— Supplementary Materials —

Contents
[A"Details of the Radar Plofl
an planners

B.2 DESPOT Planner]

|C Pseudocode for Calculating the Driving Performance

D Map

|E Experiment Results for FDE]|

[F Sim-Real Alignment|

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Table 1: Numerical values for the prediction and driving performances.

Method FDE ADE Safety Efficiency Comfort Driving Performance
CV [6] 2.012 1.020 0.828 0.620 0.763 0.737
CA [6] 1.984 1.005 0.870 0.652 0.802 0.775
KNN [3] 2.565 1.291 0.847 0.606 0.785 0.746
S-KNN [3] 2.594 1.309 0.872 0.638 0.786 0.765
LSTM 1.706 0.859 0.851 0.605 0.634 0.697
S-LSTM [1]] 1.905 0.963 0.844 0.630 0.638 0.704
HiVT [9] 1.356 0.692 0.871 0.661 0.766 0.766
LaneGCN [3] 1.276 0.637 0.849 0.682 0.761 0.764

A Details of the Radar Plot

In addition to the radar plot, we present the specific numerical values for the prediction and driving
performance metrics to provide a more detailed and comprehensive analysis of the system’s perfor-
mance, as demonstrated in [Table 1] The static evaluation metrics, ADE and FDE, are trained and
validated on the Alignment dataset collected from the SUMMIT simulator. The task-driven evaluation
metrics, including safety, efficiency, comfort, and driving performance, are derived from interactive
closed-loop scenarios. The process for calculating these metrics is described in[Appendix C|

Results in[Table I]are used to plot the correlation map between ADE/FDE and driving performance,
which surprisingly indicates no strong correlation between static evaluation metrics and real driving
performance. Moreover, to ensure the comparability between prediction performance metrics and
driving performance metrics in the radar plot, we normalize all metrics to the scale of [0, 1]. This
facilitates the identification of the performance gap among various predictors and whether it correlates
with the current prediction performance metrics.

B RVO and DESPOT planners

B.1 The RVO Planner

The Reciprocal Velocity Obstacle (RVO) planner is developed based on [8], which expands on the
concept of velocity obstacles [4] to consider the reactive behaviors of exo-agents. The main idea is to
create a set of velocity obstacles for each exo-agent, comprising the range of velocities that would
result in a collision. Subsequently, the ego-agent chooses a suitable velocity that is not included in
the velocity obstacles. The velocity obstacles for the ego-agent A with respect to an exo-agent B are
defined as follows:

VOa(B) ={va|lXpa,(va —vE))N(B & — A) # 0} (M

where p 4 is the current position of ego-agent. v 4, v are the velocities of ego-agent and exo-agent,
respectively. A\(p, v) denotes the ray starting at p and heading in the direction of v. A @ B denote
the Minkowski sum of A and B, and — A denote the ego-agent reflected in its reference point p 4. If
va € VO (B), the ego-agent will collide with the exo-agent in time, which means that the chosen
v should be outside the velocity obstacles of all exo-agents.

Moreover, the RVO is defined as the average of the current velocity of the ego-agent and the velocity
in the velocity obstacles:

RVOA(B)={05%(va+V)lveVOs(B)} (2)

To determine the set of candidate velocities, the planner considers all velocities that lie outside the
RVO of all exo-agents. Next, the planner selects the velocity closest to the target velocity among
these candidates, which can be formalized as:

Vinew = aT‘gminvevﬂ.% v —= VtargetHZ 3)

where V g, is the set of candidate velocities, Viqrget is the target velocity, ||.||2 is the Euclidean
norm of vectors.

[Equation 3]identifies the velocity within a subset of velocities that minimizes the difference with the
target velocity, while also ensuring that collisions are avoided. The target velocities of exo-agents
are predicted by the motion prediction method M. To obtain the target velocity for the ego-agent,
we multiply the maximum desired speed v = 6 m/s by the unit displacement vector. The direction
of the unit displacement vector is determined by subtracting the current frame’s position from the
position of the next waypoint on the reference path.

B.2 DESPOT Planner

The Determinized Sparse Partially Observable Tree [[7]] (DESPOT) is a planner for online POMDP
(Partially Observable Markov Decision Process) planning. It utilizes a sparse approximation of the
standard belief tree to facilitate anytime online planning under uncertainty. The algorithm overcomes
two main challenges of POMDP planning: the "curse of dimensionality”" (i.e. large state space)
through sampling, and the "curse of history" (i.e. long planning horizon) through anytime heuristic
search. In the subsequent section, we provide an overview of the DESPOT planner.

1) State and Observation: The states in the DESPOT planner contain both continuous-domain physical
states and discrete-domain hidden states.

* Continuous states of the ego-agent: s4 = (z4,y4,v4,04), in which (z4,y4) represent
the position, v 4 is the velocity, 6 4 is the heading direction of the ego-agent.

* Continuous states of exo-agents: s; = (z;, i, vi, 0;), which includes the position (z;, ;),
the current velocity v;, and the heading direction 6; for the exo-agent ¢ in the set of agents
ie{l,...,n}

* Hidden states of exo-agents: h; = (¢;, 14;), t; is the intention and ; is the intended path of
the driver of the exo-agent . These two values can only be inferred from history.

2) Action: The action space for DESPOT contains three accelerations: {Accelerate, Decelerate,
Maintain}, in which the values for the first two accelerations are 3 m/s? and —3 m/s?. The
maximum speed of the ego-vehicle is 6 m/s.

3) Transition Function: Given the current state of the system s = (s4, 1, .. ., S, C') and the action
of the ego vehicle a € A, the planner uses the motion predictor 3; = M (s;, C*) to predict the next
state S; for each exo-agent i. For the ego-agent, we adopt the bicycle model, a kinematic model with
two degrees of freedom, to get the next state 5 4. Additionally, Gaussian noise is introduced to the
displacement of each agent to model the stochasticity of human behaviors.

4) Reward Function: The reward in DESPOT handles safety, efficiency, and comfort metrics. The
details can be found in [2]]. For safety, we assign a huge penalty R.,; = —1000 x (v2 +0.5) when the
vehicle collides which is quadratically increased with the collision speed. For efficiency, we assign a
speed penalty R, = 4(v — Umaz)/VUmas to encourage driving at maximum speed. For comfort, we
impose a smoothness penalty R,.. = —0.1 for each deceleration to penalize jerks, and a penalty of
Rchange = —4 for lane changes.

The DESPOT planner can efficiently handle large state spaces and partial observability which makes
it an ideal algorithm for planning in complex and dynamic environments. They can also handle
state and action uncertainty associated with real-world driving scenarios, such as traffic congestion,
unexpected obstacles, and changes in road conditions. By maintaining a belief state and updating it at
each timestep, DESPOT can make informed decisions even in situations where the environment is
uncertain or partially observable. Finally, DESPOT’s reward function captures safety, comfort, and
efficiency aspects, making it suitable for real-time decision-making.

C Pseudocode for Calculating the Driving Performance

Safety. At each time step, the pseudocode in[Algorithm I|checks for collisions between the ego-agent
and exo-agents. The states of the ego-agent and exo-agents are contained in dictionaries, including
their x and y positions, as well as the width and length bounding box sizes and heading. To account
for the low likelihood of collisions caused by the DESPOT planner, a buffer variable is added to

Algorithm 1: Pseudocode for calculating the collision rate

Input: agent: dict, buffer: float

Output: rotated_corners

1: Function GetCorners (agent, buffer):

2 width, length < agent[’bb’]

3: X, Y <— agent[’pos’]

4: heading <— agent[’heading’]

5: dx < length /2

6 dy < width /2

7 corners <— [[x - dx - buffer, y - dy], [x + dx + buffer, y - dy], [x + dx + buffer, y + dy], [x - dx -
buffer, y + dy]]

8: rotated_corners <— empty list

9: for corner € corners do
10: x_diff < corner[0] - x
11: y_diff < corner[1] - y
12: new_x <— X + (x_diff * cos(heading) + y_diff * sin(heading))
13: new_y < y + (x_diff * sin(heading) - y_diff * cos(heading))
14: append [new_x, new_y] to rotated_corners
15: return rotated_corners

Input: ego: dict, exo: dict, buffer: float
Output: collision status
16: Function CheckCollision(ego, exo, buffer=1):

17: ego_corners <— GetCorners (ego, buffer)
18: exo_corners <— GetCorners (exo, buffer)
19: ego_polygon < Polygon(ego_corners)

20: exo_polygon < Polygon(exo_corners)

21: return ego_polygon.intersects(exo_polygon)

Algorithm 2: Pseudocode for calculating the average speed.

Input: ego_dict: dict
Output: average_speed
Function AverageSpeed (ego_dict):
speeds <— [ego_data[’speed’] for timestep, ego_data € ego_dict.items()]
L average_speed <— np.mean(np.abs(speeds))

1:
2
3:
4 return average_speed

Algorithm 3: Pseudocode for calculating the jerk.

Input: accel_data, delta_time
Output: jerk
1: Function CalculateJerk (accel_data, delta_time):
jerk < np.diff(accel_data, axis=0) / delta_time
L jerk <— np.linalg.norm(jerk, axis=1)

2
3:
4 return jerk

the bounding boxes of all agents to check collisions. This buffer is only incorporated in the length
direction, focusing only on the heading. The collision rate is computed by dividing the number of
collisions by the total timesteps. The safety is represented by the normalized collision rate.

Efficiency. The pseudocode for calculating the average speed is presented in[Algorithm 2] which
is a critical efficiency metric for autonomous vehicles. In our experiments, the planner controls the
speed of the ego-agent while the pure-pursuit algorithm adjusts the steering angle. The speed directly
influences the ego-agent’s ability to navigate traffic, maintain a safe distance from other vehicles, and
promptly reach its destination. A higher speed is usually desirable as it permits vehicles to attain their
objectives quickly. The efficiency is represented by the normalized average speed.

R% 0.00 p-value: 0.958 R 0.40 p-value: 0.090

078 cA 070 *

S
2
S

HIYT LaneGCN SENN

0.74 cv

Driving Performance
o o
2 o
S Iy

Driving Performance
Driving Performance

S-LST™ 062
)
070 LSTM LaneGCN
. .

=4
wn
b

35 40 45 50 55 60 65 70 3 40 45 S0 55 60 es 70 4 5 6
Static FDE Static FDE Static FDE

(a) (b) ()

Figure 1: Relationship between Static FDE and Driving Performance. (a) Fixed number of pre-
dictions/Fixed planning time for the RVO planner: the planner calls predictors once in an action,
whereby these two experiments result in the same output. (b) Fixed number of predictions for the
DESPOT planner. (c) Fixed planning time for the DESPOT planner. In total, we found no strong
correlation between driving performance and Static FDE.

R% 0.61 p-value: 0.022 R%:0.29 p-value: 0.171 R 073 p-value: 0.000
0n
cv

078 C:‘ 0.70 o 0.75
8 |LaneGeN VT S-KNN 3 3
2 . ®] g
g o7 § oo g

E E £ 0.70
< £ b3
5 S 066 g
£ 0 £ 0.6 £

£ £ £0.65
Z £ 064 =
/a 072 a /A

S-LSTM 062 0.60

070 hd LST™M LaneGCN
° .
4.0 45 50 55 6.0 6.5 4 6 8 10 2 20 . 40
Dynamic FDE Dynamic FDE Dynamic FDE
(@) (b) (©)

Figure 2: Relationship between Dynamic FDE and Driving Performance. (a) Fixed number of
predictions/Fixed planning time for the RVO planner. (b) Fixed number of predictions for the
DESPOT planner. (c¢) Fixed planning time for the DESPOT planner. A much stronger correlation
between Dynamic FDE and driving performance is shown for both RVO and DESPOT planners,
which can be attributed to the inclusion of dynamics gap in (a), (b), as well as computational efficiency
in (¢). The correlation is weaker when the planning time budget is tight.

Comfort. The pseudocode for calculating jerk, which measures the rate of change of acceleration, is
presented in Jerk is particularly sensitive to abrupt changes in motion and is important
in capturing passengers’ discomfort caused by sudden accelerations or decelerations. It enables a
clear differentiation between smooth and rough motions and offers a more precise understanding of
comfort compared to acceleration or velocity measures. The jerk is first averaged across all timesteps
and then normalized to represent comfort.

Normalization. To ensure comparability across safety, efficiency, and comfort metrics, we apply
a simple normalization technique that scales each metric to a range of [0, 1]. To achieve this, we
subtract the minimum value from each metric and divide the result by the range. Additionally, we
normalize the direction of these three metrics, where higher values represent better performance. The
process is as follows:

. _pmin
Pmetrics ~“metrics
pmax_ _pmin_ °’
p_.. — metrics ~ metrics
Pretrics = P pmin)
metrics " metrics i
— RS IMEUICS - metrics = {safety, comfort}
max_ _pmin
metrics ~ metrics

metrics = {efficiency}

A4
1

. . . 4 _ .
(b) Beijing (China) Highway
Y M | W el

-—

o B

: 7 . ﬁﬁ a:..ﬂ‘: B i) ” TV E
(c) Shi-Men-Er-Lu (China) Intersection (d) Chandni-Chowk (India) Roundabout

Figure 3: Four maps provided by the SUMMIT simulator. Each map encodes different complexities,
including roundabout, highway, and intersection.

Table 2: Impacts on the correlation coefficient between prediction accuracy and driving performance.

ACorrelation Coefficient

Factor
RVO DESPOT
Occlusion -0.23 0.06
Prediction Asymmetry 0.14 0.08
Multi-Modal Prediction 0.73 0.49
Dynamics Gap 0.78 1.17
Total 1.00 1.63

where PN and PM3X represent the minimum and maximum pairs of each performance metric
among all scenarios.

Driving Performance. The driving performance is obtained by averaging the normalized safety,
efficiency, and comfort.

D Maps

We use the maps introduced in to collect data for the Alignment dataset and conduct
reactivate experiments using both planners on the SUMMIT simulator. The maps are obtained from
different cities worldwide with varied complexities such as intersections, roundabouts, and highways.
We carried out experiments on a server with an Intel(R) Xeon(R) Gold 5220 CPU, which has 36
physical cores and 72 threads, and four NVIDIA GeForce RTX 2080 Ti GPUs.

E Experiment Results for FDE

This section presents the experimental results for FDE in terms of driving performance, following the
experimental setup and result format similar to ADE. As demonstrated in [Figure 1] Static FDE is not

ADE(K=1) FDE(K=1) minADE(K=6) minFDE(K=6)

SUMMIT
SUMMIT
SUMMIT

SUMMIT
P
5=

°
s

15 20 25 30 35 3 4 5 6 7 8 075 100 125 150 175 1 2 3 4
Argoverse Argoverse Argoverse Argoverse

Figure 4: The prediction performance of all selected prediction methods are aligned between Argov-
erse and Alignment datasets. All data points fall within the 95% confidence interval and conform
well to linear regression.

strongly related to driving performance, whereas dynamic FDE shows a much stronger correlation
in both experiments. This can be attributed to the ignorance of the dynamics gap between the
dataset and real driving scenario and the computational efficiency of predictors, as shown in [Figure 2]
The trade-off between computational efficiency and dynamic prediction accuracy still exists in the
experiments of FDE. As shown in [Figure 2, the correlation between Dynamic FDE and driving
performance becomes less strong when the tick rate is set higher. The computational efficiency of
predictors should also be considered when the time budget is tight.

The potential factors that could impact Dynamic FDE and their correlation coefficients to driving
performance are presented in It is recommended to evaluate prediction models using
Dynamic FDE with the closest agents in the interactive closed-loop scenarios.

F Sim-Real Alignment

To demonstrate the alignment between the SUMMIT simulator and the real world, we train and
evaluate all selected motion prediction models on both the Argoverse dataset [3] and the Alignment
dataset collected from the SUMMIT simulator. We collect 59,944 scenarios and separate them
into two groups: 80% training and 20% validation. Each scenario consists of about 300 steps.
Subsequently, it is filtered down to 50 steps by taking into account the number of agents and their
occurrence frequency. The nearest three agents are randomly selected to be the interested agent for
prediction.

illustrates the comparison of prediction performance between the Argoverse and Alignment
datasets. The R-squared values of the four subplots are 0.798, 0.777, 0.855, and 0.844, respectively.
These values indicate that the majority of variation can be explained by the linear relationship between
the prediction performance in these two datasets. Furthermore, the p-values are all less than 0.01,
providing strong support for the statistical significance of the alignment. The consistent results suggest
that the Argoverse and Alignment datasets share similar underlying features. Therefore, the SUMMIT
simulator can be employed to evaluate real-world prediction performances. Likewise, the alignment
of driving performance is verified via the simulator itself. Thus, we take effort in identifying the
optimal simulator, SUMMIT, which is built upon Carla, the most widely-used simulator in recent
competitions and research.

References

[1]

(2]

[6]

[7]

(8]

[9]

Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, and
Silvio Savarese. Social Istm: Human trajectory prediction in crowded spaces. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 961-971, 2016.

Panpan Cai, Yiyuan Lee, Yuanfu Luo, and David Hsu. Summit: A simulator for urban driving
in massive mixed traffic. In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pages 4023-4029. IEEE, 2020.

Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jagjeet Singh, Slawomir Bak, Andrew
Hartnett, De Wang, Peter Carr, Simon Lucey, Deva Ramanan, et al. Argoverse: 3d tracking and
forecasting with rich maps. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 8748-8757, 2019.

Paolo Fiorini and Zvi Shiller. Motion planning in dynamic environments using velocity obstacles.
The international journal of robotics research, 17(7):760-772, 1998.

Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song Feng, and Raquel Urtasun.
Learning lane graph representations for motion forecasting. In Computer Vision—-ECCV 2020:
16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part Il 16, pages
541-556. Springer, 2020.

Christoph Scholler, Vincent Aravantinos, Florian Lay, and Alois Knoll. What the constant
velocity model can teach us about pedestrian motion prediction. IEEE Robotics and Automation
Letters, 5(2):1696-1703, 2020.

Adhiraj Somani, Nan Ye, David Hsu, and Wee Sun Lee. Despot: Online pomdp planning with
regularization. Advances in neural information processing systems, 26, 2013.

Jur Van den Berg, Ming Lin, and Dinesh Manocha. Reciprocal velocity obstacles for real-time
multi-agent navigation. In 2008 IEEFE international conference on robotics and automation,
pages 1928-1935. Ieee, 2008.

Zikang Zhou, Luyao Ye, Jianping Wang, Kui Wu, and Kejie Lu. HiVT: Hierarchical Vector
Transformer for Multi-Agent Motion Prediction. In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 8813—8823, June 2022.

	Details of the Radar Plot
	RVO and DESPOT planners
	The RVO Planner
	DESPOT Planner

	Pseudocode for Calculating the Driving Performance
	Maps
	Experiment Results for FDE
	Sim-Real Alignment

