
Efficient Representation Learning for Higher-Order Data with
Simplicial Complexes

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract1

Graph-based machine learning is experiencing explosive growth, driven by impres-2

sive recent developments and wide applicability. Typical approaches for graph3

representation learning predominantly focus on pairwise interactions, while ne-4

glecting the patterns of higher-order interactions common to complex systems.5

This paper explores many-body interaction models, centering on simplicial com-6

plexes. From a theoretical point of view, we offer a pair of insights illustrating7

why higher-order models are necessary, why non-graph-based models generally8

cannot generalize well, while graph-based models may be able to do so. We con-9

duct experiments on synthetic data, co-citation networks, co-authorship networks10

and gene-disease associations and show that simplicial complexes with certain11

relaxations can more efficiently capture underlying higher-order structures than12

non-graph structure, regular graph, hypergraph, and traditional simplicial complex-13

based learning frameworks.14

1 Introduction15

Graphs have emerged as popular and efficient tools to model complex structures and relationships16

in biological, chemical, social interactions, and many more types of systems. In a graph, nodes17

represent elementary units and edges encode the interactions of two entities [1–3]. While graph18

learning methods (e.g., graph neural networks) offer excellent performance in representation learning,19

predicting structure, and other tasks, these techniques often ignore higher-order relationships.20

Regular graphs and pairwise interactions fail to capture group aspects where relationships and21

interactions are irregular and can appear among three or more components. For example, a graph22

cannot represent and distinguish the following two cases of co-authorship relations: (1) three authors23

collaborate together on one work, and (2) they pairwise co-author with each other. The two instances24

are both modelled as three fully-connected nodes regardless of the physical difference. Regular graph25

structures compress and collapse higher-order interactions to dyadic relationships and therefore lose26

high-dimensional information. To capture such complex relationship and avoid lossy representations,27

we must go beyond graphs and pairwise connections.28

Simplicial complexes and hypergraphs—higher dimensional analogs of graphs—are two of the most29

intuitive and natural ways to represent group or collective interactions [3, 4]. Much of the earlier30

literature focuses on hypergraphs and develops representation learning frameworks that generalize31

graph neural networks (GNNs) [5–10]. In contrast, simplicial complexes build on the machinery32

of algebraic topology and enable us to define higher-order (collective) interaction analogs to the33

graph Laplacian [2, 3, 11]. They are also inherently imbued with hierarchical representations and34

rich algebraic structure which may be missed by hypergraph descriptions [12, 13]. For this reason,35

simplicial complex-based models have recently been proposed [14–18]. Despite that these approaches36

are well defined for simplicial complexes, the majority of the experiments still utilize higher-order37

data lifted from pairwise interactions, meshes, images and trajectories, while neglecting naturally-built38

many-body interactions which is heterogeneous and irregular in the structure.39

In the rest of the paper, we first discuss the recent work on how to generalize graph representation40

learning with simplicial complexes in section 2. In section 3, we propose to use a relaxation of the41
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formal simplicial complexes to capture irregular higher-order data. We describe an efficient and42

flexible learning framework which is more suitable for diverse and information-rich structures based43

on higher-order adjacency matrices and Laplacians. We also provide theoretical insights in section 4,44

based on a simple but general data generation process, demonstrating the necessity of accounting for45

higher-order interactions—and how this interacts with generalization. In section 5, we consider a46

variety of types of many-body interaction data including synthetic data, clique complexes built from47

regular graph, and naturally built higher-order data in the form of simplicial complexes with certain48

relaxation. The results show that relaxed simplicial complex based learning models can efficiently49

capture the higher dimensional information and surpass existing graph learning methods on simplex50

classification tasks, outperforming the best baseline by up to 6.7% in accuracy.51

2 Related Works52

Unsupervised representation learning methods [14, 16, 17] extend node2vec embeddings [19] to53

simplicial complexes with random walks on interactions through Hasse diagrams and simplex54

connections inside p-chains. In the recent three years, studies focus more on the semi-supervised55

learning on simplicial complexes which generalizes graph neural networks. Simplicial neural56

networks (SNN) [12] generalize spectral graph convolution [20] to simplicial complexes with higher-57

order Laplacian matrices. Yang et al. [21] further propose the simplicial convolutional neural networks58

(SCNN) with simplicial filters to exploit the lower- and upper-neighborhood relationships. In Bunch59

et al. [15], the authors propose a simplicial 2-complex convolution layer, but with limits on the60

maximum dimension of higher-order data and on its application to images. Hajij et al. [16, 22, 23]61

propose encoder-decoder and message passing based representation learning models on simplicial62

complexes and cell complexes. In Bodnar et al. [18, 24], the authors propose message-passing63

simplicial networks (MPSN), simplicial isomorphism networks (SIN) and cell isomorphism networks64

(CIN), which can distinguish strongly regular graphs, classify trajectories and graphs. In [25],65

the authors discuss the permutation, orientation equivariance and simplicial awareness properties66

of simplicial neural architectures and propose SCoNe for trajectory prediction. Within the last67

year, the attention mechanism is employed to generate representations on simplicial complexes and68

combinatorial complex [13, 26–28] and the Hodge Laplacian is exploited to learn knowledge of graph69

structures [29–31].70

Although the aforementioned models are well-defined on general simplicial complex structures,71

most of the models are examined only on analogs of real-world complex higher-order information,72

which is built from images [15, 27], meshes [22, 28], trajectories [18, 25–27], pairwise interactions73

(graphs) [13, 14, 18, 23, 24, 28] or synthetic random models [14, 17, 23, 25–27]. One naturally-built74

higher-order dataset (co-authorship) is examined in [12, 21, 26], but the data source of the simplicial75

complex is restricted as it is constructed as subsets of only 80 papers. A comprehensive analysis on76

complex naturally-built many-body interactions is still lacking.77

Our motivation is to understand what makes higher-order/simplicial complex-based frameworks78

perform well in practice and in theory. We wish to go beyond traditional graph representation learning79

and focus on higher-order data-based tasks such as simplex classification with practical and efficient80

data structure. Specifically, we want to tackle a wide variety of simplicial complexes including rich81

and organic higher-order data to capture the heterogeneous many-body interactions which commonly82

exist in real world.83

3 Backgrounds84

3.1 Higher-Order Data as Simplicial Complexes85

Definitions. A simplicial complex generalizes a graph by accounting for higher-dimensional infor-86

mation. The interaction among points (nodes) is characterized by a simplex [11, 32]. An oriented87

p-dimensional simplex σ is composed of (p+ 1) points and is denoted σ = [i0 . . . ip]; it represents88

an interaction among a group of points. For example, a 0-simplex is a node, a 1-simplex is an edge, a89

2-simplex is a triangle, a 3-simplex is a tetrahedron, and so on. Going beyond pairwise interactions, a90

simplex can differentiate among interactions with different dimensions and intensities.91

A simplicial complex refers to a set of simplices. A p-chain is the finite formal sum of p-simplices92

and the group of p-chains on simplicial complex X is denoted by Cp(X). If the points in a p-simplex93
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σ are the subset of the points in a (p+ 1)-simplex τ , where only one element is omitted, then σ is94

called a face of τ and τ is called a coface of σ. Boundary map ∂p : Cp+1(X) → Cp(X) indicates95

the existence / orientation of each p-simplex as a face of each (p+ 1)-simplex. The boundary map96

∂p is described by incidence matrices Bp of dimension Np × Np+1, where Np is the number of97

p-simplices in the simplicial complex. The higher-order Laplacian Lp describes the diffusion on98

a p-chain and generalizes graph Laplacians [11]. The p-order Laplacian matrix is calculated from99

incidence matrices by the formula Lp = BT
p−1Bp−1 +BpB

T
p when p > 0.100

Handling Higher-Order Data as Simplicial Complexes. The conventional definition of simplicial101

complexes requires them to be closed under taking subsets. This presents a challenge for models102

that operate on higher-order data via simplicial complexes: (1) Taking subsets will cause blowup103

when high-dimension simplices are present in large-scale datasets. This is a common phenomenon104

especially in real-world systems where interactions and group behaviors are sophisticated and105

irregular. For example, the co-authorship complexes built from Semantic Scholar in Ebli et al. [12]106

have 25,000 and 100,000 simplices, but they are constructed as subsets of only 80 papers where some107

are co-authored by 10 researchers. This inclusion restriction will cause the datasets to exponentially108

increase and crucial information in naturally-existed simplices will be obscured by the potential109

redundancy embedded in the subsets. (2) It is difficult to explain the physical meaning and properties110

of simplices which are added as subsets of higher-order instances. For instance, a co-authorship map111

can be considered as a simplicial complex where points are authors and simplices are papers with112

venue as label and word embedding as feature. If two scientists a and b work together with different113

third researchers multiple times (2-simplex [a, b, c] and [a, b, d]) but never exclusively coauthor with114

each other, how can we understand the existence of the 1-simplex [a, b] added due to the inclusion?115

We wish to practically and efficiently capture many-body interactions. In [28], the authors introduce116

combinatorial complexes which allows arbitrary set relations to generalize simplicial complexes.117

Although the combinatorial complex does not require downward closure as in simplicial complexes,118

the method is examined on datasets where the inclusion property still preserves. In this work, we119

consider a relaxation of the conventional definition and allow simplicial complexes to potentially120

not be closed under subsets. We further discuss the relationship of relaxed simplicial complexes and121

hypergraphs and explain our choice of relaxed simplicial complexes in Appendix C. In the rest of122

this paper, we use p-chain to refer the set of p-simplices, where p-simplices are given as groups of123

interactions in the dataset. In addition, we want to use simplex to represent an activity among several124

components (e.g., a paper written by several co-authors), so we take simplices to be unoriented and125

all elements in the incidence matrices to be non-negative. These simple adjustments will enable126

representation learning frameworks to be more flexible on a wide variety of higher-order datasets and127

able to accommodate large-scale data while avoiding the size explosion problem.128

3.2 Representation Learning Models with Relaxed Simplicial Complexes129

Among our goals are to analyze topological structure and to examine message passing and aggregation130

methods on relaxed simplicial complexes. We first describe a notion of connection for simplices131

and then higher-order adjacency matrices. This allows the heterogeneous structure of simplicial132

complexes to be associated with various powerful graph machine learning models. Afterwards,133

we describe simplex convolutional networks (SCN) and simplicial complex convolutional networks134

(SCCN) models. These models exploit the generalization of the graph convolution operation [33].135

Using the same principles, we also consider sc2vec, a latent representation learning framework for136

simplicial complexes.137

Connection of Simplices and Higher-Order Adjacency Matrices. Figure 1 shows various connect-138

ing relationships for two 1-simplices (top) and two 2-simplices (bottom). To define the connection of139

two p-simplices, we utilize the higher-order adjacency matrix Ap of p-chains with the help of the140

higher-order Laplacian and incidence matrices. Recall that the p-order Laplacian is the sum of two141

parts, the lower Laplacian Llower
p = BT

p−1Bp−1, and the upper Laplacian Lupper
p = BpB

T
p . The142

lower and upper p-th Laplacian, respectively, describe the relationship of p-simplices through faces143

and cofaces [15, 16, 18]. We use the (i, j)-th element in the p-order adjacency matrix to denote the144

connection of two p-simplices σp,i and σp,j (i ̸= j):145

Ap(i, j) = Lp(i, j) = I {σp,i , σp,j share a face}+ I {σp,i , σp,j share a coface} . (1)

When i ̸= j, σp,i and σp,j can share at most one face or coface. Otherwise, the two simplices are146

the same. Therefore, Ap(i, j) can take the values 0, 1. When i = j, we assign Ap(i, j) = 0. Note147
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Figure 1: Top: Different connections of 1-simplices (edges) ab and ac. In X0, A1(ab, ac) = 0
because ab and ac neither share a face nor a coface. In X1, A1(ab, ac) = 1 since ab and ac share
a face a. In X2, two 1-simplices share a coface abc and, thus, A1(ab, ac) = 1. ab and ac have the
same face a and coface abc in X3, so A1(ab, ac) = 2. Bottom: Different relationships of 2-simplices
(triangles) abc and bcd (or bde). Similarly, in Y0, the connection of abc and bde is 0. In Y1, Y2, Y3,
the element in the 2-order adjacency A2(abc, bcd) is 1, 1, 2, respectively.

that subsets of simplices are not necessarily in the simplicial complex without the inclusion rule. For148

example, if abc is in the simplicial complex, ab, ac and bc are not automatically included, unless149

otherwise stated.150

Neural Network-based Representation Learning for Simplicial Complexes. Following the151

graph convolutional network (GCN) formalism [33] and its generalization to simplicial complex152

and cell complex [15, 16], we first describe simplex convolutional networks (SCN). We introduce153

the following notations: ψ is a non-linear activation function, H(l)
p ∈ RNp×E(l)

p is the simplex154

embedding of p-chains as the input of layer l, Np is the number of all p-simplices, and E(l)
p is the155

embedding dimension. H(0)
p = Fp represents the features of the p-chain. W (l)

p is the trainable156

weight. Self-loops with strength 2 are added to the p-order adjacency matrix Ap: Ãp = Ap + 2INp157

for p = 1, 2 . . . pmax − 1. We choose the self-loop strength to be 2 because a simplex shares faces158

and cofaces with itself. When p = 0, pmax, it becomes Ã0 = A0 + IN0
. The adjacency matrix is159

normalized by D̃p
− 1

2 ÃpD̃p
− 1

2 , where D̃ii =
∑

j Ãp(i, j). The convolutional layers are defined on160

each p-chain in the simplicial complex as follows:161

H(l+1)
p = ψ

(
D̃p

− 1
2 ÃpD̃p

− 1
2H(l)

p W (l)
p

)
. (2)

Compared with SNN [12], the SCN model is more scalable and can easily accommodate high-162

dimensional features, as the convolutional propagation rule is a localized first-order approximation of163

the spectral graph convolutional operation [33].164

In SCN, an independent convolutional operation is applied to each p-chain. We also consider165

simplicial complex convolutional networks (SCCN), where connections of all simplices are examined166

regardless of the dimension as in [28]. We define the full adjacency matrix A for the simplicial167

complex as:168

A =


αA0 βB0 0 . . .
βBT

0 αA1 βB1 . . .
0 βBT

1 αA2 . . .
...

...
...

. . .

 . (3)

The full adjacency matrix A has each p-adjacency matrix Ap on its main diagonal and incidence169

matrix Bp on the first diagonal below and above. Here, α and β are weights for different types170

of connections. The p-adjacency matrix Ap captures the relationship of simplex within the same171

dimension (i.e, upper or lower connected), while the incidence matrix Bp contains the connections172

of a p-simplex and a (p− 1)-simplex when the (p− 1)-simplex is a face of the p-simplex. SCCN173

exploits the convolutional operation in the same way as in equation (2) to the full adjacency matrix A.174

In SCCN, simplices whose dimension has limited samples can be better learned, which is especially175

beneficial for high-dimensional cases.We further discuss the choice of equation (3) in Appendix D.176
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Note that in this work, we do not include the possible connection of two simplices when the difference177

of their dimensions is larger than one. However, the definition of the full adjacency matrix in equation178

(3) can be easily modified to have the connection of two simplices of arbitrary dimension difference179

d by assigning BpBp+1 . . . Bp+d on the corresponding (d+ 1) diagonals.180

Latent Representation Learning for Simplicial Complexes. From a practical perspective, there181

are many cases where we only have access to pure interaction information. In other words, our182

data consists of structure without any features. We seek a model that handles such data as well.183

Simplex2vec [14], cell2vec [16] and k-simplex2vec [17] are proposed to learn latent representation184

from simplicial complexes and cell complexes. Following a similar idea of applying a node2vec-style185

approach to the full adjacency matrix in equation (3), we consider a latent representation learning186

model sc2vec. Details of sc2vec are presented in Appendix E.187

4 Theoretical Insights188

We provide a pair of theoretical insights related to simplicial complex-based models and higher-order189

graph models in general. Each relies on a proxy data generation model for graph-structured data.190

While simple, this model motivates the need for using graph-based models in multiple contexts.191

Our first insight is that higher-order distributions (representing the dependencies found in simplicial192

complexes) cannot be approximated by lower-order ones, motivating the use of higher-order models193

such as simplicial networks. Our second insight studies node / simplex classification with graph-194

structured data. We show that while it is possible to train a conventional (not graph-based) model195

that generalizes despite the numerous dependencies induced by graph-structured data, to ensure196

generalization it is necessary to certify that the dependencies are very weak. However, graph-based197

models directly rely on these dependencies, implying that generalization is possible, as we observe in198

practice.199

4.1 Graph-Structured Data Model.200

We use the following as a proxy model for graph-based learning tasks. SetX = (X1, . . . , Xn), where201

Xi ∈ Rd are features and Y = (Y1, . . . , Yn) with Yi ∈ {±1} are labels. Let G be a hypergraph with202

vertex set V (G) = {1, . . . , n} and edge set E(G). Then,203

fX(Y ) =
1

Z
exp

 n∑
i=1

XT
i θYi + β

∑
e∈E(G)

∏
v∈e

AeYv

 . (4)

where θi ∈ Rd, β, and the Ae are model parameters, and Z is a normalizing partition function .204

In (4), the left-hand side term by itself is a linear model; it can be easily replaced with any other205

data model. The right-hand side term, however, introduces graph structure over the data; it promotes206

symmetries among labels. The β parameter controls the importance of features versus dependencies.207

If we take G to be a graph, so that the edges e involve only two vertices, we obtain a model in Y208

identical to the Ising model of Daskalakis et al. [34], which studied linear and logistic regression209

with dependent data. The more general version (4) allows for more complex dependencies, including210

hypergraphs.211

We are especially interested in the setting where we take the hyperedges e to simulate a sim-212

plicial complex, as described in Section 3.1. For example, we can take E in (4) to be213

{{a}, {b}, {c}, {d}, {e}, {a, b}, {b, c}, {a, c}, {c, e},214

{a, b, c}, {b, c, d}}, yielding the complex in Fig. 2 in Appendix B. Note that this model captures node215

classification tasks, as the labels are attached to nodes. However, we could also construct a model,216

along the same lines for classifying simplices (as we do in our experiments).217

4.2 Why does higher-order structure matter?218

An initial question when studying higher-order models, like simplicial networks, is why one should219

bother with such models. After all, if a lower-order distribution can well-approximate a higher-order220

one, regardless of the structure or modeling choices, then certainly a lower-order model itself should221

suffice. We show this is not the case.222
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Concretely, higher-order structure can be arbitrarily important. Our result uses a small simplicial223

complex to show that no graph-based distibution can approximate it:224

Proposition: Consider the class of models F of (4) with one or more higher-order interactions,225

including the class of simplicial complexes, and models Fℓ without such interactions (graph-based226

models). There exists f ∈ F so that for any f ′ ∈ Fℓ, the divergence between f and f ′ is bounded227

away from zero. Specifically, for any δ > 0, dTV(f, f
′) ≥ 1

4 − δ. □ This result shows that228

there are distributions that cannot be approximated by lower-order ones; there can be a large constant229

gap in total variation distance between them. This suggests that we should use higher-order models,230

motivating our study of simplicial complex networks.231

4.3 Why are non-GNNs insufficient?232

Next, we explore the generalization ability of conventional models that do not incorporate graph233

structure when operating on points that are sampled from (4). We do so for the conventional node234

classification task. The main difference between a conventional setting for generalization and the235

graph-based data one is that the dataset is no longer i.i.d.; indeed, the labels may be highly dependent236

via the right-hand side of (4). Despite this challenge, it is still possible to show generalization by237

using techniques based on concentration in dependent settings, an exciting area with significant238

progress in the last decade [35–37]. Our goal is to study generalization result for node classification239

with graph-structured data. Our dataset is S = {(x1, y1), . . . , (xn, yn)}, where xi ∈ Rd and240

yi ∈ {−1,+1}. These points are not i.i.d.; they are drawn from the distribution (4). We learn a241

function f : Rd → {−1,+1}. For a loss function ℓ, e.g., the 0/1 loss, the risk isR(f) = E[ℓ(f(x), y)]242

and its empirical counterpart is R̂ = 1
n

∑n
i=1 ℓ(f(xi), yi). A standard result in the i.i.d. setting is the243

following Rademacher complexity bound [38]. With probability at least 1− δ,244

R(f) ≤ R̂(f) + R̂S(F ) + 3

√
log 2/δ

2n
, (5)

where R̂S(F ) is the empirical Rademacher complexity for our model function class F and dataset S.245

The i.i.d. requirement is needed for the use of McDiarmid’s concentration inequality. Below, we246

relax this requirement.247

248

Dealing with dependencies. The main technical challenge is that our dataset here is not i.i.d.,249

since the labels y are also connected via the graph / hypergraph / simplicial complex structure. If the250

dataset at minimum contains some degree of independence, it is possible to apply [39], which derives251

a variant of McDiarmid’s inequality for a particular graph dependency structure. This dependency252

structure specifies which nodes are dependent (i.e., those connected by an edge) and which nodes are253

independent (those which are not neighbors). However, this assumption is potentially too strong for254

us: because of the longer-range dependencies in (4), we may not have any pairs of nodes which are255

independent.256

On the other hand, many of the dependencies might be weak. This is likely to be the case for257

many applications of practical interest, where the features provide the majority of the signal and258

the graph-based dependencies provide the remaining portion. A powerful formalization of the259

concept of weak dependence is Dobrushin’s condition [37], stated in terms of influences Ij→i(y).260

For y = (y1, . . . , yn), set the influence of yj on yi to be261

Ij→i(y) = max
y−i−j ,yj ,y′

j

dTV(Pyi|y−i
(·|y−i−j , yj),

Pyi|y−i
(·|y−i−j , y

′
j)).

Here, y−i−j consists of the vector with all the entries of y except indices i and j. The basic262

intuition is to measure the maximum change in the distribution over yi when changing yj over all263

possible configurations of conditional distributions. If α(y) := max1≤i≤n

∑
j ̸=i Ij→i(y) < 1, then264

Dobrushin’s condition is satisfied. Moreover, this permits the construction of a dependent version265

of McDiarmid’s inequality [37]. Specifically, consider a distribution P over {−1,+1}n satisfying266

Dobrushin’s condition with coefficient α and a function f : {−1,+1}n → R with the bounded267

differences property |f(y)− f(y′)| ≤
∑n

i=1 1{yi ̸= y′i}λi for a set of parameters λ1, . . . , λn ≥ 0.268

6
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Then, for all t > 0,269

P (|f(y)− E[f(y)]| ≥ t) ≤ 2 exp

(
− (1− α)t2

2
∑n

i=1 λ
2
i

)
. (6)

Using (6) to replace the standard i.i.d. version of McDiarmid’s inequality will permit us to derive the270

Rademacher complexity bounds as in Mohri et al. [38]. Specifically, instead of (5), we now get271

R(f) ≤ R̂(f) + R̂S(F ) + 3

√
log 2/δ

(1− α)2n
, (7)

This is implicitly based on the influence matrix {Ij→i(y)}i,j . Worse, if α ≥ 1, then the correlations272

can be arbitrarily strong, and no concentration may result. To ensure such a non-GNN model273

generalizes, we must certify that α < 1. However, as we observe, this is an extremely strict limitation.274

As a result, conventional models will often not suffice.275

Evaluating Dobrushin’s condition in hypergraphs. The influence matrix can be bounded by the276

dependency parameters in the model (4) in the following way. Suppose we are examining node yi277

and let all of the hyperedges that include it as a term be e1, e2, . . . , em. Then, we have the following:278

Pyi|y−i
(·|y−i−j , yj) =

exp(gβ(A, Y ))

exp(gβ(A, Y )) + exp(−gβ(A, Y ))
,

where gβ(A, Y ) = β
∑

k

∏
v∈ek

AekYv. To compute the Ij→i(y) = maxy−i−j ,yj ,y′
j
, we can now279

use the formula above, yielding an expression for the influence in terms of β and the Ae adjacency280

matrix terms. While in general this does not yield clean bounds that can be used to easily state281

Dobrushin’s condition, in special cases, it is possible to do so. For example, suppose that G is a282

graph and Ae = 1 for all edges. Then, it was shown in Hayes [40] that Ij→i(y) ≤ tanh(β)Aij ,283

where Aij = 1 for edges and 0 otherwise. We can show a generalization of this result for simplicial284

complexes, in the special case where the face weights have some regularity. Let G be a simplicial285

complex on p nodes with a single facet, with Ae = 1 for all e excluding the facet, where we set286

Afacet = 0. Then, the influence term {Ij→i(y)}i,j satisfies Ij→i(y) ≤ tanh(β).287

This implies that we can achieve Dobrushin’s condition, and thus achieve generalization, if we ensure288

that β < tanh−1(α/(n− 1)), for any α < 1—which is a very strong requirement.289

However, models that do not rely on the i.i.d. assumption, such as graph-based models, including290

GNNs and higher-order variants, do not fall prey to such strict requirements for generalization.291

Altogether, the two theoretical insights suggest that to handle non-i.i.d. data, we must use graph292

models of some order. In addition, among such models, to deal with higher-order dependencies, we293

must use higher-order models, such as the models of relaxed simplicial complex. This provides the294

theoretical motivation for our work; it is also consistent with empirical evidence we have observed.295

In this section, we aim at providing an initial step towards understanding which models will generalize296

on data structured according to higher-order graphs. There are two steps here: (1) understanding297

why simply modeling data according to standard graphs is insufficient and (2) understanding why298

particular networks generalize. Statistical learning theory has only taken very preliminary steps in299

this direction. Note that even a simple notion of generalization has not yet been agreed upon—unlike300

conventional cases, our data is not i.i.d., so that we cannot sample “new” points to test our trained301

model. This issue affects both regular graph-structured and higher-order graph-structured data. We302

bypass this issue by providing two types of results: first, a simple result showing the distinction303

between distributions on binary graph-structured data vs higher-order graph-structured data—which304

is applicable to any kind of model, and, second, a result applying the famous Dobrushin’s condition,305

which enables generalization for at least some non i.i.d. cases. Indeed, the first result suggests that306

there are genuinely cases where no GNN will be able to ultimately perform well—but a higher order307

model, such as our proposed model, will. The second result suggests that there is at least a possibility308

of achieving some notion of generalization.309

5 Experiments310

We evaluate the representation learning framework with relaxed simplicial complexes on a wide311

variety of synthetic and real-word datasets for the simplex classification task. The prediction results312

7



Efficient Representation Learning for Higher-Order Data with Simplicial Complexes

show that the representation learning models with relaxed simplicial complexes formalism efficiently313

capture higher-order information in multiple datasets and outperform the best baselines by up to 6.7%314

in accuracy.315

5.1 Datasets316

We apply the models on several synthetic complexes (Syn and SBM), clique complexes (Cora and317

Pubmed), and naturally-built simplicial complexes (DBLP, DisGe, PPI-BP and HPO-METAB). The318

statistics of the datasets can be found in Table 3 of Appendix F.319

Cora and Pubmed: We take the benchmark citation datasets and build clique complexes. Syn:320

We take the structure of the Cora clique complex, randomly assign weights between 0.1 and 1.0321

for each simplex, and then generate features and binary labels of points according to equation (4).322

We take simplices where inside points have the same label and use the point average as simplex323

features. SBM: We first generate a graph using the stochastic block model [41] with three categories324

of nodes (200 each), 0.08 intra-linking probability, 0.03 inter-linking probability, and then build clique325

complexes. DBLP: The DBLP co-authorship simplicial complex is constructed from the DBLP326

co-authorship hypergraph in Yadati et al. [5]. Points are authors and simplices are papers with labels327

representing the category of the venue and features are the word dictionary. DisGene1: We construct328

a simplicial complex where a simplex is a disease and points in a simplex are genes associated with329

the corresponding disease. The label of the simplex is the MeSH disease class. Features are built from330

the gene-disease relationship (disease type, pleiotropy index etc.). PPI-BP: In the molecular biology331

simplicial complex, each simplex is a collection of proteins in the same biological process and its332

label is the collective cellular function. HPO-METAB: The simplicial complex is built from a rare333

disease diagnosis dataset, where a simplex is a group of phenotypes associated with rare monogenic334

diseases and the label is the type of metabolic disorder. The structures of PPI-BP and HPO-METAB335

are built based on the subgraph in Alsentzer et al. [42].336

Building simplicial complexes from regular graphs (Cora, Pubmed) can be thought of as a decompres-337

sion process. A (p+ 1)-clique is considered to be a p-simplex if it is a maximal clique and all points338

in the clique have the same label. The simplex is labeled with the corresponding category and the339

feature is the average of node features inside the clique. By definition, subsets of a maximal clique340

will not be taken into consideration, and thus, may cause information loss in the decompression341

process. To capture the hierarchical structure of higher-order data and avoid the size explosion342

problem due to the inclusion rule and point combination in high dimension simplex, we only add343

the first-order sub-simplices (with p− 1 points) of each p-simplex. Every node that has appeared in344

the maximal cliques or its first-order subsets are considered as 0-simplices. Nodes in the original345

graphs are discarded if they don’t belong to any simplex. For DBLP coauthorship and DisGene, we346

take the sets of simplices existed in the original data as the simplicial complex without inclusion and347

orientation. For the datasets with pure topological informations (SBM, PPI-BP and HPO-METAB)348

which are used for latent representation learning models, we take all subsets while computing the349

higher-order adjacency matrix in order to compare with the baseline models (k-simplex2vec and350

simplex2vec), which both preserve the inclusion properties.351

5.2 Baselines352

In this work, we are interested in predicting the label of activities which have contributions from353

multiple components (simplices). We use the following representation learning models of hypergraphs,354

simplicial complexes, regular graphs, and non-graph structures as baseline models.355

DHE: Payne [9] proposes to use the vertex and hyperedge embeddings as well as hyperedge features356

to perform hyperedge classification. SIN: Bodnar et al. [18] propose SIN for graph classification357

problem. Here, we replace the readout layer with an output layer to predict the label of each simplex.358

Simplex2vec: [14] This unsupervised representation learning approach adopts symbolic embeddings359

to compute the community structure on simplicial complexes via the Hasse diagram. K-simplex2vec:360

[17] This unsupervised representation learning framework extends the node embedding methods361

with biased random walks to simplices and considers the interaction of simplices in every p-chain.362

GCN and MLP: To show the importance of information embedded in higher-order structures, we363

1http://www.disgenet.org/
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implement graph convolutional networks (GCN) [33] and multilayer perceptron (MLP) models on364

the corresponding collapsed graph and non-graph data.365

Table 1: Simplex classification accuracy (%) of the SCN, SCCN and baselines. Best accuracy is
marked as bold.

Dataset Syn Cora Pubmed DBLP DisGene

SCN 68.90 94.68 95.23 66.81 39.17
SCCN 74.95 95.65 96.84 75.69 34.90
DHE 68.22 86.46 94.50 67.38 36.79
SIN 60.26 80.89 93.04 69.60 36.66
GCN 62.83 92.61 95.02 n/a n/a
MLP 58.58 89.47 90.30 73.95 36.63

5.3 Experimental Settings and Results366

We apply the SCN and SCCN models with one hidden convolutional layer on the datasets described367

above. We chose the hidden dimension to be 16, ReLu as the activation function, and used the Adam368

optimizer [43] with learning rate 0.001 to train the SCN and SCCN models. A detailed description of369

the experimental settings is provided in Appendix section G.370

We repeat each experiment of the SCN and SCCN model 100 times with shuffled train/validation/test371

splits and show the mean accuracy in Table 1. The SCCN model outperforms other baselines on the372

synthetic network, Cora and Pubmed co-citation simplicial complexes and DBLP co-authorship data.373

The SCN model also beats other baselines on the DisGene dataset.374

Table 2: Simplex classification accuracy (%) of the latent representation embedding models. Best
accuracy is marked as bold.

Dataset SBM Cora PPI-BP HPO-METAB

simplex2vec 94.48 73.37 36.30 51.22
k-simplex2vec 97.43 90.55 30.33 25.10

sc2vec 100.00 93.86 36.90 56.18

In addition, we test the latent representation learning method sc2vec as well as the baselines on SBM,375

Cora, PPI-BP and HPO-METAB datasets. Here, features are not used. To examine the embedding376

performance, we use the simplex embedding results as the input to one-vs-rest logistic regression377

classifiers to predict the label of the simplex, following [19] and [44]. We repeat each experiment 50378

times and present the mean accuracy of the multi-label classification in Table 2. The result shows that379

the embedding method sc2vec defined on the higher-order adjacent matrix also achieves excellent380

performance compared to the baselines.381

We conclude that SCN, SCCN and sc2vec offer strong performance when performing representa-382

tion learning of higher-order data via relaxed simplicial complexes. Complexity analysis, more383

experimental details and additional results of citation prediction are provided in the Appendix.384

6 Conclusion385

In this paper, we examined the representation learning framework with relaxed simplicial complexes386

meant to characterize the higher-order interactions embedded in real-world complex systems. Theoret-387

ically, we showed that higher-dimensional dependencies cannot be modelled by regular graph-based388

networks and that conventional models cannot handle such dependencies either, in terms of general-389

ization. The outstanding performance of the SCN, SCCN and sc2vec models on synthetic, clique390

complexes from graph, and naturally built simplicial complexes shows the efficiency in capturing391

high dimensional data using hierarchical models. Future work includes studying the relationship of392

simplices of arbitrary dimensions and embedding algebraic topology properties such as Betti number393

into the representation learning framework.394
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A Additional Theoretical Details516

We provide the proofs of the propositions described in Section 4.517

First, the proof of Proposition 4.2:518

Proof: For our higher-order model, we use a triangle graph G with G(V ) = {y1, y2, y3}. Let the519

corresponding edge parameters then be A12 = A23 = A13 := θ1 and A123 := θ2, where θ1, θ2 are520

non-negative. Suppose that Ai = 0 for i ∈ {1, 2, 3}. Then,521

f(y1, y2, y3) =
1

Z
exp (θ1(y1y2 + y1y3 + y2y3) + θ2y1y2y3) .

Then, f(1, 1, 1) ≥ f(1,−1,−1) and similarly for other combinations with two −1’s, and522

f(−1,−1,−1) ≥ f(1, 1,−1) and similarly for other combinations with one −1. From this,523

Z ≤ 4 exp(3θ1 + θ2) + 4 exp(3θ1 − θ2).

Using identical reasoning, we obtain a lower bound on Z:524

Z ≥ 4 exp(−θ1 + θ2) + 4 exp(−θ1 − θ2).

Then, we have that525

f(1, 1, 1) =
1

Z
exp (3θ1 + θ2)

≥ exp (3θ1 + θ2)

4 exp(3θ1 + θ2) + 4 exp(3θ1 − θ2)

=
1

4 + 4 exp(1− 2θ2)
.

We also have526

f(−1,−1,−1) =
1

Z
exp (3θ1 − θ2)

≤ exp (3θ1 − θ2)

4 exp(−θ1 + θ2) + 4 exp(−θ1 − θ2)

=
1

4 exp(−4θ1 + 2θ2) + 4 exp(−4θ1)
.

Now, consider any lower-order model f ′. Then,527

f ′(y1, y2, y3) =
1

Z
exp (θay1y2 + θby2y3 + θcy2y3) .

Regardless of how we set the parameters, the symmetry between (1, 1, 1) and (−1,−1,−1) ensures528

that f ′(1, 1, 1) = f ′(−1,−1,−1). Then, we have that529

dTV(f, f
′) ≥ |f(1, 1, 1)− f ′(1, 1, 1)|+ |f ′(−1,−1,−1)− f(−1,−1,−1)|
≥ |f(1, 1, 1)− f(−1,−1,−1)|

≥ 1

4 + 4 exp(1− 2θ2)
− 1

4 exp(−4θ1 + 2θ2) + 4 exp(−4θ1)
.

In the second step, we applied the triangle inequality and used the fact that f ′(1, 1, 1) =530

f ′(−1,−1,−1).531

Now by setting θ1 sufficiently small and θ2 sufficiently large, we obtain that532

dTV(f, f
′) ≥ 1

4
− δ,

for any δ > 0. □533

To obtain the result on the Dobrushin condition coefficient for a simplicial complex, we can follow534

the proof of [40], replacing the expressions based on edges with combinatorial sums that involve535

even or odd numbers of vertices.536
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B Example of Simplicial Complexes537

Figure 2 shows an example of a simplicial complex with special properties of no inclusion and no538

orientation. The incidence matrices are also shown in the figure.539

abc bcd

ab 1 0

bc 1 1

ac 1 0

ce 0 0

X = { a, b, c, d, e, ab, bc, ac, ce, abc, bcd }b

a
c

d

e

= B0 

ab bc ac ce
a 1 0 1 0

b 1 1 0 0

c 0 1 1 1

d 0 0 0 0

e 0 0 0 1

= B1 

Figure 2: An example of unoriented simplicial complex and the incidence matrices. The simplicial
complex X consists of 0-simplices a, b, c, d, e, 1-simplices ab, bc, ac, ce and 2-simplices abc, bcd.

C Relationship of Relaxed Simplicial Complexes and Hypergraphs540

In this work, we aim at considering a practical and efficient framework to learn irregular higher-order541

data. We choose to use a relaxed data structure starting from simplicial complexes and we maintain542

its predefined incidence matrices from p+ 1 to p dimension as well as the laplacians to determine543

how relaxed simplices are connected.544

Indeed, the structure of simplicial complexes without orientation and inclusion properties is the same545

as hypergraphs with additional operations. Traditional simplicial complexes can also be represented546

as hypergraphs. Sets of hyperedges can be defined by computing the cardinality of each hyperedge to547

match p-simplices. The original incidence matrix of hypergraphs is defined by the set membership of548

vertices and hyperedges. One can also define and compute the p-incidence matrix Bp of hypergraphs549

for each dimension / cardinality to build the bottom-up and top-down relationship as represented550

by the incidence matrix of simplicial complexes. But all above requires additional definition and551

computation from the traditional relationship of hypergraphs.552

In contrast, this hierarchical representation is well defined with the formalism of simplicial complexes553

across different dimensions (between p-simplices and (p+ 1)-simplices). Therefore we choose to554

define the higher-order adjacency for relaxed simplicial complexes in equation (1) with the help of555

incidence matrix and laplacian matrix preserved from formal simplicial complexes in this work. The556

relaxation of properties will not bring in additional computations for the incidence matrix Bp. The557

full adjacency matrix of the connections with arbitrary dimensions described in equation (3) can also558

be easily written with the help of the incidence matrices Bp and higher-order adjacency matrices Ap.559

D Choices to Build the Full Adjacency Matrix for SCCN560

Using the current definition of the higher-order adjacency matrix as in equation (3), one convolutional561

layer in SCCN will look at the connections of simplices which have the same dimension or the562

difference is equal to one. For example, the embedding of a p-simplex σ will be updated with its563

p-simplex, (p− 1)-simplex and (p+ 1)-simplex neighbors (1-hop neighbor) in one convolutional564

layer. In the next layer, (p− 2)-simplex and (p+ 2)-simplex can also affect its embedding update565

(2-hops neighbor). If we consider adding the connection of p-simplices and (p+−2)-simplices in the566

higher-order adjacency matrix, each simplex can know more in one layer as it has more neighbors.567

Considering connections and interactions of simplices with higher dimension difference can help to a568

more efficient learning if the connections inside p-chains are rare and sparse. On the other hand, if569

the allowed difference is too high, it might lead to a bias learning toward p-chains whose cardinality570

(total number of p-simplices) is larger in the dataset.571
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E Latent Representation Learning for Simplicial Complexes572

We first apply a biased random walk strategy [19] on the binarized version Ā of the higher-order573

adjacency matrix in Equation (3). Consider a random walk which arrives at simplice σt and just574

traverse from σt−1, its next step σt+1 is generated by the transition probability P (σt+1 = x|σt, σt−1).575

The unnormalized probability P ′ is given as576

P ′(σt+1 = x|σt, σt−1) =


1
p if x = σt−1

1 if Ā[x, σt−1] = 1 and Ā[x, σt] = 1
1
q if Ā[x, σt−1] = 0 and Ā[x, σt] = 1

0 if Ā[x, σt] = 0

(8)

Let X denotes the simplicial complex (with relaxation of orientation and closure), walk(σ0) denotes577

the random walk initiated at simplice σ0. We apply SkipGram [45] on the random walk of the network578

data following [19, 44]. The representation mapping f from simplice space to feature space therefore579

can be learnt by580

max
f

∑
σ0∈X

logP (walk(σ0)|f(σ0) (9)

Compared with existing approaches such as simplex2vec [14] and k-simplex2vec [17], the sc2vec581

model takes more connections into consideration regardless of the dimension and therefore allows582

more effective embedding learning.583

For simplicity, we set p = 1 and q = 1 in the experiment section of this work, but the transition584

probability can also be chosen differently to interpolate between BFS and DFS [19].585

F Dataset Statistics586

Table 3: Statistics of simplicial complex datasets. C is the number of classes, D is the dimension of
the simplex feature.

Dataset C D number of p-simplices
p = 0 p = 1 p = 2 p = 3 p = 4 p = 5

Syn 2 128 2,841 1,731 294 25 0 0
Cora 7 1,433 2,481 3,590 1,294 183 6 0

Pubmed 3 500 17,038 32,592 7,905 1,847 439 173
DBLP 6 1,425 899 1,672 924 394 0 0

DisGene 26 37 3,623 889 422 293 214 156

SBM 3 n/a 600 4,771 1,969 50 0 0
PPI-BP 6 n/a 1,496 3,388 3,260 1,565 302 0

HPO-METAB 6 n/a 488 3,270 5,541 5,081 2,793 861
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G Training settings587

We train the models on machine with Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz. We repeat588

each experiment of the SCN and SCCN model 100 times with shuffled train/validation/test split. The589

running time of DHE and K-simplex2vec are up to 20 times as much as the SCN model. Therefore, to590

make a fair comparison, we allow them 6 more time in duration to finish the experiment. As a result,591

we run baseline models SIN, MLP, GCN 100 times, DHE 40 times and K-simplex2vec 30 times.592

Note that the numbers of simplex are different with different dimension p and the collapsed graph size593

is also varying from the simplicial complexes. To build a fair comparison, we choose a flexible train594

ratio min
{

300
Np
, 0.6

}
, and validation ratio min

{
300
Np
, 0.2

}
for the SCN framework, where Np is the595

number of p-simplices. The rest is served as test set. The train/validation/test masks are concatenated596

for the SCCN model. We also use early stopping to avoid overfitting. Training is skipped if the total597

number of samples is smaller than 100.598

The train ratio for the logistic regression in the comparision of the three latent represenation learning599

models (sc2vec, simplex2vec, k-simplex2vec) is min
{

600
Np
, 0.6

}
, and the rest are used for the test.600

DHE. The train/validation/test ratio for DHE is the same as the SCCN model in each dimension. The601

DHE model is complicated and consist of 7 MLP layers. To make a fair comparison, we choose the602

hidden dimension to be 8 for each fully connected layer in the DHE framework.603

SIN. The train/validation/test ratio for SIN is the same as the SCCN model in each dimension. SIN604

is originally designed for graph classification with the inclusion property of simplicial complexes605

and a maximum dimension of 2. In order to compare with our framework on simplex classification,606

we consider a variation of the SIN model with two hidden layers. Each layer of each dimension607

is composed of three MLPs for boundary simplices, upper connected simplices and combination608

operation. The readout operation is replaced with an output layer to predict the class of each simplex.609

GCN. We apply a graph convolutional networks [33] with one hidden layer and hidden dimension610

of 16 on the collapsed graphs from the simplicial complexes and use the node label predictions to611

predict simplex labels. The collapsed graph is constructed by nodes and edges whose ends are in612

the same simplex (note that for Cora and Pubmed, it is the same as A0). We train the GCN model613

with the same train ratio min
{

300
N , 0.6

}
and validation ratio, where N is the number of nodes in the614

collapsed graph. A p-simplex σ = [i0 . . . ip] is considered as a sample in the baseline test set for615

p-chains if the (p+ 1) points are all in the graph test set. The simplex prediction is considered as616

correct if predicted labels of all points in the simplex are true. Note that GCN can only be applied617

for clique complexes and they cannot be applied to naturally built simplicial complexes (DBLP618

coauthorship and DisGeNET). Labels of nodes in the collapse graph of a naturally-built higher-order619

dataset including DBLP co-authorship and DisGene cannot be directly assigned by simplex labels, as620

the same nodes can exist within several simplices where their labels are different.621

MLP. we implement a multilayer perceptron model with one hidden layer and hidden dimension of622

16. The information of simplex connections are neglected in the MLP model. The train/validation/test623

masks is the same as the SCCN framework.624

K-simplex2vec and Simplex2vec. Both of the models automatically include sub-simplices with625

all the possible combinations of points in simplex. K-simplex2vec can be only applied for p-chains626

when p > 0.627
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H Full Accuracy628

Accuracy of each simplex dimension is shown in Table 4. We mark the best performances for each629

dimension p and over all dimensions (last column) separately. While there are several cases when the630

accuracies for dimension p can be close to each other among multiple models, we mark the highest631

accuracy as well as the numbers that are close to the best one with at most a difference of 0.005 in632

bold.633

Table 4: Simplex classification accuracy of the methods SCN, SCCN and baselines.

Dataset Method p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 All

Syn

SCN 0.6328 0.7756 0.8175 n/a n/a n/a 0.6890
SCCN 0.6875 0.8453 0.8677 0.9620 n/a n/a 0.7495
DHE 0.6257 0.7699 0.7936 0.7950 n/a n/a 0.6822
SIN 0.5801 0.6241 0.7954 n/a n/a n/a 0.6026
GCN 0.6334 0.6415 0.4788 0.2105 n/a n/a 0.6283
MLP 0.5448 0.6428 0.7680 0.9500 n/a n/a 0.5858

Cora

SCN 0.9209 0.9603 0.9598 0.9105 n/a n/a 0.9468
SCCN 0.9139 0.9743 0.9908 0.9963 1.0000 n/a 0.9565
DHE 0.7508 0.9172 0.9391 0.9122 0.8625 n/a 0.8646
SIN 0.7181 0.8313 0.9085 n/a n/a n/a 0.8089
GCN 0.9199 0.9516 0.8776 0.7033 0.7143 n/a 0.9261
MLP 0.7792 0.9436 0.9861 0.9966 1.0000 n/a 0.8947

Pubmed

SCN 0.9364 0.9541 0.9737 0.9892 0.9926 0.9856 0.9523
SCCN 0.9487 0.9727 0.9890 0.9966 1.0000 1.0000 0.9684
DHE 0.8787 0.9665 0.9909 0.9950 0.9989 1.0000 0.9450
SIN 0.8898 0.9377 0.9761 n/a n/a n/a 0.9304
GCN 0.9362 0.9522 0.9711 0.9564 0.9579 0.9918 0.9502
MLP 0.8233 0.9226 0.9792 0.9951 0.9999 1.0000 0.9030

DBLP

SCN 0.6630 0.6653 0.6858 0.6370 n/a n/a 0.6681
SCCN 0.7327 0.7499 0.7882 0.8041 n/a n/a 0.7569
DHE 0.6643 0.6642 0.6993 0.7111 n/a n/a 0.6738
SIN 0.6577 0.7095 0.7063 n/a n/a n/a 0.6960
MLP 0.7103 0.7310 0.7787 0.7925 n/a n/a 0.7395

DisGene

SCN 0.4233 0.2281 0.2353 0.2693 0.2943 0.2903 0.3917
SCCN 0.3750 0.2239 0.2004 0.2232 0.2607 0.2619 0.3490
DHE 0.4234 0.1125 0.0847 0.0903 0.0610 0.0898 0.3679
SIN 0.4189 0.2315 0.2018 n/a n/a n/a 0.3666
MLP 0.3882 0.2536 0.2460 0.2585 0.3159 0.3387 0.3663
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I Accuracy Deviation634

We further show the standard deviation of simplex classification accuracy in Table 5. SCN outperforms635

other methods on DisGene with maximal average accuracy and minimal deviation across the full636

simplicial complex (column marked with “all”). For synthetic dataset, Cora, Pubmed and DBLP, we637

observe that SCCN achieves the best performance in accuracy (as shown in the main manuscript),638

with acceptable low standard deviation of 0.0185, 0.0051, 0.0037, 0.0092, respectively (column639

marked with “all”).640

Table 5: Standard deviation of simplex classification accuracy of the methods SCN, SCCN and
baselines.

Dataset Method p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 All

Syn

SCN 0.0164 0.0165 0.0485 n/a n/a n/a 0.0117
SCCN 0.0187 0.0217 0.0467 0.0834 n/a n/a 0.0185
DHE 0.0224 0.0416 0.0770 0.1870 n/a n/a 0.0288
SIN 0.0178 0.0260 0.0641 n/a n/a n/a 0.0160
GCN 0.0165 0.0327 0.0659 0.1584 n/a n/a 0.0219
MLP 0.0128 0.0217 0.0543 0.0954 n/a n/a 0.0142

Cora

SCN 0.0084 0.0070 0.0108 0.0495 n/a n/a 0.0048
SCCN 0.0099 0.0040 0.0040 0.0091 0.0000 n/a 0.0051
DHE 0.0197 0.0177 0.0262 0.0591 0.2736 n/a 0.0161
SIN 0.0499 0.0347 0.0322 n/a n/a n/a 0.0289
GCN 0.0087 0.0084 0.0232 0.0797 0.3695 n/a 0.0087
MLP 0.0087 0.0054 0.0049 0.0089 0.0000 n/a 0.0054

Pubmed

SCN 0.0049 0.0057 0.0048 0.0049 0.0092 0.0202 0.0034
SCCN 0.0059 0.0035 0.0024 0.0019 0.0000 0.0000 0.0037
DHE 0.0187 0.0048 0.0026 0.0045 0.0034 0.0000 0.0077
SIN 0.0101 0.0073 0.0055 n/a n/a n/a 0.0058
GCN 0.0049 0.0047 0.0061 0.0134 0.0230 0.0111 0.0047
MLP 0.0039 0.0034 0.0027 0.0017 0.0011 0.0000 0.0030

DBLP

SCN 0.0227 0.0176 0.0243 0.0615 n/a n/a 0.0131
SCCN 0.0191 0.0140 0.0174 0.0447 n/a n/a 0.0092
DHE 0.0320 0.0283 0.0263 0.0544 n/a n/a 0.0255
SIN 0.0372 0.0277 0.0272 n/a n/a n/a 0.0229
MLP 0.0201 0.0139 0.0170 0.0458 n/a n/a 0.0106

DisGene

SCN 0.0058 0.0201 0.0402 0.0578 0.0608 0.0826 0.0058
SCCN 0.0475 0.0190 0.0431 0.0555 0.0646 0.0828 0.0382
DHE 0.0065 0.0199 0.0316 0.0472 0.0452 0.0464 0.0081
SIN 0.0074 0.0188 0.0414 n/a n/a n/a 0.0076
MLP 0.0214 0.0191 0.0402 0.0509 0.0675 0.0744 0.0174
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J Complexity Analysis641

Table 6: Complexity analysis: model complexity and duration (wall-clock time, in seconds). C is
number of classes and P is the maximum simplex dimension.

Method #Hidden dimension #Hidden Layer Duration (sec)
Syn Cora Pubmed DBLP DisGene

SCN 16 ∗ (P + 1) 1 13 137 447 27 14
SCCN 16 1 10 42 212 13 5
DHE 8 7 582 1,038 7,853 535 784
SIN 16 ∗ 3 ∗ (P + 1) 2 26 41 325 36 29

GCN 16 1 6 29 45 n/a n/a
MLP 16 1 2 34 93 11 5

Table 7: Time complexity analysis of simplex classification with the latent representation embedding
models.

Method duration (sec)
SBM Cora PPI HPO

simplex2vec 104 168 188 286
k-simplex2vec 462 367 485 3,689

sc2vec 98 92 91 297

A crucial property for higher-order network models is efficiency. We show the model complexity642

and average duration (wall-clock time) in Tables 6 and 7. In the experiments of neural-network643

based simplex classification with features, the SCCN outperforms other baselines all datasets except644

DisGene, with low complexity and reasonable wall-clock time even compared to non-higher order645

models like GCNs and MLPs. The latent embedding learning model sc2vec is also the fastest among646

the baseline models in general.647

K Model Complexity and Performance648

We vary the hidden dimension size in the SCN, SCCN, MLP and GCN, apply the models on Cora649

dataset and show the trending of prediction performance in Figure 3. Generally, increasing model650

complexity will deliver better prediction results and achieve a lower deviation. The interquartile651

range of SCCN with hidden dimension 4 has the similar small size as the hidden dimension increase.652

The SCN and SCCN have a smaller interquartile range comparing with GCN and MLP, suggesting653

that they are more robust and stable.654

Figure 3: We shuffle the dataset and repeat each experiment 50 times with different hidden dimension
4, 8, 16, 32 on cora dataset and show the boxplot of accuracy.
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L Sampling DBLP Co-authorship655

We observe a explosion of validation loss when applying the SCCN model to the full DBLP dataset656

[5]. Nevertheless, the distribution of label prediction in the validation set is close to the distribution in657

the train set and full dataset. This phenomenon suggests that there exists bad samples in the dataset,658

whose distribution diverges from the major data. To avoid the influence of such data-points, we659

randomly sample 10% of the DBLP dataset from [5] on each dimension and apply our methods and660

baselines in the main manuscript. The explosion of validation loss no longer exists with the sampling661

ratio.662

We also vary the sampling ratio from 10% to 100%. For each sampling ratio, we randomly sample663

simplices (papers) existed in the dataset on each dimension p individually, and then we use the664

subsampled simplices with all dimensions to build the sampled higher-order data. and repeat the665

experiments 50 times on the DBLP co-authorship dataset. Here we use validation accuracy as the666

early stopping criteria for the SCN, SCCN and MLP models. The boxplot of accuracy over all667

dimensions is shown in Figure 4. The performance of the SCN model is enhanced as we sampled668

more in the co-authorship, while the performance of MLP keeps the similar. We also observe that669

when the sampling ratio is increasing, the accuracy deviation of the SCCN model is growing, as the670

number of bad samples is also increasing. The inconsistent trending of performance suggests that671

more knowledge is encoded in the simplex feature than in the topological structure in this dataset.672

We also speculate that noisy information is embedded in the connections of simplices with different673

dimensions, which the SCCN takes into considerations but the SCN does not.674
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Figure 4: We shuffle the dataset and repeat each experiment 50 times with different sampling ratio
0.1, 0.2 . . . 1.0 on the DBLP co-authorship dataset and show the boxplot of accuracy.
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M Citation Prediction675

To show the ability of the framework on tasks beyond simplex classification and compare with676

baselines not applicable to simplex classification, we further apply the sc2vec model to predict the677

total citation number of co-authorship trained with 30% missing data following the experiment setting678

in [12, 21, 26]. The latent simplex embedding learnt by sc2vec is served as the input to a neural679

network with 3 hidden layers with hidden dimension 64. The citation prediction is considered as680

accurate if the estimation is within 5% of the true value. Beside SNN [12] and SCNN [21], we also681

consider SAT [27] and SAN [26] as baselines. SAN and SAT both introduce the attention mechanism682

to simplicial complexes. SAT generalizes the graph attention networks [46] on simplicial complexes683

with shared attention weights to compute the attention coefficients on upper and down adjacent684

simplices. In contrast, SAN utilizes two independent masked self-attention mechanisms on lower and685

upper neighborhoods. The results of the baselines are shown in [26].686

The accuracy for each dimension and the number of simplices is shown in Table 8. Our method687

achieves better performance when p = 2, 4, 5. Note that the proposed sc2vec does not directly learn688

to predict simplex features (citation numbers) as other baselines. The latent embedding of each689

simplex is first learnt by sc2vec using only the topological structure. The simplex embedding results690

of sc2vec are later served as the input feature to a neural network which is trained to predict the691

citation numbers of each simplex. As shown in Table 8, the co-citation dataset has more samples692

with higher dimensions (p ≥ 2) compared to the smaller dimensions (p = 0, 1). Therefore, sc2vec693

might be biased towards simplices with higher dimensions as they are more dominant in the dataset,694

causing better latent embedding learning on simplices when their dimension p ≥ 2 and relatively695

worse embedding learning with p = 0, 1. In addition, the baseline models directly learn to predict the696

citation numbers and have different trainable weights for different dimension p. As a result, sc2vec697

performs better when p ≥ 2 and the result is worse when p = 0, 1 compared with the baseline models.698

In the future, we will consider developing new models which not only provide efficient message flow699

over the whole simplicial complex without the restriction to the dimension, but can also the potential700

bias problem.701

Table 8: Accuracy of citation prediction task. Best ones are marked in bold.

Dimension 0 1 2 3 4 5
# Simplices 352 1,474 3,285 5,019 5,559 4,547

SNN [12] 0.72 0.73 0.81 0.82 0.81 0.73
SCNN [21] 0.72 0.73 0.81 0.82 0.81 0.74
SAT [27] 0.19 0.33 0.25 0.33 0.47 0.53
SAN [26] 0.75 0.89 0.82 0.94 0.95 0.96

sc2vec 0.47 0.61 0.86 0.93 0.96 0.96
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