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A PROOFS

A.1 PROOF OF LEMMA 2

Proof. In the limit when h! 0, the Gaussian kernel converges to

Kh (t) =

⇢
1/Zh if t = 0
0 otherwise.

Therefore, the kernel Kh(dX (xi, xk)) will only have non-zero value when xi = xk, which implies
that the kernelized mutual information will converge as follows:
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= �H(�) + 2 log(n).

A.2 PROJECTED GRADIENT DESCENT

The classic mirror descent iteration is written as:

xt+1  argmin
x

{⌧hrf(xt), xi+D(xkxt)} .

When D(y||x) is the KL divergence: DKL(y||x) =
P

i
yi log

yi

xi
, the update has the following form:

(xt+1)i = e
log(xt)i�⌧rf(xt) = (xt)ie

�⌧rf(xt).

In our case, before the projection, the update reads

�0
t+1 =

⇣
�t � e

�⌧(C��r�t Î�t (X,Y )�✏rH(�t))
⌘
.

Next, we solve the following projection w.r.t. KL metric:

�t+1 = argmin
�2⇧(p,q)

DKL(�k�
0
t+1).

As Benamou et al. (2015) shows, the KL projection is equivalent to solving the entropic regularized
optimal transport problem, which is usually refer to the sinkhorn distance (Cuturi, 2013). Following
(Peyré et al., 2016), we set the stepsize ⌧ = 1/✏ to simplify the iterations and reach the following
update rule:

�t+1  argmin
�2⇧(p,q)

D
�, C � �r�Î�t(X,Y )

E
� ✏H(�).

B ADDITIONAL EXPERIMENTS

B.1 COLOR TRANSFER

Color transfer aims to transfer the colors of the target images into the source image. Optimal trans-
port achieves this by treating pixels as points in the RGB space, and maps the source pixels to the
target ones. Here, 500 pixels are sampled from each image to compute the OT, then the barycentric
projection is applied to map all the source pixels to target. We compare fused InfoOT with standard
OT, Sinkhorn distance (Cuturi, 2013), and linear mapping estimation (Perrot et al., 2016) and show
the results in Figure 7. We can see that InfoOT produces a sharper results than the baselines while
decently recovering the colors in the target image.
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Source Target SinkhornOT F-InfoOTLinear

Figure 7: Color Transfer via Optimal Transport. Fused InfoOT produces sharper results while preserving
the target color compared to the baselines.

EN-ES EN-FR EN-DE EN-IT EN-RU

Supervision !  !  !  !  !  
PROCRUSTES 5K Words 81.2 82.3 81.2 82.2 73.6 71.9 76.3 75.5 51.7 63.7
Adv-NN None 81.7 83.3 82.3 82.1 74.0 72.2 77.4 76.1 52.4 61.4
InvOT None 81.3 81.8 82.9 81.6 73.8 71.1 77.7 77.7 41.7 55.4
InfoOT (h=0.55) None 81.6 78.5 82.4 80.5 75.4 74.2 78.6 75.7 48.1 52.9

GW None 84.3 83.2 84.8 83.6 77.4 75.2 82.5 79.8 52.0 61.4

Table 4: Cross-lingual Word Alignment. The InfoOT achieves comparable performance to GW, demonstrat-
ing its potential in recovering cross-lingual correspondence.

B.2 WORD EMBEDDING ALIGNMENT

Here, we explore the possibility of applying InfoOT for unsupervised word embedding alignment.
We follow the setup in (Alvarez-Melis & Jaakkola, 2018), where the goal is to recover cross-lingual
correspondences with word embedding in different languages. In this case, the pairwise distance
between domains might not be meaningful, as the word embedding models are trained separately.
Previous works suggest that cross-lingual word vector spaces are approximately isometric, which
makes Gromov-Wasserstein an ideal choice due to its ability to align isometric spaces. Here, we
treat GW as the oracle, and show that InfoOT can perform comparably to GW (Alvarez-Melis &
Jaakkola, 2018) and other baselines such as InvOT (Alvarez-Melis et al., 2019), Adv-NN (Conneau
et al., 2017), and supervised PROCRUSTES. We report the results on the dataset of Conneau et al.
(2017) in Table 4, where both GW and InfoOT are trained with 12000 words and refined with
Cross-Domain Similarity Scaling (CSLS) (Conneau et al., 2017). The entropy regularizer is 0.0001
and 0.02 for GW and InfoOT, respectively. We can see that InfoOT performs comparably with the
baselines and GW, demonstrating its applicability in recovering cross-lingual correspondence.

B.3 DIFFERENT HYPERPARAMETER FOR INFOOT
F-InfoOT⇤ UOT

C!D 87.5±7.8 81.9±11.9
C!W 81.0±6.7 77.3±6.4
C!A 90.6±2.0 87.8±3.5
D!W 93.3±4.7 93.3±5.7
D!A 89.8±1.9 87.8±3.2
D!C 80.8±1.8 78.8±2.7
W!D 89.4±11.8 98.8±2.6

W!C 74.4±3.7 76.7±4.3

W!A 89.3±2.3 80.1±3.3
A!D 81.3±9.8 76.3±8.2
A!W 87.0±4.6 69.3±8.6
A!C 81.2±3.6 77.4±3.7

AVG 85.6±5.6 82.1±8.3

Table 5: Unbalanced OT.

Here, we report the performance of InfoOT with different
weights for entropic regularizer and mutual information on do-
main adaptation. As Table 6 shows, Fused-InfoOT performs
consistently well across different hyperparameter selections.

B.4 ADDITIONAL BASELINE: UNBALANCE OT

In this section, we additional include the results of unbalanced
OT (UOT) Chizat et al. (2018); Frogner et al. (2015), which
solves the following constrain optimization problem with gen-
eralized Sinkhorn-Knopp matrix scaling algorithm:

min
�2⇧(p,q)

h�, Ci+ ✏mDKL(�1,p) + ✏mDKL(�
T 1,q)� ✏H(�).

We show the best results of UOT in Table 5 by selecting ✏ and
✏m within (1, 5, 10) and (0.5, 1, 10). We can see that InfoOT
still outperform UOT by a non-trivial margin.
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(�, ✏) (100, 1) (100, 10) (100, 20) (10, 1) (200, 1)

C!D 87.5±7.8 86.3±8.7 85.0±8.9 87.5±7.8 86.9±8.0
C!W 81.0±6.7 86.7±7.7 88.0±5.9 80.0±6.1 81.7±7.2
C!A 90.6±2.0 90.5±2.1 90.7±2.1 89.4±2.4 90.6±2.0
D!W 93.3±4.7 92.7±6.0 91.3±5.3 93.3±5.7 94.0±4.4
D!A 89.8±1.9 89.9±2.1 89.6±1.9 89.6±1.7 89.8±1.5
D!C 80.8±1.8 81.2±1.9 81.5±1.6 80.7±1.8 80.6±1.8
W!D 89.4±11.8 86.9±10.4 83.8±11.5 91.9±12.2 90.0±11.9
W!C 74.4±3.7 74.2±3.7 74.0±3.4 74.2±4.6 74.4±3.8
W!A 89.3±2.3 89.3±2.0 89.3±2.0 86.4±2.8 89.3±2.3
A!D 81.3±9.8 80.6±9.5 82.5±11.7 81.9±10.4 82.5±9.2
A!W 87.0±4.6 83.3±6.3 83.0±6.0 83.8±6.5 87.0±4.6
A!C 81.2±3.6 80.8±4.0 80.2±3.9 81.2±3.3 82.2±2.7

AVG 85.6±5.6 85.2±5.3 84.9±5.1 85.0±5.6 85.7±5.5

Table 6: InfoOT with different hyperparameters. We test the Fused-InfoOT with conditional projection by
varying the regularizer weights (�, ✏). Note that Table 1 in the main paper shows the results of (� = 100, ✏ = 1).

1-NN 5-NN 10-NN 20-NN Linear

OT 71.0±8.8 77.0±6.4 78.3±4.8 77.5±6.8 77.8±8.6
Sinkhorn 72.4±7.3 76.0±5.3 76.3±4.0 75.2±6.3 76.7±9.8
GL-OT 78.9±7.3 80.7±5.3 80.5±4.3 78.2±7.1 78.1±9.7
FGW 71.0±8.8 76.9±6.5 78.3±4.8 77.5±6.8 77.5±7.9
Linear 70.5±8.4 75.9±6.2 77.4±5.4 77.5±7.1 76.7±7.5
F-InfoOT 80.6±5.7 81.4±5.8 79.7±5.0 76.4±7.1 82.9±7.0

F-InfoOT⇤
85.5±5.6 85.4±5.5 85.4±5.5 81.7±7.2 81.4±5.3

Table 7: Results beyond 1-NN. We evaluate the performance with k-NN classifiers and linear classifiers.

GFK CORAL SCA JDA TJM DDC DAN MEDA F-InfoOT⇤

C!D 86.6 84.7 87.9 89.8 84.7 88.8 89.3 91.1 87.9
C!W 77.6 80.0 85.4 85.1 81.4 85.4 90.6 95.6 85.8
C!A 88.2 92.0 89.5 89.6 88.8 91.9 92.0 93.4 91.1
D!W 99.3 99.3 98.6 99.7 99.3 98.2 98.5 97.6 97.3
D!A 76.3 85.5 90.0 91.7 90.3 89.5 90.0 93.2 91.3
D!C 71.4 76.8 78.1 85.5 83.8 81.1 80.3 87.5 82.9
W!D 100 100 100 100 100 100 100 99.4 96.2
W!C 69.8 75.5 74.8 84.8 83.0 78.0 81.2 93.2 80.3
W!A 76.8 81.2 86.1 90.3 84.6 84.9 92.1 99.4 90.0
A!D 82.2 84.1 85.4 80.3 76.4 89.0 91.7 88.1 81.5
A!W 70.9 74.6 75.9 78.3 71.9 86.1 91.8 88.1 85.4
A!C 79.2 83.2 78.8 83.6 84.3 85.0 84.1 87.4 82.5

AVG 81.5 84.7 85.9 88.2 86.0 88.2 90.1 92.8 87.7

Table 8: Baselines beyond OT.

B.5 EXPERIMENTS BEYOND 1-NN CLASSIFIER

We report the performances of InfoOT and baselines with general k-NN classifiers and linear SVM
classifiers in Table 7. We can see that fused-InfoOT consistently outperforms the baselines beyond
1-NN classifiers on Office-Caltech domain adaptation benchmark. In addition, compared to the
baselines, the performance of InfoOT is more robust to the choice of the number of neighbors k.

B.6 BASELINES BEYOND OPTIMAL TRANSPORT

We compare InfoOT with the following non-OT baselines: Geodesic Flow Kernel (GFK) (Gong
et al., 2012), CORrelation Alignment (CORAL) (Sun et al., 2016), Scatter Component Analysis
(SCA) (Ghifary et al., 2016), Joint distribution alignment (JDA) (Long et al., 2013), Transfer Joint
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Matching (TJM) (Long et al., 2014a), Deep Domain Confusion (DDC) (Tzeng et al., 2014), Deep
Adaptation Network (DAN) (Long et al., 2014b), and Manifold Embedded Distribution Alignment
(MEDA) (Wang et al., 2018). For fair comparison, we report the performance of Fused-InfoOT
calculated with full source and target dataset instead of the 10-fold setting in the main context. As
Table 8 shows, InfoOT performs comparably to many baselines without training or finetuning neural
networks.

C LIMITATIONS

While we have illustrated successful applications of InfoOT, there are limitations. One could expect
InfoOT to perform worse when the geometry of input spaces provides little information. In partic-
ular, for raw inputs such as image datasets, InfoOT would not perform well without pre-extracted
features. It is also non-trivial to directly apply InfoOT to very large-scale problems with millions of
data points. Computational-efficient extensions such as mini-batch optimal transport (Nguyen et al.,
2022) should be considered to apply InfoOT to large-scale datasets.
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