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ABSTRACT

Two-sided matching under uncertainty has recently drawn much attention due to
its wide applications. Matching bandits model the learning process in matching
markets with the multi-player multi-armed bandit framework, i.e. participants
learn their preferences from the stochastic rewards after being matched. Existing
works in matching bandits mainly focus on the one-sided setting (i.e. arms are
aware of their own preferences accurately) and design algorithms with the objective
of converging to stable matching with low regret. In this paper, we consider the
more general two-sided setting, i.e. participants on both sides have to learn their
preferences over the other side through repeated interactions. Specifically, we
formally introduce the two-sided setting and consider the rational and general case
where arms adopt "sample efficient" strategies. Facing the challenge of unstable
and unreliable feedback from arms, we design an effective algorithm that requires
no restrictive assumptions such as special preference structure and observation of
winning players. Moreover, our algorithm is the first to provide a theoretical upper
bound and achieves O(log T ) regret which is proved optimal in terms of T .

1 INTRODUCTION

Stable matching with preferences on both sides is a classic problem with wide applications encom-
passing marriage, college admission and labor markets. The classical literature Roth & Sotomayor
(1992); Roth & Xing (1997); Gale & Shapley (1962) that studies matching markets always assumes
that every participant is aware of her own preference perfectly beforehand, which may not be satisfied
in many scenarios. Under such uncertainty, a crucial question of matching markets is the convergence
to equilibrium. In online marketplaces (e.g. Upwork, TaskRabbit), repeated decentralized matching
between the demand side and the supply side becomes a core process. To characterize such process,
Liu et al. (2020) introduces the model of matching bandits which adopts the multi-armed bandit
(MAB) model in matching markets. MAB is a classic and well-studied framework that models the
decision-making process under uncertainty(Katehakis & Veinott Jr (1987); Auer et al. (2002)). An
player faces K arms with different utilities and aims to find out the best arm based on the stochastic
reward received after each pull. When studying matching markets with the MAB framework, not
only the regret, but also the stability should be taken account into consideration.

A strand of literature (e.g., Liu et al. (2020); Basu et al. (2021); Liu et al. (2021); Sankararaman
et al. (2021); Maheshwari et al. (2022)) proposes algorithms with the objective of achieving stable
matching with low regret. However, one limitation is that existing models of matching bandits all
assume perfect knowledge of preference on one side’s (i.e. each arm knows its own preference). We
refer this setting as the one-sided setting. Arms are able to give precise and stable feedback all the
time in the one-sided setting.

In our work, we study the more general and challenging case where even arms lack the knowledge of
arm preferences, i.e. the two-sided setting. As the players’ decisions are based on arms’ feedback, it
is crucial that arms can efficiently learn their preferences so as to return useful feedback to players.
Therefore, the learning speed of arms is the key to the problem. In this paper, we measure the learning
difficulty of the arm side by comparing it with the player side and we consider the reasonable case
where the difficulty level of arms’ preferences learning is comparable with players’ up to a constant
D. As arms are also uncertain about their preferences and need to learn through interactions, arms
will keep track of the rewards received after every match associated with each player and choose to
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match with a player based on historical payoffs. Inspired by two mostly used strategies: arms (1)
intuitively sort the players by empirical means, or (2) use the UCB method which is proved to obtain
sub-linear regret, we propose the definition of "sample efficient" to characterize the learning efficiency
of arms’ strategies and further analyze the more general case where arms’ strategies are "sample
efficient". Due to the generality, we consider the fully decentralized setting without restrictions, i.e.
no central communicator, no external available information such as observation and no assumption
on the preference structures. We propose our algorithm: Round-Robin ETC in this two-sided setting
and provide rigorous regret analysis.

1.1 CHALLENGES AND CONTRIBUTIONS

We introduce the more general case of matching bandits, i.e. two-sided setting and further specify
the model of two-sided matching bandits. In particular, we formally model the two-sided setting,
consider arms’ strategies and define the new notion "sample efficiency" to characterize arms’ learning
efficiency.

We propose a new algorithm for the complex two-sided setting and provide rigorous regret analysis. In
the two-sided setting, arms may give incorrect feedback, invaliding many commonly used techniques
in the one-sided setting, and making stable equilibrium more challenging to achieve. To the best of
our knowledge, we are the first to propose algorithms with provable upper bounds of regret based on
this setting in matching bandits. Moreover, we provide new techniques in analysing the matching
bandits.

We relax several common assumptions while achieving near optimal regret simultaneously. When
considering matching markets, previous work usually introduce strong assumptions on the structure
of preferences, such as globally ranked players in Sankararaman et al. (2021) and α-reducibility
in Maheshwari et al. (2022). Observation of winning players is also a strong but commonly used
assumption in matching bandits (Kong & Li (2023); Liu et al. (2021); Kong et al. (2022)). Our
proposed algorithm Round Robin ETC can be applied in both the one-sided setting and two-sided
setting with minor modification, and there is no such strong assumptions required for our algorithm.
Moreover, our algorithm achieves O(log T/∆2) regret with respect to player-optimal stable matching,
where T represents the time horizon and ∆ represents the minimal gap of arm utilities. This regret
bound is tight in terms of T and ∆. The regret bound also matches with the state-of-art result in the
simpler one-sided setting.

1.2 RELATED WORK

Table 1. Comparison between our work and prior results.

Assumptions Player-Stable Regret
Liu et al. (2020) one-sided, centralized, known ∆ O(K log T/∆2)∗
Liu et al. (2020) one-sided, centralized O(NK3 log T/∆2)

Sankararaman et al. (2021) one-sided, globally ranked O(NK log T/∆2)

Basu et al. (2021) one-sided, uniqueness consistency O(NK log T/∆2)

Maheshwari et al. (2022) one-sided, α-reducibility O(CNK log T/∆2)

Liu et al. (2021) one-sided, observation O(exp (N4)K2 log2 T/∆2)

Kong et al. (2022) one-sided, observation O(exp (N4)K2 log2 T/∆2)

Basu et al. (2021) one-sided O(K log1+ϵ T/∆2 + exp (1/∆2))∗
Kong & Li (2023) one-sided, observation O(K log T/∆2)∗
Zhang et al. (2022) one-sided O(NK log T/∆2)∗

this paper two-sided O(K log T/∆2)∗
1 K is the number of arms and N represents the number of players.
2 ∗ represents the type of regret bound is player-optimal stable regret.
3 C is related to the preference structure and it may grows exponentially in N .
4 ϵ is a positive hyper-parameter.
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The first work that combines MAB framework and matching market is from Das & Kamenica (2005),
and Das & Kamenica (2005) propose algorithm with numerical study under the strong assumption of
sex-wide homogeneity. Liu et al. (2020) generalize the MAB based matching and propose basic ETC
type and UCB type algorithms. However, Liu et al. (2020) mainly consider the centralized setting
which is not so practical in reality.

Later, a strand of works that studies the one-sided decentralized matching bandits emerges. As we
stated before, there are many works that make different assumptions on arm preferences. Sankarara-
man et al. (2021) analyse the setting of globally ranked players where all the arms sort players
the same. Later, Basu et al. (2021) consider a more general case of uniqueness consistency and
propose UCB-D4. Another special case of α−reducibility is studied by Maheshwari et al. (2022).
These assumptions all ensure one unique stable matching. Without restriction on preferences, it
is common that the market could have multiple stable matches. Denote the least preferred stable
matching for players by player-pessimal stable matching and the most preferred one by player-optimal
stable matching. Regret defined on the optimal stable matching is more desired as comparing with
the pessimal stable matching could induce an extra linear regret than the optimal stable matching.
With accurate knowledge of arm preferences on both arm side and player side, Liu et al. (2021)
design a conflict avoiding algorithm named CA-UCB which upper bound the player-pessimal stable
regret under the assumption of "observation". Similarly, TS based conflict avoiding algorithm with
"observation" is analysed by Kong et al. (2022). Basu et al. (2021) propose a phased-based algorithm
but with a high exponential dependency on 1

∆ . Adopting the assumption of "observation", Kong & Li
(2023) propose ETGS which guarantees player-optimal stable regret. ML-ETC proposed by Zhang
et al. (2022) is a ETC based algorithm that can apply to general preference structures, and it also
upper bounds the player-optimal stable regret without "observation".

The above literature mostly requires knowledge of arm preferences and rely on the precise feedback
of arms. The work from Pokharel & Das (2023) considers the case of both side unknown preferences
in matching bandits. Pokharel & Das (2023) propose PCA-DAA using the random delay to reduce
the likelihood of conflicts, but only empirical results are provided. Some works study two-sided
matching bandits from other aspects. For instance, Jagadeesan et al. (2023) investigate matching
markets under the stochastic contextual bandit model, where, at each round, the platform selects a
market outcome with the aim of minimizing cumulative instability.

2 SETUP

Suppose there are N players and K arms, and denote the set of players and arms by N and K
respectively. We adopt the commonly used assumption in matching bandits that N ≤ K ( e.g.
Liu et al. (2021); Kong & Li (2023); Basu et al. (2021); Liu et al. (2020); Basu et al. (2021)).
Both the player side and arm side are unaware of their preferences. Specifically, for each player
j, she has a fixed but unknown utility ujk associated with each arm k and prefers arm with higher
utility. For each arm k, it also has a fixed but unknown utility ua

kj associated with each player j and
prefers player with higher utility (the superscript a stands for "arm"). Without loss of generality,
we assume all utilities are within [0, 1], i.e. for every j ∈ N , k ∈ K, ujk, u

a
kj ∈ [0, 1]. Define the

utility gap for player j as ∆j = mink1,k2∈K,k1 ̸=k2 |ujk1 − ujk2 | and the utility gap for arm k as
∆a

k = minj1,j2∈N ,j1 ̸=j2 |ua
kj1
− ua

kj2
|. As a common assumption in previous work (e.g. Pokharel &

Das (2023); Liu et al. (2020; 2021), all preferences are strict, which means that both the minimal gap
of player ∆ = minj∈N ∆j and the minimal gap of arm ∆a = mink∈K ∆a

k are positive. Moreover,
we consider the reasonable case where the difficulty level of arms’ preferences learning is comparable
with players’ up to a positive constant D ∈ (0,∞). Specifically, we assume D∆a ≥ ∆j in this paper.
Throughout the time horizon T , every player and arm will learn about their own preferences through
interactions and want to match with one from the other side with higher utility. We use the notation
j1 ≻k j2 to indicate that arm k prefers player j1 than player j2 and the similar notation k1 ≻a

j k2 to
represent that player j prefers arm k1 than arm k2.

At each time step t ≤ T , each player j pulls an arm Ij(t) simultaneously. If there exists one player
pulling the arm k, we assume that the arm k will choose to match with the player rather than staying
unmatched since all utilities are non-negative. When there are multiple players pulling arm k, a
conflict arise, and arm k will choose to match one of the candidates based on its strategy (see details
in Section 2.1). The unchosen players will get rejected and obtain no reward. Denote the winning
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player on arm k at time step t by Ak(t). Let Cj(t) represent the rejection indicator of player j at
time step t. Cj(t) = 1 indicates that player j gets rejected and Cj(t) = 0 otherwise. When a match
succeeds between player j and arm k, both player j and arm k receive stochastic rewards sampled
from the fixed latent 1-subgaussian distributions with mean ujk and ua

kj , respectively. In this paper,
we consider the general decentralized setting, i.e., no direct communication among players is allowed,
and there is no central organizer or extra external information such as observation.

No Observation of Winning Players. In the literature of matching bandits, observation of winning
players (which assume that all players can observe the winning player on every arm) is a strong but
widely used assumption. Even when some arms are not selected by the player, the player can also
get their information based on observation. This assumption greatly helps players to learn arms’
preferences and other players’ actions. Liu et al. (2021) incorporate the observation to design a
conflict-avoid algorithm, Kong & Li (2023) use the observation to help players infer others’ learning
progress easily. However, it will be more challenging but more desirable to throw away the assumption.
In real applications, the common case is that a player will only be informed her own result (success
or rejection) rather than being aware of every accepted player for every company. The assumption of
no observation also captures the fully decentralized scenario, i.e. players take actions only based on
their own matching histories, without access to others’ information.

2.1 ARMS’ STATEGIES

At each time step t, if there exist multiple players pulling the arm k, arm k will choose to match one
player according to past rewards received. Instead of considering a specific strategy, we consider
the general case where arms can adopt different strategies as long as they can efficiently learn their
own preferences. The empirical mean associated with player j estimated by arm k is denoted by ûa

kj

and the matched times associated with player j estimated by arm k is denoted by Na
kj . Define event

Ea = {∀j ∈ N , k ∈ K, |ûa
kj − ua

kj | < 2
√

log T
Na

kj
}. Ea represents that the samples’ quality is not too

bad so that the empirical means are very far from real values at every time slot. We will show in our
proof that Ea is a high-probability event since all samples are drawn from sub-gaussian distributions.

Definition 1 (Arms’ Sample Efficiency). We say arm k adopt R sample efficient strategy, if after
collecting R log T

(∆a)2 samples for every player, conditional on Ea, arm k will choose to match with the
player with highest utility among the candidates.

Sample efficient strategies enable arms to provide useful feedback soon. If arms adopt sample
efficient strategies, they will not choose sub-optimal candidates a lot as long as the samples are not so
bad. Several commonly used bandit-learning methods like UCB policy and following the empirical
leader satisfies the sample efficiency. Since arms will also receive rewards and prefer players with
higher utilities, it is reasonable for rational arms to adopt efficient learning strategies. Thus, in this
paper, we consider the case where arms adopt sample efficient strategies.

2.2 REGRET FOR BOTH SIDES

Before we introduce the definition of regret, we recall the definition of matching stability, which is an
important issue when considering matching bandits in matching markets.

A matching between player side and arm side is stable if there does not exist two (arm, player)
matches such that each one prefers the other partner than the current matched partner. Let mj

represent the matched pair of player j in the matching m. For each player j, her optimal stable
arm mj is the arm with highest utility among her matched arms in all possible stable matchings
while her pessimal stable arm mj being the matched arm with lowest utility. For each player k, its
optimal stable player ma

k is the player with highest utility among its matched players in all possible
stable matchings while its pessimal stable player ma

k being the matched player with lowest utility.
Unlike previous work, we consider the stable regret for both the player side and the player side. The
player-optimal and player-pessimal stable regret for player j are defined as follows, respectively:

Rj(T ) = E[
T∑

t=1

(ujmj − (1− Cj(t))ujIj(t))].
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Rj(T ) = E[
T∑

t=1

(ujmj
− (1− Cj(t))ujIj(t))].

Similarly, the arm-optimal and arm-pessimal stable regret for arm k are defined as follows, respec-
tively:

R
a

k(T ) = E[
T∑

t=1

(ua
kma

k
− ua

kAk(t)
)].

Ra
k(T ) = E[

T∑
t=1

(ua
kma

k
− ua

kAk(t)
)].

Player-optimal Stable Regret. Note that the optimal stable regret is defined with respect to the
optimal stable pair that has higher utility than the pessimal stable pair. Thus, it is more challenging
and desired to achieve sublinear optimal stable regret. However, as a result in Gale & Shapley (1962),
it is impossible to get both sublinear player-optimal stable regret and sub-linear arm-optimal stable
regret. Note that Gale & Shapley (1962) also propose the Gale-Shapley (GS) algorithm which obtains
optimal stable matching for the proposing side. We wonder if the similar result holds in the two-sided
unknown setting. Thus, in this paper, we mainly focus on player-side strategies and player-optimal
stable matching.

3 ROUND-ROBIN ETC ALGORITHM

In this section, we propose our algorithm: Round-Robin ETC which obtains an asymptotic O(log T )
player-optimal stable regret.

3.1 BRIEF INTRODUCTION

In this subsection, we will discuss some unique challenges in the two-sided matching bandits, as well
as how our proposed techniques address the challenges. Then, we give a brief introduction of the
major phases in our algorithm.

In learning problems, trade-off between exploration and exploitation is usually a key issue. As for
matching bandits, players need to consider whether to explore in order to learn preferences or to
exploit by starting the player-optimal stable matching process based on current estimations.

The exploration is more complicated when studying matching bandits. Unlike the traditional MAB
problem, in matching bandits, only when an player does not get rejected, can she receive reward
to learn preferences. Moreover, when considering the two-sided setting, arms also need to learn
their utilities through rewards received after each match. Since the convergence to the optimal stable
matching requires both the player-side and the arm-side to have accurate estimations. It is essential
for both players and arms to get enough samples. Furthermore, a unique challenge brought by the
two sided setting lies in the asymmetry of the learning ability on both sides. Intuitively, it will be
harder for arms to collect enough samples since players can choose arms proactively while arms
can only passively choose one player from the candidates. But it is crucial for arms to learn their
preferences correctly early so that players can receive true information when conflicts happen. Notice
that when there is no conflict, i.e. only one player that pulls one arm, the arm and the player will get
matched. Such successful match generates a clear sample for both the player and the arm. We use the
idea of round-robin exploration to avoid conflict and enable both the player-side and the arm-side to
learn their preferences simultaneously.

The exploitation also becomes different and more challenging when considering matching bandits.
The exploitation in matching bandits is to form optimal stable matchings among players and arms.
Reaching the correct optimal stable matching requires cooperation between all players and arms given
limited communication. It is crucial to let players decide on when to end their individual exploration
and to start a collective matching process. As players and arms don’t have explicit communication
channel or direct observation of conflict results, players can hardly learn other players’ exploration
progress. It is even harder for players to learn arms’ exploration progress since players can only infer
that from arms’ passive actions ( i.e. choosing one player from the candidates). To address these

5



Under review as a conference paper at ICLR 2024

challenges, we incorporate the confidence bounds to enable players to measure their own exploration
progress and wait for arms to get enough samples simultaneously. We also design decentralized
communication through deliberate conflicts, which allow players to send and infer information.
Specifically, players will deliberately compete for an arm, trying to send information by letting other
player get rejected or to receive information by inferring from the rejection indicators. Furthermore,
we carefully design the algorithm such that players can enter exploitation as soon as possible, i.e.,
they do not need to wait until all others have learned their preferences accurately. The intuitive idea
is that, if a player is to start exploitation, she only needs to make sure that any other player that could
potentially "squeeze" her out has already entered (or also about to enter) exploitation.

Together with these analysis, we provide the brief introduction of our algorithm. Firstly, the algorithm
will assign distinct index to each player. Next, players will do rounds of round-robin exploration.
After every round of exploration, players will communicate their progress of preference learning
to decide on whether to start matching. If players decide to start matching, they will run the Gale-
Shapley (GS) algorithm and occupy their potential optimal stable arm till the end. Otherwise, the
players will start a new round of exploration.

3.2 ROUND-ROBIN ETC

Algorithm 1 Round Robin ETC (for an player j)
# Phase 1: Index Assignment

1: Index← INDEX-ASSIGNMENT(N,K)
# Phase 2: Round Robin

2: N2 ← N,K2 ← K,K2 ← K
# N2 denotes the number of remaining players in Phase 2, K2 denotes the remaining arms

3: while OPT= ∅ do # when j hasn’t found her potential optimal stable arm yet
#Sub-Phase: Exploration

4: (Success, ûj ,N j)← EXPLORATION(Index, K,K2,K2, ûj ,N j)
#Sub-Phase: Communication

5: Success← COMM(Index, Success, N2,K2,K2)
#Sub-Phase: Update

6: OPT← GALE-SHAPLEY(Success, N2,K2, ûj ,N j)
7: N1 ← N2,K1 ← K2

8: if Success= 1 then Break while#successful players will enter the exploitation phase
9: end if

10: for t = 1, ..., N2K2 do
11: if t = (Index− 1)K2 +m then # check arms’ availability
12: Pull arm k that is m-th arm in K2

13: if Cj = 1 then K1 ← K1 \ {k}, N1 = N1 − 1
14: end if
15: end if
16: end for
17: N2 ← N1,K2 ← K1 #update available arms and number of players
18: Index← INDEX-ASSIGNMENT(N2,K2)
19: end while

#Phase 3: Exploitation Phase:
20: Pull OPT arm

procedure INDEX-ASSIGNMENT(N,K)
1: π ← K[1]
2: for t = 1, 2, ..., N do
3: Pull arm π
4: if Cj = 0, π = K[1] then
5: Index← t, π ← K[2]
6: end if
7: end for
8: return Index
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The Algorithm 1 consists of 3 phases: "Index Assignment", "Round Robin" and "Exploitation".
Players will enter "Index Assignment" phase and "Round Robin" phase simultaneously, but may
leave the "Round-Robin" phase for the "Exploitation" phase at different time steps.

In the "Index Assignment" phase (Line 1), every player will receive a distinct index. To be specific
(see procedure INDEX-ASSIGNMENT), every player will keep pulling arm 1 until the first time, say
step t, she doesn’t get rejected. She will be assigned index t and then move to pull the next arm, i.e.,
arm 2. Since there can only be one player that successfully matches with arm 1 at each time step,
after N time steps, all players can receive different indices.

Algorithm 2 EXPLORATION (for player j)
Require: Index, K1,K,K, ûj ,N j

1: for t = 1, 2, ...,KK2
1⌈log T ⌉ do

2: Pull (Index + t) mod K = m-th arm in K and update ûjk, Njk

3: end for
4: if for every k1 ̸= k2 ∈ K, UCBjk1

< LCBjk2
or LCBjk1

> UCBjk2
then

5: Success← 1 # the player achieves a confident estimation
6: end if
7: return Success, ûj ,N j

Algorithm 3 COMM (for player j)
Require: Index, Success, N,K,K

1: for i = 1, 2, ..., N ,t_index = 1, 2, ..., N , r_index = 1, 2, ..., N , r_index ̸=t_index do
# player with Index=t_index is the transmitter and player with Index=r_index is the receiver

2: for m = 1, 2, ...,K do # the communication process is through conflict on the m-th arm
3: if Index=t_index then # if transmitter
4: if Success= 0 then Pull the m-th arm in K
5: end if
6: end if
7: if Index=r_index then # if receiver
8: Pull the m-th arm in K
9: if Cj = 1 then Success= 0

10: end if
11: end if
12: end for
13: end for
14: return Success

In the "Round Robin" phase (Line 3-19), the players will explore the arms without conflict, commu-
nicate on their progress of exploration, and update their indices and available arms in a round based
way.

Each round will consist 3 sub-phases: exploration, communication and update. An player will leave
the "Round Robin" phase when she finds out her optimal stable arm confidently. Then, she will
enter the "Exploitation" phase and occupy her potential optimal stable arm, say arm k, making arm
k unavailable to other players. Denote the set of players that are still in the "Round Robin" phase
by N2, the number of remaining players by N2 , the available set of arms by K2, and the number of
available arms by K2. We further elaborate on the three sub-phases in "Round Robin" below.

1. Exploration (Line 4, see Algorithm 2 EXPLORATION). Every player will explore available arms
according to the index to avoid conflict, and every exploration will lasts for K2K

2⌈log T ⌉ time
steps. Based on the distinct index and the assumption that K ≥ N , there will be at most one
single player that pulls each arm at each time step during the exploration. Player j will update her
empirical mean ûj and the matched times N j throughout the exploration. The notions of upper
confidence bound "UCB" and lower confidence bound "LCB" are defined as follows:

UCBjk = ûjk + c

√
log T

Njk
, LCBjk = ûjk − c

√
log T

Njk
, (1)
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where ûjk denotes the empirical mean and Njk denotes the times player j is matched with arm
k. Let c = max{2,

√
RD
2 + 1}. We say that when an player j achieves a confident estimation

on the arm set K∗ if for every k1, k2 ∈ K∗ such that k1 ̸= k2, either UCBjk1
< LCBjk2

or
LCBjk1

> UCBjk2
holds.

2. Communication (Line 5, see Algorithm 3 COMM). The players will communicate through
deliberate conflicts in an index-based order. This sub-phase let players communicate on their
progress of exploration. Specifically, they will communicate whether they have achieved confident
estimations and the communication proceeds pairwise following the order of index. Player with
index 1 will first serve as a transmitter, sending information to the player with index 2, then to
player with index 3, 4 and so on. After player 1 have finished sending information to others, player
2 will be the transmitter, then player 3 and so on. The player who wants to receive information is
the receiver.
The communication subphase conducts all pairwise communication between all pairs of remaining
players on all available arms for N2 times. Specifically, for every pair of different remaining play-
ers j1 and j2, communication occurs on every available arm for N2 times. Every communication
is conducted through a deliberate conflict on the m-th arm of K2 between a transmitter and a
receiver. The player with index "t_index", denoted as player j1, serves as the transmitter, and the
player with index "r_index" is the receiver. Suppose j2 is the receiver, and arm k is the m-th arm
of K2. The receiver j2 will choose arm k to receive information. The transmitter j1 will choose
arm k only when she fails to achieve a confident estimation or has been rejected when receiving
others’ information in the previous time steps during the communication sub-phase. Other players
will pull an arbitrary arm k′ ̸= k.
If a player achieves a confident estimation and never gets rejected when receiving others’ infor-
mation during the communication sub-phase, we say that the player obtains successful learning.
Note that if a player obtains successful learning, it means that with high probability, the remaining
players that may "squeeze" her out on the available arms all achieve confident estimations (and
all obtain successful learning). We use "Success" in the pseudocode (Line 4, 5, 8) to denote
the success signal, and "Success= 1" indicates that the player obtains successful learning while
"Success= 0" otherwise. We call the players who obtain successful learning the successful players,
and others are called unsuccessful players.

3. Update (Line 6-23). The successful players will be able to find out their potential optimal stable
arms, and unsuccessful will update their indices, the number of remaining players N2, and the
set of available arm K2. The first procedure GALE-SHAPLEY (Gale & Shapley (1962)) enables
successful players to match their potential optimal stable arms. Then successful players will
enter the "Exploitation" phase, and unsuccessful players will update the available arms in order.
Specifically, when t = (n− 1)K2 +m in Line 11, the player with index n, suppose player j, will
pull the m-th arm in K2, suppose arm k, to check its availability. If player j gets rejected, then
she will kick arm k out of the available arm set. Lastly, unsuccessful players will update their
indices by the INDEX-ASSIGNMENT function and start a new round.

In the "Exploitation" phase (Line 20), every player will keep pulling her potential optimal stable arm
till the end.

3.3 REGRET ANALYSIS

Theorem 1. If every player runs Algorithm 1, and arms adopt R sample efficient strategies, then the
optimal stable regret of any player j can be upper bounded by :

Rj(T )≤N +K3r⌈log T ⌉+Nr(KN(N−1) +N+K + 1) + 4KN+ 2

= O(
K log T

∆2
) (2)

Moreover, the arm-pessimal stable regret for any arm k can be upper bounded by:

Ra
k(T )≤N +K3r⌈log T ⌉+Nr(KN(N−1) +N+K + 1) + 4KN+ 2

= O(
K log T

∆2
) (3)

where r equals to ⌈ 4(c+2)2

K2∆2 ⌉ and c = max{2,
√
RD
2 + 1}.
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Dependency on Parameters. As a result in Sankararaman et al. (2021), the regret bound is optimal
in terms of T and ∆. Compared with previous work, we share the same dependency on K with the
best existing algorithm that study the one-sided setting.

Proof Sketch. We only give a proof sketch for the player-optimal stable regret, the result for the arm
regret can be obtained similarly.

Define the event E = {∀j ∈ N , k ∈ K, |ûjk − ujk| < 2
√

log T
Njk
}. We can decompose the regret

depending on whether E and Ea holds, i.e.

Rj(t) = E[
T∑

t=1

(ujmj
−(1− Cj(t))ujIj(t))|E ∩ E

a] + E[
T∑

t=1

(ujmj
−(1− Cj(t))ujIj(t))|¬(E ∩ E

a)](4)

≤ E[
T∑

t=1

(ujmj−(1− Cj(t))ujIj(t))|E ∩ E
a] ̸=] + TPr[¬E ] + TPr[¬Ea]. (5)

While the probability of ¬E and ¬Ea can be upper bounded by a 1
T factor, we only need to bound

the regret conditional on E ∩ Ea. By the design of the algorithm, we can easily find out that the
initialization phase lasts for N time steps, which means there will be at most N regret caused by the
initialization phase. As for the other two phases, we can prove the following statements:

• Conditional on E and Ea, with probability more than 1 − 2
T , when a player achieves a

confident estimation on the available arm set K2, the arms in K2 give accurate feedback.

• If arms in K2 give accurate feedback, the pulls of unsuccessful players will not influence the
output of the potential optimal arms (i.e. OPT in Line 6) for successful players.

Then according to the design of the algorithm, the property of GALE-SHAPLEY and these statements,
we can also prove that conditional on E∩Ea, after no more than O(log T ) time steps in the round-robin
phase, all players will enter the exploitation phase with their correct optimal stable arm. Combining
these all together, we can obtain the results.

4 CONCLUSION

In this work, we study the matching bandits in the two-sided setting where both the player side and arm
side do not know their own preferences. We further model the details of two-sided setting, consider
the general case with no restrictive assumptions, and propose Round-Robin ETC. In particular, we
introduce the two-sided model formally and specify arms’ strategies on how to choose players. We
throw away the assumption of observations, make no restriction on the preference structure and study
the general two-sided setting. Our algorithm obtains an O(log T ) player-optimal stable regret and
achieves the same order as the state-of-the-art guarantee in the simpler one-sided setting. To the best
of our knowledge, we are the first to give theoretical results when considering the matching bandits
with unknown preference on both sides.

Future Direction. In this paper, we mainly focus on the setting where arms adopt sample efficient
strategies to choose players to match with. It remains to investigate the case where dishonest arms
exist and may misresport their own preferences after they have already learned their preferences
confidently. The future direction may focus on the case where arms also adopt more strategic
strategies. The game playing between player-side and arm-side may also be an interesting direction
for further study.
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A GALE-SHAPLEY IN COMPETING BANDITS

Algorithm 4 GALE-SHAPLEY (for an player j)
Require: Success, N,K, ûj ,N j

i← 1, sort k ∈ K, let kh be the arm with h-th highest empirical mean in K
for t = 1, 2, ..., N2 do

Pull arm ki
if Cj = 1 then

i← i+ 1
end if

end for
if Success= 1 then return ki else return ∅
end if

In the GALE-SHAPLEY algorithm, all the players will propose to their most preferred arms that they
haven’t encountered rejection on yet.
Lemma 1. Gale & Shapley (1962) Suppose player j obtains successful learning. If every player sorts
all arms accurately, and every arm give accurate feedback, then the output of the GALE-SHAPLEY
will equal to player j’s optimal stable arm.

Note that if all the left players N \N2 occupy their optimal stable arms, all the remaining players
can also find out their optimal stable arms through the GALE-SHAPLEY algorithm.

B REGRET PROOF

Before we analyse the regret bound , we clarify some notations and introduce some lemmas. Note
that ûjk denotes the empirical mean associated with arm k estimated by player j and Njk denotes
the matched times. Similarly, ûa

kj and Na
kj are used to denote the empirical mean and matched times

associated with player j estimated by arm k. While the players only update empirical means and
matched times during the exploration, the arms will keep updating their empirical means and matched
times throughout the whole time horizon T .
Lemma 2. (Corollary 5.1 in Lattimore & Szepesvári (2020)) Assume that Xi − u are independent,
σ-subgaussian random variables. Then for any ϵ ≥ 0 ,

Pr[û ≥ u+ ϵ] ≤ exp(−nϵ2

2σ2
) and Pr[û ≤ u− ϵ] ≤ exp(−nϵ2

2σ2
),

where û = X1+..+Xn

n .

Lemma 3. Define the event: E = {∀j ∈ N , k ∈ K, |ûjk − ujk| < 2
√

log T
Njk
} and recall that Ea =

{∀j ∈ N , k ∈ K, |ûa
kj − ua

kj | < 2
√

log T
Na

kj
}, Pr[¬E ] ≤ 2KN

T and Pr[¬Ea] ≤ 2KN
T hold.

Proof. We can directly get the lemma according to Lemma 2.

Lemma 4. Conditioning on E and Ea, with probability more than 1− 2
T , when an player achieves a

confident estimation on the available arm set K2, the arms in K2 give accurate feedback.

Lemma 4 shows that as long as players have confidence on the estimations of arm utilities, the arms
will give precise feedback with high probability.

Proof. Suppose player j is the first player who achieves a confident estimation, from the design of
the algorithm, the remaining arm set K2 equals to the whole arm set K. Suppose arms k1, k2 ∈ K
satisfy ujk1

− ujk2
= ∆j . Since player j achieves a confident estimation, thus LCBjk1

>UCBjk2

conditional on E . During the exploration, all the available arms is explored evenly and without conflict.
Note that for player j the rewards received are independent 1-subgaussian random variables, denote
the rewards received after being matched with arm k1 during the exploration by X1, X2, ..., Xn and
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the rewards associated with arm k2 by Y1, Y2, ..., Yn, where n = Njk1 = Njk2 , Z1 = X1−Y1, Z2 =

X2−Y2, ..., Zn = Xn−Yn are independent
√
2-subgaussian random variables. By applying Lemma

2, with probability more than 1− 2
T we obtain that:

∆j >
Z1 + ...+ Zn

n
− 2

√
log T

n
≥ LCBjk1

− UCBjk2
+
√
RD

√
log T

n
> D

√
R log T

n
.

Note again that all the available arms is explored evenly and without conflict in the exploration. Thus
the matched times for arms satisfy that Na

kj′ ≥ n ≥ RD2 log T
∆2

j
≥ R log T

(∆a)2 for every k ∈ K and every

j′ ∈ N . According to the definition of R-estimation efficiency, conditional on Ea, arms give accurate
feedback.

Lemma 5. Conditioning on E and Ea, an player j will achieve a confident estimation on K2 after no
more than ⌈ 4(c+2)2

K2∆2 ⌉ rounds in the "Round Robin" phase.

Proof. Note that after ⌈ 4(c+2)2

K2∆2 ⌉ rounds in the "Round Robin" phase, every available arm is matched

with player j for at least 4(c+2)2 log T
∆2 time steps during the exploration. Since players only update

empirical mean and matched times in the exploration, the matched times of available arms are the
same. For k1, k2 ∈ K2 that ujk1

> ujk2
, conditioning on E , we have that:

LCBjk1
= ûjk1

− c

√
log T

Njk1

> ujk1
−(c+ 2)

√
log T

Njk1

≥ ∆j + ujk2
−(c+ 2)

√
log T

Njk2

>∆j + ûjk2
− (c+ 4)

√
log T

Njk2

> ∆j + ûjk2
+ c

√
log T

Njk2

− (2c+ 4)

√
log T

Njk2

= UCBjk2 +∆j − (2c+ 4)

√
log T

Njk2

.

We can conclude the lemma based on the fact that Njk2 ≥
4(c+2)2 log T

∆2 after ⌈ 4(c+2)2

K2∆2 ⌉ round in the
"Round Robin" phase.

We say an player j′ can influence player j if there exist a distinct sequence of remaining players
j0 = j′, j1, ..., jn = j and a sequence of available arms k1, ..., kn, such that ji−1 ≻ki ji for
i = 1, 2, ..., n. Otherwise, we say player j′ cannot influence player j. The following Lemma
indicates the transitivity of influence relation.
Lemma 6. If an player j0 can influence player j′, and player j′ can influence j, then j0 can also
influence player j.

Proof. Since j0 can influence the optimal stable arm of player j′, and player j′ can influence the
optimal stable arm of player j, from the definition, there exist remaining players j0, j1, j2, ..., jm =
j′, ..., jn = j and available arms k1, ..., kn that satisfy ji−1 ≻ki

ji for i = 1, 2, ..., n (by emerg-
ing two sequences). Note that if one of the following cases happens: (1) there exists m1 < m
that j = jm1 , (2) there exists m2 > m that j0 = jm2 , or (3) there exist no m1 < m
and m2 ≥ m that jm1 = jm2 , we can simply conclude the lemma. Otherwise, suppose for
m1 < m and m2 ≥ m that jm1 = jm2 holds, we can find out that the remaining players
j′0 = j0, ..., j

′
m1−1 = jm1−1, j

′
m1

= jm2
, j′m1+1 = jm2+1, ..., j

′
n′ = jn and available arms

k′1 = k1, ..., k
′
m1

= km1
, k′m1+1 = km2+1, ..., k

′
n′ = kn satisfy j′i−1 ≻k′

i
j′i for i = 1, 2, ..., n′.

Repeat the above process, we can find a distinct sequence of remaining players j0 = j∗0 , ..., j
∗
n∗ = j

and a sequence of available arms k∗1 , ..., k
∗
n∗ that satisfy j∗i−1 ≻k∗

i
j∗i for i = 1, 2, ..., n∗ which

finishes the proof.

Lemma 7. During a communication, conditional on that arms give accurate feedback, if an player j
never get rejected when receiving, then for any j′ ̸= j ∈ N2, one of the following statements holds:

1) player j′ achieves a confident estimation on the available arm set K2,

2) player j′ cannot influence player j.
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Proof. We prove the lemma by contradiction. Suppose there exists an player j′ ̸= j who doesn’t
achieve a confident estimation on the available arm set K2 and player j′ can influence player j.
Then there exists a distinct sequence of remaining players j0 = j′, j1, ..., jn = j and a sequence of
available arms k1, ..., kn, such that ji−1 ≻ki

ji for i = 1, 2, ..., n. Since player j′ fails to achieve a
confident estimation and arms give precise feedback, there exists t1 ≤ N1K1 in the communication
process (in Line 5) when j1 will get rejected. Similarly, we can conclude that there exists ti for
i = 1, ..., n that ti ≤ iN1K1 and at time step ti, player ji will get rejected. Note that there are
at most N2 players remaining, player j will get rejected during the communication which being a
contradiction.

According to the design of Algorithm 1, different players may match their potential optimal stable
arms after different rounds in the "Round Robin" phase. GALE-SHAPLEY Gale & Shapley (1962)
is used to help players find their potential optimal stable arms. Note that if player j′ cannot influence
player j, the pulls of player j′ will not influence the output of the potential optimal arm (i.e. OPT in
Line 6) for player j.
Lemma 8. Conditioning on E and Ea, with probability 1− 2

T , when an player j obtains successful
learning, her potential optimal stable arm equals to her optimal stable arm.

Proof. Note that different players may obtain successful learning after different rounds in the
"Round Exploration" phase and there may be multiple players obtain successful learning at the
same round. We denote the n-th (in the round order) set of players to obtain successful learn-
ing by S(n). Define the event: E∗ = {all successful agents has correct estimations on K2} ∩
{all arms give accurate feedback after a player achieves a confident estimation}. We prove the state-
ment "conditional on E∗, when an player j obtains successful learning, her potential optimal stable
arm equals to her optimal stable arm" by mathematical induction. If the above statement holds for
players in S = ∪n−1

i=1 S(i), we prove the correctness of the statement for players in S(n). Note that
conditioning on E∗, all the players in S will occupy their optimal stable arms. We now verify that
any player j′ in S(m) (where m = n+ 1, ...) can never influence the optimal stable arm for player j
in S(n). By contradiction, if player j′ can influence the optimal stable arm of j. Since player j′ fails
to obtain successful learning at round n, j′ either fails to achieve a confident estimation or has got
rejected when receiving during the n-th round’s communication. By combing Lemma 7 and Lemma
6, there must exist an player j0 (may equal to player j′) who fails to achieve confident estimations
and j0 can influence the optimal stable arm of j. Then player j must have got rejected when receiving
which contracts the definition of obtaining successful learning. Combing all the above analysis, we
can prove the correctness of the statement. Now, based on Lemma 4, we only need to prove the
correctness of every player’s estimation on the available arm set K2 conditioning on E . Conditioning
on E , for any k1, k2 ∈ K2 that LCBjk1

>UCBjk2
, have:

ujk1
> LCBjk1

> UCBjk2
> ujk2

.

Thus, the correctness of player j’s estimation is proved, and the origin statement holds.

Proof of Theorem 1. Let r = ⌈ 4(c+2)2

K2∆2 ⌉. By decomposing the player optimal stable regret and using
the above lemmas, we obtain

Rj(T ) = E[R1 +R2 +R3|E ∪ Ea] + T Pr[¬E ] + T Pr[¬Ea] (6)
≤ N + E[R2 +R3|E ∪ Ea] + 4KN (7)

≤ N +K3r⌈log T ⌉+ r(KN2(N − 1) +N2 +NK +N) + 4KN + 2 (8)

In Eq.6, R1 represents the regret in the "Index Assignment" phase, R2 represents the regret in the
"Round Robin" phase, and R3 represents the regret in the "Exploitation" phase. Eq.7 holds based on
Lemma 3 and the fact that the "Index Assignment" phase lasts for N time steps. Combining Lemma
4, Lemma 5 and Lemma 8, we conclude that, conditioning on E and Ea, with possibility more than
1− 2

T , player will enter the "Exploitation" phase with optimal stable arm after no more than r rounds
in "Round Robin" phase. Thus, Eq.8 holds.

As for arm-pessimal stable regret, we can easily conclude the result according to the fact that: if
all players match with their optimal stable arms, then all arms match with their pessimal stable
players.
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C UNKNOWN TIME HORIZON

In this section, we extend the setting where the time horizon T is unknown.

The doubling trick (Besson & Kaufmann (2018); Auer et al. (1995)) is a commonly used method to
address unknown time horizon T and converses the bound of O(log T ). We adopt the doubling trick
both on the total time horizon the exploration.

By using exponential doubling trick, the whole time horizon T is divided into several periods. In every
period r1, all players will suppose the time horizon Tr1 = 22

r1 . When they act more than Tr1 time
steps in total, they will update their assumption and enter the next period, i.e. suppose Tr1+1 = 2r1+1.
The doubling trick will also be used in the exploration. Specifically, the first exploration will last
for K2 time steps, the second exploration lasts for 2K2 time steps, the third for 2 · 2K2 = 4K2 time
steps and so on.

Moreover, we suppose that arms are also not aware of the time horizon T . Thus, they also update
their beliefs. Define the event Ea(r1) = {∀j ∈ N , k ∈ K, |ûa

kj − ua
kj | < 2

√
2r1
Na

kj
}. We say the

arms adopt modified R sample efficient method with unknown time horizon, if for every period r1,
conditional on Ea(r1), after no more than R 2r1

(∆a)2 samples for every player, the arms can estimate
their utilities accurately.

Algorithm 5 Round Robin ETC (for an player j with unknown T )
1: Index← INDEX-ASSIGNMENT(N,K)
2: for r1 = 1, 2, ... do
3: OPT← ∅, N2 ← N,K2 ← K, r2 ← 1
4: while OPT= ∅ do# when j hasn’t found her potential optimal stable arm yet
5: for t = (1, 2, ..., 2r2)K2 do # Exploration Sub-Phase
6: Pull (Index + t) mod K2 = m-th arm in K2, update ûjk, Njk, r2←r2 + 1
7: end for
8: if for every k1 ̸= k2 ∈ K2, UCBjk1 < LCBjk2 or LCBjk1 > UCBjk2 then
9: Success← 1 # the player achieves a confident estimation

10: end if# Communication Sub-Phase
11: Success← COMM(Index, Success, , N2,K2,K2)

# Update Sub-Phase
12: OPT← GALE-SHAPLEY(Success, N2,K2, ûj ,N j)
13: if Success= 1 then Break while
14: end if
15: for t = 1, ..., N2K2 do
16: if t = (Index− 1)K2 +m then
17: Pull arm k that is m-th arm in K2

18: if Cj = 1 then K1 ← K1 \ {k}, N1 = N1 − 1
19: end if
20: end if
21: end for
22: N2 ← N1,K2 ← K1

23: Index← INDEX-ASSIGNMENT(N2,K2)
24: end while
25: Pull OPT arm
26: end for

Theorem 2. If every player runs Algorithm 5, and arms adopt modified R-sample efficient method„
then the optimal stable regret of any player j can be upper bounded by:

Rj(T )≤ N+
32K(c+2)2log T

∆2
+rN log(

32K(c+2)2log T

∆2
)(KN(N−1)+N+K+1)+(4KN+2)r,

(9)
where r = log log T + 1.
Theorem 3. If every player runs modified algorithm of Algorithm 1 based on Doubling Trick on the
exploration, and arms adopt R-sample efficient method, then the optimal stable regret of any player j
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can be upper bounded by:

Rj(T ) ≤ N+
8K(c+2)2 log T

∆2
+N log(

16K(c+2)2 log T

∆2
)(KN(N−1)+N+K+1)+4KN+2

(10)

Proof. Since doubling trick is only used on the exploration, after r rounds of exploration, every
available arm is explored for 2r+1−2 time steps. By similar analysis with Lemma 5, we can conclude
that conditioning on E , after no more than 8K(c+2)2 log T

∆2 times in the exploration, every player will
achieve a confident estimation on the available arm set K2. Then following the proof in Theorem 1,
we can simply get this theorem.

Proof of Theorem 2. According to the design of Algorithm 5 and Theorem 3, we can simply get the
conclusion by summing regret in each period.

Remark 1. Similar results for arm regret can be easily obtained due to the fact that: if all players
match with their optimal stable arms, then all arms match with their pessimal stable players.

D SIMULATION

In this section, we provide numerical results to show the performance of our algorithms. For all
experiments, the ranks of arms and players are all determined randomly, and we assume that the arms
take actions according to empirical means. We estimate the average player-optimal stable regret and
standard deviations of regret over 30 independent runs. Moreover, in order to show the dependence
of market size in our algorithms, we compute the average regret for players.
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(ii) Different Minimal Gaps

Varying Market Size. We considers 4 different market sizes. The number of arms is K =
{3, 5, 8, 10} and the number of players is set to equal the number of arms. The minimal gaps of
players and arms are both 0.1. From Figure (i), we can conclude that, the optimal stable regret
increases when the market size increases.

Different Minimal Gaps of Players. We considers 3 different minimal gaps for players. The minimal
gap of players is ∆ = {0.1, 0.15, 0.2} and the minimal gap of arms is set to be 0.2. There are 5
players and 5 arms. From Figure (ii), we can conclude that, the optimal stable regret increases when
the minimal gap of players decreases.

Note that, for all experiments, the standard deviations of optimal stable regret is nearly 0. It implies
that our algorithms not only achieve low regret but also perform stably.
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