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A Introduction to do-calculus

The framework of do-calculus [30] was proposed as an intuitive tool to answer identifiability questions given a
causal graph G, such as, can the interventional distribution p(y|do(x), z) be recovered from the observational
distributions p(y, x, z)?

A.1 The three rules of do-calculus

Do-calculus relies on three graphical rules, which depend solely on the existence of specific structural
constraints in G:

• R1: insertion/deletion of observations, p(y|do(x), z, w) = p(y|do(x), w) if Y and Z are d-separated
by X fi W in Gı, the graph obtained from G by removing all arrows pointing into variables in X.

• R2: action/observation exchange, p(y|do(x), do(z), w) = p(y|do(x), z, w) if Y and Z are d-separated
by X fi W in G†, the graph obtained from G by removing all arrows pointing into variables in X and
all arrows pointing out of variables in Z.

• R3: insertion/deletion of actions, p(y|do(x), do(z), w) = p(y|do(x), w) if Y and Z are d-separated by
X fi W in G‡, the graph obtained from G by first removing all the arrows pointing into variables in
X (thus creating Gı) and then removing all of the arrows pointing into variables in Z that are not
ancestors of any variable in W in Gı.

This set of rules has been shown to be complete [13; 33], and results in an algorithm polynomial in the number
of nodes in G to answer identifiability questions, which either outputs "no" or "yes" along with an estimate
(a recovery formula) based on observational quantities. We refer the reader to Pearl [30] for a thorough
introduction to do-calculus.

A.2 Note on ignorability and exogeneity

In this paper we use at great length the concept of confounding, which is a core idea in Judea Pearl’s
do-calculus framework. For readers who are more familiar with the framework of potential outcomes from
Donald Rubin [14], the concept of confounding closely relates to the concepts of ignorability and exogeneity,
which can be shown to be equivalent to the unconfoundedness (no confounding) assumption [28].
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B Experimental details

B.1 Training

In all our experiments we use tabular logistic models for each of the components in q̂. That is, each building
bloc q(z0), q(ot|zt), q(zt+1|zt, at), and q(at|ht, zt, i = 0) is parameterized using a set of softmax-normalized
scalars vectors. We train q̂ via gradient descent using the Adam optimizer [17], by directly minimizing the
negative log likelihood of the model (equation (5)) on random mini-batches of trajectories sampled from
Dstd fi Dprv. Agents are trained using the learned model as a “dream” environment (by sampling imaginary
trajectories · ≥ q̂(· |i = 1)), with a simple actor-critic algorithm (REINFORCE with a state-value baseline)
for a fixed number of iterations, also using the Adam optimizer. Both the actor and critic consists of a
2-layers perceptron (MLP) with the same hidden layer size, which take as input the belief state recovered
from the model. The training hyperparameters we used in each experiment are displayed in table 1.

tiger
hidden sloppy

treasures dark room

Latent model

latent space size |Z| 32 256 128
learning rate 10≠3 10≠3 10≠3

number of epochs (max) 500 500 500
number of gradient steps per epoch 50 100 100
minibatch size (trajectories ·) 32 64 64

Actor-critic agent

exploration noise ‘ 0.5 0.2 0.2
hidden layer size 256 512 256
learning rate 5 ◊ 10≠4 5 ◊ 10≠4 5 ◊ 10≠4

number of epochs 200 400 200
number of gradient steps per epoch 50 50 50
minibatch size (trajectories ·) 32 64 64
minibatch return scaling yes no no
entropy bonus 10≠3 10≠3 10≠3

discount factor “ 1 1 1

Table 1: Training hyperparameters we used in each experiment. When learning the model, we divide the
learning rate by 10 after 10 epochs without loss improvement (reduce on plateau), and we stop training after
20 epochs without improvement (early stopping). We use all available data for training, and we monitor the
training loss for early stopping (no validation set).

B.2 Evaluation

Model quality (likelihood). To evaluate the general quality of the recovered POMDP model, we compute
the likelihood of q̂ on a new interventional dataset Dtest obtained from the true environment p with a uniformly
random policy firand,

E·≥pinit,ptrans,pobs,firand

S

Uq̂(o0)
|· |Ÿ

t=1
q̂(ot+1|ht, i = 1)

T

V .

We report an empirical estimate of this measure using 10000 trajectories.

Agent performance (cumulated reward). To evaluate quality of the agent obtained from the model q̂
for solving the standard POMDP control task, we compute the expected cumulated reward of the policy fîı
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on the true environment p,

E·≥pinit,ptrans,pprv,fîı

S

U
|· |ÿ

t=1
r(ot)

T

V .

We report an empirical estimate of this measure using 10000 trajectories.

B.3 Tiger experiment

We present the (compact) POMDP dynamics of the tiger problem in table 2. After conversion to the
notation in the paper, the observations become ot = (roart, rewardt), the actions remain at = actiont, and
the hidden states are st = (tigert, rewardt). The privileged policies used in the experiments (section 5.2) are
reported in table 3.

Table 2: Compact POMDP dynamics in the tiger problem.

tiger0
left right
0.5 0.5

p(tiger0)

tigert+1
tigert actiont left right

left
listen 1.0 0.0

open left 0.5 0.5
open right 0.5 0.5

right
listen 0.0 1.0

open left 0.5 0.5
open right 0.5 0.5

p(tigert+1|tigert, actiont)

roart

tigert left right
left 0.85 0.15

right 0.15 0.85

p(roart|tigert)

rewardt+1
tigert actiont -1 -100 +10

left
listen 1.0 0.0 0.0

open left 0.0 1.0 0.0
open right 0.0 0.0 1.0

right
listen 1.0 0.0 0.0

open left 0.0 0.0 1.0
open right 0.0 1.0 0.0

p(rewardt+1|tigert, actiont)

Table 3: Privileged policies fiprv(action|tiger) used in the tiger experiment.

actiont

privileged policy tigert listen left right

random left 0.33 0.33 0.33
right 0.33 0.33 0.33

noisy good left 0.05 0.30 0.65
right 0.05 0.80 0.15

perfect good left 0.00 0.00 1.00
right 0.00 1.00 0.00

perfect bad left 0.00 1.00 0.00
right 0.00 0.00 1.00

C Additional empirical results

20



Published in Transactions on Machine Learning Research (MM/YYYY)

|Dstd| no obs naive augmented

100

400

1000

2000

4000

6000

Figure 8: Evolution of the test-time agent trajectories in the hidden treasures experiment. We report a
heatmap of the tiles visited by each agent (no obs, naive, augmented) at di�erent time steps (number of
interventional samples collected) during a single RL run (single seed). Eventually all methods converge to the
optimal strategy, which is to cycle through the 4 corners. Our augmented method converges to this behaviour
earlier on during training.
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Figure 9: Evolution of the test-time agent trajectories in the sloppy dark room experiment. We report
a heatmap of the tiles visited by each agent (no obs, naive, augmented) at di�erent time steps (number
of interventional samples collected), averaged over 10 RL runs (10 seeds). Eventually all methods manage
to consistently overcome the obstacle and reach the target tile. Our augmented method converges to this
behaviour earlier on during training.
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D Proof of Theorem 1.

Theorem 1. Assuming |Dprv| æ Œ, for any Dstd the recovered causal model is bounded as follows:
T ≠1Ÿ

t=0
q̂(ot+1|o0æt, do(a0æt)) Ø

T ≠1Ÿ

t=0
p(at|ht, i = 0)p(ot+1|ht, at, i = 0), and

T ≠1Ÿ

t=0
q̂(ot+1|o0æt, do(a0æt)) Æ

T ≠1Ÿ

t=0
p(at|ht, i = 0)p(ot+1|ht, at, i = 0) + 1 ≠

T ≠1Ÿ

t=0
p(at|ht, i = 0),

’hT ≠1, aT ≠1, T Ø 1 where p(hT ≠1, aT ≠1, i = 0) > 0.

Proof of Theorem 1. Consider q(·, i) œ Q any distribution that follows our augmented POMDP constraints.
As an intermediary step, we will start by proving the following

T ≠1Ÿ

t=0
q(ot+1|ht, at, i = 1) =

ZT +1ÿ

z0æT

q(z0|h0, i = 0)
T ≠1Ÿ

t=0
q(zt+1, ot+1|zt, at, ht, i = 0). (6)

First, for any 0 Æ t Æ T ≠ 1, we can write the following factorization

q(zt, zt+1, ot+1|ht, at, i = 1) = q(zt|ht, at, i = 1)q(zt+1, ot+1|zt, ht, at, i = 1).

Because of the augmented POMDP constraints, the independences Zt ‹‹ At | Ht, I = 1 and Zt+1, Ot+1 ‹‹ I |
Zt, At, Ht hold in q, which further allows us to write

q(zt, zt+1, ot+1|ht, at, i = 1) = q(zt|ht, i = 1)q(zt+1, ot+1|zt, ht, at, i = 0). (7)

Then, we directly get

q(ot+1|ht, at, i = 1) =
Z◊Zÿ

zt,zt+1

q(zt|ht, i = 1)q(zt+1, ot+1|zt, ht, at, i = 0). (8)

Now, let us consider the special case where T = 1. We can use the constraint Z0 ‹‹ I | H0 to write

q(o1|h0, a0, i = 1) =
Z2ÿ

z0æ1

q(z0|h0, i = 0)q(z1, o1|z0, h0, a0, i = 0),

which is equation (6), the desired result, for T = 1. In the case where T Ø 2, we can reuse equation (8) to
write

q(oT |hT ≠1, aT ≠1, i = 1) =
Z2ÿ

zT ≠1æT

q(zT ≠1|hT ≠2, aT ≠2, oT ≠1, i = 1)q(zT , oT |zT ≠1, hT ≠1, aT ≠1, i = 0)

=
Z2ÿ

zT ≠1æT

q(zT ≠1, oT ≠1|hT ≠2, aT ≠2, i = 1)
q(oT ≠1|hT ≠2, aT ≠2, i = 1) q(zT , oT |zT ≠1, hT ≠1, aT ≠1, i = 0)

T ≠1Ÿ

t=T ≠2
q(ot+1|ht, at, i = 1) =

Z2ÿ

zT ≠1æT

q(zT ≠1, oT ≠1|hT ≠2, aT ≠2, i = 1)q(zT , oT |zT ≠1, hT ≠1, aT ≠1, i = 0).

Then, we can introduce variable ZT ≠2 and use equation (7) again to obtain
T ≠1Ÿ

t=T ≠2
q(ot+1|ht, at, i = 1) =

Z3ÿ

zT ≠2æT

q(zT ≠2, zT ≠1, oT ≠1|hT ≠2, aT ≠2, i = 1)q(zT , oT |zT ≠1, hT ≠1, aT ≠1, i = 0)

=
Z3ÿ

zT ≠2æT

q(zT ≠2|hT ≠2, i = 1)
T ≠1Ÿ

t=T ≠2
q(zt+1, ot+1|zt, ht, at, i = 0).
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In the case where T = 2, we can use Z0 ‹‹ I | H0 again to obtain equation (6), the desired result for T = 2.
In the case where T Ø 3, we can apply the same steps again to obtain

T ≠1Ÿ

t=T ≠3
q(ot+1|ht, at, i = 1) =

Z4ÿ

zT ≠3æT

q(zT ≠3|hT ≠3, i = 1)
T ≠1Ÿ

t=T ≠3
q(zt+1, ot+1|zt, ht, at, i = 0).

Now, either T = 3 and we can use Z0 ‹‹ I | H0 to obtain equation (6), or T Ø 4 and we can continue the
decomposition by introducing ZT ≠4. By following this recursive approach we eventually reach Z0 and prove
equation (6) for any T .

Let us now re-express equation (6) as follows

T ≠1Ÿ

t=0
q(ot+1|ht, at, i = 1) =

ZT +1ÿ

z0æT

q(z0|h0, i = 0)
A

T ≠1Ÿ

t=0
q(zt+1, ot+1|zt, ht, at, i = 0)

B A
T ≠1Ÿ

t=0
q(at|zt, ht, i = 0)

B

+
ZT +1ÿ

z0æT

q(z0|h0, i = 0)
A

T ≠1Ÿ

t=0
q(zt+1, ot+1|zt, ht, at, i = 0)

B A
1 ≠

T ≠1Ÿ

t=0
q(at|zt, ht, i = 0)

BB

T ≠1Ÿ

t=0
q(ot+1|ht, at, i = 1) =

T ≠1Ÿ

t=0
q(at|ht, i = 0)q(ot+1|ht, at, i = 0)

+
ZT +1ÿ

z0æT

q(z0|h0, i = 0)
A

T ≠1Ÿ

t=0
q(zt+1, ot+1|zt, ht, at, i = 0)

B A
1 ≠

T ≠1Ÿ

t=0
q(at|zt, ht, i = 0)

B
.

By assuming probabilities are positive, we can substitute the second term by 0 to obtain our lower bound

T ≠1Ÿ

t=0
q(ot+1|ht, at, i = 1) Ø

T ≠1Ÿ

t=0
q(at|ht, i = 0)q(ot+1|ht, at, i = 0).

Then by assuming probabilities are upper bounded by 1, we can substitute q(ot+1|zt+1, zt, ht, at, i = 0) by 1
to obtain our upper bound

T ≠1Ÿ

t=0
q(ot+1|ht, at, i = 1) Æ

T ≠1Ÿ

t=0
q(at|ht, i = 0)q(ot+1|ht, at, i = 0)

+
ZT +1ÿ

z0æT

q(z0|h0, i = 0)
A

T ≠1Ÿ

t=0
q(zt+1|zt, ht, at, i = 0)

B A
1 ≠

T ≠1Ÿ

t=0
q(at|zt, ht, i = 0)

B

Æ
T ≠1Ÿ

t=0
q(at|ht, i = 0)q(ot+1|ht, at, i = 0) + 1 ≠

T ≠1Ÿ

t=0
q(at|ht, i = 0).

Finally, with q̂ solution of (5) and |Dprv| æ Œ we have that DKL(p(· |i = 0)Îq̂(· |i = 0)) = 0, and thus
q̂(at|ht, i = 0) = p(at|ht, i = 0) and in particular q̂(ot+1|ht, at, i = 0) = p(ot+1|ht, at, i = 0), which allows us
to conclude.
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