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A RELATED WORK

Inferring causal relationships from observed data is a popular field of statistics and artificial intelli-
gence. As described in the introduction, from the scope of application, most methods can be divided
into three areas: a) Infer the causal relations among measured variables with the assumption that
there are no latent variables, for example, PC algorithm (Spirtes & Glymour, [1991)), LINGAM-
based method (Shimizu et al.| 2006)), Greedy search (Chickering, [2002)). b) Infer the causal relations
among measured variables in the presence of latent variable interference, for example, FCI and its
variants (Spirtes et al.l [1995; |Colombo et al., 2012} [Claassen et al 2013)). c) Infer the causal rela-
tions among latent variables, for example, measurement models (Silva et al.l [2006; Kummerfeld &
Ramsey, 2016;|Cai et al., 2019; Xie et al., 2020) and hierarchical models (Pearl, |1988;|Zhang), 2004;
Choi et al.,[2011; Drton et al., [2017; Xie et al.|[2022; Huang et al., 2022} [Kong et al., 2023)).

Depending on the different constraints and criteria used, most previous causal discovery methods
can be divided into the following main categories:

1.) (Non-parametric setting) Conditional independence constraint: The PC algorithm (Spirtes &
Glymour, [1991), as well as the FCI algorithm (Spirtes et al., |1995) and their variants (Colombo
et al.| [2012; |Claassen et al., 2013)), are prominent examples of non-parametric methods that infer
causal relationships among measured variables by testing conditional independence. They do not
care about whether the causal relationships are linear or not. However, these methods struggle with
the latent variables and their causal relationships. Another limitation is that they yield multiple
Markov equivalent structures, introducing ambiguity regarding the presence of confounders in the
resulting graph.

2.) (Linear Gaussian setting) Tetrad condition and rank deficiency constraint: By investigating the
sub-covariance matrix of measured variables, Tetrad condition (Spearman, |1928)) allows to locate
latent variables and infer the causal relationships among them in linear-Gaussian settings (Pearl,
1988 |Silva et al.| |2006; Kummerfeld & Ramsey} 2016). These methods generally assume that each
latent variable possesses at least three pure measured variables as pure children, and each measured
variable is exclusively a pure child of a single latent variable. |Squires et al|(2022) presented a
Tetrad-based method that allows latent variables to be influenced by measured variables. It relies on
strong assumptions, such as the absence of edges between pairs of observed nodes or between pairs
of latent nodes. The rank deficiency constraint is a general version of the Tetrad condition. [Huang
et al| (2022) use it to infer a latent hierarchical structure, which assumes k+1 pure children and
k+1 neighbors for a set of latent variables with size k, and implicitly assumes all clustered children
are pure children. Similar to the conditional independence constraint-based methods, they return a
result that is asymptotic to the ground truth graph.

3.) (Linear non-Gaussian setting) Independent component analysis (ICA): |Shimizu et al.| (2006)
leveraged non-Gaussianity of data and showed that a linear non-Gaussian acyclic model (LINGAM)
is identifiable based on ICA algorithm. By over-complete ICA, for example, Hoyer et al.| (2008);
Shimizu et al.| (2009); [Tashiro et al.| (2014} learn the causal structure with latent variables. The
limitation of over-complete ICA is that there are equivalence structures and the estimation is easy
to fall into local optima. Recently, based on overcomplete ICA, |[Adams et al.| (2021) established
necessary and sufficient conditions for structure identifiability in both the linear non-Gaussian and
the linear heterogeneous setting. However, it does not have a practical estimation approach and
requires knowing the number of latent variables at the beginning.

4.) (Linear non-Gaussian setting) Independent noise, Triad constraint, and GIN condition: |Shimizu
et al.| (2011) proposed DirectLiNGAM in 2011, which learns LINGAM by replacing the ICA al-
gorithm with regression and independence tests of noises. Triad constraint (Cai et al., [2019) is an
extension of the independent noise condition for latent variables with the same assumption that the



noise terms are non-Gaussian, and is used to discover the structure of latent variables. GIN condi-
tion|Xie et al.|(2020) is a more general version that allows multiple parents behind multiple children.
Xie et al.| (2022)) identify a latent hierarchical structure by using the GIN condition, which assumes
one-factor clusters and measured variables to be descendants of latent variables.

5.) (Linear setting) Matrix decomposition and Optimization: Matrix decomposition techniques have
been applied to model causal structures. Under specific conditions, the precision matrix can be
decomposed into two components: a low-rank matrix that characterizes the causal relationships from
latent variables to measured variables, and a sparse matrix that represents the relationships among
measured variables (Chandrasekaran et al.l [2010; 2011). By requiring triple measured variables
than latent variables, |[Anandkumar et al.|(2013)) decompose the covariance matrix, and is capable of
handling DAGs with effective depth one and multi-level Directed Acyclic Graphs (DAGs) (similar
to latent hierarchical structures), with the help of low-order observable moments.

6.) Others: With the help of discrete latent variables, |[Kivva et al.[(2021) proposed a mixture oracles-
based method to identify the potentially nonlinear latent variable graph. Recently, Kong et al.| (2023)
learns a nonlinear latent hierarchical causal model by self-supervised representation learning. This
innovative method accommodates general nonlinearity and multi-dimensional continuous variables.
However, this approach still relies on strong assumptions regarding the data generation process and
the estimation is easy to fall into local optima.

B WHEN THE PO-LINGAM IDENTIFIABILITY CONDITION IS VIOLATED

B.1 THEORETICAL ANALYSIS

PO-LiNGAM Identifiability Condition: a.) Any latent variable is in at least one atomic unit. b.)
For any two atomic units with overlapping variables, their non-overlapping parts do not influence
each other.

(1) Violation of identifiability condition(a): Our algorithm discovers new atomic units by clustering
their individual pure children, and whether the number of pure children for latent variables satisfies
the condition is tested during the discovery process, which is mainly achieved by Theorem 2, Remark
2, and Corollary 1. Meanwhile, please notice that our algorithm sequentially identifies the whole
causal graph from leaves to roots. The higher-order causal structure can be inferred only after the
lower-order causal structure are fully identified. As a consequence, the algorithm halts its inference
of the higher-order causal structure when the latent set lacks a sufficient number of individual pure
children to be located, so that it does not output spurious latent variables. In other word, since this
condition is violated, it can not detect all latent variables, but we can still trust the discovered ones.
The atomic units, whose causal orders are lower or equal to the unidentified latent set, and the causal
relations among them are still identifiable.

(i1) Violation of identifiability condition(b): Let’s consider the example in Figure a), where two
atomic units {Lq, Lo} and {Lo, L3} are both caused by {X;}. Meanwhile, L; causes Lz, which
violates identifiability condition(b). In our algorithm, for any two atomic units with overlapping
variables, it ignores the influence of non-overlapping part of one atomic unit to that of another and
infer their causal relationships separately, as illustrated in Remark 1 and Remark 2. Therefore, the
discovered causal graph will ignore the causal relationships between non-overlapping parts of any
two overlapping atomic units, as shown in Figure [T[b).

A /T\

(a) Ground—truth graph (b) Dlscovered graph
Figure 1: An example of causal graphs where identifiability condition(b) is violated.



B.2 EXPERIMENTS

(1) To evaluate the performance of our algorithm under the violation of condition(a), we adjusted
the causal graphs in Cases 2 and 3 of the simulation experiment, resulting in Case A and Case B of
Figure 2| In Case A, L; lacks sufficient pure atomic unit children for discovery due to the causal
chain Xo — X3 — X4. Nevertheless, the algorithm can still identify the causal structure of L
and its descendants, as shown in Figure b). Moreover, in Case B, where L, cannot be discovered
due to having only one pure atomic unit child, namely X;, the algorithm still identifies the causal
structure of L and Ly, as shown in Figure [2{d). The corresponding average numerical result from
ten executions is presented in Table|l| The high Correct Ordering Rate indicates that the discovered
partial causal graph is highly accurate.
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(a) Case A: ground truth (b) Case A: discovered graph
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X1 Xo X3 Xu X5 X X X1 Xo X3 Xu X5 X6 X7
(c) Case B: ground truth (d) Case B: discovered graph

Figure 2: Causal graphs that violate identifiability condition(a), and the corresponding discovered
results acquired by our method.

X4

Table 1: The performance of our method on three causal graphs that violate the PO-LiNGAM iden-
tifiability condition. Case A and Case B violate the condition(a), as shown in Figure 2] Case C
violates the condition(b), as shown in Figurem

Case A Case B Case C

5k | 10k | 50k | 5k | 10k | 50k | 5k | 10k | 50k

Correct Ordering Rate 1 098 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 094 | 094 | 1.0

Error Rate in Latent Variables | | 0.45 | 0.5 05 | 053] 05 0.5 | 0.66 | 0.52 | 0.33

F1-score 1 0.55 | 0.56 | 0.56 | 0.60 | 0.62 | 0.62 | 0.54 | 0.66 | 0.85

(ii) To evaluate the performance of our algorithm under the violation of condition(b), we tested the
algorithm with the ground-truth graph in Figure [T(a). The result discovered by our method is in
Figure[I[b). The corresponding average numerical result from ten executions is presented in Case
C of Table[I] The high Correct Ordering Rate indicates that the discovered partial causal graph is
highly accurate.

C DETAILS OF IDENTIFICATION ALGORITHM

Our algorithm is iterative, with each iteration comprising three main phases, progressively uncover-
ing the entire causal graph from leaf to root nodes. For each iteration, it first recursively identifies
the leaf nodes and their parent nodes from the active atomic unit set A in the causal graph composed
of atomic units of A and their latent confounders, and update A (Phase I). Then, we discover new
atomic units by clustering their pure children in A, and update A (Phase IT). After that, we refine
newly discovered atomic units by checking overlapping atomic units and decomposable ‘atomic
units’, and update A (Phase III). At the end of an iteration, A is sent back to the Phase I and a new
iteration starts until no more atomic units in A are updated.



C.1 PHASEI

The detailed algorithm for Phase I is in Algorithm [T}

C.2 PHASEII

The detailed algorithm for Phase II is in Algorithm[2]

C.3 PHASEIII

The detailed algorithm for Phase III is in Algorithm 3]

C.4 SUPPLEMENTARY ALGORITHMS FOR PHASE |

To handle the situation explained at the end of section 3.2, we proposed two additional steps for
Phase I, including Algorithm [ (line 8, Alg. [T)) and Algorithm 5] (line 14, Alg. [I).

Small atomic units that can be completely covered by larger atomic units are sometimes indistin-
guishable from those larger atomic units due to the different causal order counting from the leaf
nodes of the graph as well as the characterization of the GIN condition. The purpose of Algorithm 4]
is to check this case by rechecking the number of parent variables of the related atomic unit children.
If such a case happens, most children are re-added into A and treated the same as others in A. For
the special children that have partial parents not in A, Algorithm [5]is used to relocate parents for
them after the normal children are settled.

C.5 CHECK FOR MULTIPLE ROOT ATOMIC UNITS

Most causal discovery methods for handling latent variables |Silva et al.| (2006); (Cai et al.| (2019);
Xie et al.| (2020; 2022); Huang et al.| (2022) implicitly assume that there are no unconditional inde-
pendence between any two variables in the measured variable set X. In other words, they assume
that there is at most one root node in the causal graph, which may be a latent variable or a latent
variable set with common children.

In practical situations, there may be more than one root node in a causal graph, not to mention that
the input measured variables may form multiple disconnected subgraphs. In Figure[3(a), X; ... Xy
form a subgraph, while X5 is not connected to any other variables. Furthermore, in the sub causal
graph consisting of X ... Xy, X; is unconditionally independent of both X3 and X4. In such a case,
there are three root nodes: X1, L1, and X5.

Our methods can handle the situation regardless of the number of root atomic units in the causal
graph. At the end of the inference process, the algorithm tends to cluster all the true root atomic
units (three or more) together and assigns them a common latent parent variable, as depicted in
Figure 3[b). This occurs because when the active atomic unit set A contains only root atomic units,
those root atomic units naturally satisfy the GIN condition and are unconditionally independent of
each other without requiring any additional operations. It is considered that those root atomic units
share a common latent parent variable with a value of 0. To verify the presence of multiple root
atomic units in the causal graph, we can perform the independence tests. If the discovered root
atomic unit comprises only one latent variable and lacks impure children, we should examine the
unconditional independence of the pure atomic unit children of that discovered root atomic unit (For
latent atomic units, their measured surrogate sets are used). If these pure children are found to be
unconditionally independent of each other, then we can conclude that they are the true root atomic
units of the causal graph. One the other hand, if the initially discovered causal graph has only two
root atomic units, we can do the same unconditional independence test to check whether there is a
common latent variable parent behind them.



X, o o Ny
\ N NIZEAN

XQ X3 X4 X2 X3 X4
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Figure 3: An example of causal structures where there are multiple root atomic units.

Algorithm 1: Phase I: IdentifyLeafNodesAndTheirParents

Input: Partial causal graph G, Active atomic unit set A
Output: Partial causal graph G, Active atomic unit set A

1 repeat

2 Select an atomic unit i/ € A;

3 for GrLen < 1 to |A\U| do

4 repeat

5 Select atomic unit subset P from A\ such that |P| = GrLen;
6 if U with P satisfies Theorem I and Remark 1 then
7 A+ A\U, and update G;

8 (G,A) < CheckSubAtomicUnits(G, A, P);

9 Return to line 2;

10 end

11 until all subsets with size GrLen in A\U selected,
12 end

13 until no more atomic units can be removed from A;
14 (G, A) < RefindChildrenForSubAtomicUnits(G, A);
15 return G, A
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Algorithm 2: Phase II: DiscoverNewAtomicUnits

Input: Partial causal graph G, Active atomic unit set A
QOutput: Partial causal graph G, Active atomic unit set A
GrLen:=2, A":= A, and NewAtomicUnitSet := ();
repeat
ClusterList:= (J;
repeat
Select subset Y from MSb(A/) such that ||'Y|| = GrLen, Y C MS;(Y) and Y > 2;
if Y satisfy the Theorem 2 and Remark 2 then
| Add Y into ClusterList;
end

until all subset with size GrLen in MSy(A") selected;
Gather the sets having overlapping atomic units with each other from the ClusterList as a
set of sets and add it into another set C, repeatedly and exhaustively;
for each C; € C do
when GrLen= 2, if C; contains only one set (bi-unit cluster) then identify pure children
by Lemma 1 in|Xie et al.[(2022);
Select one set € C;, remove one atomic unit from it, get a base B with ||B|| > Grlen-1;
PureChildSet = §); for each set S € C; if |[S| = [B| 4 1 do add S\B into PureChildSet;
for each atomic unit B € B do
| Select Grlen-1 atomic units from PureChildSet and patch B3 with them to form set T;
end
if bi-unit cluster is pure cluster, or |PureChild| > Grien-1 and all Ts € C; then
The atomic units in PureChildSet and B are all pure children;
A < A\T\PureChildSet, and update G;
Create a new atomic unit / and save it in NewAtomicUnitSet;
end

end

A« A/\ClusterList, and GrLen < GrLen+1;
until no more clusters are found,
return G, A, and NewAtomicUnitSet




Algorithm 3: Phase III: RefineAtomicUnits

Input: Partial causal graph G, Active atomic unit set A, NewAtomicUnitSet
Output: Partial causal graph G, Active atomic unit set A

1 repeat

2 Select two atomic unit Uy, Us € A, where at least one in NewAtomicUnitSet;
3 | form<« 1to U] do

4 Select m measured surrogates from MSy, (U4, ), denoted as Uy;

5 if (MS, (U Uls), Uy UMS(Us)) follows GIN condition then

6 Uy and Uy have ||U || — ||U1]| + 1 overlapping variables;

7 Update G, and merge U, with Us;

8 Return to line 2;

9

end
10 end

u until all binary atomic unit set selected,
12 for each atomic unitU € A do
13 for each S; € A\U/ and S; C U do add S; into set C;

14 repeat
15 Select a subset S C C;
16 if atomic units in S do not overlap and ||U|| = ||S|| then

Move the children of I/ to below the atomic units in S;
if A is not updated, then A < A\U;
Update G;

20 end

21 until all subset in C selected,
2 end

23 return G, A

Algorithm 4: CheckSubAtomicUnits

Input: Partial causal graph G, Active atomic unit set A, atomic unit set P C A
Qutput: Partial causal graph G, Active atomic unit set A

1 Let P be the union of P and the atomic units in A that overlap with atomic units in [P;
2 Let U contains the atomic units whose parents is a subset of IP;
GrLen:=2, U= U;

3

4 repeat

s | ClusterList:= {);

6 repeat

7 Select subset Y from MS,(U’) such that || Y|| = GrLen, Y € MS;(Y) and Y > 2;

8 if Y satisfy the Theorem 2 and Remark 2 then

9 Add Y into ClusterList;

10 if | Y| < known ||Pa(Y)|| then

1 if there are atomic units ¢ A, which has partial atomic unit parents in IP and the

rest atomic unit parents ¢ A, then mark them and the atomic units in U with
matching symbols;

12 A« (A\@) U U, update G, and go to line 18;

13 end

14 end

15 until all subset with size GrLen in MS(U') selected;

16 U « U\ClusterList, and GrLen < GrLen+1;

17 until no more clusters are found,
18 return G, A
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Algorithm 5: RefineChildrenForSubAtomicUnits

Input: Partial causal graph G, Active atomic unit set A
Output: Partial causal graph G, Active atomic unit set A
for each marked set of atomic units in G do
if the atomic units in U are all relocated to be children of the smaller atomic units then
Relocate the parents for the atomic units that used to have partial atomic unit parents in

PP and the rest of atomic unit parents ¢ A, by Theorem 1 and Remark 1;
Update G;
end
end
return G, A

D ILLUSTRATION OF OUR ALGORITHM
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Figure 4: Illustration of the entire procedure of our algorithm. For each subgraph, the nodes in
blue circles are active variables that are under investigation, and other measured variables for which
causal relationships have not been identified are not shown for clarity. (a) Ground-truth structure.
(b) Output after phase I of the first iteration of our algorithm. (c) Output after phase II of the first
iteration. (d) Output after phase III of the first iteration. (e) Output after phase I of the second
iteration. (f) Output after phase II of the second iteration. (g) Output after phase III of the second
iteration. (h) Output after phase I of the third iteration, which has recovered the true causal structure.

In this section, we illustrate our algorithm with the ground-truth graph in Figure f{a). We assume
Oracle tests for GIN conditions. In this structure, L1, ..., L7 are latent variables and X1, ..., Xog
are measured variables. We can see from the graph that measured variables are interspersed with



latent variables. The causal relationships among them are also complex. The estimation process is
as follows:

i Initially, the active atomic unit set A = {{X;},...,{X2}} and graph G = ().

ii During phase I of the first iteration, it first identifies Pa({X17}) = {{X16}, {X1s}}, and remove
{Xy7} from the active set A. After that, we sequentially identify Pa({Xi6}) = {X9} and
Pa({Xo}) = {X3}, and update A. The result after phase I of the first iteration is shown in
Figureb), and the current A = {{X1},...,{Xs},{X10},. .-, {X15}, {Xis}, .-, {Xag -

iii During phase II of the first iteration, we cluster the individual pure children in A to form new
atomic units. It is worth noting that we do not know the true serial numbers of the latent variables.
In the following, for the sake of clarity, we use the true serial numbers of latent variables to
denote them. As shown in Figure c), we introduce the new atomic unit {L;} to be parent
of individual pure children set {{X3}, {X4}}, the new atomic unit {L, L'y, } to be parent of
individual pure children set {{X5}, {Xs}, {X7}, {Xg}}, the atomic unit {Lsz, L4} to be parent of
individual pure children set {{X12}, {X13}, {X14}, {X15}}, the atomic unit {Ls } to be parent of
individual pure children set {{Xis}, {X19}}, the atomic unit {Lg, L7} to be parent of individual
pure children set {{Xa21}, {Xa2}, {Xas}, {X24}}. We add the newly discovered atomic units
into A and remove their individual pure children from A.

iv During phase III of the first iteration, we find that the newly discovered atomic unit {L3, L'y, }
can be fully replaced by {L1} and {X»}, as shown in Figure [f{d). We move the children of
{L}, L%, } to {L:} and {X3}, and remove {L’, L’y } from A.

v Now, we start the second iteration. During phase I of the second iteration, we find Pa({Ls}) =

{Xo}, Pa({Xa0}) = {{Xo}, {Le,Lr}}, Pa({Xo}) = {{L1},{Xi}}, Pa({L1}) = {Xu},
Pa({X%}) = {{X25}, {LG, L7}}, and Pa({X%}) = {L@, L7}, as shown in Flgure C).

vi In phase II of the second iteration, we introduce the new atomic unit {Lo, L5} to be parent of
individual pure children set {{X10}, {X11}, {Le, L7} }, as shown in Figure [4f).

vii In phase III of the second iteration, we find that the newly discovered atomic unit {Ly, L} have
one variable overlapping with atomic unit {L3, L4}, and merge them. The result is shown in

Figure [4{g).

vili Now, we start the third iteration. During phase I of the third iteration, we find Pa({Lq2,L3}) =
{X1} and Pa({Ls, Ls}) = {Xy}, as shown in Figure [4(h). After that, the current active atomic
unit set contains only the measured variable{X;}, and the whole underlying causal graph is
identified.

E COMPUTATIONAL COMPLEXITY OF OUR ALGORITHM

In this section, we analyze the complexity of our algorithm. Denote by n the number of active
atomic units at the beginning of each phase. The complexity of phase I is upper bounded by
O Y721 ("7"). The phase II has the worst case complexity O(3"r_, (7). Denote by I the
size of the largest atomic unit in the active atomic unit set. The complexity of phase III is upper
bounded by O(I (g) ). The total complexity of the algorithm to discover the whole causal graph de-
pends on the number of (both measured and latent) variables and the structural density of the causal
graph, which determine how many iterations the algorithm needs to run.

F PROOFS

Before presenting the proofs of our results, we need a few more theorems and definitions derived
from Xie et al.| (2020; 2023)).

Definition 6 (GIN condition (Xie et al., [2020)). Let Z, Y be sets of variables in a linear non-
Gaussian acyclic causal model. We say that (Z,Y) follows GIN condition if and only if wTY are
statistically independent of Z, where w satisfies wTE[YZT| = 0 and w # 0.

In other words, (Z,Y) violates the GIN condition if and only if Ey |z is dependent on Z.
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Recently, Xie et al.|(2023) extended the original graphical criteria of the GIN condition with the help
of trek and trek-separation (t-separation) (Sullivant et al., [2010). We next describe the notion of the
trek and trek-separation criterion, which is more general than d-separation in linear causal models.
After that, we show the graphical implication of the GIN condition in PO-LiNGAM, which helps to
exploit the GIN condition to discover the causal graph.

Definition 7 (trek (Sullivant et al.,[2010)). A trek in G from i to j is an ordered pair of directed paths
(P1,P2) where Py has sink i, Py has sink j, and both Py and Pa have the same source k. The
common source K is called the top of the trek, denoted top(P1,P3). Note that one or both of P
and P may consist of a single vertex, that is, a path with no edges.

Definition 8 (t-separation (Sullivant et al.,[2010)). Let A, B, Ca, and Cg be four subsets of V. We
say the ordered pair (Ca, Cp) t-separates A from B if, for every trek (1y; T2) from a vertex in A
to a vertex in B, either 7| contains a vertex in Ca or 7o contains a vertex in Cg.

Theorem S (GIN Graphical Criteria in PO-LINGAM). Let Y and Z be two sets of measured vari-
ables of a partially observed linear non-Gaussian acyclic causal model (PO-LiNGAM). Assume the
rank-faithfulness holds. (Z,Y ) satisfies the GIN condition if and only if there exists a variable set
Swith0 < Dim(S) < min(Dim(Y) — 1, Dim(Z)), such that 1) the order pair (), S) t-separates
Z and Y, and that 2) the covariance matrix of S and Z has rank Dim(S), and so does that of S
andY.

Note: In this paper, Dim(S) = ||S|| represents the number of variables in S, regardless of whether
S is a set of variables or a set of atomic units.

Roughly speaking, the conditions in this theorem can be interpreted in the following way: i.) a
causally earlier subset (according to the causal order) of Y t-separates Y from Z, and ii.) the linear
transformation from that subset of the common causes to Z has full column rank. Based on the
definition of d-separation, the first interpretation is that the causally earlier subset S (according to
the causal order) of Y d-separates Y\S from Z\S.

Proof. Recently, it has been shown in |Xie et al.| (2023) that the graphical criteria hold in a linear
non-Gaussian acyclic causal model. In (Xie et al.,|[2020;2022; 2023), they allowed part variables to
be latent. In our paper, the latent variable can be the descendent or ancestor of measured variables,
which does not affect the graphical criteria of GIN because linear causal models are transitive. [

F.1 PROOF OF PROPOSITION 1

Proof. Let V be a set of variables satisfying PO-LINGAM with no latent variables, and V be a
variable in V.

(i) Assume that V is a leaf variable of the causal graph, and P are its all parents. We know that
a) 0 < |P|| < min(]|[VUP| —1,[|[V\V]), and b) P is the minimal set so that ((}, P) t-separates
V\V and V U P. Furthermore, the set of common components between V U P and V\V is P, so
the covariance matrix of P and V\V has rank ||S||, and so does that of P and V U P. Therefore,
(V\V, V UP) follows the GIN condition and there is no P C P such that (V\V, V U P) follows
the GIN condition.

(ii) Assume that (V\V,V UP) follows the GIN condition and there is no P C P such that

(V\V, VUP) follows the GIN condition. We know that P is the minimal set that ((}, P) t-separates
V\V and V U P, and therefore, P is causal earlier than V. In a causal graph, the minimal causal
earlier set that t-separates one variable from the other variables is the parent set of that variable.

Therefore, from (i) and (ii), the proposition is proved. ]

F.2 PROOF OF THEOREM 1
Proof. The proof of theorem 1 is similar to the proof of Proposition 1. Let U be a set of non-

overlapping atomic units satisfying PO-LiINGAM with known MS,, ; for each atomic unit in U, and
U be an atomic unit in U.
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(i) Assume that I/ is a leaf atomic unit in the current causal graph, and PP is the set of parent atomic
units of &. We know that a) 0 < ||P|| < min(||/{ UP|| — 1, |[U\U||), and b) PP is the minimal set so
that ((), P) t-separates U\ and ¢ U P. Furthermore, the set of common components between I U P
and U\U is IP, so the covariance matrix of P and I/ UP has rank ||P||, and so does that of P and U\U/.
And because some of the atomic units may be latent, we use their measured surrogate variable set
to represent them. Therefore, (MS, (U\U), MS, (U UP)) follows the GIN condition and there is no
P C PP such that (MS, (U\U), MS, (U U P)) follows the the GIN condition. The same is true if we
represent them using another set of measured surrogate variables.

(ii) Assume that (MS,(U\U), MS, (U U P)) follows the GIN condition and there is no P C P

such that (MS, (U\U), MS, (U U P)) follows the the GIN condition. MS, (U\/) contains a set of
measured surrogate set of U\U/, MS;, (U UP) contains another set of measured surrogate set of ./ UP.
The common component of U\ and &/ U IP is P. And, without MS;(IP), the GIN condition cannot
be satisfied singly using MS; () as the Y set. Thus, P is the minimal set that ((}, P) t-separates
MS, (U\U) and MS, (U4 U P), and therefore, P is causal earlier than /. In the causal graph, the
minimal causal earlier atomic unit set that t-separates one atomic unit from the other atomic units is
the parent set of that atomic unit.

Therefore, from (i) and (ii), the theorem is proved. ]

F.3 PROOF OF REMARK 1

Proof. (i) The first term is to eliminate the effect of overlapping atomic unit sets when searching for
parents, since for any two atomic units with overlapping variables, we don’t have enough informa-
tion to know whether the non-overlapping part of one atomic unit is the parent of the non-overlapping
part of another atomic unit. As illustrated in case 1 of Figure 5] If we want to know the parent of
the atomic unit {Ls, L3}, we need remove the atomic unit {Ls, L4} from U and P. Otherwise, both
{L3, L4} and {L;} will be considered as the parents of {Lo, L3} rather than the true parent {L;}.

(i) For the second term, let us consider the case 2 of Figure[5] where we want to find the parent of
{Xg}. P = {{L1,L2},{L2,L3}} and Y = {Xg}. There is no point in testing the GIN condition
for (MS,(U\U), MS, (U U PP)), since even without MS, (i) in Y set, the graph criteria of GIN
condition is still satisfied, so is GIN condition. That is because those two atomic units {L;, Lo}
and {Ls, L3} have overlapping Lo, and therefore the unrepeated variable set behind their measured
surrogate variable has size 3 instead of 4. Thus, we need to find a subset of MS;(IP) so that the
number of variables is equal to the true size ||P||. That is the maximal subset S of MS;(P) that
makes (MS, (U\U), S) does not follow GIN condition. O

/>X9
\\wa B
‘Lo

%m A

X1 Xo X3 X4 X5 Xe¢ X7 Xs X1 Xo X3 Xu Xo X5 Xe X7 X3
(a) Case 1 (b) Case 2

Figure 5: The illustrative examples for remark 1.

F.4 PROOF OF THEOREM 2

The aim behind Theorem 2, Remark 2, and Corollary 1 is to find a sufficiently large number of pure
children to support the discovery of new atomic units.

Proof. Let U be a set of non-overlapping atomic units satisfying PO-LINGAM with known MS,,
for each atomic unit in U, and there is no such leaf atomic unit in U that its full parents are also in
U. Assume that (MS,(U\Y),Y) follows the GIN condition, and there is no subset Y C Y such
that (MS,(U\Y),Y) follows the GIN condition. It means that there is a variable set S with size
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Y]] — 1, which is causal earlier than Y, and the order pair ((},S) t-separates MS,(U\Y) and Y.
Since we know in U there is no leaf atomic unit that its full parents are also in U, S contains at least
one latent variable which is the parent of Y. However, S may also contain variables that are also in
Y. The third statement is to check out this situation by explicitly adding the variables in P into S
and testing the GIN condition. Therefore, with these three statements, we can ensure that behind Y
there is a parent variable set P involving at least one latent variable, which has size ||Y|| — 1 and
can d-separates Y from the atomic units of U\(Y U P).

F.5 PROOF OF REMARK 2

Proof. Tt is obvious that Remark 2 does not affect the correctness of Theorem 2 whether or not
there are overlapping atomic units in U. However, it is reasonable that the parents of the covered
atomic unit must be a subset of or the same as the parents of the covering atomic unit. As illustrated
in Figure@} the atomic unit {Ly} is fully covered by {Ls, L3}, and both {Lo} and {Lo, L3} have
parent {L; }. After removing {L,} from the active set, the atomic unit {Ly, L3} can be considered
as an individual pure child for discovering the new atomic unit {L; } according to Corollary 1. [J

, />X7
I _— L= Xy
1

T [. — Xo
:w/fx\ et
X1 X2 Xz X4 X5 Xe

Figure 6: The illustrative examples for remark 2.

F.6 PROOF OF COROLLARY 1

Proof. If one atomic unit ) is replaceable in the Y that satisfies Theorem 2 with Remark 2, then we
know that in the current causal graph composed of atomic units in U and their latent confounders,
Y is not directly causally connected to the other atomic units in Y\, except for their common total
parent set. The reverse is also true. O

F.7 PROOF OF PROPOSITION 2

Proof. We demonstrate the utility of Proposition 2 and prove it with the example in Figure[/| With
our algorithm, at the beginning, the active set contains only measured variables. After Phase 1 of the
first iteration, nothing is identified. During Phase 2 of the first iteration, we cluster the pure children
to discover new atomic units. It is obvious that we can cluster {Xg} and {Xg} to form the atomic
unit {L,}. However, when clustering for discovering the atomic unit {Lj, Lo}, the atomic unit
{X3} will also be clustered together with any two of {{X3}, {X4}, {X5},{Xs}}, and considered
as a individual pure children of the atomic unit {Lq, Lo}, though {X5} is actually the individual
pure child of {L; }. That is because that atomic unit {L;, Ly} covers atomic unit {L; } and when
clustering for {Ly, Lo}, {L1} does not have enough individual pure children to separate it from
{L1, Lo} In the following iterations, {Ls} will be discovered and identified as a child of {L, Lo }.
After that, {L; } can be separated from {L;, Lo} by re-clustering the children of {L;, Lo }. We know
that {X5} and {L3} can be clustered, which shows the number of parent variables behind them is 1
instead of 2, and therefore, there is a small atomic unit covered by {Lj, Lo}. O

F.8 PROOF OF THEOREM 3

Proof. LetU,; and U5 be two atomic units. Let Uy be part of variables in MS, (U4 ).

(i) Assume that U/, and Uy are two discovered atomic units. (MS, (U; U Us), MS, (U U Us)) can
satisfy GIN condition only if ¢/, and U have overlapping variables. According to Theorem 5,
S = Uy UUs. Dim(S) should be smaller or equal to Dim(U;) + Dim(Usz) — 1 so that the graph
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Figure 7: The illustrative examples for proposition 2.

criteria of the GIN condition is satisfied. It means {/; and Us have overlapping variables. When U,
is the minimal set that (MS, (U; U Us), Uy U MS,(Us)) follows the GIN condition, we know the
true number |1y U Uz|| is |[Uz]| + [[U1]| — 1. Therefore, we know that the two atomic units have
[lL41]] — U1 || + 1 overlapping variables in total.

(ii) Assume that U, and Us have ||U; || — ||U1]|| + 1 overlapping variables. According to the graphical
criteria of PO-LiINGAM (Theorem [5), we can know that U; is the minimal set that (MS, (i U
Us), Uy UMS,(Us)) follows the GIN condition. O

F.9 PROOF OF COROLLARY 2

Proof. The proof of Corollary 2 is obvious. For a set of atomic units S that do not overlap with each
other and can be covered by atomic unit U, ||U/|| = ||S|| is equivalent to the fact that each atomic unit
in S is part of I, and together they can form U. [

F.10 PROOF OF THEOREM 4

Proof. In section 3.1, we show that the causal structure among atomic units is identifiable by The-
orem 1 and Remark 1. In section 3.2, we show that the new atomic units can be discovered by
clustering their pure children with the help of Theorem 2, Remark 2, and Corollary 1. In section 3.3,
we refine the discovered atomic units by Theorem 3 and Corollary 2.

The three sections are integrated into our iterative algorithm to discover the causal graph from the
leaf to root nodes. For the possible problem with covered small atomic units during the iterative dis-
covery process, we check and identify it through Proposition 2. Furthermore, at the end of discovery
process, we check for multiple root atomic units by testing unconditional independence relation-
ships. Therefore, the atomic units, their size, and the causal structure among them can be fully
identified with our algorithm. It is obvious that if there are no direct causal relationships between
variables within atomic units, the entire causal graph G is virtually identifiable. O

F.11 PROOF OF COROLLARY 3

Proof. Corollary 3 is similar to Theorem 4, but with stronger assumptions. If each latent variable has
at least two pure variable children, each atomic unit we discovered will only contain one variable.
Thus, we do not need to consider the problem that the discovered atomic units have overlapping
variables. Similarly, we need to check whether there are multiple root atomic units at the end.
Roughly speaking, with Theorem 1, Theorem 2, and Corollary 1, the entire causal graph G is fully
identifiable. Furthermore, if there is no latent confounder, we need not consider the discovery of
latent variables. The entire causal graph G is identifiable with only Proposition 1, and the result is
the same as the typical LINGAM discovery algorithm (Shimizu et al.|[2006; 201 1. O

G MORE DETAILS ON SIMULATION EXPERIMENTS

G.1 DATA GENERATION PROCESS AND IMPLEMENTATION

According to Eq. 1, we generated the causal strength b; ; uniformly from [—2, —0.5] U [0.5, 2] and
the non-Gaussian noise terms were generated from exponential distributions to the second power.
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For BPC and IL2H, Gaussian noise is used. HSIC-based independence tests (Zhang et al., 2018)
were used to test the GIN condition.

G.2 EVALUATION METRICS

We adapted the evaluation metrics from |[Xie et al.[ (2022) and [Huang et al.| (2022) to evaluate the
results. They are:

a.) Correct ordering rate: the number of correctly inferred causal orderings divided by the total
number of inferred causal orderings.

b.) Error rate in latent variables: the absolute difference between the inferred number of latent
variables and the number of latent variables in the true structure divided by the number of latent
variables in the true structure.

_ . o precisionxrecall
C.) Fl-score: 2precision+reca11

the true adjacency matrix.

to measure the similarity between the inferred adjacency matrix and

G.3 MORE DETAILS ON F1-SCORE

In this paper, an adjacency matrix is a square matrix whose each element represents whether or
not the variables in the graph are connected by edges with direction. For example, Adjg(i,j) = 1
represents there is a direct edge from 4, point to j;j, point, and Adjg(4,j) = O represents there is
no direct edge from ¢, point to j;, point.

We used the F1-score to calculate the percentage of similarity between estimated and ground-truth
adjacency matrices. To calculate the F1-score, we first calculate the precision = % that
represents the number of correct inferred edges over number of total inferred edges, and the recall =

true positive _ that represents the number of correct inferred edges over number of total ground-

total true positive -
truth edges. Fl-score = 2%‘%, which combines the precision and recall of the adjacency

matrices by taking their harmonic mean, and can better represent the structural recovery rate.

In practice, the latent variable indices in the estimated graphs may not match those in the real graphs.
To remove this ambiguity, similar to [Huang et al.| (2022), we permuted the latent variable indices
in the estimated graphs and used the one that has the minimal difference from the true graph. In
addition, if the estimated number of latent variables is smaller than the true number of latent vari-
ables, we add extra latent variables that do not have edges with others to G. If the estimated number
of latent variables is larger than the true number of latent variables, we find a subset of the latent
variables in G that best matches the true one.

G.4 MORE RESULTS OF SIMULATION EXPERIMENTS

Here, we evaluate the running time for four simulation cases. Each case is executed ten times, and
the results are averaged. The summarized results are reported in the Table[2]

Table 2: The averaged running times for various cases with different sample sizes.
Case 1 Case 2 Case 3 Case 4

Sk [ 10k | 50k | 5k | 10k | 50k | 5k [ 10k | 50k | 5k 10k | 50k

Time(s) | 8 | 10 | 18 | 25| 26 | 47 | 18 | 20 | 42 | 2026 | 2164 | 3132

To evaluate the performance of our algorithm when some noise is Gaussian-distributed, we modified
the first two cases of the simulation experiment. In Case 1, we generate standard Gaussian noise for
X5 and X4. In Case 2, we generate standard Gaussian noise for X and X5. Each case is executed
ten times, and the results are averaged. The summarized results are reported in the Table[3] Although
some of the noise is Gaussian-distributed, our method still recovers the true structures.
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Table 3: The performance of our method on causal structure graphs in the presence of Gaussian-
distributed noise.

Case 1 Case 2
S5k 10k | 50k | Sk 10k | 50k
Correct Ordering Rate 1 093 | 1.0 [ 094 | 091 | 0.95 | 0.95
Error Rate in Latent Variables | | 0.0 0.0 | 0.0 | 020 | 0.15 | 0.10
F1-score 1 0.95 | 097 | 095 | 0.91 | 0.93 | 0.96

H MORE DETAILS ON THE REAL-WORLD DATA EXPERIMENT

The Holzinger and Swineford (1939) dataset consists of mental ability test scores of seventh- and
eighth-grade children from two different schools (Pasteur and Grant-White). In the original dataset,
there are scores for 26 tests. However, a smaller subset with 9 variables is more widely used in the
literature, for example, in Joreskog| (1969). This dataset can be retrieved from R package lavaan
(Rosseel, [2012). The variables used in our paper are given in Table[d] which can be broadly catego-
rized into three dimensions: Visual, Textual, and Speeded.

Table 4: The details of 9 variables in *Holzinger & Swineford 1939’ dataset.

Visual perception test from Spearman VPT Part |

Visual Cubes, Simplification of Brighams Spatial Relations Test
Lozenges from Thorndike-Shapes flipped over then identify target
Word Meaning Test

Textual Sentence Completion Test
Paragraph Comprehension Test
Speeded discrimation of straight and curved caps

Speeded

Speeded counting of dots in shapes
Speeded addition test

The second-order factor analysis model dataset is a built-in dataset of the Mplus software (Muthén
& Muthén, 2017). The ground truth is the same as in Figure b). Each set of three measured
variables has a corresponding first-order latent indicator, all of which are influenced by a second-
order latent indicator. A detailed explanation of the dataset and model can be found in http:
//www.statmodel.com/HTML_UG/chapter5V8.htm.

T,: word meaning < > V,: visual perception
) > Vi cubes
T, sentence completion < @
% Vs: lozenges

v N
T;: paragraph S, : speeded di

b inati < « A
straight and curved capitals @ @ @ @
T T T
|

S, speeded counting of dots

v ™ ¥ v™a ¥ v ¥ v ™

s‘Hpeede‘],‘dd,,,‘,,, X, Xp X3 Xg Xs X X, Xg Xg Xio Xi1 X2
(a) (b)
Figure 8: The outputs on (a) ‘Holzinger & Swineford 1939’ dataset and (b) Second-order factor
analysis dataset. The nodes in circles are the latent indicators discovered from measured variables.

I NOTATIONS AND TERMS
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Table 5: More explanations on Notions and Terms.

Notation / Term

Description

Initially Used

Pure atomic unit child
Surrogate variable of U
MS,,,(U)

Decomposable ‘atomic unit’

A measured variable.
A latent variable.
A variable, which is either measured or latent.

Boldfaced letter; A set of variables, each of which is either measured or latent.

Script letter; An atomic unit, whose definition is in Definition 3.

Blackboard bold letter; A set of atomic units.

The number of variables in set * (V, U).

The number of atomic units in set * (U).

The parent of * (V, U).

Each pure child itself is an atomic unit.

Each descendant is a surrogate variable of /.

The measured surrogate variable set a/b of U.

The discovered ‘atomic unit” during phase II, which can be fully decomposed

First paragraph of Section 2.1
First paragraph of Section 2.1
First paragraph of Section 2.1
First paragraph of Section 2.1
Definition 3

Theorem 1

Definition 3

Algorithm 2

First paragraph of Section 2.1
Definition 3

Definition5

Definition5

First paragraph of Section 3.3

into several small true atomic units during phase III.
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