±.004 .124±.003
Original .011±.002 .045±.001 .044±.006 .059±.001

learn the conditional log-likelihood given past generated observations, which is more complicated
than that in image generation.

In order to learn the conditional log-likelihood, we modify the popular U-net (Ronneberger et al.,
2015) architecture for our purposes. Since U-net has achieved various excellent results for other
generative tasks (Song & Ermon, 2019; Song et al., 2021), we modify its 2-dimensional convolution
layers to 1-dimensional ones for handling time-series observations. The modified U-net, denoted Mθ,
is trained to learn our conditional score function (cf. Eq. equation 12). More details on training and
sampling with Mθ are in Sec. 3.4.

K ADDITIONAL EXPERIMENTAL RESULTS

We give additional experimental results for irregular time-series generation with 50% and 70%
missing rates in Table 15.

L ADDITIONAL VISUALIZATIONS

In this section, we provide additional visualization results in each dataset. Figure 5 illustrates the
density function of each feature estimated by KDE in original and generated data. Figure 6 shows
original and generated data points projected onto a latent space using t-SNE (van der Maaten &
Hinton, 2008)
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Figure 5: Additional KDE plots for each feature in Air and AI4I datasets.
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Figure 6: Additional t-SNE plots in Energy and AI4I datasets.

M EFFICACY OF OUR RECURSIVE GENERATION

In this section, we investigate the efficacy of our proposed recursive design. We compare TSGM to an
method using one-shot generation. we call one-shot generation when a generation method generates
all time-series observations at once, not recursively. In other words, D×N matrices, where D means
the number of features and N means the sequence length, are synthesized at once. CSDI (Tashiro
et al., 2021) is one of the most famous one-shot imputation model for time-series.

We convert our TSGM for the one-shot generation by removing the RNN-based encoder. In Table 16,
TSGM-oneshot shows poor generation quality in Stock and Energy. TSGM-oneshot achieves com-
parable predictive scores but its discriminative score gets worse a lot. From these results, we can
support the efficacy of our recursive structures, compared to one-shot generation. One can also check
the one-shot generation result by CSDI in Appendix C.2.

Table 16: Comparison between TSGM and one-shot generations. We give representative results. For
other datasets, the results are similar or worse than the table.

Method Stock Energy
Disc. Pred. Disc. Pred.

TSGM-VP .022±.005 .037±.000 .221±.025 .257±.000
TSGM-subVP .021±.008 .037±.000 .198±.025 .252±.000
TSGM-oneshot .029±.018 .037±.000 .494±.001 .258±.000
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