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ABSTRACT

Federated optimization studies the problem of collaborative function optimization
among multiple clients (e.g. mobile devices or organizations) under the coordina-
tion of a central server. Since the data is collected separately by each client and
always remains decentralized, federated optimization preserves data privacy and
allows for large-scale computing, which makes it a promising decentralized ma-
chine learning paradigm. Though it is often deployed for tasks that are online in
nature, e.g., next-word prediction on keyboard apps, most works formulate it as an
offline problem. The few exceptions that consider federated bandit optimization
are limited to very simplistic function classes, e.g., linear, generalized linear, or
non-parametric function class with bounded RKHS norm, which severely hinders
its practical usage. In this paper, we propose a new algorithm, named Fed-GO-
UCB, for federated bandit optimization with generic non-linear objective func-
tion. Under some mild conditions, we rigorously prove that Fed-GO-UCB is able
to achieve sub-linear rate for both cumulative regret and communication cost. At
the heart of our theoretical analysis are distributed regression oracle and individ-
ual confidence set construction, which can be of independent interests. Empirical
evaluations also demonstrate the effectiveness of the proposed algorithm.

1 INTRODUCTION

Federated optimization is a machine learning method that enables collaborative model estimation
over decentralized dataset without data sharing (McMahan et al., 2017; Kairouz et al., 2019). It
allows the creation of a shared global model with personal data remaining in local sites instead of
being transferred to a central location, and thus reduces the risks of personal data breaches. While
the main focus of the state-of-the-art federated optimization is on the offline setting, where the
objective is to obtain a good model estimation based on fixed dataset (Li et al., 2019a; Mitra et al.,
2021), several recent research efforts have been made to extend federated optimization to the online
setting, i.e., federated bandit optimization (Wang et al., 2020; Li & Wang, 2022b; Li et al., 2022a).

Compared with its offline counterpart, federated bandit optimization is characterized by its online
interactions with the environment, which continuously provides new data points to the clients over
time. The objective of the clients is to collaboratively minimize cumulative regret, which measures
how fast they can find the optimal decision, as well as the quality of decisions made during the trial-
and-error learning process. This new paradigm greatly improves sample efficiency, as the clients
not only collaborate on model estimation, but also actively select informative data points to evaluate
in a coordinated manner. Moreover, compared with the standard Bayesian optimization approach
(Shahriari et al., 2015), the improved data protection of federated bandit optimization makes it a bet-
ter choice for applications involving sensitive data, such as recommender systems (Li et al., 2010),
clinical trials (Villar et al., 2015) and sequential portfolio selection (Shen et al., 2015). For exam-
ple, medical data such as disease symptoms and medical reports are very sensitive and private, and
are typically stored in isolated medical centers and hospitals (Yang et al., 2019). Federated bandit
optimization offers a principled way for different medical institutions to jointly solve optimization
problems for smart healthcare applications, while ensuring privacy and communication efficiency.

∗Equal Contribution
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Figure 1: Illustration of Fed-GO-UCB algorithm, which consists of two phases: in Phase I, all clients
do uniform exploration for a total number of T0 time steps, and then use the collected data to jointly
construct an model ŵ0 via iterative distributed optimization; in Phase II, each client constructs a
local confidence set for the unknown non-linear function f using gradients w.r.t. the shared model
ŵ0, based on which they do optimistic exploration. Synchronization of their local statistics happens
when a communication event is triggered, which enables coordinated exploration among the clients.

However, despite these potential benefits and the compelling theoretical guarantees, prior works in
this direction are limited to very restrictive function classes, e.g., linear (Wang et al., 2020; Li &
Wang, 2022a; He et al., 2022), generalized linear (Li & Wang, 2022b), and non-parametric function
class with bounded RKHS norm (Li et al., 2022a; 2023; Du et al., 2021), which limits their potential
in practical scenarios that typically require more powerful tools in nonlinear modeling, e.g. neural
networks. The main challenges in bridging this gap come from two aspects. First, different from
offline federated optimization, federated bandit optimization needs to efficiently explore the decision
space by actively picking data points to evaluate. This requires a careful construction of confidence
sets for the unknown optimal model parameter (Abbasi-yadkori et al., 2011), which is challenging
for generic nonlinear functions. Second, for clients to collaboratively estimate confidence sets,
occasional communications are required to aggregate their local learning parameters as new data
points are collected over time. Prior works consider simple function classes (Wang et al., 2020; Li
& Wang, 2022a), so efficient communication can be realized by directly aggregating local sufficient
statistics for the closed-form model estimation. However, generic non-linear function places a much
higher burden on the communication cost, as iterative optimization procedure is required.

To address these challenges, we propose the Federated Global Optimization with Upper Confidence
Bound (Fed-GO-UCB) algorithm, as illustrated in Figure 1. Specifically, Fed-GO-UCB has two
phases: Phase I does uniform exploration to sufficiently explore the unknown function; and Phase
II does optimistic exploration to let N clients jointly optimize the function. All clients separately
choose which points to evaluate, and only share statistics summarizing their local data points with
the central server. Details of Fed-GO-UCB are presented in Section 4.1.

Technical novelties. Our core technique to address the aforementioned challenges is a novel con-
fidence sets construction that works for generic nonlinear functions, and more importantly, can be
updated communication efficiently during federated bandit optimization. Our construction is moti-
vated by Liu & Wang (2023), with non-trivial extensions tailored to federated bandit setting. Specif-
ically, the statistics used for function approximation in Liu & Wang (2023) is computed based on a
single sequence of continuously updated models, but in federated bandits, each client has a different
sequence of locally updated models. Direct aggregation of such local statistics does not necessar-
ily lead to valid confidence sets. Instead, we propose a new approximation procedure, such that
all statistics are computed based on the same fixed model shared by all clients, which is denoted
by ŵ0. With improved analysis, we show that valid confidence sets can still be constructed. More
importantly, this allows direct aggregation of statistics from different clients, so that communication
strategies proposed in linear settings can be utilized to reduce frequency of communications. Over
the entire horizon, only the estimation of ŵ0 at the end of Phase I requires iterative optimization. To
further control the communication cost it incurs, we show that ŵ0 only needs to be an O(1/

√
NT )-
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approximation to the empirical risk minimizer that is required in the analysis of Liu & Wang (2023),
and adopt a distributed implementation of Gradient Langevin Dynamics (GLD) for its optimization.

Contributions. Our main contributions can be summarized as follows.

• To the best of our knowledge, this is the first federated bandit algorithm for generic non-linear
function optimization with provable communication efficiency, making it deployment-efficient.

• Under realizable assumption and some other mild conditions, we prove that cumulative regret of
Fed-GO-UCB is Õ(

√
NT ) and its communication cost is Õ(N1.5

√
T ).

• Our empirical evaluations show Fed-GO-UCB outperforms existing federated bandit algorithms,
which demonstrates the effectiveness of generic non-linear function optimization,

2 RELATED WORK

Centralized global optimization Most work on global optimization studies the centralized setting
where all data points are available on a single machine. Its applications include hyperparameter
tuning for deep neural networks (Hazan et al., 2018; Kandasamy et al., 2020) and materials design
(Nakamura et al., 2017; Frazier & Wang, 2016). The most popular approach to this problem is
Bayesian optimization (BO) (Shahriari et al., 2015; Frazier, 2018), which is closely related to bandit
problems (Li et al., 2019b; Foster & Rakhlin, 2020). BO typically assumes the unknown objective
function is drawn from some Gaussian Processes (GP). The learner sequentially choose points to
evaluate and then improve its estimation via posterior update. Classical BO algorithms include GP-
UCB (Srinivas et al., 2010), GP-EI (Jones et al., 1998), and GP-PI (Kushner, 1964). To improve
heterogeneous modeling of the objective function and mitigate over-exploration, Trust region BO
(Eriksson et al., 2019) that uses multiple local optimization runs is proposed. In this line of research,
the closes work to ours is Liu & Wang (2023), which also considers global approximation of generic
nonlinear functions, though it’s not suitable for federated setting as discussed in Section 1.

Federated bandit optimization Another closely related line of research is federated/distributed
bandits, where multiple agents collaborate in pure exploration (Hillel et al., 2013; Tao et al., 2019;
Du et al., 2021), or regret minimization (Wang et al., 2020; Li & Wang, 2022a;b). However, most
of these works make linear model assumptions, and thus the clients can efficiently collaborate by
transferring the O(d2x) sufficient statistics for closed-form model estimation, where dx is input data
dimension. The closest works to ours are Wang et al. (2020); Dubey & Pentland (2020); Li & Wang
(2022a;b), which uses event-triggered communication strategies to obtain sub-linear communication
cost over time, i.e., communication only happens when sufficient amount of new data has been
collected. There is also recent work by Dai et al. (2022) that studies federated bandits with neural
function approximation, but it still relies on GP with a Neural Tangent Kernel in their analysis, which
is intrinsically linear. More importantly, this analysis assumes the width of the neural network is
much larger than the number of samples, while our results do not require such over-parameterization.

3 PRELIMINARIES

We consider the problem of finding a global maximum solution to an unknown non-linear black-box
function f , i.e.,

x∗ = argmax
x∈X

f(x).

Different from previous works, we consider a decentralized system of 1) N clients that selects data
points to evaluate, and 2) a central server that coordinates the communication among the clients.
The clients cannot directly communicate with each other, but only with the central server, i.e., a
star-shaped communication network as shown in Figure 1. In each round, N clients interact with the
unknown function f in a round-robin manner, for a total number of T rounds, so the total number of
interactions is NT . Let [N ] denote the integer set {1, 2, ..., N}. Specifically, at round l ∈ [T ], each
client i ∈ [N ] selects a point xt from the set X , and has a zeroth-order noisy function observation:

yt = f(xt) + ηt ∈ R, (1)
where the subscript t := N(l − 1) + i indicates this is the t-th interaction between the system and
the function f , i.e., the t-th time function f is evaluated at a selected point xt, and ηt is independent,
zero-mean, σ-sub-Gaussian noise, for t ∈ [NT ].
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We adopt the classical definition of cumulative regret to evaluate the algorithm performance. It is
defined as RNT =

∑NT
t=1 f(x

∗) − f(xt) for NT interactions. Following Wang et al. (2020), we
define the communication cost CNT as the total amount of real numbers being transferred across the
system during the NT interactions with function f .

Let U denote uniform distribution. W.l.o.g., let X ⊆ [0, 1]dx and Y ⊂ R denote the domain and
range of unknown function f . We are working with a parametric function class F := {fw : X →
Y|w ∈ W} to approximate f where the parametric function class is controlled by the parameter
space W . For a parametric function fw(x), let ∇fw(x) denote the gradient taken w.r.t. x and
∇fx(w) denote the gradient taken w.r.t. w. We use it ∈ [N ] as the index of the client that evaluates
point xt at time step t. We denote the sequence of time steps corresponding to data points that have
been evaluated by client i up to time t as Dl

t,i = {1 ≤ s ≤ t : is = i} for t = 1, 2, . . . , NT . In
addition, we denote the sequence of time steps corresponding to the data points that have been used
to update client i’s local model as Dt,i, which include both data points collected locally and those
received from the server. If client i never receives any communication from the server, Dt,i = Dl

t,i;
otherwise, Dl

t,i ⊂ Dt,i ⊆ [t]. Moreover, when each new data point evaluated by any client in
the system is readily communicated to all the other clients, we recover the centralized setting, i.e.,
Dt,i = [t],∀i, t. For completeness, we list all notations in Appendix A.

Here we list all assumptions that we use throughout this paper. The first two assumptions are pretty
standard and the last assumption comes from previous works.
Assumption 1 (Realizabilty). There exists w⋆ ∈ W such that the unknown objective function f =
fw⋆ . Also, assume W ⊂ [0, 1]dw . This is w.l.o.g. for any compact W .
Assumption 2 (Bounded, differentiable and smooth function approximation). There exist constants
F,Cg, Ch > 0, s.t. |fx(w)| ≤ F , ∥∇fx(w)∥2 ≤ Cg , and ∥∇2fx(w)∥op ≤ Ch, ∀x ∈ X , w ∈ W .
Assumption 3 (Geometric conditions on the loss function (Liu & Wang, 2023; Xu et al., 2018)).
L(w) = Ex∼U (fx(w) − fx(w

⋆))2 satisfies (τ, γ)-growth condition or local µ-strong convexity at
w⋆, i.e., ∀w ∈ W ,

min
{µ
2
∥w − w⋆∥22,

τ

2
∥w − w⋆∥γ2

}
≤ L(w)− L(w⋆),

for constants µ, τ > 0, µ < dw, 0 < γ < 2. L(w) satisfies dissipative assumption, i.e.,
∇L(w)⊤w ≥ Ci∥w∥22−Cj for some constants Ci, Cj > 0, and a c-local self-concordance assump-
tion at w⋆, i.e., (1−c)2∇2L(w⋆) ⪯ ∇2L(w⋆) ⪯ (1−c)−2∇2L(w⋆), ∀w s.t. ∥w−w⋆∥∇2L(w) ≤ c.

Assumption 2 implies there exists a constant ζ > 0, such that ∥∇2L(w⋆)∥op ≤ ζ. For example, it
suffices to take ζ = 2C2

g . Assumption 3 is made on the expected loss function L w.r.t. parameter
w rather than function f , and is strictly weaker than strong convexity as it only requires strong
convexity in the small neighboring region around w∗. For w far away from w∗, L(w) can be highly
non-convex since only growth condition needs to be satisfied. The dissipative assumption is typical
for stochastic differential equation and diffusion approximation (Raginsky et al., 2017; Zhang et al.,
2017). In our paper, it is only needed for the convergence analysis of Algorithm 2, and may be
relaxed by adopting other non-convex optimization methods with global convergence guarantee.

4 METHODOLOGY

4.1 FED-GO-UCB ALGORITHM

In this paper, we develop an algorithm that allows Bayesian optimization style active queries to work
for general supervised learning-based function approximation under federated optimization scheme.

Phase I In Step 1 of Phase I, the algorithm evaluates the unknown function f at uniformly sampled
points for a total number of T0 times, where T0 is chosen to be large enough such that function f can
be sufficiently explored. By the end of time step T0, each client i ∈ [N ] has collected a local dataset
{(xs, ys)}s∈Dl

T0,i
(by definition ∪i∈[N ]D

l
T0,i

= [T0]). In Step 2, we call the distributed regression
oracle, denoted as Oracle, to jointly learn model parameter ŵ0, by optimizing equation 2 below.

min
w∈W

L̂T0
(w) :=

1

T0

N∑
i=1

L̂T0,i(w), (2)
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Algorithm 1 Fed-GO-UCB
Input: Phase I length T0, Time horizon (Phase II length) NT , Oracle, number of iterations n to
execute Oracle, communication threshold γ, regularization weight λ.
Phase I (Uniform exploration)

1: for t = 1, 2, . . . , T0 do client it ∈ [N ] evaluates point xt ∼ U(X ), and observe yt
2: Execute Oracle (e.g., Algorithm 2) over N clients to obtain ŵ0

Phase II (Optimistic exploration)
1: Initialize ŵT0,i = ŵ0, ΣT0,i = λI, bT0,i = 0, DT0,i = ∅, for each client i ∈ [N ]
2: for t = 1, . . . , NT do
3: Client it evaluates point xt = argmaxx∈X maxw∈Ballt−1,it

fx(w) and observe yt
4: Client it updates Σt,it = Σt−1,it + ∇fxt(ŵ0)∇fxt(ŵ0)

⊤, bt,it = bt−1,it +
∇fxt(ŵ0)(∇fxt(ŵ0)

⊤ŵ0 + yt − fxt), and ∆Σt,it = ∆Σt−1,it + ∇fxt(ŵ0)∇fxt(ŵ0)
⊤,

∆bt,it = ∆bt−1,it +∇fxt(ŵ0)∇fxt(ŵ0)
⊤ŵ0 + yt − fxt

5: Client it updates ŵt,it by equation 5 and Ballt,it by equation 4; sets index set Dt,it =
Dt−1,it ∪ {t}
# Check whether global synchronization is triggered

6: if
(
|Dt,it | − |Dtlast,it |

)
log

det(Σt,it )

det(Σt,it−∆Σt,it )
> γ then

7: All clients upload {∆Σt,i,∆bt,i}, and reset ∆Σt,i = 0,∆bt,i = 0 for i = 1, . . . , N

8: Server aggregates Σt,g = Σtlast,g +
∑N

i=1 ∆Σt,i, bt,g = btlast,g +
∑N

i=1 ∆bt,i
9: All clients download {Σt,g, bt,g}, and update Σt,i = Σt,g, bt,i = bt,g for i = 1, . . . , N

10: Set tlast = t

Output: x̂ ∼ U({x1, ..., xT }).

where L̂T0,i(w) =
∑

s∈Dl
T0,i

[
ys−fw(x

⊤
s )
]2

is the squared error loss on client i’s local dataset. It is

worth noting that, executing Oracle to compute the exact minimizer ŵ⋆
0 := argminw∈W L̂T0

(w) as
in the prior work by Liu & Wang (2023) is unreasonable in our case, since it requires infinite number
of iterations, which leads to infinite communication cost. Instead, we need to relax the requirement
by allowing for an approximation error ϵ, such that Oracle only need to output ŵ0 that satisfies

|L̂T0
(ŵ0)− L̂T0

(ŵ⋆
0)| ≤ ϵ. (3)

Oracle can be any distributed non-convex optimization method with global convergence guarantee,
i.e., we can upper bound the number of iterations required, denoted as n, to attain ϵ, for some ϵ ≥ 0.
Remark 4. In this paper we adopt Gradient Langevin Dynamics (GLD) based methods to optimize
equation 2, which are known to have global convergence guarantee to the minimizer of non-convex
objectives under smooth and dissipative assumption (Assumption 2 and Assumption 3). GLD based
methods work by introducing a properly scaled isotropic Gaussian noise to the gradient descent up-
date at each iteration, which allows them to escape local minima. Specifically, we use a distributed
implementation of GLD, which is given in Algorithm 2. It requires n = O(dx

ϵν · log( 1ϵ )) iterations
to attain ϵ approximation (with step size set to τ1 ≤ ϵ), where ν = O(e−Õ(dx)) denotes the spectral
gap of the discrete-time Markov chain generated by GLD (Theorem 3.3 of Xu et al. (2018)).

Algorithm 2 Distributed-GLD-Update

1: Input: total iterations n; step size τ1 > 0; inverse temperature parameter τ2 > 0; w(0) = 0
2: for k = 0, 1, . . . , n− 1 do
3: Server sends w(k) to all clients, and receives local gradients ∇L̂T0,i(w

(k)) for i ∈ [N ] back
4: Server aggregates local gradients ∇L̂T0

(w(k)) = 1
T0

∑N
i=1 ∇L̂T0,i(w

(k))

5: Server randomly draws zk ∼ N (0, Id×d)

6: Server computes update w(k+1) = w(k) − τ1∇L̂T0
(w(k)) +

√
2τ1/τ2zk

7: Output: ŵ0 = w(K)

Phase II At the beginning of Phase II, the estimator ŵ0 obtained in Phase I is sent to each client,
which will be used to construct the confidence sets about the unknown parameter w⋆. Specifically,
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at each time step t = 1, 2, . . . , NT , the confidence set constructed by client it is a ball defined as

Ballt,it := {w : ∥w − ŵt,it∥2Σt,it
≤ βt,it}, (4)

such that with the choice of βt,it in Lemma 8, w⋆ ∈ Ballt,it ,∀t with probability at least 1− δ. The
center of this ball is defined as

ŵt,it := Σ−1
t,it

bt,it + λΣ−1
t,it

ŵ0, (5)

where the matrix

Σt,it := λI+
∑

s∈Dt,it

∇fxs(ŵ0)∇fxs(ŵ0)
⊤, (6)

and vector bt,it :=
∑

s∈Dt,it
∇fxs

(ŵ0)
[
∇fxs

(ŵ0)
⊤ŵ0 + ys − fxs

(ŵ0)
]
. Note ∇fxs

(ŵ0) is the
gradient of our parametric function taken w.r.t parameter ŵ0, rather than the gradient of the un-
known objective function. The statistics Σt,i, bt,i for all client i and time t are constructed using
gradients w.r.t. the same model ŵ0. This is essential in federated bandit optimization, as it allows
the clients to jointly construct the confidence set by directly aggregating their local updates, denoted
by ∆Σt,i,∆bt,i. In comparison, although the statistics used to construct the confidence sets in Liu
& Wang (2023) are computed based on different models and lead to tigher results, they impede
collaboration among clients and cannot be directly used in our case.

In Phase II, exploration is conducted following “Optimism in the Face of Uncertainty (OFU)” prin-
ciple, i.e., at time step t, client it selects point xt ∈ X to evaluate via joint optimization over x ∈ X
and w ∈ Ballt−1,it , as shown in line 3. The newly obtained data point (xt, yt) will then be used to
update client it’s confidence set as shown in line 4-5. In order to ensure communication efficiency
during the collaborative global optimization across N clients, an event-triggered communication
protocol is adopted, as shown in line 6. Intuitively, this event measures the amount of new informa-
tion collected by client it since last global synchronization. If the value of LHS exceeds threshold γ,
another global synchronization will be triggered, such that the confidence sets of all N clients will
be synchronized as shown in line 7-9. In Section 5, we will show that with proper choice of γ, the
total number of synchronizations can be reduced to Õ(

√
N), without degrading the performance.

4.2 THEORETICAL RESULTS

Theorem 5 (Cumulative regret and communication cost of Fed-GO-UCB). Suppose Assumption 1,
2, and 3 hold. Let C denote a universal constant and Cλ denote a constant that is independent
to T . Under the condition that T ≥ Cd2

wF 4ι2

N · max
{

µγ/(2−γ)

τ2/(2−γ) ,
ζ

µc2

}2
, where ι is the logarithmic

term depending on T0, Ch, and 2/δ. Algorithm 1 with parameters T0 =
√
NT , λ = Cλ

√
NT ,

γ = dwF 4T
µ2N , and ϵ ≤ 8

C
√
NT

, has cumulative regret

Rphase I + phase II = Õ
(√

NTF +
√
NTd3wF

4/µ2 +Nd4wF
4/µ2

)
,

with probability at least 1− δ, and communication cost

Cphase I + phase II = Õ(N1.5
√
Tdwdx exp (dx) +N1.5d2wµ/F

2).

Theorem 5 shows that our proposed Fed-GO-UCB algorithm matches the regret upper bound of its
centralized counterpart, GO-UCB algorithm by Liu & Wang (2023), while only requiring commu-
nication cost that is sub-linear in T . We should note that the O(

√
T ) dependence in communication

cost is due to the iterative optimization procedure to compute ŵ0 at the end of Phase I, which also
exists for prior works in federated bandits that requires iterative optimization (Li & Wang, 2022b).

5 PROOF OVERVIEW

In this section, to highlight our technical contributions, we provide a proof sketch of the theoreti-
cal results about cumulative regret and communication cost that are presented in Theorem 5. All
auxiliary lemmas are given in Appendix C and complete proofs are presented in Appendix D.
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5.1 PHASE I. UNIFORM EXPLORATION & DISTRIBUTED REGRESSION ORACLE

Cumulative Regret and Communication Cost in Phase I Recall from Section 4.1 that, N clients
conduct uniform exploration in Phase I, which constitutes a total number of T0 interactions with the
environment. By Assumption 2, we know that the instantaneous regret has a unform upper bound
rt := f(x⋆) − f(xt) ≤ 2F , so for a total number of T0 time steps, the cumulative regret incurred
in Phase I, denoted as Rphase I, can be upper bounded by Rphase I =

∑T0

t=1 rt ≤ 2T0F . Choice of
T0 value will be discussed in Section 5.2, as it controls the quality of ŵ0, which further affects the
constructed confidence sets used for optimistic exploration.

Moreover, the only communication cost in Phase I is incurred when executing Oracle, i.e., the
distributed regression oracle, for n iterations. In each iteration, N clients need to upload their local
gradients to the server, and then receive the updated global model back (both with dimension dw).
Therefore, the communication cost incurred during Phase I is Cphase I = 2nNdw.

Distributed Regression Oracle Guarantee At the end of Phase I, we obtain an estimate ŵ0 by
optimizing equation 2 using Oracle. As we mentioned in Section 4.2, ŵ0 will be used to construct
the confidence sets, and thus to prepare for our analysis of the cumulative regret in Phase II, we
establish the following regression oracle lemmas.
Lemma 6. There is an absolute constant C ′, such that after time step T0 in Phase I of Algorithm 1
and under the condition that approximation error ϵ ≤ 1/(C ′T0), with probability at least 1 − δ/2,
regression oracle estimated ŵ0 satisfies Ex∼U [(fx(ŵ0)− fx(w

⋆))2] ≤ C ′dwF
2ι/T0, where ι is the

logarithmic term depending on T0, Ch, 2/δ.

Lemma 6 is adapted from Lemma 5.1 of Liu & Wang (2023) to account for the additional approx-
imation error from the distributed regression oracle. Specifically, instead of proving the risk bound
for the exact minimizer ŵ⋆

0 , we consider ŵ0 that satisfies |L̂T0
(ŵ0) − L̂T0

(ŵ⋆
0)| ≤ ϵ for some con-

stant ϵ. As discussed in Section 4.1, this relaxation is essential for the communication efficiency in
federated bandit optimization. And Lemma 6 shows that, by ensuring ϵ ≤ 1/(C ′T0), we can obtain
the same regression oracle guarantee as in the centralized setting (Liu & Wang, 2023). As discussed
in Remark 4, this condition can be satisfied with n = O(C

′dxT0

ν · log(C ′T0)) number of iterations.
With Lemma 6, we can establish Lemma 7 below using the same arguments as Liu & Wang (2023).
Lemma 7 (Regression oracle guarantee (Theorem 5.2 of Liu & Wang (2023))). Under Assumption
1, 2, and 3, and by setting ϵ ≤ 1/(C ′T0), there exists an absolute constant C such that after time
step T0 in Phase I of Algorithm 1, where T0 satisfies T0 ≥ CdwF

2ι · max
{

µγ/(2−γ)

τ2/(2−γ) ,
ζ

µc2

}
, with

probability at least 1− δ/2, regression oracle estimated ŵ0 satisfies ∥ŵ0 − w⋆∥22 ≤ CdwF 2ι
µT0

.

5.2 PHASE II. CONFIDENCE SET CONSTRUCTION & OPTIMISTIC EXPLORATION

Confidence Set Construction In Phase II of Algorithm 1, each client i selects its next point to
evaluate based on OFU principle, which requires construction of the confidence set in equation 4.
The following lemma specifies the proper choice of βt,it , such that Ballt,it contains true parameter
w⋆ for all t ∈ [T ] with high probability.

Lemma 8. Under Assumption 1, 2, & 3 and by setting βt,it = Θ̃
(
dwσ

2 + dwF
2/µ+ d3wF

4/µ2
)
,

T0 =
√
NT , and λ = Cλ

√
NT , then ∥ŵt,it − w∗∥2Σt,it

≤ βt,it , with probability at least 1 − δ,
∀t ∈ [NT ] in Phase II of Algorithm 1.

Cumulative Regret in Phase II Thanks to the confidence sets established in Lemma 8, Algo-
rithm 1 can utlize a communication protocol similar to the ones designed for federated linear bandits
(Wang et al., 2020; Dubey & Pentland, 2020) during Phase II, while providing much diverse model-
ing choices. Therefore, our analysis of the communication regret and communication cost incurred
in Phase II follows a similar procedure as its linear counterparts.

Denote the total number of global synchronizations (total number of times the event in line 6 of
Algorithm 1 is true) over time horizon T as P ∈ [0, NP ]. Then we use tp for p ∈ [P ] to denote the
time step when the p-th synchronization happens (define t0 = 0), and refer to the sequence of time
steps in-between two consecutive synchronizations as an epoch, i.e., the p-th epoch is [tp−1 +1, tp].

7
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Similar to Wang et al. (2020); Dubey & Pentland (2020); Li & Wang (2022b), for the cumulative
regret analysis in Phase II, we decompose P epochs into good and bad epochs, and then analyze them
separately. Specifically, consider an imaginary centralized agent that has immediate access to each
data point in the learning system, and we let this centralized agent executes the same model update
rule and arm selection rule as in line 3-5 of Algorithm 1. Then the covariance matrix maintained
by this agent can be defined as Σt =

∑t
s=1 ∇fxs(ŵ0)∇fxs(ŵ0)

⊤ for t ∈ [NT ]. Then the p-th

epoch is called a good epoch if ln
(

det(Σtp )

det(Σtp−1
)

)
≤ 1, otherwise it is a bad epoch. Note that based

on Lemma 9, we have ln(det(ΣNT )/ det(λI)) ≤ dw log (1 +
NTC2

g

dwλ ) := R. Since ln(
det(Σt1 )

det(λI) ) +

ln(
det(Σt2

)

det(Σt1
) ) + · · ·+ ln(det(ΣNT )

det(ΣtB
) ) = ln(det(ΣNT )

det(λI) ) ≤ R, and due to the pigeonhole principle, there
can be at most R bad epochs. Then with standard optimistic argument (Abbasi-yadkori et al., 2011),
we can show that the cumulative regret incurred in good epochs Rgood = Õ(

d3
wF 4

√
NT

µ2 ), which
matches the regret of centralized algorithm by (Liu & Wang, 2023). Moreover, by design of the
event-triggered communication in line 6 of Algorithm 1, we can show that the cumulative regret
incurred in any bad epoch p can be bounded by

∑tp
t=tp−1+1 rt ≤ N

√
16βNT γ + 8β2

NTC
2
h/C

2
λ,

where βNT = O(
d3
wF 4

µ2 ) according to Lemma 8. Since there can be at most R bad epochs, the

cumulative regret incurred in bad epochs Rbad = Õ(Ndw

√
d3
wF 4

µ2

√
γ + Ndw

d3
wF 4

µ2 ). By setting

communication threshold γ = dwF 4T
µ2N , we have Rbad = Õ(

d3
wF 4

√
NT

µ2 +
d4
wF 4N
µ2 ). Combining

cumulative regret incurred during both good and bad epochs, we have

Rphase II = Rgood +Rbad = Õ
(√

NTd3wF
4/µ2 +Nd4wF

4/µ2
)
.

Communication Cost in Phase II Consider some α > 0. By pigeon-hole principle, there can
be at most ⌈NT

α ⌉ epochs with length (total number of time steps) longer than α. Then we consider
some epoch with less than α time steps, similarly, we denote the first time step of this epoch as ts
and the last as te, i.e., te − ts < α. Since the users appear in a round-robin manner, the number of
interactions for any user i ∈ [N ] satisfies |Dte,i| − |Dts,i| < α

N . Due to the event-triggered in line
6 of Algorithm 1, we have log

det(Σte )
det(Σts )

> γN
α . Using the pigeonhole principle again, we know that

the number of epochs with less than α time steps is at most ⌈Rα
γN ⌉. Therefore, the total number of

synchronizations P ≤ ⌈NT
α ⌉+ ⌈Rα

γN ⌉, and the RHS can be minimized by choosing α = N
√
γT/R,

so that P ≤ 2
√
TR/γ. With γ = dwF 4T

µ2N , P ≤ 2

√
N log(1+NTC2

g/(dwλ))µ2

F 4 = Õ(
√
Nµ2/F 4). At

each global synchronization, Algorithm 1 incurs 2N(d2w + dw) communication cost to update the
statistics. Therefore, Cphase II = P · 2N(d2w + dw) = (N1.5d2wµ/F

2).

6 EXPERIMENTS

In order to evaluate Fed-GO-UCB’s empirical performance and validate our theoretical results in
Theorem 5, we conducted experiments on both synthetic and real-world datasets. Due to the space
limit, here we only discuss the experiment setup and results on synthetic dataset. More discussions
about the experiment setup and results on real-world datasets are presented in Appendix E.

For synthetic dataset, we consider two test functions, f1(x) = −
∑4

i=1 ᾱi exp(−
∑6

j=1 Āij(xj −
P̄ij)

2) (see values of ᾱ, Ā, P̄ in appendix) and f2(x) = 0.1
∑8

i=1 cos(5πxi) −
∑8

i=1 x
2
i . The de-

cision set X is finite (with |X | = 50), and is generated by uniformly sampling from [0, 1]6 and
[−1, 1]8, respectively. We choose F to be a neural network with two linear layers, i.e., the model
f̂(x) = W2 · σ(W1x+ c1) + c2, where the parameters W1 ∈ R25,dx , c1 ∈ R25,W2 ∈ R25, c2 ∈ R,
and σ(z) = 1/(1+exp(−z)). Results (averaged over 10 runs) are reported in Figure 2. We included
DisLinUCB (Wang et al., 2020), Fed-GLB-UCB (Li & Wang, 2022b), ApproxDisKernelUCB (Li
et al., 2022a), One-GO-UCB, and N-GO-UCB (Liu & Wang, 2023) as baselines. One-GO-UCB
learns one model for all clients by immediately synchronizing every data point, and N-GO-UCB
learns one model for each client with no communication. From Figure, 2, we can see that Fed-GO-
UCB and One-GO-UCB have much smaller regret than other baseline algorithms, demonstrating

8
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Figure 2: Comparison of cumulative regret and communication cost on synthetic test functions.

the superiority of neural network approximation for the global non-linear optimization, though in-
evitably this comes at the expense of higher communication cost due to transferring statistics of size
d2w ≈ 104 (compared with d2x ≈ 102 for the baselines). Nevertheless, we can see that the commu-
nication cost of Fed-GO-UCB is significantly lower than One-GO-UCB and it grows at a sub-linear
rate over time, which conforms with our theoretical results in Theorem 5.

7 CONCLUSIONS AND FUTURE WORK

Despite the potential of federated optimization in high-impact applications, such as, clinical trial
optimization, hyperparameter tuning, and drug discovery, there is a gap between current theoretical
studies and practical usages, i.e.,, federated optimization is often needed in online tasks, like next-
word prediction on keyboard apps, but most existing works formulate it as an offline problem. To
bridge this gap, some recent works propose to study federated bandit optimization problem, but their
objective functions are limited to simplistic classes, e.g., linear, generalized linear, or non-parametric
function class with bounded RKHS norm, which limits their potential in real-world applications.

In this paper, we propose the first federated bandit optimization method, named Fed-GO-UCB, that
works with generic non-linear objective functions. Under some mild conditions, we rigorously prove
that Fed-GO-UCB is able to achieve Õ(

√
NT ) cumulative regret and Õ(N1.5

√
T +N1.5) commu-

nication cost where T is time horizon and N is number of clients. Our technical analysis builds
upon Xu et al. (2018); Liu & Wang (2023) and the main novelties lie in the distributed regression
oracle and individual confidence set construction, which makes collaborative exploration under fed-
erated setting possible. In addition, extensive empirical evaluations are performed to validate the
effectiveness of our algorithm, especially its ability in approximating nonlinear functions.

One interesting future direction is to generalize our work to heterogeneous clients, i.e., each client
i ∈ [N ] has a different reward function fi, that can be assumed to be close to each other as in Dubey
& Pentland (2021), or have shared components as in Li & Wang (2022a). This allows us to better
model the complex situations in reality, especially when personalized decisions are preferred.
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A NOTATION TABLE

Table 1: Symbols and notations.
Symbol Definition Description
∥A∥op operator norm of matrix A
Ballt equation 4 parameter uncertainty region at round t
βt given in Lemma 8 parameter uncertainty region radius at round t
C, ζ constants
dx domain dimension
dw parameter dimension
δ failure probability
ε covering number discretization distance
η σ-sub-Gaussian observation noise

fw(x) objective function at x parameterized by w
fx(w) objective function at w parameterized by x
∇fx(w) 1st order derivative w.r.t. w parameterized by x
∇2fx(w) 2nd order derivative w.r.t. w parameterized by x

F function range constant bound
ι, ι′, ι′′ logarithmic terms
L(w) E[(fx(w)− fx(w

∗))2] expected loss function
λ regularization parameter
µ strong convexity parameter
[T ] {1, 2, ..., T} integer set of size T
N number of agents

Oracle regression oracle
n number of iterations to execute Oracle
ϵ approximation error guaranteed of Oracle
γ communication threshold
rt fw∗(x∗)− fw∗(xt) instantaneous regret at round t

RT

∑T
t=1 rt cumulative regret after round T

Σt equation 6 covariance matrix at round t
T0 time horizon in Phase I
T time horizon in Phase II
U uniform distribution
w w ∈ W function parameter
w∗ w∗ ∈ W true parameter
ŵ0 oracle-estimated parameter after Phase I
ŵt,i equation 5 updated parameter of client i at round t
W W ⊆ [0, 1]dw parameter space
x x ∈ X data point
x∗ optimal data point

∥x∥p (
∑d

i=1 |xi|p)1/p ℓp norm
∥x∥A

√
x⊤Ax distance defined by square matrix A

X X ⊆ Rdx function domain
Y Y = [−F, F ] function range
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B ADDITIONAL DISCUSSIONS

B.1 MORE DETAILS ON RELATED WORKS

More details on distributed/federated bandits For distributed bandits (Korda et al., 2016; Ma-
hadik et al., 2020; Wang et al., 2020; Dubey & Pentland, 2020; Huang et al., 2021), designing an
efficient communication strategy is the main focus. Existing algorithms mainly differ in the relations
of learning problems solved by the clients (i.e., identical vs., clustered) and the type of communi-
cation network (i.e., peer-to-peer (P2P) vs., star-shaped). Korda et al. (2016) studied two problem
settings with a P2P communication network: 1) all the clients solve a common linear bandit prob-
lem, and 2) the problems are clustered. Mahadik et al. (2020) later proposed an improved algorithm
on the second problem setting studied by Korda et al. (2016). However, both works only tried to
reduce per-round communication, and thus the communication cost is still linear over time. Two
follow-up studies considered the setting where all clients solve a common linear bandit problem
with time-varying arm set and interact with the environment in a round-robin fashion (Wang et al.,
2020; Dubey & Pentland, 2020). Similar to our work, they also used event-triggered communica-
tions to obtain a sub-linear communication cost over time. In particular, Wang et al. (2020) con-
sidered a star-shaped network and proposed a synchronous communication protocol for all clients
to exchange their sufficient statistics via the central server. Dubey & Pentland (2020) extended this
synchronous protocol to differentially private LinUCB algorithms under both star-shaped and P2P
network. Huang et al. (2021) considered a similar setting but with a fixed arm set and thus proposed
a phase-based elimination algorithm. Later, in order to improve robustness against possible strag-
glers in the system, Li & Wang (2022a); He et al. (2022) proposed asynchronous communication
protocols for the federated linear bandit problems. All the works mentioned above consider linear
models, where efficient communication is enabled via closed-form model update. The only existing
work that studies nonlinear models with iterative optimization is by Li & Wang (2022b), who em-
ployed a combination of online and offline regression, with online regression adjusting each client’s
local model using its newly collected data, and offline (distributed) regression that conducts iterative
gradient aggregation over all clients for joint model estimation during global synchronizations.

Offline federated learning Another related line of research is federated learning or decentralized
machine learning that considers offline supervised learning scenarios (Kairouz et al., 2019). FedAvg
(McMahan et al., 2017) has been the most popular algorithm for offline federated learning. How-
ever, despite its popularity, several works (Li et al., 2019a; Karimireddy et al., 2020; Mitra et al.,
2021) identified that FedAvg suffers from a client-drift problem when the clients’ data are non-IID
(which is an important signature of our case), i.e., local iterates in each client drift towards their
local minimum. This leads to a sub-optimal convergence rate of FedAvg, i.e., a sub-linear conver-
gence rate for strongly convex and smooth losses, though a linear convergence rate is expected in
this case. To address this, Pathak & Wainwright (2020) proposed an operator splitting procedure to
guarantee linear convergence to a neighborhood of the global minimum. Later, Mitra et al. (2021)
introduced variance reduction techniques to guarantee exact linear convergence to the global mini-
mum. However, due to the fundamental difference in the learning objectives, they are not suitable
for our federated optimization problem: their focus is to collaboratively learn a good point estimate
over a fixed dataset, i.e., convergence to the minimizer with fewer iterations, while federated bandit
learning requires collaborative confidence set estimation for efficient regret reduction. This is also
reflected by the difference in the design of communication triggering events. For decentralized su-
pervised machine learning, triggering event measuring the change in the learned parameters suffices
(Kia et al., 2015; Yi et al., 2018; George & Gurram, 2020), while for federated bandit learning,
triggering event needs to measure change in the volume of the confidence set, i.e., uncertainty in the
problem space (Wang et al., 2020; Li & Wang, 2022a).

B.2 SUMMARY OF EXISTING FEDERATED BANDIT ALGORITHMS

Here we provide a summary of existing works in federated bandit optimization in Table 2, which
mainly differs in their modeling assumptions, type of communication protocol (synchronous vs
asynchronous), as well as theoretical guarantees on regret and communication cost (in terms of N
and T ).
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Table 2: Summary of existing federated bandit algorithms.
Related Works Modeling Assumption Protocol Regret Communication

Wang et al. (2020) linear synchronous
√
NT N1.5

Li & Wang (2022a) linear asynchronous
√
NT N2

He et al. (2022) linear asynchronous
√
NT +N N2

Li & Wang (2022b) generalized linear synchronous
√
NT N2

√
T

Li et al. (2022a) kernel synchronous
√
NT N2

Li et al. (2022b) kernel asynchronous
√
NT +N N2

Dai et al. (2022) kernel (NTK) synchronous N
√
T N1.5T 2

Ours nonconvex synchronous
√
NT N1.5

√
T

C AUXILIARY LEMMAS

Lemma 9 (Lemma C.5 of Liu & Wang (2023)). Set Σt,it as in equation 6 and suppose Assumptions
1, 2, & 3 hold. Then

ln

(
detΣt−1,it

detΣ0

)
≤ dw ln

(
1 +

|Dt,it |C2
g

dwλ

)
.

Lemma 10 (Lemma C.6 of Liu & Wang (2023)). Set Σt,it as in equation 6 and suppose Assumptions
1, 2, & 3 hold. Then ∑

s∈Dt,it

∇fxs
(ŵ0)

⊤Σ−1
s−1,it

∇fxs
(ŵ0) ≤ 2 ln(

Σt−1,it

Σ0
)

Lemma 11 (Self-normalized bound for vector-valued martingales (Abbasi-yadkori et al., 2011;
Agarwal et al., 2021)). Let {ηi}∞i=1 be a real-valued stochastic process with corresponding filtra-
tion {Fi}∞i=1 such that ηi is Fi measurable, E[ηi|Fi−1] = 0, and ηi is conditionally σ-sub-Gaussian
with σ ∈ R+. Let {Xi}∞i=1 be a stochastic process with Xi ∈ H (some Hilbert space) and Xi being
Ft measurable. Assume that a linear operator Σ : H → H is positive definite, i.e., x⊤Σx > 0
for any x ∈ H. For any t, define the linear operator Σt = Σ0 +

∑t
i=1 XiX

⊤
i (here xx⊤ denotes

outer-product in H). With probability at least 1− δ, we have for all t ≥ 1:∥∥∥∥∥
t∑

i=1

Xiηi

∥∥∥∥∥
2

Σ−1
t

≤ σ2 ln

(
det(Σt) det(Σ0)

−1

δ2

)
. (7)

Lemma 12 (Risk Bounds for ϵ-approximation of ERM Estimator). Given a dataset {xs, ys}ts=1

where ys is generated from equation 1, and f⋆ is the underlying true function. Let f̂t be an ERM
estimator taking values in F where F is a finite set and F ⊂ {f : [0, 1]d → [−F, F ]} for some
F ≥ 1. f̃t ∈ F denotes its ϵ-approximation. Then with probability at least 1− δ, f̃ satisfies that

E
[
(f̃t − f0)

2
]
≤ 1 + α

1− α

(
inf
f∈F

E[(f − f0)
2] +

F 2 ln(|F|) ln(2)
tα

)
+

2 ln(2/δ)

tα
+

ϵ

1− α

for all α ∈ (0, 1] and ϵ ≥ 0.

Proof of Lemma 12. Define the risk and empirical risk function as

R(f) := EX,Y [(f(X)− Y )2],

R̂(f) :=
1

t

t∑
s=1

(f(xs)− ys)
2.

By definition,

f⋆ = E[Y |X = x] = argmin
f∈F

R(f).
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Denote the excess risk and the empirical excess risk as

E(f) := R(f)−R(f⋆),

Ê(f) := R̂(f)− R̂(f⋆).

Following the same steps in Nowak [2007], we have

(1− α)E(f) ≤ Ê(f) + c(f) ln 2 + ln 1/δ

αt
= R̂(f)− R̂(f⋆) +

c(f) ln 2 + ln 1/δ

αt
,

where penalties c(f) are positive numbers assigned to each f ∈ F that satisfies
∑

f∈F 2−c(f) ≤ 1.
We set it to c(f) = F 2 ln(|F|) according to Lemma 4 of Schmidt-Hieber (2020). Now recall that, we
have denoted f̂t as the ERM estimator, i.e., f̂t := argminf∈F R̂(f), and f̃t as its ϵ-approximation,
such that

R̂(f̃t)− R̂(f̂t) ≤ ϵ.

Therefore, we have

(1− α)E(f̃t) ≤ Ê(f̃n) +
F 2 ln(|F|) ln 2 + ln 1/δ

αt

≤ Ê(f̂t) +
F 2 ln(|F|) ln 2 + ln 1/δ

αt
+ ϵ

≤ Ê(f⋆
t ) +

F 2 ln(|F|) ln 2 + ln 1/δ

αt
+ ϵ

Due to Craig-Bernstein inequality, we have

Ê(f⋆
t ) ≤ E(f⋆

t ) + αE(f⋆
t ) +

ln 1/δ

αt
.

Combining the two inequalities above, we have

E(f̃t) ≤
1 + α

1− α
E(f⋆

t ) +
1

1− α

F 2 ln(|F|) ln 2 + 2 ln 1/δ

αt
+

1

1− α
ϵ.

D COMPLETE PROOFS

D.1 PROOF OF LEMMA 6

Proof of Lemma 6. The regression oracle lemma establishes on Lemma 12 which works only for
finite function class. In order to work with our continuous parameter class W, we need ε-covering
number argument. First, let w̃, W̃ denote the ϵ-approximation of ERM parameter and finite pa-
rameter class after applying covering number argument on W . By Lemma 12, we find that with
probability at least 1− δ/2,

Ex∼U [(fx(w̃)− fx(w
⋆))2] ≤ 1 + α

1− α

(
inf

w∈W̃∪{w⋆}
Ex∼U [(fx(w)− fx(w

⋆))2] +
F 2 ln(|W|) ln(2)

T0α

)
+

ϵ

1− α
+

2 ln(4/δ)

T0α

≤ 1 + α

1− α

(F 2 ln(|W̃|) ln(2)
T0α

)
+

ϵ

1− α
+

2 ln(4/δ)

T0α

where the second inequality is due to Assumption 1. Our parameter class W ⊆ [0, 1]dw , so
ln(|W̃|) = ln(1/ϵdw) = dw ln(1/ε) and the new upper bound is that with probability at least
1− δ/2,

Ex∼U [(fx(w̃)− fx(w
⋆))2] ≤ C ′′(dwF 2 ln(1/ε)

T0
+

ln(2/δ)

T0
+ ϵ
)
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where C ′′ is a universal constant obtained by choosing α = 1/2. Note w̃ is the parameter in W̃ after
discretization, not our target parameter w̃0 ∈ W . By (a+ b)2 ≤ 2a2 + 2b2,

Ex∼U [(fx(ŵ0)− fx(w
⋆))2] ≤ 2Ex∼U [(fx(ŵ0)− fx(w̃))

2] + 2Ex∼U [(fx(w̃)− fx(w
⋆))2]

≤ 2ε2C2
h + 2C ′′(dwF 2 ln(1/ε)

T0
+

ln(2/δ)

T0
+ ϵ
)

where the second line applies Lemma 12, discretization error ε, and Assumption 2. By choosing
ε = 1/(2

√
T0C2

h), and ϵ = 1/(2C ′′T0) we get

(18) =
2

T0
+

C ′′dwF
2 ln(T0C

2
h)

T0
+

2C ′′ ln(2/δ)

T0
≤ C ′ dwF

2 ln(T0C
2
h) + ln(2/δ)

T0

where we can take C ′ = 2C ′′ (assuming 2 < C ′′dwF
2 log(T0C

2
h)). The proof completes by

defining ι as the logarithmic term depending on T0, Ch, 2/δ.

D.2 CONFIDENCE ANALYSIS

Lemma 13 (Restatement of Lemma 8). Set ŵt,it ,Σt,it as in eq. equation 6, equation 5. Set βt,it as

βt,it = Θ̃

(
dwσ

2 +
dwF

2

µ
+

d3wF
4

µ2

)
.

Suppose Assumptions 1, 2, & 3 hold and choose T0 =
√
NT, λ = Cλ

√
NT . Then ∀t ∈ [NT ] in

Phase II of Algorithm 1, ∥ŵt,it − w∗∥2Σt,it
≤ βt,it , with probability at least 1− δ.

Proof. The proof has two steps. First we obtain the closed form solution of ŵt,it . Next we prove
the upper bound of ∥ŵt,it − w∗∥2Σt,it

matches our choice of βt,it .

Step 1: Closed form solution of ŵt,it . Let ∇ denote ∇fxs
(ŵ0) in this proof.

Recall ŵt,it is estimated by solving the following optimization problem:

ŵt,it = Σ−1
t,it

bt,it + λΣ−1
t,it

ŵ0

= argmin
w

λ

2
∥w − ŵ0∥22 +

1

2

∑
s∈Dt(it)

((w − ŵ0)
⊤∇+ fxs(ŵ0)− ys)

2

The optimal criterion for the objective function is

0 = λ(ŵt,it − ŵ0) +
∑

s∈Dt(it)

((ŵt,it − ŵ0)
⊤∇+ fxs

(ŵ0)− ys)∇.

Rearrange the equation and we have

λ(ŵt,it − ŵ0) +
∑

s∈Dt(it)

(ŵt,it − ŵ0)
⊤∇∇ =

∑
s∈Dt(it)

(ys − fxs(ŵ0))∇,

λ(ŵt,it − ŵ0) +
∑

s∈Dt(it)

(ŵt,it − ŵ0)
⊤∇∇ =

∑
s∈Dt(it)

(ys − fxs(w
∗) + fxs(w

∗)− fxs(ŵ0))∇,

λ(ŵt,it − ŵ0) +
∑

s∈Dt(it)

ŵ⊤
t,it∇∇ =

∑
s∈Dt(it)

(ŵ⊤
0 ∇+ ηs + fxs(w

∗)− fxs(ŵ0))∇,

ŵt,it

λI+
∑

s∈Dt(it)

∇∇⊤

− λŵ0 =
∑

s∈Dt(it)

(ŵ⊤
0 ∇+ ηs + fxs

(w∗)− fxs
(ŵ0))∇,

ŵt,itΣt,it = λŵ0 +
∑

s∈Dt(it)

(ŵ⊤
0 ∇+ ηs + fxs(w

∗)− fxs(ŵ0))∇,
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where the second line is by removing and adding back fxs
(w∗), the third line is due to definition of

observation noise η and the last line is by our choice of Σt,it (eq. equation 6). Now we have the
closed form solution of ŵt,it :

ŵt,it = λΣ−1
t,it

ŵ0 +Σ−1
t,it

∑
s∈Dt(it)

(ŵ⊤
0 ∇+ ηs + fxs(w

∗)− fxs(ŵ0))∇,

where ∇ denotes ∇fxs
(ŵ0). Then ŵt,it − w∗ can be written as

ŵt,it − w∗ = Σ−1
t,it

 ∑
s∈Dt(it)

∇(∇⊤ŵ0 + ηs + fxs
(w∗)− fxs

(ŵ0))

+ λΣ−1
t,it

ŵ0 − Σ−1
t,it

Σt,itw
∗

= Σ−1
t,it

 ∑
s∈Dt(it)

∇(∇⊤ŵ0 + ηs + fxs
(w∗)− fxs

(ŵ0))

+ λΣ−1
t,it

(ŵ0 − w∗)

− Σ−1
t,it

 ∑
s∈Dt(it)

∇∇⊤

w∗

= Σ−1
t,it

 ∑
s∈Dt(it)

∇(∇⊤(ŵ0 − w∗) + ηs + fxs(w
∗)− fxs(ŵ0))

+ λΣ−1
t,it

(ŵ0 − w∗)

= Σ−1
t,it

 ∑
s∈Dt(it)

∇1

2
∥ŵ0 − w∗∥2∇2fxs (w̃)

+Σ−1
t,it

 ∑
s∈Dt(it)

∇ηs

+ λΣ−1
t,it

(ŵ0 − w∗),

(8)
where the second line is again by our choice of Σt and the last equation is by the second order
Taylor’s theorem of fxs

(w∗) at ŵ0 where w̃ lies between w∗ and ŵ0.

Step 2: Upper bound of ∥ŵt,it − w∗∥2Σt,it
. Multiply both sides of eq. equation 8 by Σ

1
2
t,it

and we
have

Σ
1
2
t,it

(ŵt,it − w∗) ≤ 1

2
Σ

− 1
2

t,it

 ∑
s∈Dt(it)

∇fxs
(ŵ0)∥ŵ0 − w∗∥2∇2fxs (w̃)


+Σ

− 1
2

t,it

 ∑
s∈Dt(it)

∇fxs
(ŵ0)ηs

+ λΣ
− 1

2
t,it

(ŵ0 − w∗).

Take square of both sides and by inequality (a+ b+ c)2 ≤ 4a2 + 4b2 + 4c2 we obtain

∥ŵt,it − w∗∥2Σt,it
≤ 4

∥∥∥∥∥∥
∑

s∈Dt(it)

∇fxs
(ŵ0)ηs

∥∥∥∥∥∥
2

Σ−1
t,it

+ 4λ2∥ŵ0 − w∗∥2
Σ−1

t,it

+

∥∥∥∥∥∥
∑

s∈Dt(it)

∇fxs
(ŵ0)∥ŵ0 − w∗∥2∇2fxs (w̃)

∥∥∥∥∥∥
2

Σ−1
t,it

. (9)

The remaining job is to bound three terms in eq. equation 9 individually. The first term of eq.
equation 9 can be bounded as

4

∥∥∥∥∥∥
∑

s∈Dt(it)

∇fxs(ŵ0)ηs

∥∥∥∥∥∥
2

Σ−1
t,it

≤ 4σ2 log

(
det(Σt,it) det(Σ0)

−1

δ2t

)

≤ 4σ2

(
dw log

(
1 +

iC2
g

dwλ

)
+ log

(
π2t2

3δ

))
≤ 4dwσ

2ι′,
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where the second inequality is due to self-normalized bound for vector-valued martingales (Lemma
11 in Appendix C) and Lemma 7, the second inequality is by Lemma 9 and our choice of
δi = 3δ/(π2i2), and the last inequality is by defining ι′ as the logarithmic term depending on
i, dw, Cg, 1/λ, 2/δ (with probability > 1− δ/2). The choice of δi guarantees the total failure prob-
ability over t rounds is no larger than δ/2.

Using Lemma 7, the second term in eq. equation 9 is bounded as

4λ2∥ŵ0 − w∗∥2
Σ−1

t,it

≤ 4λCdwF
2ι

µT0
.

Again using Lemma 7 and Assumption 3, the third term of eq. equation 9 can be bounded as∥∥∥∥∥∥
∑

s∈Dt(it)

∇fxs(ŵ0)∥ŵ0 − w∗∥2∇2fxs (w̃)

∥∥∥∥∥∥
2

Σ−1
t,it

≤

∥∥∥∥∥∥CChdwF
2ι

µT0

∑
s∈Dt(it)

∇fxs(ŵ0)

∥∥∥∥∥∥
2

Σ−1
t,it

=
C2C2

hd
2
wF

4ι2

µ2T 2
0

∥∥∥∥∥∥
∑

s∈Dt(it)

∇fxs
(ŵ0)

∥∥∥∥∥∥
2

Σ−1
t,it

=
C2C2

hd
2
wF

4ι2

µ2T 2
0

 ∑
s∈Dt(it)

∇fxs(ŵ0)

⊤

Σ−1
t,it

 ∑
s′∈Dt(it)

∇fxs′ (ŵ0)

 .

Rearrange the summation and we can write

C2C2
hd

2
wF

4ι2

µ2T 2
0

 ∑
s∈Dt(it)

∇fxs
(ŵ0)

⊤

Σ−1
t,it

 ∑
s′∈Dt(it)

∇fxs′ (ŵ0)


=

C2C2
hd

2
wF

4ι2

µ2T 2
0

∑
s∈Dt(it)

∑
s′∈Dt(it)

∇fxs(ŵ0)
⊤Σ−1

t,it
∇fxs′ (ŵ0)

≤ C2C2
hd

2
wF

4ι2

µ2T 2
0

∑
s∈Dt(it)

∑
s′∈Dt(it)

∥∇fxs
(ŵ0)∥Σ−1

t,it

∥∇fxs′ (ŵ0)∥Σ−1
t,it

=
C2C2

hd
2
wF

4ι2

µ2T 2
0

 ∑
s∈Dt(it)

∥∇fxs
(ŵ0)∥Σ−1

t,it

 ∑
s′∈Dt(it)

∥∇fxs′ (ŵ0)∥Σ−1
t,it


=

C2C2
hd

2
wF

4ι2

µ2T 2
0

 ∑
s∈Dt(it)

∥∇fxs
(ŵ0)∥Σ−1

t,it

2

≤ C2C2
hd

2
wF

4ι2

µ2T 2
0

 ∑
s∈Dt(it)

1

 ∑
s∈Dt(it)

∥∇fxs
(ŵ0)∥2Σ−1

t,it


≤ C2C2

hd
3
wF

4tι
′′
ι2

µ2T 2
0

,

where the second last inequality is due to Cauchy-Schwarz inequality and the last inequality is by
Lemma 10.
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Finally, put three bounds together and we have

∥ŵt,it − w∗∥2
Σ−1

t,it

≤ 4dwσ
2ι′ +

4λCdwF
2ι

µT0
+

C2C2
hd

3
wF

4tι′′ι2

µ2T 2
0

≤ O

(
dwσ

2ι′ +
dwF

2ι

µ
+

d3wF
4tι′′ι2

µ2NT

)
,

where the last inequality is by our choices of λ = Cλ

√
NT, T0 =

√
NT . Therefore, our choice of

βt,it = Θ̃

(
dwσ

2 +
dwF

2

µ
+

d3wF
4

µ2

)
guarantees that w∗ is always contained in Ballt with probability 1− δ.

D.3 CUMULATIVE REGRET AND COMMUNICATION COST IN PHASE II

Cumulative Regret in Phase II Thanks to the confidence set established in Lemma 8, Phase II
of Algorithm 1 can operate in a similar way as existing works in federated linear bandits (Wang
et al., 2020; Dubey & Pentland, 2020), while allowing for a much wider choices of models. The
main difference is that, the regret of their work depends on the matrix constructed using context
vectors xs for s = 1, 2, . . . for the selected points, while ours rely on the matrix constructed using
gradients’ w.r.t. the shared model ŵ0. In the following paragraphs, we first establish the relation
between instantaneous regret rt and matrix Σt−1,it , and then analyze the regret of Algorithm 1.

Though, compared with Liu & Wang (2023), we are using a different way of constructing the con-
fidence ellipsoid, which is given in Lemma 8. Their Lemma 5.4, which is given below, still holds,
because it only requires Ballt−1,it to be a valid confidence set, and that Assumption 2 holds.

Lemma 14 (Instantaneous regret bound [Lemma 5.4 of Liu & Wang (2023)). Under the same
condition as Lemma 8,in Phase II of Algorithm 1, for all t ∈ [NT ], we have

rt ≤ 2
√
βt−1,it∥∇fxt(ŵ0)∥Σ−1

t−1,it

+ 2βt,itCh/λ,

with probability at least 1− δ.

Denote the total number of global synchronizations (total number of times the event in line 6 of
Algorithm 1 is true) over time horizon T as P ∈ [0, NP ]. Then we use tp for p ∈ [P ] to denote the
time step when the p-th synchronization happens (define t0 = 0), and refer to the sequence of time
steps in-between two consecutive synchronizations as an epoch, i.e., the p-th epoch is [tp−1 +1, tp].
Similar to Wang et al. (2020); Dubey & Pentland (2020); Li & Wang (2022b), for the cumulative
regret analysis in Phase II, we decompose P epochs into good and bad epochs, and then analyze
them separately.

Specifically, consider an imaginary centralized agent that has immediate access to each data point in
the learning system, and we let this centralized agent executes the same model update rule and arm
selection rule as in line 3-5 of Algorithm 1. Then the covariance matrix maintained by this agent
can be defined as Σt =

∑t
s=1 ∇fxs

(ŵ0)∇fxs
(ŵ0)

⊤ for t ∈ [NT ]. The p-th epoch is called a good
epoch if

ln

(
det(Σtp)

det(Σtp−1
)

)
≤ 1,

otherwise it is a bad epoch. Note that based on Lemma 9, we have ln(det(ΣNT )/det(λI)) ≤
dw log (1 +

NTC2
g

dwλ ) := R. Since ln(det(Σt1 )

det(λI) )+ln(
det(Σt2 )

det(Σt1
) )+· · ·+ln(det(ΣNT )

det(ΣtB
) ) = ln(det(ΣNT )

det(λI) ) ≤
R, and due to the pigeonhole principle, there can be at most R bad epochs.
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Now consider some good epoch p. By definition, we have det(Σt−1)
det(Σt−1,it )

≤ det(Σtp )

det(Σtp−1
) ≤ e, for any

t ∈ [tp−1+1, tp]. Therefore, if the instantaneous regret rt is incurred during a good epoch, we have

rt ≤ 2
√
βt−1,it∥∇fxt

(ŵ0)∥Σ−1
t−1,it

+
2βt−1,itCh

λ

≤ 2
√
βt−1,it∥∇fxt

(ŵ0)∥Σ−1
t−1

√
∥∇fxt

(ŵ0)∥Σ−1
t−1,it

/∥∇fxt
(ŵ0)∥Σ−1

t−1
+

2βt−1,itCh

λ

= 2
√
βt−1,it∥∇fxt

(ŵ0)∥Σ−1
t−1

√
det(Σt−1)

det(Σt−1,it)
+

2βt−1,itCh

λ

≤ 2
√
e
√
βt−1,it∥∇fxt

(ŵ0)∥Σ−1
t−1

+
2βt−1,itCh

λ

where the first inequality is due to Lemma 14, and the last inequality is due to the definition of good
epoch, i.e., det(Σt−1)

det(Σt−1,it )
≤ det(Σtp )

det(Σtp−1
) ≤ e.

This suggests the instantaneous regret rt incurred in a good epoch is at most
√
e times of that

incurred by the imaginary centralized agent that runs GO-UCB algorithm of Liu & Wang (2023).
Therefore, the cumulative regret incurred in good epochs of Phase II, denoted as Rgood is

Rgood =

P∑
p=1

1{ln
(

det(Σtp)

det(Σtp−1)

)
≤ 1}

tp∑
t=tp−1

rt ≤
NT∑
t=1

rt ≤

√√√√NT

NT∑
t=1

r2t

≤
√
NT

√
16eβNT dw ln(1 +

NTC2
g

dwλ
) +

8β2
NTC

2
hNT

λ2

where the last inequality is due to (a+b)2 ≤ 2a2+2b2, Lemma 9, and Lemma 10. Note that βNT =

O(
d3
wF 4

µ2 ) according to Lemma 8. By setting λ = Cλ

√
NT , we have Rgood = Õ(

d3
wF 4

√
NT

µ2 ).

Consider some bad epoch p, we can upper bound the cumulative regret incurred by all N clients in
this epoch p as

tp∑
t=tp−1+1

rt =

N∑
i=1

∑
t∈Dtp,i\Dtp−1,i

rt ≤
N∑
i=1

∑
t∈Dtp,i\Dtp−1,i

(
2
√

βt−1,it∥∇fxt(ŵ0)∥Σ−1
t−1,it

+
2βt−1,itCh

λ

)

≤
N∑
i=1

√
(|Dtp,i| − |Dtp−1,i|)8βNT

∑
t∈Dtp,i\Dtp−1,i

∥∇fxt(ŵ0)∥2
Σ−1

t−1,it

+ 8β2
NTC

2
h/C

2
λ

≤
N∑
i=1

√
16βNT γ + 8β2

NTC
2
h/C

2
λ

where the first inequality is due to Lemma 14, the second is due to Cauchy-Schwartz inequality and
(a+ b)2 ≤ 2a2 + 2b2, and the last is due to Lemma 10 and event-trigger with threshold γ in line 6
of Algorithm 1.

Since there can be at most R = dw log (1 +
NTC2

g

dwλ ) bad epochs, the cumulative regret incurred in

bad epochs of Phase II, denoted as Rbad is Õ(Ndw

√
d3
wF 4

µ2

√
γ + Ndw

d3
wF 4

µ2 ). By setting commu-

nication threshold γ = dwF 4T
µ2N , we have Rbad = Õ(

d3
wF 4

√
NT

µ2 +
d4
wF 4N
µ2 ). Combining cumulative

regret incurred during both good and bad epochs, we have

Rphase II = Rgood +Rbad = Õ

(
d3wF

4

µ2

√
NT +

d4wF
4

µ2
N

)
.

Communication Cost in Phase II Consider some α > 0. By pigeon-hole principle, there can
be at most ⌈NT

α ⌉ epochs with length (total number of time steps) longer than α. Then consider
some epoch with less than α time steps. We denote the first time step of this epoch as ts and
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the last as te, i.e., te − ts < α. Since the users appear in a round-robin manner, the number of
interactions for any user i ∈ [N ] satisfies |Dte,i| − |Dts,i| < α

N . Due to the event-triggered in line
6 of Algorithm 1, we have log

det(Σte )
det(Σts )

> γN
α . Using the pigeonhole principle again, we know that

the number of epochs with less than α time steps is at most ⌈Rα
γN ⌉. Therefore, the total number of

synchronizations P ≤ ⌈NT
α ⌉+ ⌈Rα

γN ⌉, and the RHS can be minimized by choosing α = N
√
γT/R,

so that P ≤ 2
√
TR/γ. With γ = dwF 4T

µ2N , P ≤ 2

√
N log(1+NTC2

g/(dwλ))µ2

F 4 = Õ(
√
Nµ2/F 4). At

each global synchronization, Algorithm 1 incurs 2N(d2w + dw) communication cost to update the
statistics. Therefore, Cphase II = P · 2N(d2w + dw) = (N1.5d2wµ/F

2).

E EXPERIMENT SETUP & ADDITIONAL RESULTS

Synthetic dataset experiment setup Here we provide more details about the experiment setup on
synthetic dataset in Section 6. Specifically, we compared all the algorithms on the following two
synthetic functions

f1(x) = −
4∑

i=1

ᾱi exp(−
6∑

j=1

Āij(xj − P̄ij)
2),

f2(x) = 0.1

8∑
i=1

cos(5πxi)−
8∑

i=1

x2
i .

Both are popular synthetic functions for Bayesian optimization benchmarking1. The 6-dimensional
function f1 is called Hartmann function, where

ᾱ = [1.0, 1.2, 3.0, 3.2] , Ā =

 10, 3, 17, 3.5, 1.7, 8
0.05, 10, 17, 0.1, 8, 14
3, 3.5, 1.7, 10, 17, 8
17, 8, 0.05, 10, 0.1, 14

 , P̄ =

 1312, 1696, 5569, 124, 8283, 5886
2329, 4135, 8307, 3736, 1004, 9991
2348, 1451, 3522, 2883, 3047, 6650
4047, 8828, 8732, 5743, 1091, 381

 .

And the 8-dimensional function f2 is a cosine mixture test function, which is named Cosine8. To
be compatible with the discrete candidate set setting assumed in prior works (Wang et al., 2020;
Li & Wang, 2022b; Li et al., 2022a), we generate the decision set X for the optimization of f1 by
uniformly sampling 50 data points from [0, 1]6, and similarly for the optimization of f2, 50 data
points from [−1, 1]8. Following our problem formulation in Section 3, at each time step t ∈ [T ] (we
set T = 100), each client i ∈ [N ] (we set N = 20) picks a data point xt,i from the candidate set X ,
and then observes reward yt,i generated by function f1, f2 as mentioned above. Note that the values
of both functions are negated, so by maximizing reward, the algorithms are trying to find data point
that minimizes the function values. We should also note that the communication cost presented in
the experiment results are defined as the total number of scalars transferred in the system (Wang
et al., 2020), instead of number of time communication happens (Li & Wang, 2022a).

Real-world dataset experiment setup & results To further evaluate Fed-GO-UCB’s performance
in a more challenging and practical scenario, we performed experiments using real-world datasets:
MagicTelescope and Shuttle from the UCI Machine Learning Repository (Dua & Graff, 2017).
We pre-processed these two datasets following the steps in prior works (Filippi et al., 2010), by
partitioning the dataset in to 20 clusters, and using the centroid of each cluster as feature vector for
the arm and its averaged response as mean reward. Then we simulated the federated bandit learning
problem introduced in Section 3 with T = 100 and N = 100. From Figure 3, we can see that
Fed-GO-UCB outperforms the baselines, with relatively low communication cost.

1We chose them from the test functions available in BoTorch package. See https://botorch.org/
api/test_functions.html for more details.
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Figure 3: Comparison of cumulative regret and communication cost on real-world datasets.
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