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A EVALUATION DETAILS

A.1 FAILURES OF TRADITIONAL METRICS

Examples of failures of traditional token-matching metrics are shown in[Figure 7|
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Figure 7: Failures of Traditional Metrics

A.2 PROMPTS FOR EVALUATION

Listing 1: Mistral Prompt for Evaluating Open-Ended Questions

<s>[INST] You are a helpful evaluator to evaluate answers to
questions about biomedical images.
Score the following answer to a question about an image with
respect to the ground truth answer with one to five stars.
Where the stars have the following meaning:
1. One Star: "Incorrect"
— The answer does not match the ground truth and contains
significant inaccuracies.
— Demonstrates a clear misunderstanding or misinterpretation
of the question.
2. Two Stars: "Partially Correct"
— The answer has some elements that match the ground truth,
but there are notable discrepancies.
- Shows partial understanding but lacks overall accuracy in
addressing the question.
3. Three Stars: "Mostly Correct"
— The answer aligns with the ground truth to a reasonable
extent, but there are some inaccuracies or gaps.
— Demonstrates a moderate understanding but may lack
4. Four Stars: "Correct with Minor Deviations"
- The answer is largely accurate and corresponds closely to
the ground truth.
— Minor deviations or omissions are present but do not
significantly impact the overall correctness.
5. Five Stars: "Perfect Match"

— The answer exactly matches the ground truth with no
discrepancies.
— Demonstrates a precise and complete understanding of the
question, providing a flawless response.
Here are some instructions on the input and output format:

— The input will be passed as json format with the following
fields that are important:

— "question": the question about the image
- "gt": the ground truth answer to the question
— "pred": the predicted answer to the question
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— The output should be in json format and look the following:
{ mistralscore: <xxx>}
where <xxx> is the number of stars you give to the answer.
Do not add anything else to the answer.
[/INST]
</s>

Listing 2: Mistral Prompt for Evaluating Closed-Ended Questions

<s>[INST] You are a helpful evaluator to evaluate answers to
questions about biomedical images.
Score the following answer to a question about an image with
respect to the ground truth answer with zero or one star.
The questions are all close ended, therefore the answer is
either correct or false, there are no states in between.
Where the stars have the following meaning:
0. Zero Star: "Incorrect"
— The answer does not match the ground truth and contains
significant inaccuracies.
— Demonstrates a clear misunderstanding or misinterpretation
of the question.
1. One Star: "Perfect Match"
— The answer exactly matches the ground truth with no
discrepancies.
— Demonstrates a precise and complete understanding of the
question, providing a flawless response.
Here are some instructions on the input and output format:
— The input will be passed as json format with the following
fields that are important:
— "question": the question about the image
- "gt": the ground truth answer to the question
— "pred": the predicted answer to the question
— The output should be in json format and look the following:
{ mistralscore: <xxx>}
where <xxx> is the number of stars you give to the answer.
Do not add anything else to the answer.
[/INST]
</s>

Listing 3: Mistral Prompt for Evaluating Closed-Ended Multilabel Questions

<s>[INST] You are a helpful evaluator to evaluate answers to
questions about biomedical images.

Score the following answer to a question about an image with
respect to the ground truth answer with 0, 0.5 or 1 star.

Each question asks for two options in the image and the answer
can either be one of the options, both of the options or

none.
The stars for rating have the following meaning:

0 Star: "Incorrect"
— The answer does not match the ground truth and contains
significant inaccuracies.
— Demonstrates a clear misunderstanding or misinterpretation
of the question.
— This is the case if
— Option A is the ground truth answer, but the prediction
is Option B
— Option B is the ground truth answer, but the prediction
is Option A
The ground truth answer is "both", but the prediction is
"none"
- The ground truth answer is "none", but the prediction is
"both"
0.5 Star: "Partially Correct"
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— The answer partially matches the ground truth, but
contains some inaccuracies.
— Demonstrates a partial understanding of the question,
providing a partially correct response.
— This is the case if
- Option A/B is the ground truth answer, but the
prediction is "both"
- Option A/B is the ground truth answer, but the
prediction is "none"
The ground truth is "both", but the prediction is option
A/B
— The ground truth in "none", but the prediction is option
A/B
1 Star: "Perfect Match"
— The answer exactly matches the ground truth with no
discrepancies.
— Demonstrates a precise and complete understanding of the
question, providing a flawless response.
— This is the case if
- Option A is the ground truth answer and the prediction
is Option A
- Option B is the ground truth answer and the prediction
is Option B
— The ground truth is "both" and the prediction is "both"
— The ground truth is "none" and the prediction is "none"

Especially for the "none" Cases:
When the ground truth is "none":
If the prediction is "none", the score should be 1 star

If the prediction is "both", the score should be 0
stars.

If the prediction is Option A or B, the score should be

0.5 stars.
When the prediction is "none":

If the ground truth is "none", the score should be 1
star.

If the ground truth is "both", the score should be 0
stars.

If the ground truth is Option A or B, the score should
be 0.5 stars.

Especially for the "both" Cases:
When the ground truth is "both":
If the prediction is "both", the score should be 1 star

If the prediction is "none", the score should be 0
stars.

If the prediction is Option A or B, the score should be

0.5 stars.
When the prediction is "both":

If the ground truth is "both", the score should be 1
star.

If the ground truth is "none", the score should be 0
stars.

If the ground truth is Option A or B, the score should
be 0.5 stars.

Here are some instructions on the input and output format:
— The input will be passed as json format with the following
fields that are important:
- "question": the question about the image
- "gt": the ground truth answer to the question
— "pred": the predicted answer to the question
— The output should be in json format and look the following:
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{ mistralscore: <xxx>}
where <xxx> is the number of stars you give to the answer.
Do not add anything else to the answer.
[/INST]
</s>

B HUMAN RATER STUDY DETAILS

B.1 DETAILED RESULTS OF THE HUMAN RATER STUDY

The following figures show detailed results of the human rater study. [Figure 8| [Figure 9] and |Fig-|
ure 10| show scatter plots with the correlation between the human ratings and the other metrics.
Figure 11 shows detailed correlation results, including the correlation between Mistral and the other
metrics.
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Figure 8: Scatter plots showing the correlation between the human ratings and respective other
metrics on the SLAKE dataset. Size of the dots indicates the number of ratings that correspond to

that point.
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Figure 9: Scatter plots showing the correlation between the human ratings and respective other

metrics on the OVQA dataset. Size of the dots indicates the number of ratings that correspond to
that point.
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Figure 10: Scatter plots showing the correlation between the human ratings and respective other
metrics on the MIMIC dataset. Size of the dots indicates the number of ratings that correspond to

that point.
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Figure 11: Extended Results of the Human Rater Study. Human interrater correlation is cal-
culated between two human raters. Shown are the Kendall and Spearman correlation between the
human rating and all traditional metrics as well as the correlation between Mistral and the traditional
metrics.

C ROBUSTNESS STUDY DETAILS

C.1 HYPERPARAMETER SEARCH

We performed several hyperparameter sweeps for each dataset and PEFT method in order to find
suitable setups for the experiments in the PEFT robustness study. For the hyperparameter sweeps,
we trained on the whole training set for each dataset and PEFT method and ran inference on the
validation set. Training ran for 3 epochs and 3 seeds for each experiment.

22



Under review as a conference paper at ICLR 2025

C.1.1 PROMPT TUNING

For prompt tuning, we performed the following hyperparameter sweeps:

e Number of tokens: [40, 60, 80, 100]
e Learning rate: [3e — 2, 3e — 1]

The results for SLAKE can be found in[Table 1, for OVQA in|Table 2, and for MIMIC in iable 3.

Table 1: Hyperparameter sweep for prompt tuning on the SLAKE dataset. Selected hyperparameters
for the final PEFT robustness study are highlighted. Mean and standard deviation are reported for
three seeds.

# Tokens Learning Rate Closed-Ended (Mistral Accuracy) Open-Ended (Mistral Score)

40 3e-2 0.79 +/- 0.02 4.17 +/- 0.04
40 3e-1 0.8 +/- 0.02 4.19 +/- 0.05
60 3e-2 0.76 +/- 0.04 4.17 +/- 0.03
60 3e-1 0.81 +/- 0.01 4.17 +/- 0.05
80 3e-2 0.78 +/- 0.05 4.15 +/- 0.01
80 3e-1 0.82 +/- 0.01 4.18 +/- 0.02
100 3e-2 0.77 +/- 0.06 4.15 +/- 0.05
100 3e-1 0.81 +/- 0.0 4.18 +/- 0.03

Table 2: Hyperparameter sweep for prompt tuning on the OVQA dataset. Selected hyperparameters
for the final PEFT robustness study are highlighted. Mean and standard deviation are reported for
three seeds.

# Tokens Learning Rate Closed-Ended (Mistral Accuracy) Open-Ended (Mistral Score)

40 3e-2 0.85 +/- 0.0 2.96 +/- 0.06
40 3e-1 0.85 +/- 0.01 2.95 +/- 0.05
60 3e-2 0.85 +/- 0.01 2.98 +/- 0.04
60 3e-1 0.85 +/- 0.0 2.97 +/- 0.04
80 3e-2 0.81 +/- 0.04 2.96 +/- 0.04
80 3e-1 0.84 +/- 0.01 2.99 +/-0.02
100 3e-2 0.83 +/- 0.02 2.99 +/- 0.04
100 3e-1 0.85 +/- 0.0 3.0 +/- 0.03

Table 3: Hyperparameter sweep for prompt tuning on the MIMIC dataset. Selected hyperparameters
for the final PEFT robustness study are highlighted. Mean and standard deviation are reported for
three seeds.

# Tokens  Learning Rate  Closed-Ended (Mistral Accuracy)  Open-Ended (Mistral Score)

40 3e-2 0.67 +/- 0.02 3.17 /- 0.03
40 3e-1 0.67 +/- 0.01 3.15 +/- 0.04
60 3e-2 0.68 +/- 0.01 3.14 +/- 0.01
60 3e-1 0.69 +/- 0.01 3.19 +/- 0.02
80 3e-2 0.66 +/- 0.05 3.17 4/-0.01
80 3e-1 0.68 +/- 0.02 3.17 4/- 0.03
100 3e-2 0.68 +/- 0.02 3.19 +/- 0.03
100 3e-1 0.67 +/- 0.01 3.17 +/- 0.03
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C.1.2 LoRA

For LoRA, we performed the following hyperparameter sweeps:

e Rank: [16,32, 64,128, 256]
e Learning rate: [3e — 5, 3e — 4]

a is set to 2 x Rank. The results for SLAKE can be found in|Table 4, for OVQA in[Table 5| and for
MIMIC in Note that some of the hyperparameter configurations led to instabilities during
training loss, indicated by “"NaN”.

Table 4: Hyperparameter sweep for LORA on the SLAKE dataset. Selected hyperparameters for
the final PEFT robustness study are highlighted. Mean and standard deviation are reported for three
seeds. Rows with "NaN” showed instabilities in the loss during training.

Rank Learning Rate Closed-Ended (Mistral Accuracy) Open-Ended (Mistral Score)

16 3e-5 0.83 +/- 0.01 4.24 +/- 0.02
16 3e-4 0.82 +/- 0.01 4.23 +/- 0.05
32 3e-5 0.85 +/- 0.01 4.27 +/- 0.04
32 3e-4 0.73 +/- 0.07 4.2 +/-0.03
64 3e-5 0.84 +/- 0.01 4.29 +/- 0.04
64 3e-4 0.52 +/- 0.07 3.01 +/-1.28
128 3e-5 0.84 +/- 0.01 4.31 +/- 0.03
128 3e-4 NaN NaN
256 3e-5 0.83 +/- 0.01 4.28 +/- 0.01
256 3e-4 NaN NaN

Table 5: Hyperparameter sweep for LoRA on the OVQA dataset. Selected hyperparameters for the
final PEFT robustness study are highlighted. Mean and standard deviation are reported for three
seeds. Rows with "NaN” showed instabilities in the loss during training.

Rank  Learning Rate  Closed-Ended (Mistral Accuracy)  Open-Ended (Mistral Score)

16 3e-5 0.84 +/- 0.0 3.02 +/- 0.07
16 3e-4 0.83 +/- 0.02 3.08 +/- 0.03
32 3e-5 0.85 +/- 0.0 3.04 +/- 0.01
32 3e-4 0.82 +/- 0.01 2.99 +/- 0.04
64 3e-5 0.85 +/- 0.0 3.11 +/- 0.02
64 3e-4 0.65 +/- 0.0 2.04 +/- 0.1
128 3e-5 0.85 +/- 0.0 3.09 +/- 0.04
128 3e-4 NaN NaN
256 3e-5 0.85 +/- 0.0 3.1+4/-0.03
256 3e-4 NaN NaN

Table 6: Hyperparameter sweep for LoORA on the MIMIC dataset. Selected hyperparameters for the
final PEFT robustness study are highlighted. Mean and standard deviation are reported for three
seeds. Rows with "NaN” showed instabilities in the loss during training.

Rank Learning Rate Closed-Ended (Mistral Accuracy) Open-Ended (Mistral Score)

16 3e-5 0.7 +/- 0.01 3.314/-0.01
16 3e-4 0.68 +/- 0.01 3.18 +/- 0.04
32 3e-5 0.71 +/- 0.0 3.33 +/-0.02
32 3e-4 0.42 +/-0.16 2.34 +/- 0.06
64 3e-5 0.71 +/- 0.01 3.33 +/-0.03
64 3e-4 NaN NaN
128 3e-5 0.7 +/- 0.0 3.35 +/- 0.04
128 3e-4 NaN NaN
256 3e-5 NaN NaN
256 3e-4 NaN NaN
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C.2 (1A
For (IA)3, we performed the following hyperparameter sweeps:
e Learning rate: [3e — 3,3e — 2,3e — 1]
The results for SLAKE can be found in [Table 7, for OVQA in and for MIMIC in [Table 9!
Table 7: Hyperparameter sweep for (IA)3on the SLAKE dataset. Selected hyperparameters for the

final PEFT robustness study are highlighted. Mean and standard deviation are reported for three
seeds.

Learning Rate Closed-Ended (Mistral Accuracy) Open-Ended (Mistral Score)

Ir3e-3 0.63 +/- 0.02 3.74 +/- 0.02
Ir3e-2 0.83 +/- 0.01 4.28 +/- 0.02
Ir3e-1 0.65 +/- 0.01 4.21 +/- 0.05

Table 8: Hyperparameter sweep for (IA)%on the OVQA dataset. Selected hyperparameters for the
final PEFT robustness study are highlighted. Mean and standard deviation are reported for three
seeds.

Learning Rate Closed-Ended (Mistral Accuracy) Open-Ended (Mistral Score)

Ir3e-3 0.75 +/- 0.01 2.84 +/- 0.02
Ir3e-2 0.84 +/- 0.0 3.08 +/- 0.01
Ir3e-1 0.78 +/- 0.04 2.97 +/- 0.05

Table 9: Hyperparameter sweep for (IA)30on the MIMIC dataset. Selected hyperparameters for the
final PEFT robustness study are highlighted. Mean and standard deviation are reported for three
seeds.

Learning Rate Closed-Ended (Mistral Accuracy) Open-Ended (Mistral Score)

Ir3e-3 0.53 +/- 0.0 2.86 +/- 0.01
Ir3e-2 0.7 +/- 0.01 3.3 +/-0.04
Ir3e-1 0.61 +/- 0.05 3.06 +/- 0.04
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C.3 DATASET DETAILS

C.3.1 SLAKE

The SLAKE dataset |Liu et al. (2021a) is a bilingual radiological VQA dataset, containing English
and Chinese questions. We use the English subset of the SLAKE dataset. The dataset is composed
of MRI, CT, and X-ray images. All images are 2D, so for the MRI and CT images, single slices are
extracted. For each question, metadata information about the location, the modality, and the content
is provided. Overall, the images are split into 5 different body locations, 11 different content types
(question types), and the mentioned three modalities.

The exact sizes of the dataset splits are listed in[Table 10} Note that for the modality shift, we merged
the test set with the OoD cases from the training set, since the images are distinct, and thus, the same
image cannot appear in the training and test set. As this is not the case for the question type shift,
we only use the OoD cases from the test set here.

Table 10: Size of the SLAKE dataset for the different splits.

Split | iid/OoD/all | # Cases
Whole Dataset
Train all 4866
Validate all ‘ 1043
Modality Shift (OoD: X-Ray)
Train iid. 3448
Test iid. 689
Test OoD 1779
Question Type Shift (OoD: Size)
Train iid. 4581
Test iid. 994
Test OoD 56

C.3.2 OVQA

The OVQA dataset [Huang et al.| (2022) is an orthopedic VQA dataset, containing CT and X-Ray
images. All images are 2D, so for the CT images, either a 3D rendering is shown as a 2D image or a
single plane. For each question, metadata information is provided about the imaged organ (like the
“location” in the SLAKE dataset), and the question type (like the “content” in SLAKE) is provided.
The dataset contains 6 different question types and 4 different body parts.

The exact sizes of the dataset splits are listed in[Table TT. We removed closed-ended questions with
more than two categories to choose from and closed-ended questions where the categories to answer
were not exactly contained in the question. As for the SLAKE dataset, we merged the questions
from the training set to the OoD test set for the organ shift, but not for the question type shift.

Table 11: Size of the OVQA dataset for the different splits.

Split | iid/OoD/all | # Cases
Whole Dataset
Train all 13492
Validate all 1645
Organ Shift (OoD: Leg)
Train iid. 8755
Test iid. 1044
Test OoD 5350
Question Type Shift (OoD: Organ System)
Train iid. 11924
Test iid. 1420
Test OoD 237

C.3.3 MIMIC-CXR-VQA

The MIMIC-CXR-VQA dataset |Bae et al. (2023)) is a chest X-ray dataset, which is built based on
the MIMIC-CXR dataset/Johnson et al.|(2019), the MIMIC-IV dataset|{Johnson et al.[(2023), and the
Chest ImaGenome dataset Wu et al.|(2021). For each question, the semantic type is specified. Three

CLENET]

different semantic types are specified, which are ”choose”, ”query”, and “verify”. For ”choose”, the
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task is to choose between two options provided in the answer, but also both or none of the options
can be correct. For ”query”, the task is to list all the categories that match the questions, e.g. all
anatomical findings. Lastly, ”verify” are yes/no questions. All the questions can be answered based
on a fixed set of classes, where the dataset overall contains 110 answer labels. The answers are given
as a list of the correct classes. We preprocess the questions differently, based on their semantic type:
For the ”choose” questions, whenever the list of answers contains both options, we change the an-
swer to “both”, and whenever the list of answers is empty, we change the answer to “none”. For
the "query” questions, we concatenate the list of answers to one string, with the answer labels being
comma-separated. For the “verify” questions, we do not apply any specific preprocessing.

The information for the patient’s gender, ethnicity, and age are taken from the MIMIC-IV dataset.
Whenever the metadata information of a subject ID is not unique, we set it to "none”. In the re-
spective shifts, we exclude questions where the corresponding metadata field is not known, which
includes all fields with ’none”, and for the ethnicity shift also the value "unknown/other”. The exact

sizes of the dataset splits are listed in

Table 12: Size of the MIMIC dataset for the different splits.

Split | ii.d/OoD/all | # Cases
Whole Dataset
Train all 290031
Validate all 73567
Gender Shift (OoD: Female)
Train iid. 147790
Test iid. 7277
Test OoD 6120
Ethnicity Shift (OoD: Non-white)
Train iid. 171593
Test iid. 8101
Test OoD 3713
Age Shift (OoD: Young)
Train iid. 155941
Test iid. 6686
Test OoD 2076

C.3.4 RATIO OF UNIQUE QUESTIONS IN THE DATASETS

Table 13: Ratio of unique questions in the datasets

\ || Overall Unique Ratio

MIMIC 290031 132387 0.46

Train | SLAKE 4866 579 0.12
OovQA 13492 960 0.07

MIMIC 73567 31148 0.42

Val SLAKE 1043 314 0.3
OVQA 1645 266 0.16

MIMIC 13793 7565 0.55

Test SLAKE 1050 313 0.3
OvVQA 1657 335 0.2

C.4 DETAILED RESULTS OF THE ROBUSTNESS STUDY

Tables show the detailed results of the robustness study. Further, shows the inter-
method and inter-shift variability of the different PEFT methods, so not including full FT.
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Table 14: Robustness Results on the SLAKE Dataset. Results with £ indicate the mean and
standard deviation over three seeds. Note that the most frequent baseline can only be calculated for
the i.i.d. set as for OoD too few questions match the training set. RR: Relative Robustness.

Modality Shift Question Type Shift
OoD: X-Ray OoD: Size
Closed-Ended | Open-Ended Closed-Ended | Open-Ended
iid. 0OoD RR iid. 0OoD RR iid. OoD RR iid. 0OoD RR
No Finetune 0.59 0.29 0.49 291 2.79 0.96 0.54 0.47 0.87 2.86 3.16 111
Full Finetune 0.57 0.48 0.83 4.03 3.17 0.79 0.56 0.35 0.63 4.11 4.38 1.07
Prompt 0.8540.01 0.62+£0.03  0.73+£0.05 4.22+0.04  3.69+0.06  0.8740.02 0.85+0.01 0.494+0.12  0.5740.14 | 4.17+£0.01 4.35+0.16 1.04+0.04
LoRA 0.88+0.0  0.45£0.04  0.51£0.04 4.34+0.06  3.61+£0.06  0.8340.03 0.87£0.0  0.3940.07  0.4540.08 4.260.01 4.26+0.07 1.040.02
(14)® 0.85+0.01 0.64£0.07  0.75£0.08 4.35£0.02 3.440.15 0.78+0.04 0.874£0.02  0.53£0.06  0.61£0.06 | 4.2330.01 4.21£0.27  0.99£0.07
Most Freq. 0.69 - 3.22 - - 0.696 - - 3.05 - -

Table 15: No Image Baseline on the SLAKE Dataset. Results with + indicate the mean and
standard deviation over three seeds. The model was trained with the same methods as just
without seeing the image content. RR: Relative Robustness.

Modality Shift Question Type Shift
OoD: X-Ray OoD: Size
Closed-Ended | Open-Ended Closed-Ended | Open-Ended
iid. 0OoD RR iid. OoD RR iid. 0OoD RR iid. OoD RR
No Finetune 0.46 0.35 0.75 2.13 233 1.1 0.46 0.29 0.64 2.22 2.03 091
Prompt 0.554+0.01 0.540.01 0.91+0.03 3.2440.0 1.884+0.06  0.5840.02 0.59+0.05 0.55£0.07  0.94+0.18 3.184+0.04 2.26+0.6  0.71+0.19
LoRA 0.64+0.03 0.47£0.07  0.73%0.11 3.24+0.02 1.93£0.05 0.6£0.02 0.69£0.01 0.53£0.18  0.7630.25 3.12+0.03 2.95£0.0  0.94£0.01
(IA)3 0.554+0.01 0.47+0.02  0.85+0.03 3.2610.01 1.8740.02 0.5740.01 0.55+£0.08  0.53+£0.06  0.9640.09 3.1540.02 2.64+0.53 0.84+0.17

Table 16: Robustness Results on the OVQA Dataset. Results with + indicate the mean and
standard deviation over three seeds. Note that the most frequent baseline can only be calculated for
the i.i.d. set as for OoD too few questions match the training set. RR: Relative Robustness.

Body Part Shift Question Type Shift
OoD: Leg OoD: Organ System
Closed-Ended | Open-Ended Closed-Ended | Open-Ended

iid. 0OoD RR iid. 0OoD RR iid. 0OoD RR iid. 0OoD RR
No Finetune 0.42 0.4 0.96 2.4 245 1.02 0.43 0.33 0.75 2.39 1.94 0.81
Full Finetune 0.7 0.55 0.77 3.16 223 0.71 0.76 0.08 0.1 297 1.02 0.34
Prompt 0.86+0.0  0.7540.01 0.87+0.01 3.1240.02  23840.02  0.76=0.01 0.82+£0.04  0.86+0.01 1.0540.06 2.940.01 1.74£0.02  0.59+£0.01
LoRA 0.86+0.01 0.77£0.0 0.940.01 3.23+£0.02 2474005  0.7630.02 0.84£0.0  0.744+0.06  0.88+0.07 3.0940.03 1.7240.11 0.56£0.04
(14)® 0.83+£0.02  0.75+0.01 0.940.02 321+0.05  2.4630.04 0.77£0.0 0.8+£0.02  0.724+0.11 0.91+£0.15 2.98+0.06 1.51£0.05  0.51£0.02
Most Freq. 0.75 - - 2.57 - - 0.73 - - 223 - -

Table 17: No Image Baseline on the OVQA Dataset. Results with + indicate the mean and
standard deviation over three seeds. The model was trained with the same methods as just
without seeing the image content. RR: Relative Robustness.

Body Part Shift Question Type Shift
OoD: Leg OoD: Organ System
Closed-Ended | Open-Ended Closed-Ended | Open-Ended

iid. 0OoD RR iid. OoD RR iid. 0OoD RR iid. OoD RR
No Finetune 0.42 0.36 0.85 1.37 2.02 1.47 0.41 0.4 0.97 1.39 1.29 0.93
Prompt 0.74£0.01 0.69£0.02  0.93%0.01 2.63£0.1 2.12+£0.07  0.81£0.01 0.67£0.03  0.4440.01 0.6640.02 2.35+0.06 1.26+0.07  0.54£0.02
LoRA 0.74£0.0 0.7+0.0  0.95£0.01 2.6740.16  2.1440.01 0.81+0.05 0.73£0.0  0.43%£0.03 0.6+0.04 2.36+0.02 1.2940.09  0.5540.04
(14)° 0.74£0.0  0.69£0.02  0.93£0.02 274£0.07  2.13£0.04  0.7840.03 0.7£0.04  0.39£0.06 0.5640.1 2.36+0.02 1.28+0.06  0.54£0.02

Table 18: Robustness Results on the MIMIC Dataset. Results with £ indicate the mean and
standard deviation over three seeds. Note that the most frequent baseline can not be calculated as
too few questions match the training set. RR: Relative Robustness.

Gender Shift Ethnicity Shift Age Shift
0D: Female 00D: Non-white 00D: Young
Closed-Ended Open-Ended Closed-Ended | Open-Ended Closed-Ended Open-Ended
iid. 00D RR idd. 00D RR idd. 00D RR iid. 00D RR iid. 00D RR iidd. 00D RR
No Finetune 051 049 097 236 231 098 05 049 098 231 234 099 051 047 092 236 236 1
Full Finetune 5 0.75 101 341 344 101 072 077 3 35 107 071 079 L2 33 345 5
Prompt 0524006 0544005  104£003 | 3254005 332005 101400 || 0542014 0642014 1L19£005 | 3144011 3374028 1074005 || 0514014 0664007 137035 | 3194003 3354008 105001
0754001 076400 102001 | 335+0.11 3412006 1024001 || 0714003 0795002  LI2+002 | 3324004 358001  LOSH0.01 || 073£001 0784001 107400 | 3362004 354401  105£0.02
(1) 063401 0654008 1042004 | 3304004 3362005 1014001 || 06£006 074005  L16£002 | 3264004 351400 1083002 || 0524002 0724006 139+£005 | 3184009 334021 1054004

Table 19: No Image Baseline on the MIMIC Dataset. Results with + indicate the mean and
standard deviation over three seeds. The model was trained with the same methods as just
without seeing the image content. RR: Relative Robustness.

Gender Shift Ethnicity Shift Age Shift
OoD: Female OoD: Non-white OoD: Young
Closed-Ended ‘ Open-Ended Closed-Ended ‘ Open-Ended Closed-Ended ‘ ‘Open-Ended
iid. 00D RR iid. 0OoD RR iid. 0oD RR iid. 00D RR iid. 0oD RR iid. 00D RR
No Finetune 049 048 097 234 3 101 049 048 097 237 239 101 05 ) 233 249 107
Prompt 0.53£0.0 0.5+0.0 0.95£0.0 | 2.71£0.01 2632002 0.97£0.01 054200 042100 078200 | 2712004 2432002 0.940.01 0600 0342001 0.57£0.01 2.8940.03 2.330.02 0.8£0.0
LoRA 053500 05500  095:00 | 2743001 2642001  0.97£00 || 054500 041300 076200 | 2755002 2434002  085£001 || 0594001 035£002  0.6+0.04 | 2032004 2254002 077001
(> 0532001 0514001 0955001 | 2723003 2642002 0974001 || 0.54£00 042400 077200 | 2713002 2462002 0912001 06200 034200 0572001 | 2915002 2294004 079001
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Figure 12: Standard deviation between shifts vs. standard deviation between PEFT methods, not
including full FT. The type of shift has a higher impact on the robustness than the PEFT method.

D CORRUPTION STUDY

We compared the realistic shifts defined for our datasets with artificial shifts, meaning image
corruptions, to assess whether artificial shifts correspond to real-world shifts. The artificial data
shifts were generated through image corruptions, including blur, Gaussian noise, and brightness
adjustments. They were applied in different strengths (low, medium, and high). We used OpenCV
for the image corruptions with the settings shown in[Table 20.

Table 20: Corruption settings for the artificial shifts. Brackets indicate the altered parameter for
each corruption, [...,...] indicate ranges for the corruption where randomly a value in that range is
chosen.

Blur (Kernel Size) Gaussian Noise (Mean) Brightness (Alpha)

Low 5 [0, 0.06] [1.1,2]
Medium 7 [0.09, 0.15] [2.5,4]
High 11 [0.18, 0.25] [4.5, 6]

For this sample study, we used the LLaVA-Med model fine-tuned on the SLAKE dataset with the
(IA)®method. The i.i.d. and OoD samples for realistic shifts were as previously described . For
artificial shifts, the i.i.d. train and test samples were identical to those used for realistic shifts, while
OoD test samples were created by corrupting the i.i.d. test images with varying strengths of blur,
brightness, and noise. Each corruption method was applied with a probability of 0.5, with at least
one corruption always being applied.

Table 21/shows the relative robustness results for both artificial and realistic shifts. The results show
that both modality shift and question type shift exhibit lower relative robustness compared to all
artificial shifts at low, medium, and high strengths. This suggests that artificial shifts, such as image
corruption, fail to accurately represent the challenges posed by real-world, realistic shifts. The most
prominent example here is the relative robustness of closed-ended questions under the question type
shift (realistic shift), which is up to 96% compared to the realistic shift which only has 61%. The
only exception where the realistic shift shows higher robustness is the question type shift on the
open-ended questions, which is already nearly 100% on the realistic shift.
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Table 21: Robustness results for the artificial and realistic shifts on SLAKE dataset

Corruption Shift (OoD: Corrupted i.i.d images) Corruption Shift (OoD: Corrupted i.i.d images)
Closed Ended | Open Ended Closed Ended | Open Ended
iid. 0OoD RR iid. 0OoD RR iid. OoD RR idd. 0OoD RR
Low Corruption 0.85+0.01  0.83£0.01  0.98+0.0 | 4.35+0.02 4.21£0.05 0.97+0.02 | 0.87+£0.02  0.84+0.0  0.96+0.02 | 4.23+0.01 4.16£0.03  0.98+0.01

Medium Corruption 0.85+0.01  0.79+0.02 0.94+0.02 | 4.35+£0.02  4.0+£0.09  0.92+0.02 | 0.87+0.02 0.82+0.01 0.94+0.01 | 4.23+0.01 3.96+0.03 0.94+0.01
High Corruption 0.85+0.01  0.74+0.01  0.87+0.01 | 4.35£0.02 3.794+0.09 0.87+0.02 | 0.87£0.02 0.76+0.02 0.874+0.03 | 4.23+0.01 3.874+0.03 0.91+0.01

Modality shift (OoD: X-Ray) Question Type Shift (OoD: Size)
Closed Ended | Open Ended Closed Ended | Open Ended
idd. OoD RR iid. OoD RR iid. OoD RR iid. OoD RR
Realistic Shift 0.85£0.01  0.64£0.07 0.75£0.08 | 4.35£0.02 3.4+0.15 0.78%0.04 | 0.87+0.02 0.53+0.06 0.61+0.06 | 4.23+0.01 4.21+0.27 0.99+0.07

E MULTIMODAL SHIFTS

We conducted an ablation study on the OVQA dataset to evaluate the impact of a multimodal shift
compared to the previously introduced unimodal shifts. This multimodal shift combines the Mani-
festation (Body Part) and Question Type Shifts reported in our experiments. Specifically, we defined
the OoD set as samples featuring body part "Leg” and question type “Organ System”, with all other
samples classified as i.i.d. As shown in [Figure 13| the multimodal shift demonstrates the lowest
robustness compared to unimodal shifts, which is expected given that multimodal shifts represent a
more extreme divergence than their unimodal components.

OVQA
Open-Ended Open-Ended
, Body Part o8
30 iid 07
OoD @
25 ' g 06
8 Question Type 5 os Body Part
@20 . id g .. I Question Type
o x 0
515 ' OoD 2 I Multimodal
= 5
S
&

Image Organ Question Type Multimodal Image Organ Question Type Multimodal

Figure 13: Performance results on OVQA dataset with image organ shift, question type shift and
multimodal shift which combines image organ shift and question type shift.
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