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Domain-Agnostic Crowd Counting via Uncertainty-Guided
Style Diversity Augmentation

Anonymous Authors

ABSTRACT
Domain shift poses a significant barrier to the performance of crowd
counting algorithms in unseen domains. While domain adaptation
methods address this challenge by utilizing images from the target
domain, they become impractical when target domain images ac-
quisition is problematic. Additionally, these methods require extra
training time due to the need for fine-tuning on target domain im-
ages. To tackle this problem, we propose an Uncertainty-Guided
Style Diversity Augmentation (UGSDA) method, enabling the crowd
counting models to be trained solely on the source domain and di-
rectly generalized to different unseen target domains. It is achieved
by generating sufficiently diverse and realistic samples during the
training process. Specifically, our UGSDA method incorporates three
tailor-designed components: the Global Styling Elements Extraction
(GSEE) module, the Local Uncertainty Perturbations (LUP) module,
and the Density Distribution Consistency (DDC) loss. The GSEE
extracts global style elements from the feature space of the whole
source domain. The LUP aims to obtain uncertainty perturbations
from the batch-level input to form style distributions beyond the
source domain, which used to generate diversified stylized samples
together with global style elements. To regulate the extent of per-
turbations, the DDC loss imposes constraints between the source
samples and the stylized samples, ensuring the stylized samples
maintain a higher degree of realism and reliability. Comprehensive
experiments validate the superiority of our approach, demonstrat-
ing its strong generalization capabilities across various datasets and
models. Our code will be made publicly available.

CCS CONCEPTS
• Computing methodologies → Computer vision; • Human-centered
computing → Collaborative and social computing.

KEYWORDS
Crowd Counting, Domain Generalization, Uncertainty, Style Aug-
mentation

1 INTRODUCTION
Crowd counting is focused on accurately estimating the number of
individuals in crowded scenes and has garnered significant attention
in recent years. Accurate crowd counting is essential for understand-
ing crowd behavior, ensuring public safety, and facilitating urban

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Images

Source Domain

Labels
Train set

Test set

test

Target Domains

Target 1 (Train)

Target 1 (Test)

test 1

Target M (Train)

adapt

test M

Target M (Test)

test
Fully-Supervised
on Source Domain

Domain
Adaptation

Domain
Generalization

…

…

Figure 1: Comparison between fully-supervised on source do-
main, domain adaptation, and domain generalization. For better
visual effects, the images are cropped and scaled.

planning across various domains. In the past decade, with the rapid
advancement of artificial intelligence, crowd counting has also made
remarkable progress [21, 31, 33, 35, 39, 44, 62, 65]. Almost all of
these methods assume that the training and test sets are drawn i.i.d.
from the same underlying distribution. However, this assumption is
often violated in real-world scenarios due to substantial variations
in data acquisition devices, data collection environments, and other
factors. Such domain shifts between the source and target domains
can lead to significant performance degradation.

To alleviate this issue, several studies attempt to incorporate Do-
main Adaptation (DA) techniques within the realm of crowd count-
ing [7, 16, 37, 50, 52, 53, 69]. These methods aim to minimize the
domain gap by learning domain-invariant feature representations or
style information specific to the target domain. While these methods
yield promising results, their efficacy depends on access to images
in the target domain. However, obtaining sufficient data from target
domains may encounter numerous challenges, especially as people
become increasingly aware of privacy protection. What is more, it is
troublesome and time-consuming to finetune the pre-trained model
for each target domain.

As shown in Fig. 1, compared to fully-supervised on source do-
main methods that perform worse on target domain, and DA methods
that necessitate target domain images, Domain Generalization (DG)
techniques can achieve commendable performance without any ac-
cess to the target domain. Meta-learning and data augmentation are
two important categories in the domain generalization. MLDG [26]
proposes to use meta-train and meta-test sets to simulate the do-
main shifts to learn domain-invariant features. Building on MLDG,
DGCC [8] employs meta-learning technique for domain generaliza-
tion in crowd counting. However, DGCC suffers from a complex
network structure and sensitive hyperparameters, and it requires
maintaining an additional domain-invariant crowd memory which
adversely impacts inference speed. AdaIN [19] is a data augmen-
tation technique that can transmute images into any arbitrary style
while preserving content. This capability enables the network to

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

learn from a more diversified set of data within the source domain
and consequently achieve a more general model. Leveraging AdaIN,
we first propose to use data augmentation technique in crowd count-
ing, which can bolster the generalization ability of models without
impacting the network architecture and inference speed.

In this paper, we propose an Uncertainty-Guided Style Diversity
Augmentation (UGSDA) method for domain-agnostic crowd count-
ing. The proposed UGSDA method comprises a Global Style Ele-
ment Extraction (GSEE) module, a Local Uncertainty Perturbation
(LUP) module and the Density Distribution Consistency (DDC) loss.
Inspired by [63], the GSEE module represents the 𝐶-dimensional
style space by sampling 𝐶 global style elements. To address the
potential limitations of source domain data in capturing all possible
styles, we employ the LUP during the generation process of each
training batch to introduce uncertainty into the global style elements,
thereby enabling the creation of a diverse set of styles. LUP cal-
culates the mean and variance at the batch level for the images,
and samples from a Gaussian distribution to obtain perturbation
values for the global style elements. To prevent the stylized samples
from deviating too much from real-world scenarios, we also employ
the proposed DDC loss to regularize the difference between the
density distribution of real samples and stylized samples in the high-
dimensional space. These components together generate sufficiently
diverse samples during the training process, thereby enhancing the
model’s generalization capabilities. The contributions of this paper
are summarized as follows:

• To our best knowledge, this is the first attempt to employ
data augmentation techniques for domain generalization in
the field of crowd counting, offering advantages in terms
of simply and plug-and-play functionality without affecting
inference speed.

• The proposed uncertainty-guided style diversity augmenta-
tion method dynamically generates diverse training samples
by combining global style elements extracted from the en-
tire source domain with slight perturbations obtained from
each training batch. Additionally, the density distribution
consistency loss effectively optimizes the realism of the
density distribution of the stylized samples.

• Comprehensive experiments on different data sets validate
that our method can achieve superior performance to the
state-of-the-art algorithms. Moreover, our method exhibits
strong generalization capabilities across various crowd count-
ing networks.

2 RELATED WORKS
2.1 Crowd Counting
Fully-Supervised Crowd Counting. After the initial proposition of
density learning methods by Lempitsky et al. [25], the crowd count-
ing research has pivoted from detection-based [13] and regression-
based [2, 48] paradigms to methods reliant on density maps. Owing
to the physical law of foreshortening, which dictates that objects ap-
pear smaller as they recede into the distance, the generated Gaussian
density maps may confront significant scale variations. One type of
approach commonly adopted to address this issue involves refining
network design for more accurate density map estimation. Specif-
ically, some works [4, 45, 57, 62] employ multi-column network

architectures to learn feature information across diverse scales. Some
studies endeavor to utilize scale-selection [9, 15, 43, 46] techniques
or learn to scale [54, 55] methodologies to mitigate the challenges
posed by scale variations. Some methods leverage attention mecha-
nisms [1, 30, 32, 41] or deformable convolution [14, 64] to enhance
feature representational capacity. Another type of approach elevates
the accuracy of crowd counting by innovating how to generate better
ground truth density maps. Specifically, Zhang et al. [60] generate
density maps by employing perspective normalization to generate
perspective maps, which are then amalgamated with the center posi-
tions of pedestrian heads. MCNN [62] introduced geometry-adaptive
kernels as a replacement for a fixed Gaussian kernel. Wang et al. [50]
try to employ attention mechanisms for the adaptive fusion of density
maps generated from distinct, predefined Gaussian kernels. Huang et
al. [18] and ADMAL [7] propose a method for adaptively generating
density maps based on the spatial features of the objects. However,
most of these works neglect the domain shift that often occurs be-
tween training and testing scenarios in many real-world applications,
leading to a significant degradation in model performance.
Domain Adaptive Crowd Counting. To counteract the potential
domain shifts, Domain Adaptation (DA) techniques have been in-
troduced into crowd counting [7, 36, 50, 67, 68]. Within the DA
setting, the network requires target domain images for fine-tuning.
[7, 12, 16, 71] all employ adversarial learning at the feature level to
force the network to learn domain-invariant features. There are other
approaches [10, 50, 51] that deploy adversarial learning techniques
at the image level. The crux of this type of method lies in employing
the Generative Adversarial Network (GAN) [70] principle to transfer
the stylistic attributes of source domain images to the target domain,
thereby diminishing the domain shift between the source and target
domain. Apart from adversarial learning approaches, Liu et al. [36]
use uncertainty estimation to facilitate self-supervised learning in tar-
get domain, thereby accomplishing fine-tuning purposes. DAOT [69]
proposes a domain-agnostically aligned optimal transport strategy
that aligns domain-agnostic factors and managing outliers.

2.2 Domain Generalization
Different from domain adaptation methods, which can access both
source domain and target domain images, domain generalization
methods are limited to obtaining data solely from the source do-
main. A straightforward approach is to enhance the diversity of
source domain data through data augmentation [17, 27, 56, 58].
SHADE [63] proposes a style hallucination module to generate new
style-diversified data to improve generalization ability and relieve
the model from overfitting in training domains. DSU [28] proposes
to use the feature statistics of the training data to improve the gener-
alization ability of model. Another prevalent approach is to leverage
the meta-learning technique [8, 23, 26] to align the distribution of
the source domain by learning domain-invariant representations. The
essence of this category of work is to divide the source domain into
meta-train and meta-test sets, thereby simulating the domain shift
between the source and target domains.

Building on MLDG [26], DGCC [8] employs meta-learning tech-
nique in conjunction with domain-invariant and -specific crowd
memory modules to achieve domain generalization in crowd count-
ing. Unlike the DGCC method, we propose an uncertainty-guided
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Figure 2: Architecture of our uncertainty-guided style diversity augmentation method. The sampling results within Shanghai Tech B
(SHB) data set have been visualized to underscore the efficacy of our proposed UGSDA method. Features represented by the same
color represent that they are obtained by repeating. Details of the GSEE and LUF can be referred to Section 3.

style diversity augmentation method that generates a diverse set
of samples to prevent the network from overfitting to the source
domain. In addition, compared to DGCC, our method introduces
no modifications to the network architecture and has no impact on
inference time. To our best knowledge, this is the first attempt to
address domain generalization issues in crowd counting through data
augmentation techniques.

3 METHODOLOGY
3.1 Framework and Preliminary Concepts
Setting and Overview. Assuming that we have an observable source
domain D𝑠 = {(𝑥𝑠

𝑖
, 𝑦𝑠

𝑖
)}𝑁

𝑖=1, where 𝑁 is the number of images in
domain D𝑠 and (𝑥𝑠

𝑖
, 𝑦𝑠

𝑖
) denotes the image-label pair for the 𝑖-th

sample in source domain. Besides, we have𝑀 unseen target domains
{𝐷𝑡

𝑖
}𝑀
𝑖=1. Our objective is for the model 𝜃 , which is well-trained on

the source domain D𝑠 , to also perform well concurrently across these
𝑀 target domains without any finetuning. Moreover, the proposed
method is desired to be easily incorporated into crowd counting
algorithms without impacting inference speed.

To achieve our objective, an Uncertainty-Guided Style Diver-
sity Augmentation (UGSDA) method is proposed, which consists
of a Global Styling Elements Extraction (GSEE) module and a
Local Uncertainty Perturbations (LUP) module. Thanks to these
collaborative modules, the proposed UGSDA method can generate
sufficiently stylized samples, thereby enhancing the domain gener-
alization capabilities of crowd counting methods. Furthermore, a
Density Distribution Consistency (DDC) loss is proposed to con-
strain the realism of the density distribution of the stylized samples
in the high-dimensional feature space. The overall framework is
shown in Fig. 2.
Preliminaries. A model trained on one domain may struggle to adapt
to new domains. Data augmentation is a strategy that can expand
the amount and diversity of data. Since the network is exposed to
data in various styles, it can understand invariances across more data
domains [6]. For instance, image flipping enables the network to deal
with perspective effects in crowd counting [36]. That is why use style
variation methods can help improve the network’s generalization
ability. However, some image data augmentation methods, such as

Rotation, Photometric Transformer, and Mixup [61], are essentially
predefined manipulations or combinations of operations applied to
images. These data augmentation techniques fall short in augmenting
the variety of data styles and distributions, such as acquiring a new
style or altering the distribution ratio of styles within the dataset.

In some generative models [19, 22], it has been found that the
use of Adaptive Instance Normalization (AdaIN) [19] allows for
adaptation to arbitrarily given styles. The formulation for AdaIN can
be expressed as follows:

𝐴𝑑𝑎𝐼𝑁 (𝑥,𝑦) = 𝜎 (𝑦) ( 𝑥 − 𝜇 (𝑥)
𝜎 (𝑥) ) + 𝜇 (𝑦) (1)

where 𝑥 is content input, 𝑦 is style input, 𝜇 (∗) and 𝜎 (∗) represent the
mean and standard deviation across spatial locations, respectively.
Through AdaIN, we can scale the normalized content of input using
𝜎 (𝑦) and shift it using 𝜇 (𝑦), thereby obtaining a new sample that
conforms to the style of 𝑦.

In domain generalization of crowd counting, we have the content
𝑥 from source domain. To achieve our objectives, the key challenge is
to generate real and diverse stylized samples to enhance the model’s
generalization capability. In Section 3.2, we will discuss how to
generate global style elements within the scope of the source domain
and Section 3.3 introduces how to generate more out-of-distribution
stylized samples with the help of the proposed LUP module.

3.2 Global Style Element Extraction
Method. As shown in Fig. 1, it can be observed that across various
crowd counting data sets, there may exist different style transfor-
mations, such as night, daytime, various weather conditions, indoor
lighting, etc. It is challenging to manually define all possible style
information that may be contained in every unseen target domain.
Following [63], we leverage the definition of basis in linear alge-
bra to capture the global style elements within the source domain.
To handle out-of-distribution styles, we further employ the Local
Uncertainty Perturbation (LUP) module, detailed in Section 3.3.

A basis 𝑆 is a set of linearly independent vectors in a vector space
𝑉 , through which every vector in that space can be represented. Ac-
cording to this definition, assuming that the style space is a subspace

3
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of a 𝐶-dimensional vector space, it is feasible to represent the en-
tirety of styles using 𝐶 linearly independent basis vectors. However,
directly using orthonormal vectors ignores the real styles contained
in the source domain, which may yield an excess of spurious styles,
adversely affecting the model’s performance. It should be noted that
with source domain data serving as prior knowledge, sampling basis
vectors 𝑆𝑠 from the style space of the source domain is likely to yield
more real new styles. Thanks to the research in style transfer [19, 22],
we can represent the style space 𝑉 𝑠 using the mean and variance of
the source domain image features 𝑓 𝑠 = 𝜑 (𝑥𝑠 ) as follows:

𝑉 𝑠 = {(𝜇𝑐 (𝑓 𝑠𝑖 ), 𝜎𝑐 (𝑓
𝑠
𝑖 )) | 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑐 ≤ 𝐶} (2)

where 𝜇𝑐 (∗) and 𝜎𝑐 (∗) represent the mean and standard deviation
across channel dimension, 𝑓 𝑠

𝑖
denotes the feature map obtained from

processing the 𝑖-th image by the encoder 𝜑 (∗). Within the defined
style vector space 𝑉 𝑠 , we can utilize a sampling method to obtain
𝐶 basis styles every 𝑘 epochs. We sample the combination weight
𝑊 = [𝑤1, . . . ,𝑤𝐶 ] from Dirichlet distribution 𝐵( [𝛼1, . . . , 𝛼𝐶 ]) with
the concentration parameters [𝛼1, . . . , 𝛼𝐶 ] all set to 1/𝐶. Then the
generated styles 𝜇𝑔𝑠𝑒𝑒 and 𝜎𝑔𝑠𝑒𝑒 can be expressed as follows:

𝜇𝑔𝑠𝑒𝑒 (𝑥𝑠 ) =𝑊 · 𝜇𝑏𝑎𝑠𝑖𝑠 (𝑥𝑠 ) =𝑊 · 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝜇𝑐 (𝑓 𝑠 )) (3)

𝜎𝑔𝑠𝑒𝑒 (𝑥𝑠 ) =𝑊 · 𝜎𝑏𝑎𝑠𝑖𝑠 (𝑥𝑠 ) =𝑊 · 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝜎𝑐 (𝑓 𝑠 )) (4)

where 𝜇𝑏𝑎𝑠𝑖𝑠 and 𝜎𝑏𝑎𝑠𝑖𝑠 are the𝐶 global style elements (basis styles).
Discussion. For the sampling method in GSEE, our objective is to
obtain global style elements as basis 𝑆 from the style space 𝑉 𝑠 of
the source domain. Thus, we can employ various sampling methods,
such as K-means and Farthest Point Sampling (FPS) [42]. In Sec-
tion 4.4, we compare and analyze the efficacy of various sampling
methods through quantitative experiments and select the FPS method
as the optimal approach.

For sampling weights method, we can see from Equations 3 and 4,
the sampling weights are utilized to obtain 𝜇𝑔𝑠𝑒𝑒 and 𝜎𝑔𝑠𝑒𝑒 through
the global style elements. So, it is imperative to ensure that the
sampling weights are non-negative and normalized. Non-negativity
avoids invalid real style inversion, while normalization balances
the contribution of each element, ensuring numerical stability rep-
resenting style statistical characteristics. A commonly employed
distribution that satisfies these two properties is the Dirichlet distri-
bution. In Section 4.4, we validate the rationality and effectiveness
of employing this distribution through quantitative experiments.

3.3 Local Uncertainty Perturbation
Method. Utilizing only the 𝜇𝑔𝑠𝑒𝑒 and 𝜎𝑔𝑠𝑒𝑒 obtained from the GSEE
may fail to address out-of-distribution scenarios effectively. This is
attributable to two reasons: i) styles generated by the GSEE module
are likely to be more densely concentrated near the source domain
styles; ii) the target domains are entirely unseen, and the source
domain’s style space is just a small subspace within the totality of
style spaces. Fig. 4 validates the existence of these two issues.

A LUP module is thus proposed to complement GSEE. This LUP
module aims to represent potential domain shifts by introducing
randomness to generate new mean and variance statistics for feature
representation. In the LUP, we posit that the distribution of the mean
and variance feature statistics adheres to a standard Gaussian distri-
bution. Then, we can model the uncertainty of domain differences

through a standard Gaussian distribution 𝜇𝑢𝑛, 𝜎𝑢𝑛 ∼ N(0, 1). How-
ever, due to the disparate scales of the mean and standard deviation
of feature samples obtained in each batch, directly employing the
sampled uncertainties 𝜇𝑢𝑛 and 𝜎𝑢𝑛 may result in the network gen-
erating samples that are not realistic. Similarly to [28], in order to
scale the sampled uncertainties to the same level as the real feature
statistics in the source domain’s features, we normalize 𝜇𝑢𝑛 and
𝜎𝑢𝑛 using the standard deviation among the source domain feature
samples within the same batch. So, the generated styles uncertainties
𝜇𝑙𝑢𝑝 and 𝜎𝑙𝑢𝑝 can be expressed as follows:

𝜇𝑙𝑢𝑝 (𝑥𝑠 ) = 𝜇𝑢𝑛 ◦ 𝜎𝑏 (𝜇 (𝑓 𝑠 )) (5)

𝜎𝑙𝑢𝑝 (𝑥𝑠 ) = 𝜎𝑢𝑛 ◦ 𝜎𝑏 (𝜎 (𝑓 𝑠 )) (6)

where 𝜎𝑏 (∗) represents the standard deviation across batch dimen-
sion, ◦ denotes the Hadamard product.
Constraint. As discussed in the part of method, due to the invisibility
of the target domain, we simulate out-of-distribution scenarios by
normalizing a standard Gaussian distribution with information from
the source domain. However, this strong assumption of a Gaussian
distribution under weak constraints (normalization) may result in the
network producing an excessive number of unrealistic style images,
thereby negatively impacting network performance. Therefore, we
additionally propose a Density Distribution Consistency (DDC) loss
L𝑑𝑑𝑐 to constrain this issue.

Given the need to consider both the diversity and realism of data
styles, we do not directly impose our DDC loss function on the
discrepancy between generated and source real styles. Instead, we
constrain the outcomes obtained from different stylized images. This
is because if a style falls outside the distribution range, the resulting
error could be significant. We utilize the Jensen-Shannon Divergence
as a loss function to assess the posterior probability between the
generated styles and the source styles results as follows:

L𝑑𝑑𝑐 (𝑥𝑠 , 𝑥𝑠 ) =
1
2
(𝐾𝐿(𝑝 (𝜓 (𝜑 (𝑥𝑠 ))) | |𝐴) + 𝐾𝐿(𝑝 (𝜓 (𝑥𝑠 )) | |𝐴)) (7)

where KL means Kullback-Leibler Divergence,𝐴 = 1
2 (𝑝 (𝜓 (𝜑 (𝑥

𝑠 )))+
𝑝 (𝜓 (𝑥𝑠 ))), 𝑥𝑠 means the generated new stylized samples and 𝜓 is
the decoder.

3.4 Implementation
Data Augmentation. We observe that in crowd counting, the stylis-
tic disparities between domains often manifest in the form of weather
and illumination variations across different scenes. Compared to the
domain shift between real-world and synthetic scenes, these shifts
are relatively minor. To ensure the realism of the styles generated by
the UGSDA method, we blend the feature statistics representative
of the real data’s styles from each batch with the newly generated
styles. In Section 4.4, we further demonstrate the efficacy of the
blending operation. To ensure computational simplicity, we obtain
the final style by simply averaging as follows:

𝜇 (𝑥𝑠 ) =𝑚𝑒𝑎𝑛(𝜇𝑔𝑠𝑒𝑒 (𝑥𝑠 ) + 𝜇𝑙𝑢𝑝 (𝑥𝑠 ), 𝜇 (𝑥𝑠 )) (8)

𝜎 (𝑥𝑠 ) =𝑚𝑒𝑎𝑛(𝜎𝑔𝑠𝑒𝑒 (𝑥𝑠 ) + 𝜎𝑙𝑢𝑝 (𝑥𝑠 ), 𝜎 (𝑥𝑠 )) (9)

By replacing the style representation 𝜇 (𝑦) and 𝜎 (𝑦) in Eq. 1 with
newly generated styles 𝜇 (𝑥𝑠 ) and 𝜎 (𝑥𝑠 ), we can generate stylized
samples 𝑓 𝑠 aligned with the content of the input from the source
domain.
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Table 1: Quantitative comparisons of domain generalization with SHA and SHB as the source domains. SI&L means source domain
images and labels and TI means the target domain images. Underline indicates the best result among algorithms that require TI, while
bold denotes the best result among algorithms that do not require TI. Small MAE and small MSE indicate good performance.

Method SI&L TI Paradigm
SHA SHB

SHB UCF_QNRF SHA UCF_QNRF

MAE MSE MAE MSE MAE MSE MAE MSE

SE CycleGAN [50] ✓ ✓ DA 19.9 28.3 230.4 384.5 123.4 193.4 230.4 384.5
SE+FD [16] ✓ ✓ DA 16.9 24.7 221.2 390.2 129.3 187.6 221.2 390.2
RBT [37] ✓ ✓ DA 13.4 29.3 175.0 294.8 112.2 218.2 211.3 381.9
C2MoT [52] ✓ ✓ DA 12.4 21.1 125.7 218.3 120.7 192.0 198.9 368.0
SaKnD [53] ✓ ✓ DA 17.1 27.7 120.2 217.7 137.2 224.2 184.5 320.5
FSIM [68] ✓ ✓ DA 11.1 19.3 105.3 191.1 120.3 202.6 194.9 324.5

MCNN [62] ✓ × NoAdapt 85.2 142.3 – – 221.4 357.8 – –
DSSINet [34] ✓ × NoAdapt 21.7 37.6 198.7 329.4 148.9 273.9 267.3 477.6
BL [38] ✓ × NoAdapt 15.9 25.8 166.7 287.6 138.1 228.1 226.4 411.0
DMCount [47] ✓ × NoAdapt 23.1 34.9 134.4 252.1 143.9 239.6 203.0 386.1
D2CNet [3] ✓ × NoAdapt 21.6 34.6 126.8 245.5 164.5 286.4 267.5 486.0
SASNet [46] ✓ × NoAdapt 21.3 33.2 211.2 418.6 132.4 225.6 273.5 481.3
MAN [32] ✓ × NoAdapt 22.1 32.8 138.8 266.3 133.6 255.6 209.4 378.8

DG-MAN [40] ✓ × DG 17.3 28.7 129.1 238.2 130.7 225.1 182.4 325.8
DGCC [8] ✓ × DG 12.6 24.6 119.4 216.6 121.8 203.1 179.1 316.2
Ours ✓ × DG 11.6 24.5 117.0 194.1 113.4 180.8 178.1 306.7

Loss Function. The loss function for the training of the proposed
method consists of two portions. One is the Mean Square Error
loss L𝑚𝑠𝑒 , which is widely used to evaluate the difference between
the estimated density maps and the ground truth density maps. The
formula is as follows:

L𝑚𝑠𝑒 =
1
2𝐵

2𝐵∑︁
𝑖=1

|𝑑𝑖 −𝐺𝑎𝑢𝑠𝑠 (𝑔𝑖 ) |2 (10)

where 𝑑𝑖 is the predicted density map, Gauss(·) is the Gaussian oper-
ation and 𝑔𝑖 is the annotated dot map. This becomes 2𝐵 because data
volume is doubled each training iteration through data augmentation.

Another is the density distribution consistency loss L𝑑𝑑𝑐 which
is introduced in Section 3.3. Finally, the total loss function of our
proposed method is defined as:

L = L𝑚𝑠𝑒 + 𝜆L𝑑𝑑𝑐 (11)

where 𝜆 is a hyperparameter, and we set to 0.1.
Network Pipline. During the training phase, input images are ini-
tially processed through an encoder network for feature extraction,
yielding source domain image features 𝑓 𝑠 . These features, are subse-
quently processed by both the GSEE and LUF modules, producing
two sets of means and variances. Following this, the final styles
are sampled utilizing the data augmentation methods depicted in
Equations 8 and 9. Finally, stylized samples 𝑓 𝑠 are obtained using
Equation 1. Both the 𝑓 𝑠 and 𝑓 𝑠 are fed into the decoder and the
entire network is trained under the constraint of L.

During the testing phase, all target domain images are directly
processed through the encoder and decoder components to obtain
the final results. The proposed UGSDA method does not participate
in the testing phase, thereby not affecting the inference speed.

4 EXPERIMENTS
4.1 Datasets
To evaluate the effectiveness of our method, we conduct domain
generalization experiments on four representative datasets including
Shanghai Tech A/B [62], UCF_QNRF [20] and NWPU [49].
Shanghai Tech A/B. The ShanghaiTech dataset comprises two sub-
sets, ShanghaiTech Part A (SHA) and B (SHB). SHA has a total of
482 images of varying resolutions; each image has 501 individuals
on average, making it a notably congested dataset. The resolution of
SHB is 768 × 1024, and each image contains only 123 individuals
on average, making it comparatively sparser than the SHA dataset.
UCF_QNRF. This dataset contains 1,535 images with a total of
1,251,642 head annotations. In this dataset, 1201 images are the
training set, and the remaining 334 images are the test set.
NWPU. NWPU is a large-scale crowd counting dataset comprising
5,109 images annotated with 2.13 million labeled points. In this
dataset, 3,109 images are split for training, 500 images comprise the
validation set, and the remaining 1,500 images, with hidden annota-
tions, serve as the test set. We obtain the performance by submitting
the counting results on the test set to the NWPU evaluation system.

4.2 Experimental setting
Implementation Details. The same backbone as DGCC [8] is used
to compare our method with the earlier algorithm fairly. For density
estimation, we employ two convolutions to obtain feature maps with
the same number of channels as DGCC, and then use a structure
identical to DGCC’s to predict the density map. The Adam [24]
algorithm is used to optimize the network. Hyperparameters 𝜆 and 𝑘
are set to 0.1 and 3. All experiments are conducted on Nvidia 3090
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Table 2: Quantitative comparisons of domain generalization with SHA, SHB, and UCF_QNRF as the source domains. All compared
results are copied from [8].

Method Paradigm
SHA SHB UCF_QNRF

NWPU 1 SHA SHB

MAE MSE MAE MSE MAE MSE MAE MSE

DMCount [47] NoAdapt 146.9 563.8 191.6 747.4 73.4 135.1 14.3 27.5
SASNet [46] NoAdapt 158.8 588.0 195.7 716.8 73.9 116.4 13.0 22.1
MAN [32] NoAdapt 148.2 586.5 193.6 802.5 67.1 122.1 12.5 22.2

DGCC [8] DG 143.1 567.6 175.0 688.6 67.4 112.8 12.1 20.9
Ours DG 150.7 535.0 159.4 571.0 65.8 104.0 10.9 19.1

GPUs and the batch size is set to 4. The ground truth density maps
for SHA, SHB and UCF_QNRF are generated using code from C-3
framework [11] within MATLAB. Following the previous work [49],
we produce corresponding ground truth density maps for NWPU.
Evaluation Metrics. To quantitatively assess the performance of
each model, we adopt two widely used metrics in crowd counting:
Mean Absolute Error (MAE) and Mean Squared Error (MSE).

4.3 Comparison with State-of-the-art Methods
Quantitative comparison. In Table 1, we conduct experiments with
SHA and SHB as the source domains, and SHB and UCF_QNRF
or SHA and UCF_QNRF as the target domains. We categorize
the experimental results into three paradigms: Domain Adaptation
(DA), Fully-supervised on source domain(NoAdapt), and Domain
Generalization (DG), with only DA undergoing finetuning on the
target domain images. Compared to the DA methods requiring target
domain images in the first part of Table 1, our approach achieves
comparable performance. Notably, when SHB serves as the source
domain, our method reaches the best performance without the need
for finetuning on target domains.

As shown in the second part of Table 1, compared to fully su-
pervised on source domain crowd counting methods, our method
achieves the best results across all four domain generalization set-
tings. These results demonstrate that while crowd counting methods
may perform well in the source domain, they are not universally
applicable across different domains.

Compare with DG-MAN, which is a domain generalization result
obtained from DGCC through the integration of a crowd count-
ing method MAN [32] and a domain generalization method Agr-
Sum [40]. It is apparent that although their performance improved in
new target domains, there remains a significant gap compared to our
method. This suggests that simply incorporating domain generaliza-
tion techniques into crowd counting methods is inadequate; tailored
design to the crowd counting methods is necessary.

Compared with a tailor-designed DGCC, which uses meta-learning
technique for crowd counting domain generalization, our method
achieved the best results in all four target domains. A potential rea-
son is that their method does not essentially increase data diversity or
assign new tasks to the network. Instead, it splits the source domain
into meta-training and meta-test subsets to bolster the network’s
ability to extract domain-invariant features across domains. In con-
trast, our method enhances the network’s generalization ability to

Table 3: Quantitative evaluation with different networks.

Network Paradigm
SHB UCF_QNRF

MAE MSE MAE MSE

CSRNet [29] NoAdapt 26.6 38.5 171.8 313.3
Ours DG 13.6 25.3 135.9 224.3

SFCN [50] NoAdapt 25.2 31.9 174.3 294.0
Ours DG 13.1 25.9 127.2 219.5

SASNet2 [46] NoAdapt 24.3 35.7 166.0 304.8
Ours DG 11.6 24.5 117.0 194.1

unknown domains by employing data augmentation techniques to
expose the network to a broader range of new style images. Further-
more, our approach does not affect the network’s inference speed,
while DGCC requires an additional DICM module during network
inference, which slows down the inference time.

Following DGCC, we also conduct experiments with the same
model parameters as detailed in Table 2. All of these results further
validate the robust generalization capability of our method in the
unseen target domains.
Qualitative comparison. Fig. 3 presents a qualitative comparison be-
tween DGCC and our method when generalized to the UCF_QNRF
dataset. Even in styles that are almost absent from the training set,
such as grayscale images, dimly lit scenes, and colorful lighting,
our method can predict a high-quality density map that accurately
reflects the crowd density and the total number of people in the
image. In DGCC, because the network is limited to learning general-
izability solely from existing data, their performance suffers in these
scenarios, particularly in distant and densely crowded regions.

4.4 Ablation Studies
In this section, we validate the robustness of our method across
various models, while also discussing the effectiveness of each com-
ponent and the principles behind the selection of hyperparameters.
Furthermore, we analyze the choice of methods such as FPS [42]
and KL divergence, validating their rationality and effectiveness.

1The results on NWPU are obtained through submitting to https://www.
crowdbenchmark.com/
2This network is modified as describe in Section 4.2.
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Figure 3: Qualitative comparison of DGCC and ours. The first column is the original images, while the second, third, and fourth
columns show the density maps predicted by DGCC, Ours, and the ground truth, respectively.

Robustness to different networks. In order to prove the effective-
ness of our proposed method, we apply it to two other crowd count-
ing networks, CSRNet [29] and SFCN [50]. Taking SFCN as an ex-
ample, when the model trained on the SHA dataset is directly tested
on UCF_QNRF, the MAE and MSE metrics are 174.3 and 294.0,
respectively. After incorporating our proposed UGSDA method,
the model shows a significant improvement of 47.1 (27.02%) and
74.5 (25.34%) in the MAE and MSE metrics, without finetuning.
As shown in Table 3, when employing our method into these net-
works, there is a varying degree of performance improvement in
terms of MAE and MSE. These results prove that our method not
only possesses domain generalization capabilities but also exhibits
universality across different networks.
Ablation of GSEE. We first investigate the impact of the insertion
position of GSEE on network performance. GSEE_𝑖 denotes the
insertion of GSEE after the 𝑖-th max-pooling layer, where GSEE_1
is the strategy in Ours. As shown in Table 4, the network perfor-
mance declines when we apply the GSEE module at deeper layers
of the network’s output. This is because in CNNs, shallow layers
typically capture more style-related information, while deeper layers
yield more semantic information [19, 59]. Since GSEE needs to
capture the global style elements from the source domain features,
the performance is optimal in our setup using GSEE_1.

We also give some ablation studies about the sampling method. As
shown in Table 4, using k-means for sampling global style elements
results in a certain degree of performance degradation than Ours
(FPS). This is because the k-means algorithm’s insufficient focus
on margin styles in the source domain, leading to a more significant
performance drop on the UCF_QNRF dataset, which has a larger
domain gap with the source domain. For the combination weights,
we give the results compare to Gaussian Distribution (GD) which
is a common used distribution. As we discussed in Section 3.2,

Table 4: Ablation studies of GSEE.

Method
SHB UCF_QNRF

MAE MSE MAE MSE

GSEE_2 13.8 25.3 125.1 218.7
GSEE_3 14.2 26.4 140.0 245.5
GSEE_4 14.7 29.1 142.4 247.8

K-means 11.9 24.9 125.8 210.3
GD 15.7 29.4 146.0 247.3

Ours 11.6 24.5 117.0 194.1

GD yielded comparatively poor results because the lack of correct
physical interpretation.
Ablation of LUP. To examine the effectiveness of the LUP in the
proposed method, the network is re-trained with GSEE only named
+GSEE. Building upon +GSEE, we progressively adding LUP, and
its associated components which proposed to constrain LUP, to
validate the efficacy of the introduced of LUP.

As shown in Table 5, a performance decline was observed when
only LUP was added, compared to +GSEE. However, this result is
not surprising. As analyzed in Section 3.3, this is attributed to the
introduction of a hypothetical perturbation by LUP under uncon-
strained conditions, which is likely to negatively impact performance.
Therefore, to impose constraints and balance the diversity and re-
alism of generated styles, we further proposed the DDC loss and
the Blend method. It is observable that performance improved upon
the individual addition of DDC loss and the Blend method, and the
more potent constraining ability of Blend made our method superior
to +GSEE. When both of them are incorporated, the model achieves
optimal performance. To further validate the effectiveness of the KL
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Table 5: Ablation studies of UGSDA and its components.

Method
SHB UCF_QNRF

MAE MSE MAE MSE

baseline 24.3 35.7 166.0 304.8
+GSEE 12.5 22.1 125.8 213.5
+GSEE, LUP 14.3 28.0 145.7 267.9
+GSEE, LUP, DDC 13.4 25.2 128.0 213.8
+GSEE, LUP, Blend 12.1 24.7 120.9 200.3
LUP𝑤/𝑜 Norm 12.1 25.2 126.4 207.5
DDC𝑤 CS 12.9 24.5 120.8 205.8
All (Ours) 11.6 24.5 117.0 194.1

Figure 4: Visualization of GSEE and UGSDA results.

divergence within the DDC loss in rendering our stylized images
more realistic by measuring distribution differences, we employ
Cosine Similarity (CS) as a substitute to measure the distribution
differences. As demonstrated in Table 5 under DDC 𝑤 CS, em-
ploying KL divergence facilitates a more accurate measurement of
distribution differences, thereby yielding enhanced performance.

As demonstrated by LUP 𝑤/𝑜 Norm in Table 5, the absence of
scale constraints leads to a decline in performance, underscoring the
significance of normalization. Intuitively, normalizing uncertainty
within LUP using the standard deviation across the entire dataset
would be more effective. However, extracting features and updating
for the entire dataset in each iteration is computationally unaccept-
able. Therefore, we use the standard deviation of each batch for
normalization to optimize efficiency and accuracy.
Qualitative ablation of LUP. We further substantiate the rationale
behind incorporating LUP through visual analysis. Fig. 4 presents
the visualization of styles obtained using GSEE module and UGSDA
method. It is observed that if only the GSEE module is used, the style
distribution resembles that of the source domain. However, upon
incorporating the LUP module, the distribution tends to disperse,
encompassing a broader range of diverse styles. Given the invisibility
of the target domains, this diversification is crucial for enhancing
the network’s generalization ability.
Different data augmentation methods. We also compare our method
with various data augmentation methods. We first conduct data aug-
mentation using the "random" setting from MixStyle [66]. Since
MixStyle only considers source styles, its performance is inferior
to ours. After that, we follow RobustNet [5] for photometric trans-
formations. As a manually predefined data augmentation method,
it struggles to encompass all possible styles. Hence, this approach
underperforms on the UCF_QNRF dataset, which exhibits more
significant domain shifts. Compared to these methods, our proposed
method is validated to generate more diverse and realistic samples

Table 6: Ablation studies of different data augmentation meth-
ods.

Method
SHB UCF_QNRF

MAE MSE MAE MSE

MixStyle [66] 12.6 25.7 127.5 221.2
Photometric [5] 13.5 25.0 132.6 226.2
Ours 11.6 24.5 117.0 194.1

Figure 5: Quantitative evaluation with different 𝜆 and interval
𝑘 .

by comprehensively considering both the existing real styles in the
source domain and potential unknown styles, thereby enhancing the
model’s generalization capability.
Ablation of hyperparameters. We determined the parameter 𝜆 for
the DDC loss through a series of ablation experiments. As depicted
in the left graph of Fig. 5, a line chart illustrates the network per-
formance variations with changes in 𝜆, using SHA as the source
domain and QNRF as the target domain. The optimal value of 0.1
was selected as the final parameter choice.

We then study the impact of the basis styles 𝜇𝑏𝑎𝑠𝑖𝑠 and 𝜎𝑏𝑎𝑠𝑖𝑠 on
network performance under varying update frequencies 𝑘 . As shown
in the right graph of Fig. 5, the model achieves the best performance
with an update frequency 𝑘 = 3. This is because when the update fre-
quency is too rapid, the model becomes overly focused on the source
domain, losing diversity. Conversely, a lower update frequency leads
the model to deviate from the basis styles provided by the source
domain, resulting in a loss of realism. Besides considering perfor-
mance, the computational complexity is also feasible, making 𝑘 = 3
as our chosen setting.

5 CONCLUSION AND FUTURE WORK
In this paper, we pioneeringly explore style-based data augmentation
in the domain generalization of crowd counting. An uncertainty-
guided style diversity augmentation method is proposed. To acquire
diverse and real samples, the method employs a global style element
extraction module to sample global style elements from the entire
source domain, complemented by local uncertainty perturbations
at the batch level for uncertainty styles estimation. Besides these,
we introduce the density distribution consistency loss and blend to
further constrain the density distributions of real and stylized sam-
ples, enhancing the realism of the stylized samples. Comprehensive
experiments validate that our method effectively enhances the net-
work’s domain generalization capabilities across various datasets
and network architectures.

In future work, we aim to investigate the domain generalization
from synthetic to real datasets, a task that presents greater chal-
lenges due to the substantial domain gap and more pronounced style
disparities between them.
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