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Abstract

A series of recent publications by Awasthi, Mao, Mohri, and Zhong [2022b] have
introduced the key notion of H-consistency bounds for surrogate loss functions.
These are upper bounds on the zero-one estimation error of any predictor in a hy-
pothesis set, expressed in terms of its surrogate loss estimation error. They are both
non-asymptotic and hypothesis set-specific and thus stronger and more informative
than Bayes-consistency. However, determining if they hold and deriving these
bounds have required a specific proof and analysis for each surrogate loss. Can
we derive more general tools and characterizations? This paper provides both a
general characterization and an extension of H-consistency bounds for multi-class
classification. We present new and tight H-consistency bounds for both the family
of constrained losses and that of comp-sum losses, which covers the familiar cross-
entropy, or logistic loss applied to the outputs of a neural network. We further
extend our analysis beyond the completeness assumptions adopted in previous
studies and cover more realistic bounded hypothesis sets. Our characterizations are
based on error transformations, which are explicitly defined for each formulation.
We illustrate the application of our general results through several special examples.
A by-product of our analysis is the observation that a recently derived multi-class
H-consistency bound for cross-entropy reduces to an excess bound and is not
significant. Instead, we prove a much stronger and more significant guarantee.

1 Introduction

Bayes-consistency is an important property of surrogate loss functions. It requires that minimizing
the surrogate excess error over the family of all measurable functions leads to the minimization of
the target error loss in the limit [Steinwart, 2007]. This property applies to a broad family of convex
margin-based losses in binary classification [Zhang, 2004a, Bartlett et al., 2006], as well as some
extensions in multi-class classification [Tewari and Bartlett, 2007]. However, Bayes-consistency does
not apply to the hypothesis sets commonly used for learning, such as the family of linear models or
that of neural networks, which of course do not include all measurable functions. Furthermore, it is
also only an asymptotic property and does not supply any convergence guarantee.

To address these limitations, a series of recent publications by Awasthi, Mao, Mohri, and Zhong
[2022b] introduced the key notion of H-consistency bounds for surrogate loss functions. These are
upper bounds on the zero-one estimation error of any predictor in a hypothesis set, expressed in terms
of its surrogate loss estimation error. They are both non-asymptotic and hypothesis set-specific and
thus stronger and more informative than Bayes-consistency. However, determining the validity of
these bounds and deriving them have required a specific proof and analysis for each surrogate loss.
Can we derive more general tools and characterizations for H-consistency bounds?
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This paper provides both a general characterization and an extension of H-consistency bounds for
multi-class classification. Previous approaches to deriving these bounds required the development
of new proofs for each specific case. In contrast, we introduce the general concept of an error
transformation function that serves as a very general tool for deriving such guarantees with tightness
guarantees. We show that deriving an H-consistency bound for comp-sum losses and constrained
losses for both complete and bounded hypothesis sets can be reduced to the calculation of their
corresponding error transformation function. Our general tools and tight bounds show several
remarkable advantages: first, they improve existing bounds for complete hypothesis sets previously
proven in [Awasthi et al., 2022b]; second, they encompass all previously comp-sum and constrained
losses studied thus far as well as many new ones [Awasthi et al., 2022a, Mao et al., 2023h]; third,
they extend beyond the completeness assumption adopted in previous work; fourth, they provide
novel guarantees for bounded hypothesis sets; and, finally, they help prove a much stronger and more
significant guarantee for logistic loss with linear hypothesis set than [Zheng et al., 2023].

Previous work. Here, we briefly discuss recent studies of H-consistency bounds by Awasthi et al.
[2022a,b], Mao et al. [2023h] and Zheng et al. [2023]. Awasthi et al. [2022a] introduced and studied
H-consistency bounds in binary classification. They provided a series of tight H-consistency bounds
for bounded hypothesis set of linear models and one-hidden-layer neural networks. The subsequent
study [Awasthi et al., 2022b] further generalized the framework to multi-class classification and
presented an extensive study of H-consistency bounds for diverse multi-class surrogate losses,
including negative results for max losses [Crammer and Singer, 2001] and positive results for sum
losses [Weston and Watkins, 1998], and constrained losses [Lee et al., 2004]. However, the hypothesis
sets examined in their analysis were assumed to be complete, which rules out the bounded hypothesis
sets typically used in practice. Moreover, the final bounds derived from [Awasthi et al., 2022b] are
based on ad hoc methods and may not be tight. [Mao et al., 2023h] complemented this previous work
by studying a wide family of comp-sum losses in the multi-class classification, which generalizes the
sum-losses and includes as special cases the logistic loss [Verhulst, 1838, 1845, Berkson, 1944, 1951],
the generalized cross-entropy loss [Zhang and Sabuncu, 2018], and the mean absolute error loss
[Ghosh et al., 2017]. Here too, the completeness assumption on the hypothesis sets was adopted and
their H-consistency bounds do not apply to common bounded hypothesis sets in practice. Recently,
Zheng et al. [2023] proved H-consistency bounds for multi-class logistic loss with bounded linear
hypothesis sets. However, their bounds require a crucial distributional assumption, under which the
minimizability gaps coincide with the approximation errors. Thus, their bounds can be recovered as
excess error bounds, which are less significant.

Other related work on H-consistency bounds includes H-consistency bounds for pairwise ranking
[Mao, Mohri, and Zhong, 2023d,e]; theoretically grounded surrogate losses and algorithms for
learning with abstention supported by H-consistency bounds, including the study of score-based
abstention [Mao, Mohri, and Zhong, 2023f], predictor-rejector abstention [Mao, Mohri, and Zhong,
2023c] and learning to abstain with a fixed predictor with application in decontextualization [Mohri,
Andor, Choi, Collins, Mao, and Zhong, 2023]; principled approaches for learning to defer with
multiple experts that benefit from strong H-consistency bounds, including the single-stage scenario
[Mao, Mohri, and Zhong, 2023b] and a two-stage scenario [Mao, Mohri, Mohri, and Zhong, 2023a];
H-consistency theory and algorithms for adversarial robustness [Awasthi et al., 2021a,b, 2023a,
Mao et al., 2023h, Awasthi et al., 2023b]; and efficient algorithms and loss functions for structured
prediction with stronger H-consistency guarantees [Mao et al., 2023g].

Structure of this paper. We present new and tight H-consistency bounds for both the family
of comp-sum losses (Section 4.1) and that of constrained losses (Section 5.1), which cover the
familiar cross-entropy, or logistic loss applied to the outputs of a neural network. We further extend
our analysis beyond the completeness assumptions adopted in previous studies and cover more
realistic bounded hypothesis sets (Section 4.2 and 5.2). Our characterizations are based on error
transformations, which are explicitly defined for each formulation. We illustrate the application of
our general results through several special examples. A by-product of our analysis is the observation
that a recently derived multi-class H-consistency bound for cross-entropy reduces to an excess bound
independent of the hypothesis set. Instead, we prove a much stronger and more significant guarantee
(Section 4.2).

We give a comprehensive discussion of related work in Appendix A. We start with some basic
definitions and notation in Section 2.
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2 Preliminaries

We denote by X the input space, by Y the output space, and by D a distribution over X×Y. We consider
the standard scenario of multi-class classification, where Y = {1, . . . , n}. Given a hypothesis set H of
functions mapping X × Y to R, the multi-class classification problem consists of finding a hypothesis
h ∈ H with small generalization error R`0−1(h), defined by R`0−1(h) = E(x,y)∼D[`0−1(h,x, y)],
where `0−1(h,x, y) = 1h(x)≠y is the multi-class zero-one loss with h(x) = argmaxy∈Y h(x, y) the
prediction of h for the input point x. We also denote by H(x) the set of all predictions associated to
input x generated by functions in H, that is, H(x) = {h(x)∶h ∈H}.

We will analyze the guarantees of surrogate multi-class losses in terms of the zero-one loss. We
denote by ` a surrogate loss and by R`(h) its generalization error, R`(h) = E(x,y)∼D[`(h,x, y)].
For a loss function `, we define the best-in-class generalization error within a hypothesis set H as
R∗
` (H) = infh∈HR`(h), and refer to R`(h) −R∗

` (H) as the estimation error. We will study the key
notion of H-consistency bounds [Awasthi et al., 2022a,b], which are upper bounds on the zero-one
estimation error of any predictor in a hypothesis set, expressed in terms of its surrogate loss estimation
error, for some real-valued function f that is non-decreasing:

∀h ∈H, R`0−1(h) −R∗
`0−1

(H) ≤ f(R`(h) −R∗
` (H)).

These bounds imply that the zero-one estimation error is at most f(ε) whenever the surrogate loss
estimation error is bounded by ε. Thus, the learning guarantees provided by H-consistency bounds
are both non-asymptotic and hypothesis set-specific. The function f appearing in these bounds is
expressed in terms of a minimizability gap, which is a quantity measuring the difference of best-
in-class error R∗

` (H) and the expected best-in-class conditional error Ex[C∗` (H, x)]: M`(H) =
R∗
` (H) − EX[C∗` (H, x)], where C`(h,x) = Ey∣x[`(h,x, y)] and C∗` (H, x) = infh∈H C`(h,x) are

the conditional error and best-in-class conditional error respectively. We further write ∆C`,H =
C`(h,x) − C∗` (H, x) to denote the conditional regret. Note that that the minimizability gap is an
inherent quantity depending on a hypothesis set H and the loss function `.

By Lemma 1, the minimizability gap for the zero-one loss, M`0−1(H), coincides with its approxi-
mation error A`0−1(H) = R∗

`0−1
(H) −R∗

`0−1
(Hall) when the set of all possible predictions generated

by H covers the label space Y. This holds for typical hypothesis sets used in practice. However,
for a surrogate loss `, the minimizability gap M`(H) is always upper bounded by and in general
finer than its approximation error A`(H) = R∗

` (H) − R∗
` (Hall) since M`(H) = A`(H) − I`(H),

where Hall is the family of all measurable functions and I`(H) = Ex [C∗` (H, x) − C∗` (Hall, x)] (see
Appendix B for a more detailed discussion). Thus, an H-consistency bound, expressed as follows for
some increasing function Γ:

R`0−1(h) −R∗
`0−1

(H) +M`0−1(H) ≤ Γ(R`(h) −R∗
` (H) +M`(H)), (1)

is more favorable than an excess error bound expressed in terms of approximation errors R`0−1(h) −
R∗
`0−1

(H)+A`0−1(H) ≤ Γ(R`(h) −R∗
` (H) +A`(H)). Here, Γ is typically linear or the square-root

function modulo constants. When H =Hall, the family of all measurable functions, an H-consistency
bound coincides with the excess error bound and implies Bayes-consistency by taking the limit. It is
therefore a stronger guarantee than an excess error bound and Bayes-consistency.

The minimizability gap is always non-negative, since the infimum of the expectation is greater than
or equal to the expectation of infimum. Furthermore, as shown in Appendix B, when H is the family
of all measurable functions or when the Bayes-error coincides with the best-in-class error, that is,
R∗
` (H) = R∗

` (Hall), the minimizability gap vanishes. In such cases, (1) implies the H-consistency
of a surrogate loss ` with respect to the zero-one loss `0−1:

R`(hn) −R∗
` (H) n→+∞ÐÐÐ→ 0 Ô⇒ R`0−1(hn) −R∗

`0−1
(H) n→+∞ÐÐÐ→ 0.

In the next sections, we will provide both a general characterization and an extension of H-consistency
bounds for multi-class classification. Before proceeding, we first introduce a useful lemma from
[Awasthi et al., 2022b] which characterizes the conditional regret of zero-one loss explicitly. We
denote by p(x) = (p(x,1), . . . , p(x,n)) as the conditional distribution of y given x.
Lemma 1. For zero-one loss `0−1, the best-in-class conditional error and the conditional regret for
`0−1 can be expressed as follows: for any x ∈ X, we have

C∗`0−1
(H, x) = 1 − max

y∈H(x)
p(x, y) and ∆C`0−1,H(h,x) = max

y∈H(x)
p(x, y) − p(x,h(x)).
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3 Comparison with previous work

Here, we briefly discuss previous studies of H-consistency bounds [Awasthi et al., 2022a,b, Zheng
et al., 2023, Mao et al., 2023h] in standard binary or multi-class classification and compare their
results with those we present.

Awasthi et al. [2022a] studied H-consistency bounds in binary classification. They provided a
series of tight H-consistency bounds for the bounded hypothesis set of linear models Hbi

lin and
one-hidden-layer neural networks Hbi

NN, defined as follows:

Hbi
lin = {x↦ w ⋅ x + b ∣ ∥w∥ ≤W, ∣b∣ ≤ B}

Hbi
NN = {x↦

n

∑
j=1

uj(wj ⋅ x + b)+ ∣ ∥u∥1 ≤ Λ, ∥wj∥ ≤W, ∣b∣ ≤ B},

where B, W , and Λ are positive constants and where (⋅)+ = max(⋅,0). We will show that our bounds
recover these binary classification H-consistency bounds.

The scenario of multi-class classification is more challenging and more crucial in applications.
Recent work by Awasthi et al. [2022b] showed that max losses [Crammer and Singer, 2001], defined
as `max(h,x, y) = maxy′≠y Φ(h(x, y) − h(x, y′)) for some convex and non-increasing function
Φ, cannot admit meaningful H-consistency bounds, unless the distribution is deterministic. They
also presented a series of H-consistency bounds for sum losses [Weston and Watkins, 1998] and
constrained losses [Lee et al., 2004] for symmetric and complete hypothesis sets, that is such that:

H = {h ∶ X × Y→ R∶h(⋅, y) ∈ F,∀y ∈ Y} (symmetry)
∀x ∈ X,{f(x)∶ f ∈ F} = R, (completeness)

for some family F of functions mapping from X to R. The completeness assumption rules out the
bounded hypothesis sets typically used in practice such as Hlin. Moreover, the final bounds derived
from [Awasthi et al., 2022b] are based on ad hoc proofs and may not be tight. In contrast, we will
study both the complete and bounded hypothesis sets, and provide a very general tool to derive
H-consistency bounds. Our bounds are tighter than those of Awasthi et al. [2022b] given for complete
hypothesis sets and extend beyond the completeness assumption.

[Mao et al., 2023h] complemented the work of [Awasthi et al., 2022b] by studying a wide family
of comp-sum losses in multi-class classification, which generalized the sum-losses and included as
special cases the logistic loss [Verhulst, 1838, 1845, Berkson, 1944, 1951], the generalized cross-
entropy loss [Zhang and Sabuncu, 2018], and the mean absolute error loss [Ghosh et al., 2017]. Here
too, the completeness assumption was adopted, thus their H-consistency bounds do not apply to
common bounded hypothesis sets used in practice. We illustrate the application of our general results
through a broader set of surrogate losses than [Mao et al., 2023h] and significantly generalize the
bounds of [Mao et al., 2023h] to bounded hypothesis sets.

Recently, Zheng et al. [2023] proved H-consistency bounds for logistic loss with linear hypothesis sets
in the multi-class classification: Hlin = {x↦ wy ⋅ x + by ∣ ∥wy∥ ≤W, ∣by ∣ ≤ B,y ∈ Y}. However, their
bounds require a crucial distributional assumption under which, the minimizability gaps M`0−1(Hlin)
and M`log

(Hlin) coincide with the approximation errors R`0−1(Hlin)−R∗
`0−1

(Hall) and R`log
(Hlin)−

R∗
`log

(Hall) respectively (see the note before [Zheng et al., 2023, Appendix F]). Thus, their bounds

can be recovered as excess error bounds R`0−1(h) −R∗
`0−1

(Hall) ≤
√

2(R`log
(h) −R∗

`log
(Hall))

1
2 ,

which are less significant. In contrast, our Hlin-consistency bound are much finer and take into
account the role of the parameter B and that of the number of labels n. Thus, we provide stronger
and more significant guarantees for logistic loss with linear hypothesis set than [Zheng et al., 2023].

In summary, our general tools offer the remarkable advantages of deriving tight bounds, which
improve upon the existing bounds of Awasthi et al. [2022b] given for complete hypothesis sets, cover
the comp-sum and constrained losses considered in [Awasthi et al., 2022a, Mao et al., 2023h] as well
as new ones, extend beyond the completeness assumption with novel guarantees valid for bounded
hypothesis sets, and are much stronger and more significant guarantees for logistic loss with linear
hypothesis sets than those of Zheng et al. [2023].

4



4 Comp-sum losses

In this section, we present a general characterization of H-consistency bounds for comp-sum losses,
a family of loss functions including the logistic loss [Verhulst, 1838, 1845, Berkson, 1944, 1951],
the sum exponential loss [Weston and Watkins, 1998, Awasthi et al., 2022b], the generalized cross
entropy loss [Zhang and Sabuncu, 2018], the mean absolute error loss [Ghosh et al., 2017], and many
other loss functions used in applications.

This is a family of loss functions defined via the composition of a non-negative and non-decreasing
function Ψ with the sum exponential losses (see [Mao et al., 2023h]):

∀h ∈H,∀(x, y) ×X × Y, `comp(h,x, y) = Ψ
⎛
⎝∑y′≠Y

eh(x,y
′)−h(x,y)⎞

⎠
. (2)

This expression can be equivalently written as `comp(h,x, y) = Φ( eh(x,y)

∑y′∈Y eh(x,y
′
)
), where Φ∶u ↦

Ψ( 1−u
u

) is a non-increasing auxiliary function from [0,1] to R+ ∪ {+∞}. As an example, the logistic
loss corresponds to the choice Φ∶u↦ − log(u) and the sum exponential loss to Φ∶u↦ 1−u

u
.

4.1 H-consistency bounds

In previous work, deriving H-consistency bounds has required giving new proofs for each instance.
The following result provides a very general tool for deriving such bounds with tightness guarantees.
We introduce an error transformation function and show that deriving an H-consistency bound for
comp-sum losses can be reduced to the calculation of this function.
Theorem 2 (H-consistency bound for comp-sum losses). Assume that H is symmetric and com-
plete and that Tcomp is convex. Then, the following inequality holds for any hypothesis h ∈H and
any distribution

Tcomp(R`0−1(h) −R∗
`0−1

(H) +M`0−1(H)) ≤ R`comp(h) −R∗
`comp(H) +M`comp(H), (3)

with Tcomp an H-estimation error transformation for comp-sum losses defined for all t ∈ [0,1] by

Tcomp(t) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

inf
τ∈[0, 12 ]

sup
µ∈[−τ,1−τ]

{ 1+t
2

[Φ(τ) −Φ(1 − τ − µ)] + 1−t
2

[Φ(1 − τ) −Φ(τ + µ)]} n = 2

inf
P ∈[ 1

n−1∨t,1]
inf

τ1≥max(τ2,1/n)
τ1+τ2≤1,τ2≥0

sup
µ∈[−τ2,τ1]

{P+t
2

[Φ(τ2) −Φ(τ1 − µ)] + P−t
2

[Φ(τ1) −Φ(τ2 + µ)]} n > 2.

Furthermore, for any t ∈ [0,1], there exist a distribution D and a hypothesis h ∈ H such that
R`0−1(h) −R∗

`0−1
(H) +M`0−1(H) = t and R`comp(h) −R∗

`comp(H) +M`comp(H) = Tcomp(t).

Thus, Theorem 2 shows that, when Tcomp is convex, to make these guarantees explicit, all that is
needed is to calculate Tcomp. Moreover, the last statement shows the tightness of the guarantees
derived using this function. The constraints in Tcomp are due to the forms that the conditional
probability vector and scoring functions take. These forms become more flexible for n > 2, leading to
intricate constraints. Note that our H-consistency bounds are distribution-independent and we cannot
claim tightness across all distributions.

The general expression of Tcomp in Theorem 2 is complex, but it can be considerably simplified
under some broad assumptions, as shown by the following result.

Theorem 3 (characterization of Tcomp). Assume that Φ is convex, differentiable at 1
2

and Φ′( 1
2
) < 0.

Then, Tcomp can be expressed as follows:

Tcomp(t) =
⎧⎪⎪⎨⎪⎪⎩

Φ( 1
2
) − infµ∈[− 1

2 ,
1
2
]{ 1−t

2
Φ( 1

2
+ µ) + 1+t

2
Φ( 1

2
− µ)} n = 2

infτ∈[ 1
n ,

1
2
]{Φ(τ) − infµ∈[−τ,τ]{ 1+t

2
Φ(τ − µ) + 1−t

2
Φ(τ + µ)}} n > 2.

The proof of this result as well as that of other theorems in this section are given in Appendix C.

Examples. We now illustrate the application of our theory through several examples. To do so, we
compute the H-estimation error transformation Tcomp for comp-sum losses and present the results in
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Table 1: H-estimation error transformation for common comp-sum losses.

Auxiliary function Φ − log(t) 1
t
− 1 1

q
(1 − tq), q ∈ (0,1) 1 − t (1 − t)2

Transformation Tcomp 1+t
2

log(1 + t) + 1−t
2

log(1 − t) 1 −
√

1 − t2 1
qnq

( (1+t)
1

1−q +(1−t)
1

1−q

2
)

1−q

− 1
qnq

t
n

t2

4

Table 1. Remarkably, by applying Theorem 2, we are able to obtain the same H-consistency bounds
for comp-sum losses with Φ(t) = − log(t), 1

t
− 1, 1

q
(1 − tq), q ∈ (0,1) and 1 − t as those derived

using ad hoc methods in [Mao et al., 2023h], and a novel tight H-consistency bound for the new

comp-sum loss `sq = [1 − eh(x,y)

∑y′∈Y eh(x,y
′
)
]
2

with Φ(t) = (1 − t)2 in Theorem 4.

The calculation of Tcomp for all entries of Table 1 is detailed in Appendix C.3. To illustrate the
effectiveness of our general tools, here, we show how the error transformation function can be
straightforwardly calculated in the case of the new surrogate loss `sq.
Theorem 4 (H-consistency bound for a new comp-sum loss). Assume that H is symmetric and
complete. Then, for all h ∈H and any distribution, the following tight bound holds.

R`0−1(h) −R∗
`0−1

(H) ≤ 2(R`sq(h) −R∗
`sq(H) +M`sq(H))

1
2 −M`0−1(H).

Proof. For n = 2, plugging in Φ(t) = (1 − t)2 in Theorem 3, gives

Tcomp = 1

4
− inf
µ∈[− 1

2 ,
1
2
]
{1 − t

2
(1

2
− µ)

2

+ 1 + t
2

(1

2
+ µ)

2

} = 1

4
− 1 − t2

4
= t

2

4
.

Similarly, for n > 2, plugging in Φ(t) = (1 − t)2 in Theorem 3 yields

Tcomp = inf
τ∈[ 1

n ,
1
2
]
{(1 − τ)2 − inf

µ∈[−τ,τ]
{1 + t

2
(1 − τ + µ)2 + 1 − t

2
(1 − τ − µ)2}}

= inf
τ∈[ 1

n ,
1
2
]
{(1 − τ)2 − (1 − τ)2(1 − t2)} (minimum achieved at µ = t(τ − 1))

= t
2

4
. (minimum achieved at τ = 1

2
)

By Theorem 2, the bound obtained is tight, which completes the proof.

4.2 Extension to non-complete/bounded hypothesis sets: comp-sum losses

As pointed out earlier, the hypothesis sets typically used in practice are bounded. Let F be a family of
real-valued functions f with ∣f(x)∣ ≤ Λ(x) for all x ∈ X and such that all values in [−Λ(x),+Λ(x)]
can be reached, where Λ(x) > 0 is a fixed function on X. We will study hypothesis sets H in which
each scoring function is bounded:

H = {h ∶ X × Y→ R ∣ h(⋅, y) ∈ F,∀y ∈ Y}. (4)

This holds for most hypothesis sets used in practice. The symmetric and complete hypothesis sets
studied in previous work correspond to the special case of H where Λ(x) = +∞ for all x ∈ X. The
hypothesis set of linear models Hlin, defined by

Hlin = {(x, y)↦ wy ⋅ x + by ∣ ∥wy∥ ≤W, ∣by ∣ ≤ B,y ∈ Y},

is also a special instance of H where Λ(x) =W ∥x∥ +B. Let us emphasize that previous studies did
not establish any H-consistency bound for these general hypothesis sets, H.

Theorem 5 (H-consistency bound for comp-sum losses). Assume that T
comp

is convex. Then, the
following inequality holds for any hypothesis h ∈H and any distribution:

T
comp(R`0−1(h) −R∗

`0−1
(H) +M`0−1(H)) ≤ R`comp(h) −R∗

`comp(H) +M`comp(H)
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with T
comp

the H-estimation error transformation for comp-sum losses defined for all t ∈ [0,1] by
T

comp(t) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

inf
τ∈[0, 12 ]

sup
µ∈[smin−τ,1−τ−smin]

{ 1+t
2

[Φ(τ) −Φ(1 − τ − µ)] + 1−t
2

[Φ(1 − τ) −Φ(τ + µ)]} n = 2

inf
P ∈[ 1

n−1∨t,1]
inf

Smin≤τ2≤τ1≤Smax
τ1+τ2≤1

sup
µ∈C

{P+t
2

[Φ(τ2) −Φ(τ1 − µ)] + P−t
2

[Φ(τ1) −Φ(τ2 + µ)]} n > 2,

where C = [max{smin − τ2, τ1 − smax},min{smax − τ2, τ1 − smin}], smax = 1
1+(n−1)e−2 infx Λ(x) and

smin = 1
1+(n−1)e2 infx Λ(x) . Furthermore, for any t ∈ [0,1], there exist a distribution D and h ∈H such

that R`0−1(h) −R∗
`0−1

(H) +M`0−1(H) = t and R`comp(h) −R∗
`comp(H) +M`comp(H) = Tcomp(t).

This theorem significantly broadens the applicability of our framework as it encompasses bounded
hypothesis sets. The last statement of the theorem further shows the tightness of the H-consistency
bounds derived using this error transformation function. We now illustrate the application of our
theory through several examples.

A. Example: logistic loss. We first consider the multinomial logistic loss, that is `comp with
Φ(u) = − log(u), for which we give the following guarantee.

Theorem 6 (H-consistency bounds for logistic loss). For any h ∈H and any distribution, we have

R`0−1(h) −R∗
`0−1

(H) +M`0−1
(H) ≤ Ψ−1(R`log

(h) −R∗
`log

(H) +M`log
(H)),

where `log = − log( eh(x,y)

∑y′∈Y eh(x,y
′
)
) and Ψ(t) =

⎧⎪⎪⎨⎪⎪⎩

1+t
2

log(1 + t) + 1−t
2

log(1 − t) t ≤ smax−smin

smin+smax

t
2

log( smax

smin
) + log( 2

√
smaxsmin

smax+smin
) otherwise.

The proof of Theorem 6 is given in Appendix E.2. With the help of some simple calculations, we can
derive a simpler upper bound:

Ψ−1(t) ≤ Γ(t) =
⎧⎪⎪⎨⎪⎪⎩

√
2t t ≤ (smax−smin)2

2(smin+smax)2

2(smin+smax)
smax−smin

t otherwise.

When the relative difference between smin and smax is small, the coefficient of the linear term in
Γ explodes. On the other hand, making that difference large essentially turns Γ into a square-root
function for all values. In general, Λ is not infinite since a regularization is used, which controls both
the complexity of the hypothesis set and the magnitude of the scores.

Comparison with [Mao et al., 2023h]. For the symmetric and complete hypothesis sets H consid-
ered in [Mao et al., 2023h], Λ(x) = +∞, smax = 1, smin = 0, Ψ(t) = 1+t

2
log(1 + t) + 1−t

2
log(1 − t)

and Γ(t) =
√

2t. By Theorem 6, this yields an H-consistency bound for the logistic loss.
Corollary 7 (H-consistency bounds for logistic loss). Assume that H is symmetric and complete.
Then, for any h ∈H and any distribution, we have

R`0−1(h) −R∗
`0−1

(H) ≤ Ψ−1(R`log
(h) −R∗

`log
(H) +M`log

(H)) −M`0−1(H)

where Ψ(t) = 1+t
2

log(1 + t) + 1−t
2

log(1 − t) and Ψ−1(t) ≤
√

2t.

Corollary 7 recovers the H-consistency bounds of Mao et al. [2023h].

Comparison with [Awasthi et al., 2022a] and [Zheng et al., 2023]. For the linear models Hlin =
{(x, y)↦ wy ⋅ x + by ∣ ∥wy∥ ≤W, ∣by ∣ ≤ B}, we have Λ(x) =W ∥x∥ +B. By Theorem 6, we obtain
Hlin-consistency bounds for logistic loss.
Corollary 8 (Hlin-consistency bounds for logistic loss). For any h ∈Hlin and any distribution,

R`0−1(h) −R∗
`0−1

(Hlin) ≤ Ψ−1(R`log
(h) −R∗

`log
(Hlin) +M`log

(Hlin)) −M`0−1(Hlin)

where Ψ(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1+t
2

log(1 + t) + 1−t
2

log(1 − t) t ≤ (n−1)(e2B−e−2B)
2+(n−1)(e2B+e−2B)

t
2

log( 1+(n−1)e2B
1+(n−1)e−2B ) + log( 2

√
(1+(n−1)e2B)(1+(n−1)e−2B)

2+(n−1)(e2B+e−2B) ) otherwise.
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For n = 2, we have Ψ(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

t+1
2

log(t + 1) + 1−t
2

log(1 − t) t ≤ e2B−1
e2B+1

t
2

log( 1+e2B
1+e−2B ) + log( 2

√
(1+e2B)(1+e−2B)
2+e2B+e−2B ) otherwise,

which coincides

with the Hlin-estimation error transformation in [Awasthi et al., 2022a]. Thus, Corollary 8 includes as
a special case the Hlin-consistency bounds given by Awasthi et al. [2022a] for binary classification.

Our bounds of Corollary 8 improves upon the multi-class Hlin-consistency bounds of recent
work [Zheng et al., 2023, Theorem 3.3] in the following ways: i) their bound holds only for
restricted distributions while our bound holds for any distribution; ii) their bound holds only for
restricted values of the estimation error R`log

(h) − R∗
`log

(Hlin) while ours holds for any value
in R and more precisely admits a piecewise functional form; iii) under their distributional as-
sumption, the minimizability gaps M`0−1(Hlin) and M`log

(Hlin) coincide with the approximation
errors R`0−1(Hlin) − R∗

`0−1
(Hall) and R`log

(Hlin) − R∗
`log

(Hall) respectively (see the note before
[Zheng et al., 2023, Appendix F]). Thus, their bounds can be recovered as an excess error bound

R`0−1(h) −R∗
`0−1

(Hall) ≤
√

2[R`log
(h) −R∗

`log
(Hall)]

1
2 , which is not specific to the hypothesis set

H and thus not as significant. In contrast, our Hlin-consistency bound is finer and takes into account
the role of the parameter B as well as the number of labels n; iv) [Zheng et al., 2023, Theorem 3.3]
only offers approximate bounds that are not tight; in contrast, by Theorem 5, our bound is tight.

Note that our H-consistency bound in Theorem 6 are not limited to specific hypothesis set forms. They
are directly applicable to various types of hypothesis sets including neural networks. For example, the
same derivation can be extended to one-hidden-layer neural networks studied in [Awasthi et al., 2022a]
and their multi-class generalization by calculating and substituting the corresponding Λ(x). As a
result, we can obtain novel and tight H-consistency bounds for bounded neural network hypothesis
sets in multi-class classification, which highlights the versatility of our general tools.

B. Example: sum exponential loss. We then consider the sum exponential loss, that is `comp with
Φ(u) = 1−u

u
. By computing the error transformation in Theorem 5, we obtain the following result.

Theorem 9 (H-consistency bounds for sum exponential loss). For any h ∈H and any distribution,

R`0−1(h) −R∗
`0−1

(H) +M`0−1
(H) ≤ Ψ−1(R`exp(h) −R∗

`exp
(H) +M`exp

(H))

where `exp = ∑y′≠y eh(x,y
′)−h(x,y) and Ψ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 −
√

1 − t2 t ≤ s2max−s
2
min

s2
min

+s2max

smax−smin

2smaxsmin
t − (smax−smin)2

2smaxsmin(smax+smin) otherwise.
.

The proof of Theorem 9 is given in Appendix E.3. Observe that 1 −
√

1 − t2 ≥ t2/2. By Theorem 9,
making smin close to zero, that is making Λ close to infinite for any x ∈ X, essentially turns Ψ into a
square function for all values. In general, Λ is not infinite since a regularization is used in practice,
which controls both the complexity of the hypothesis set and the magnitude of the scores.

C. Example: generalized cross-entropy loss and mean absolute error loss. Due to space limita-
tions, we present the results for these loss functions in Appendix E.

5 Constrained losses

In this section, we present a general characterization of H-consistency bounds for constrained loss,
that is loss functions defined via a constraint, as in [Lee et al., 2004]:

`cstnd(h,x, y) = ∑
y′≠y

Φ(−h(x, y′)) (5)

with the constraint that ∑y∈Y h(x, y) = 0 for a non-negative and non-increasing auxiliary function Φ.

5.1 H-consistency bounds

As in the previous section, we prove a result that supplies a very general tool, an error transformation
function for deriving H-consistency bounds for constrained losses. When Tcstnd is convex, to make
these guarantees explicit, we only need to calculate Tcstnd.
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Table 2: H-estimation error transformation for common constrained losses.

Auxiliary function Φ Φexp(t) = e−t Φhinge(t) = max{0,1 − t} Φsq−hinge(t) = (1 − t)21t≤1 Φsq = (1 − t)2

Transformation Tcstnd Tcstnd(t) = 2 −
√

4 − t2 Tcstnd(t) = t Tcstnd(t) = t2

2
Tcstnd(t) = t2

2

Theorem 10 (H-consistency bound for constrained losses). Assume that H is symmetric and
complete. Assume that Tcstnd is convex. Then, for any hypothesis h ∈H and any distribution,

Tcstnd(R`0−1(h) −R∗
`0−1

(H) +M`0−1(H)) ≤ R`cstnd(h) −R∗
`cstnd(H) +M`cstnd(H)

with H-estimation error transformation for constrained losses defined on t ∈ [0,1] by Tcstnd(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

inf
τ≥0

sup
µ∈R

{ 1−t
2

[Φ(τ) −Φ(−τ + µ)] + 1+t
2

[Φ(−τ) −Φ(τ − µ)]} n = 2

inf
P ∈[ 1

n−1 ,1]
inf

τ1≥max{τ2,0}
sup
µ∈R

{ 2−P−t
2

[Φ(−τ2) −Φ(−τ1 + µ)] + 2−P+t
2

[Φ(−τ1) −Φ(−τ2 − µ)]} n > 2.

Furthermore, for any t ∈ [0,1], there exist a distribution D and a hypothesis h ∈ H such that
R`0−1(h) −R∗

`0−1
(H) +M`0−1(H) = t and R`cstnd(h) −R∗

`cstnd(H) +M`cstnd(H) = Tcstnd(t).

Here too, the theorem guarantees the tightness of the bound. This general expression of Tcstnd can be
considerably simplified under some broad assumptions, as shown by the following result.
Theorem 11 (characterization of Tcstnd). Assume that Φ is convex, differentiable at zero and
Φ′(0) < 0. Then, Tcstnd can be expressed as follows:

Tcstnd(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Φ(0) − infµ∈R{ 1−t
2

Φ(µ) + 1+t
2

Φ(−µ)} n = 2

infτ≥0{(2 − 1
n−1

)Φ(−τ) − infµ∈R{
2−t− 1

n−1

2
Φ(−τ + µ) + 2+t− 1

n−1

2
Φ(−τ − µ)}} n > 2

≥ {Φ(0) − infµ∈R{ 1−t
2

Φ(µ) + 1+t
2

Φ(−µ)} n = 2

infτ≥0{2Φ(−τ) − infµ∈R{ 2−t
2

Φ(−τ + µ) + 2+t
2

Φ(−τ − µ)}} n > 2.

The proof of all the results in this section are given in Appendix D.

Examples. We now compute the H-estimation error transformation for constrained losses and
present the results in Table 2. Here, we present the simplified Tcstnd by using the lower bound in
Theorem 11. Remarkably, by applying Theorem 10, we are able to obtain tighter H-consistency
bounds for constrained losses with Φ = Φhinge,Φsq−hinge,Φexp than those derived using ad hoc
methods in [Awasthi et al., 2022b], and a novel H-consistency bound for the new constrained loss
`cstnd(h,x, y) = ∑y′≠y(1 + h(x, y′))2 with Φ(t) = (1 − t)2.

5.2 Extension to non-complete or bounded hypothesis sets

As in the case of comp-sum losses, we extend our results beyond the completeness assumption
adopted in previous work and establish H-consistency bounds for bounded hypothesis sets. This
significantly broadens the applicability of our framework.

Theorem 12 (H-consistency bound for constrained losses). Assume that T
cstnd

is convex. Then,
the following inequality holds for any hypothesis h ∈H and any distribution:

T
cstnd(R`0−1(h) −R∗

`0−1
(H) +M`0−1(H)) ≤ R`cstnd(h) −R∗

`cstnd(H) +M`cstnd(H). (6)

with T
cstnd

the H-estimation error transformation for constrained losses defined for all t ∈ [0,1] by

T
cstnd(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

inf
τ≥0

sup
µ∈[τ−Λmin,τ+Λmin]

{ 1−t
2

[Φ(τ) −Φ(−τ + µ)] + 1+t
2

[Φ(−τ) −Φ(τ − µ)]} n = 2

inf
P ∈[ 1

n−1 ,1]
inf

τ1≥max{τ2,0}
sup
µ∈C

{ 2−P−t
2

[Φ(−τ2) −Φ(−τ1 + µ)] + 2−P+t
2

[Φ(−τ1) −Φ(−τ2 − µ)]} n > 2,

where C = [max{τ1,−τ2} −Λmin,min{τ1,−τ2} +Λmin] and Λmin = infx∈X Λ(x). Furthermore,
for any t ∈ [0,1], there exist a distribution D and a hypothesis h ∈H such that R`0−1(h)−R∗

`0−1
(H)+

M`0−1(H) = t and R`cstnd(h) −R∗
`cstnd(H) +M`cstnd(H) = Tcstnd(t).
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The proof is presented in Appendix F.1. Next, we illustrate the application of our theory through
an example of constrained exponential losses, that is `cstnd with Φ(t) = e−t. By using the error
transformation in Theorem 12, we obtain new H-consistency bounds in Theorem 13 (see Appendix F.2
for the proof) for bounded hypothesis sets H.

Theorem 13 (H-consistency bounds for constrained exponential loss). Let Φ(t) = e−t. For any
h ∈H and any distribution,

R`0−1(h) −R∗
`0−1

(H) +M`0−1
(H) ≤ Ψ−1(R`cstnd(h) −R∗

`cstnd(H) +M`cstnd(H))

where Ψ(t) =
⎧⎪⎪⎨⎪⎪⎩

1 −
√

1 − t2 t ≤ e2Λmin−1
e2Λmin+1

t
2
(eΛmin − e−Λmin) + 2−eΛmin−e−Λmin

2
otherwise.

.

Awasthi et al. [2022b] proves H-consistency bounds for constrained exponential losses when H is
symmetric and complete. Theorem 13 significantly generalizes those results to the non-complete
hypothesis sets. Different from the complete case, the functional form of our new bounds has two
pieces which corresponds to the linear and the square root convergence respectively, modulo the
constants. Furthermore, the coefficient of the linear piece depends on the the magnitude of Λmin.
When Λmin is small, the coefficient of the linear term in Ψ−1 explodes. On the other hand, making
Λmin large essentially turns Ψ−1 into a square-root function.

6 Discussion

Here, we further elaborate on the practical value of our tools and H-consistency bounds. Our contri-
butions include a more general and convenient mathematical tool for proving H-consistency bounds,
along with tighter bounds that enable a better comparison of surrogate loss functions and extensions
beyond previous completeness assumptions. As mentioned by [Awasthi et al., 2022b], given a
hypothesis set H, H-consistency bounds can be used to compare different surrogate loss functions
and select the most favorable one, which depends on the functional form of the H-consistency bound;
the smoothness of the surrogate loss and its optimization properties; approximation properties of
the surrogate loss function controlled by minimizability gaps; and the dependency on the number of
classes in the multiplicative constant. Consequently, a tighter H-consistency bound provides a more
accurate comparison, as a loose bound might not adequately capture the full advantage of using one
surrogate loss. In contrast, Bayes-consistency does not take into account the hypothesis set and is an
asymptotic property, thereby failing to guide the comparison of different surrogate losses.

Another application of our H-consistency bounds involves deriving generalization bounds for sur-
rogate loss minimizers [Mao et al., 2023h], expressed in terms of the same quantities previously
discussed. Therefore, when dealing with finite samples, a tighter H-consistency bound could also
result in a corresponding tighter generalization bound. Moreover, our novel results extend beyond
previous completeness assumptions, offering guarantees applicable to bounded hypothesis sets
commonly used with regularization. This enhancement provides meaningful learning guarantees.
Technically, our error transformation function serves as a very general tool for deriving H-consistency
bounds with tightness guarantees. These functions are defined within each class of loss functions
including comp-sum losses and constrained losses, and their formulation depends on the structure
of the individual loss function class, the range of the hypothesis set and the number of classes. To
derive explicit bounds, all that is needed is to calculate these error transformation functions. Under
some broad assumptions on the auxiliary function within a loss function, these error transformation
functions can be further distilled into more simplified forms, making them straightforward to compute.

7 Conclusion

We presented a general characterization and extension of H-consistency bounds for multi-class
classification. We introduced new tools for deriving such bounds with tightness guarantees and
illustrated their benefits through several applications and examples. Our proposed method is a
significant advance in the theory of H-consistency bounds for multi-class classification. It can
provide a general and powerful tool for deriving tight bounds for a wide variety of other loss functions
and hypothesis sets. We believe that our work will open up new avenues of research in the field of
multi-class classification consistency.
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A Related work

The notions of Bayes-consistency (also known as consistency) and calibration have been well studied
not only with respect to the binary zero-one loss [Zhang, 2004a, Bartlett et al., 2006, Steinwart, 2007,
Mohri et al., 2018], but also with respect to the multi-class zero-one loss [Zhang, 2004b, Tewari
and Bartlett, 2007], the general multi-class losses [Ramaswamy and Agarwal, 2012, Narasimhan
et al., 2015, Ramaswamy and Agarwal, 2016], the multi-class SVMs [Chen and Sun, 2006, Chen and
Xiang, 2006, Liu, 2007, Dogan et al., 2016, Wang and Scott, 2020], the gamma-phi losses [Wang and
Scott, 2023], the multi-label losses [Gao and Zhou, 2011, Dembczynski et al., 2012, Zhang et al.,
2020], the losses with a reject option [Ramaswamy et al., 2015, Cortes et al., 2016a,b, 2023], the
ranking losses [Ravikumar et al., 2011, Ramaswamy et al., 2013, Gao and Zhou, 2015, Uematsu and
Lee, 2017], the cost sensitive losses [Pires et al., 2013, Pires and Szepesvári, 2016], the structured
losses [Ciliberto et al., 2016, Osokin et al., 2017, Blondel, 2019], the polyhedral losses [Frongillo
and Waggoner, 2021, Finocchiaro et al., 2022], the Top-k classification losses [Thilagar et al., 2022],
the proper losses [Agarwal and Agarwal, 2015, Williamson et al., 2016] and the losses of ordinal
regression [Pedregosa et al., 2017].

Bayes-consistency only holds for the full family of measurable functions, which of course is distinct
from the more restricted hypothesis set used by a learning algorithm. Therefore, a hypothesis set-
dependent notion of H-consistency has been proposed by Long and Servedio [2013] in the realizable
setting, used by Zhang and Agarwal [2020] for linear models, and generalized by Kuznetsov et al.
[2014] to the structured prediction case. Long and Servedio [2013] showed that there exists a case
where a Bayes-consistent loss is not H-consistent while inconsistent losses can be H-consistent.
Zhang and Agarwal [2020] further investigated the phenomenon in [Long and Servedio, 2013] and
showed that the situation of losses that are not H-consistent with linear models can be remedied
by carefully choosing a larger piecewise linear hypothesis set. Kuznetsov et al. [2014] proved
positive results for the H-consistency of several multi-class ensemble algorithms, as an extension of
H-consistency results in [Long and Servedio, 2013].

Recently, Awasthi et al. [2022a,b], Mao et al. [2023h], Zheng et al. [2023] presented a series of results
providing H-consistency bounds. These are upper bounds on the zero-one estimation error of any
predictor in a hypothesis set, expressed in terms of its surrogate loss estimation error. They are more
informative guarantees than similar excess error bounds derived in the literature, which correspond to
the special case where H is the family of all measurable functions [Zhang, 2004a, Bartlett et al., 2006,
Mohri et al., 2018]. Awasthi et al. [2022a] studied H-consistency bounds in binary classification.
They provided a series of tight H-consistency bounds for bounded hypothesis set of linear models and
one-hidden-layer neural networks. The subsequent study [Awasthi et al., 2022b] further generalized
the framework to multi-class classification, where they presented a extensive study of H-consistency
bounds for diverse multi-class surrogate losses including negative results for max losses [Crammer
and Singer, 2001] and positive results for sum losses [Weston and Watkins, 1998], and constrained
losses [Lee et al., 2004]. However, the hypothesis sets adopted there were assumed to be complete,
which rules out the bounded hypothesis sets typically used in practice. Moreover, the final bounds
derived from [Awasthi et al., 2022b] are based on ad hoc methods and may not be tight. [Mao
et al., 2023h] complemented the previous work by studying a wide family of comp-sum losses in the
multi-class classification, which generalized the sum-losses and included as special cases the logistic
loss [Verhulst, 1838, 1845, Berkson, 1944, 1951], the generalized cross-entropy loss [Zhang and
Sabuncu, 2018], and the mean absolute error loss [Ghosh et al., 2017]. Here too, the completeness
assumption on the hypothesis sets was adopted and their H-consistency bounds do not apply to
common bounded hypothesis sets in practice. Zheng et al. [2023] proved H-consistency bounds for
multi-class logistic loss with bounded linear hypothesis sets. However, their bounds require a crucial
distributional assumption under which, the minimizability gaps coincide with the approximation
errors. Thus, their bounds can be recovered as excess error bounds, which are less significant.

This paper provides both a general characterization and an extension of H-consistency bounds for
multi-class classification. Our general tools and tight bounds show several remarkable advantages:
first, they improve existing bounds for complete hypothesis sets previously proven in [Awasthi et al.,
2022b], second, they encompass all previously comp-sum and constrained losses studied thus far
as well as many new ones [Awasthi et al., 2022a, Mao et al., 2023h], third, they extend beyond the
completeness assumption adopted in previous work, fourth, they give novel guarantees for bounded
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hypothesis sets, and finally they help prove a much stronger and more significant guarantee for
logistic loss with linear hypothesis set than [Zheng et al., 2023].

Other related work on H-consistency bounds includes: H-consistency bounds for pairwise ranking
[Mao et al., 2023d,e]; theoretically grounded surrogate losses and algorithms for learning with
abstention supported by H-consistency bounds, including the study of score-based abstention [Mao
et al., 2023f], predictor-rejector abstention [Mao et al., 2023c] and learning to abstain with a fixed
predictor with application in decontextualization [Mohri et al., 2023]; principled approaches for
learning to defer with multiple experts that benefit from strong H-consistency bounds, including the
single-stage scenario [Mao et al., 2023b] and a two-stage scenario [Mao et al., 2023a]; H-consistency
theory and algorithms for adversarial robustness [Awasthi et al., 2021a,b, 2023a, Mao et al., 2023h,
Awasthi et al., 2023b]; and efficient algorithms and loss functions for structured prediction with
stronger H-consistency guarantees [Mao et al., 2023g].

B Minimizability gap

This is a brief discussion of minimizability gaps and their properties. By definition, for any loss
function `, the minimizability gap is defined by

M`(H) = inf
h∈H

{ E
(x,y)∼D

[`(h,x, y)]} −E
x
[ inf
h∈H

E
y∣x

[`(h,x, y)]] = R∗
` (H) −E

x
[C∗` (H, x)].

B.1 Zero minimizability

Lemma 14. Let ` be a surrogate loss such that for (x, y) ∈ X × Y and any measurable function
h ∈Hall, the loss `(h,x, y) only depends on h(x) and y (thus we can write `(h,x, y) = `(h(x), y)
for some function `). Then, the minimizabiliy gap vanishes: M`(Hall) = 0.

Proof. Fix ε > 0. Then, by definition of the infimum, for any x ∈ X, there exists hx ∈Hall such that

E
y∣x

[`(hx, x, y)] ≤ inf
h∈Hall

E
y∣x

[`(h,x, y)] + ε.

Now, define the function h by h(x) = hx(x), for all x ∈ X. h can be shown to be measurable, for
example, when X admits a countable dense subset. Then,

E
(x,y)∼D

[`(h,x, y)] = E
(x,y)∼D

[`(h(x), y)] = E
(x,y)∼D

[`(hx(x), y)]

= E
(x,y)∼D

[`(hx, x, y)]

≤ E
x
[ inf
h∈Hall

E
y∣x

[`(h,x, y)] + ε]

= E
x
[C∗` (Hall, x)] + ε.

Thus, we have
inf

h∈Hall

E
(x,y)∼D

[`(h,x, y)] ≤ E
x
[C∗` (Hall, x)] + ε.

Since the inequality holds for any ε > 0, we have R∗
` (Hall) = infh∈Hall

E(x,y)∼D[`(h,x, y)] ≤
Ex[C∗` (Hall, x)]. This implies equality since the inequality R∗

` (H) ≥ Ex[C∗` (H, x)] holds for any
H.

B.2 Relationship with approximation error

Let A` denote the approximation error of a loss function ` and a hypothesis set H: A`(H) =
R∗
` (H) − R∗

` (Hall). We will denote by I`(H) the difference of pointwise infima I`(H) =
Ex [C∗` (H, x) − C∗` (Hall, x)], which is non-negative. The minimizability gap can be decomposed as
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follows in terms of the approximation error and the difference of pointwise infima:

M`(H) = R∗
` (H) −Ex [C∗` (H, x)]

= R∗
` (H) −R∗

` (Hall) +R∗
` (Hall) −Ex [C∗` (H, x)]

= A`(H) +R∗
` (Hall) −Ex [C∗` (H, x)]

= A`(H) +Ex [C∗` (Hall, x) − C∗` (H, x)] (By Lemma 14)
= A`(H) − I`(H).

The decomposition immediately implies the following result.

Lemma 15. Let ` be a surrogate loss such that for (x, y) ∈ X × Y and any measurable function
h ∈Hall, the loss `(h,x, y) only depends on h(x) and y (thus we can write `(h,x, y) = `(h(x), y)
for some function `). Then, for any loss function ` and hypothesis set H, we have: M`(H) ≤ A`(H).

By Lemma 1, when ` is the zero-one loss, I`(H) = 0 when the hypothesis set generates labels
that cover all possible outcomes for each input. However, for a surrogate loss function, I`(H) is
non-negative, and is generally non-zero.

Take the example of binary classification and denote the conditional distribution as η(x) =D(Y =
1∣X = x). Let H be a family of functions h with ∣h(x)∣ ≤ Λ for all x ∈ X and such that all values
in [−Λ,+Λ] can be reached. Consider for example the exponential-based margin loss: `(h,x, y) =
e−yh(x). Then, C`(h,x) = η(x)e−h(x) + (1 − η(x))eh(x). Upon observing this, it becomes apparent
that the infimum over all measurable functions can be expressed in the following way, for all x:

C∗` (Hall, x) = 2
√
η(x)(1 − η(x)),

while the infimum over H, C∗` (H, x), depends on Λ and can be expressed as

C∗` (H, x) =
⎧⎪⎪⎨⎪⎪⎩

max{η(x),1 − η(x)}e−Λ +min{η(x),1 − η(x)}eΛ Λ < 1
2
∣log η(x)

1−η(x) ∣
2
√
η(x)(1 − η(x)) otherwise.

Thus, in the deterministic scenario,

I`(H) = Ex[C∗` (H, x) − C∗` (Hall, x)] = e−Λ.

B.3 Significance of H-consistency bounds

As shown in the previous section, for target loss `0−1, the minimizability gap coincides with the
approximation error M`0−1(H) = A`0−1(H) when the hypothesis set generates labels that cover
all possible outcomes for each input. However, for a surrogate loss `, the minimizability gap is
generally strictly less than the approximation error M`(H) < A`(H). Thus, an H-consistency bound,
expressed as follows for some increasing function Γ:

R`0−1(h) −R∗
`0−1

(H) +M`0−1(H) ≤ Γ(R`(h) −R∗
` (H) +M`(H)).

is more favorable than an excess error bound expressed in terms of approximation errors:

R`0−1(h) −R∗
`0−1

(H) +A`0−1(H) ≤ Γ(R`(h) −R∗
` (H) +A`(H)).

Here, Γ is typically linear or the square-root function modulo constants. When H =Hall, the family
of all measurable functions, by Lemma 14, the H-consistency bound coincides with the excess error
bound and implies Bayes-consistency by taking the limit. It is therefore a stronger guarantee than an
excess error bound and Bayes-consistency.

C Proofs for comp-sum losses

Let ymax = argmaxy∈Y p(x, y) and h(x) = argmaxy∈Y h(x, y), where we choose the label with the
highest index under the natural ordering of labels as the tie-breaking strategy.
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C.1 Proof of H-consistency bounds with Tcomp (Theorem 2)

Theorem 2 (H-consistency bound for comp-sum losses). Assume that H is symmetric and com-
plete and that Tcomp is convex. Then, the following inequality holds for any hypothesis h ∈H and
any distribution

Tcomp(R`0−1(h) −R∗
`0−1

(H) +M`0−1(H)) ≤ R`comp(h) −R∗
`comp(H) +M`comp(H), (3)

with Tcomp an H-estimation error transformation for comp-sum losses defined for all t ∈ [0,1] by

Tcomp(t) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

inf
τ∈[0, 12 ]

sup
µ∈[−τ,1−τ]

{ 1+t
2

[Φ(τ) −Φ(1 − τ − µ)] + 1−t
2

[Φ(1 − τ) −Φ(τ + µ)]} n = 2

inf
P ∈[ 1

n−1∨t,1]
inf

τ1≥max(τ2,1/n)
τ1+τ2≤1,τ2≥0

sup
µ∈[−τ2,τ1]

{P+t
2

[Φ(τ2) −Φ(τ1 − µ)] + P−t
2

[Φ(τ1) −Φ(τ2 + µ)]} n > 2.

Furthermore, for any t ∈ [0,1], there exist a distribution D and a hypothesis h ∈ H such that
R`0−1(h) −R∗

`0−1
(H) +M`0−1(H) = t and R`comp(h) −R∗

`comp(H) +M`comp(H) = Tcomp(t).

Proof. For the comp-sum loss `comp, the conditional `comp-risk can be expressed as follows:

C`comp(h,x) = ∑
y∈Y

p(x, y)`comp(h,x, y)

= ∑
y∈Y

p(x, y)Φ( eh(x,y)

∑y′∈Y eh(x,y′)
)

= ∑
y∈Y

p(x, y)Φ(Sh(x, y))

= p(x, ymax)Φ(Sh(x, ymax)) + p(x,h(x))Φ(Sh(x,h(x)))
+ ∑
y∉{ymax,h(x)}

p(x, y)Φ(Sh(x, y)).

where we let Sh(x, y) = eh(x,y)

∑y′∈Y eh(x,y
′
)

for any y ∈ Y with the constraint that ∑y∈Y Sh(x, y) = 1. For

any h ∈H such that h(x) ≠ ymax and x ∈ X, we can always find a family of hypotheses {hµ} ⊂H

such that Sh,µ(x, ⋅) = ehµ(x,⋅)

∑y′∈Y ehµ(x,y
′
)

take the following values:

Sh,µ(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Sh(x, y) if y /∈ {ymax,h(x)}
Sh(x, ymax) + µ if y = h(x)
Sh(x,h(x)) − µ if y = ymax.

Note that Sh,µ satisfies the constraint:

∑
y∈Y

Sh,µ(x, y) = ∑
y∈Y

Sh(x, y) = 1.
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Let p1 = p(x, ymax), p2 = p(x,h(x)), τ1 = Sh(x,h(x)) and τ2 = Sh(x, ymax) to simplify the
notation. Then, by the definition of Sh,µ, we have for any h ∈H and x ∈ X,

C`comp(h,x) − inf
µ∈[−τ2,τ1]

C`comp(hµ, x)

= sup
µ∈[−τ2,τ1]

{p1[Φ(τ2) −Φ(τ1 − µ)] + p2[Φ(τ1) −Φ(τ2 + µ)]}

= sup
µ∈[−τ2,τ1]

{P + p1 − p2

2
[Φ(τ2) −Φ(τ1 − µ)] +

P − p1 + p2

2
[Φ(τ1) −Φ(τ2 + µ)]}

(P = p1 + p2 ∈ [ 1
n−1

∨ p1 − p2,1])

≤ inf
P ∈[ 1

n−1∨p1−p2,1]
inf

τ1≥max(τ2,1/n)
τ1+τ2≤1,τ2≥0

sup
µ∈[−τ2,τ1]

{P + p1 − p2

2
[Φ(τ2) −Φ(τ1 − µ)]

+ P − p1 + p2

2
[Φ(τ1) −Φ(τ2 + µ)]} (τ1 ≥ max(τ2,1/n), τ1 + τ2 ≤ 1, τ2 ≥ 0)

= Tcomp(p1 − p2)
= Tcomp(∆C`0−1,H(h,x)), (by Lemma 1)

where for n = 2, an additional constraint τ1 + τ2 = 1 is imposed and the expression of Tcomp is
simplified. Since Tcomp is convex, by Jensen’s inequality, we obtain for any hypothesis h ∈H and
any distribution,

Tcomp(R`0−1(h) −R∗
`0−1

(H) +M`0−1(H))

= Tcomp(E
X
[∆C`0−1,H(h,x)])

≤ E
X
[Tcomp(∆C`0−1,H(h,x))]

≤ E
X
[∆C`comp,H(h,x)]

= R`comp(h) −R∗
`comp(H) +M`comp(H).

For the second part, we first consider n = 2. For any t ∈ [0,1], we consider the distribution that
concentrates on a singleton {x} and satisfies p(x,1) = 1+t

2
, p(x,2) = 1−t

2
. For any ε > 0, by the

definition of infimum, we can take h ∈H such that Sh(x,1) = τε ∈ [0, 1
2
] and satisfies

sup
µ∈[−τε,1−τε]

{1 + t
2

[Φ(τε) −Φ(1 − τε − µ)] +
1 − t

2
[Φ(1 − τε) −Φ(τε + µ)]} < Tcomp(t) + ε.

Then,

R`0−1(h) −R∗
`0−1

(H) +M`0−1(H) = R`0−1(h) −EX[C∗`0−1
(H, x)]

= C`0−1(h,x) − C∗`0−1
(H, x)

= t

and

Tcomp(t) ≤ R`comp(h) −R∗
`comp(H) +M`comp(H)

= R`comp(h) −EX[C∗`comp(H, x)]
= C`comp(h,x) − C∗`comp(H, x)

= sup
µ∈[−τε,1−τε]

{1 + t
2

[Φ(τε) −Φ(1 − τε − µ)] +
1 − t

2
[Φ(1 − τε) −Φ(τε + µ)]}

< Tcomp(t) + ε.

By letting ε→ 0, we prove the tightness for n = 2. The proof for n > 2 directly extends from the case
when n = 2. Indeed, for any t ∈ [0,1], we consider the distribution that concentrates on a singleton
{x} and satisfies p(x,1) = 1+t

2
, p(x,2) = 1−t

2
, p(x, y) = 0, 3 ≤ y ≤ n. For any ε > 0, by the definition
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of infimum, we can take h ∈ H such that Sh(x,1) = τ1,ε, Sh(x,2) = τ2,ε, Sh(x, y) = 0, 3 ≤ y ≤ n
and satisfies τ1,ε + τ2,ε = 1, and

inf
P ∈[ 1

n−1∨t,1]
sup

µ∈[−τ2,ε,τ1,ε]
{P + t

2
[Φ(τ2,ε) −Φ(τ1,ε − µ)] +

P − t
2

[Φ(τ1,ε) −Φ(τ2,ε + µ)]}

= sup
µ∈[−τ2,ε,τ1,ε]

{1 + t
2

[Φ(τ2,ε) −Φ(τ1,ε − µ)] +
1 − t

2
[Φ(τ1,ε) −Φ(τ2,ε + µ)]}

< Tcomp(t) + ε.

Then,

R`0−1(h) −R∗
`0−1

(H) +M`0−1(H) = t

and

Tcomp(t) < Tcomp(t) + ε.

By letting ε→ 0, we prove the tightness for n > 2.

C.2 Characterization of Tcomp (Theorem 3)

Theorem 3 (characterization of Tcomp). Assume that Φ is convex, differentiable at 1
2

and Φ′( 1
2
) < 0.

Then, Tcomp can be expressed as follows:

Tcomp(t) =
⎧⎪⎪⎨⎪⎪⎩

Φ( 1
2
) − infµ∈[− 1

2 ,
1
2
]{ 1−t

2
Φ( 1

2
+ µ) + 1+t

2
Φ( 1

2
− µ)} n = 2

infτ∈[ 1
n ,

1
2
]{Φ(τ) − infµ∈[−τ,τ]{ 1+t

2
Φ(τ − µ) + 1−t

2
Φ(τ + µ)}} n > 2.

Proof. For n = 2, we have

Tcomp(t) = inf
τ∈[0, 12 ]

sup
µ∈[−τ,1−τ]

{1 + t
2

[Φ(τ) −Φ(1 − τ − µ)] + 1 − t
2

[Φ(1 − τ) −Φ(τ + µ)]}

= inf
τ∈[0, 12 ]

(1 + t
2

Φ(τ) + 1 − t
2

[Φ(1 − τ)] − inf
µ∈[−τ,1−τ]

{1 + t
2

Φ(1 − τ − µ) + 1 − t
2

Φ(τ + µ)})

= inf
τ∈[0, 12 ]

(1 + t
2

Φ(τ) + 1 − t
2

[Φ(1 − τ)]) − inf
µ∈[− 1

2 ,
1
2
]
{1 − t

2
Φ(1

2
+ µ) + 1 + t

2
Φ(1

2
− µ)}

≥ inf
τ∈[0, 12 ]

(Φ(1

2
) +Φ′(1

2
)t(τ − 1

2
)) − inf

µ∈[− 1
2 ,

1
2
]
{1 − t

2
Φ(1

2
+ µ) + 1 + t

2
Φ(1

2
− µ)}

(Φ is convex)

= Φ(1

2
) − inf

µ∈[− 1
2 ,

1
2
]
{1 − t

2
Φ(1

2
+ µ) + 1 + t

2
Φ(1

2
− µ)} (Φ′( 1

2
) < 0, t(τ − 1

2
) ≤ 0)

where the equality can be achieved by τ = 1
2

.

For n > 2, we have

Tcomp(t) = inf
P ∈[ 1

n−1 ,1]
inf

τ1≥max(τ2,1/n)
τ1+τ2≤1,τ2≥0

sup
µ∈[−τ2,τ1]

F (P, τ1, τ2, µ)

where we let F (P, τ1, τ2, µ) = P+t
2

[Φ(τ2) −Φ(τ1 − µ)] + P−t
2

[Φ(τ1) −Φ(τ2 + µ)]. For simplicity,
we assume that Φ is differentiable. For general convex Φ, we can proceed by using left and right
derivatives, which are non-decreasing. Differentiate F with respect to µ, we have

∂F

∂µ
= P + t

2
Φ′(τ1 − µ) +

t − P
2

Φ′(τ2 + µ).

Using the fact that P ∈ [ 1
n−1

∨ t,1], t ∈ [0,1] and Φ′ is non-decreasing, we obtain that ∂F
∂µ

is non-
increasing. Furthermore, Φ′ is non-decreasing and non-positive, Φ is non-negative, we obtain that

21



Φ′(+∞) = 0. This implies that ∂F
∂µ

(+∞) ≤ 0 and ∂F
∂µ

(−∞) ≥ 0. Therefore, there exists µ0 ∈ R such
that

∂F

∂µ
(µ0) =

P + t
2

Φ′(τ1 − µ0) +
t − P

2
Φ′(τ2 + µ0) = 0

By taking µ = τ1 − τ2 and using the fact that τ2 ≤ 1
2

, Φ′( 1
2
) < 0, we have

∂F

∂µ
(τ1 − τ2) =

P + t
2

Φ′(τ2) +
t − P

2
Φ′(τ1) < 0.

Thus, since ∂F
∂µ

is non-increasing, we obtain µ0 < τ1 − τ2. Differentiate F with respect to τ2 at µ0,
we have

∂F

∂τ2
= P + t

2
Φ′(τ2) +

t − P
2

Φ′(τ2 + µ0).

Since Φ′ is non-decreasing, we obtain
∂F

∂τ2
≤ P + t

2
Φ′(τ2) +

t − P
2

Φ′(τ2 + τ1 − τ2) =
∂F

∂µ
(τ1 − τ2) < 0,

which implies that the infimum infτ1≥max{τ2, 1
n
} is achieved when τ2 = τ1. Differentiate F with

respect to P at µ0 and τ1 = τ2, by the convexity of Φ, we obtain
∂F

∂P
= Φ(τ1) −Φ(τ1 − µ0) +Φ(τ1) −Φ(τ1 + µ0) ≤ 0,

which implies that the infimum infP ∈[ 1
n−1 ,1]

is achieved when P = 1. Above all, we obtain

Tcomp(t) = inf
τ∈[ 1

n ,
1
2
]

sup
µ∈[−τ,τ]

F (1, τ, τ, µ)

= inf
τ∈[ 1

n ,
1
2
]
{Φ(τ) − inf

µ∈[−τ,τ]
{1 + t

2
Φ(τ − µ) + 1 − t

2
Φ(τ + µ)}}.

C.3 Computation of examples

Example: Φ(t) = − log(t). For n = 2, plugging in Φ(t) = − log(t) in Theorem 3, gives

Tcomp = log 2 − inf
µ∈[− 1

2 ,
1
2
]
{−1 − t

2
log(1

2
+ µ) − 1 + t

2
log(1

2
− µ)}

= 1 + t
2

log(1 + t) + 1 − t
2

log(1 − t). (minimum achieved at µ = − t
2

)

Similarly, for n > 2, plugging in Φ(t) = − log(t) in Theorem 3 yields

Tcomp = inf
τ∈[ 1

n ,
1
2
]
{− log τ − inf

µ∈[−τ,τ]
{−1 − t

2
log(τ + µ) − 1 + t

2
log(τ − µ)}}

= 1 + t
2

log(1 + t) + 1 − t
2

log(1 − t). (minimum achieved at µ = −τt)

Example: Φ(t) = 1
t
− 1. For n = 2, plugging in Φ(t) = 1

t
− 1 in Theorem 3, gives

Tcomp = 2 − inf
µ∈[− 1

2 ,
1
2
]
{1 − t

2

1
1
2
+ µ

+ 1 + t
2

1
1
2
− µ

}

= 1 −
√

1 − t2. (minimum achieved at µ = (1−t)
1
2 −(1+t)

1
2

2((1+t)
1
2 +(1−t)

1
2 )

)

Similarly, for n > 2, plugging in Φ(t) = 1
t
− 1 in Theorem 3 yields

Tcomp = inf
τ∈[ 1

n ,
1
2
]
{1

τ
− inf
µ∈[−τ,τ]

{1 + t
2

1

τ − µ + 1 + t
2

1

τ + µ}}

= inf
τ∈[ 1

n ,
1
2
]

1

2τ
(1 −

√
1 − t2) (minimum achieved at µ = (1−t)

1
2 −(1+t)

1
2

(1+t)
1
2 +(1−t)

1
2
τ )

= 1 −
√

1 − t2. (minimum achieved at τ = 1
2

)
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Example: Φ(t) = 1
q
(1 − tq), q ∈ (0,1). For n = 2, plugging in Φ(t) = 1

q
(1 − tq) in Theorem 3,

gives

Tcomp = − 1

q2q
− inf
µ∈[− 1

2 ,
1
2
]
{−1 − t

2q
(1

2
+ µ)

q

− 1 + t
2q

(1

2
− µ)

q

}

= 1

q2q
⎛
⎝
(1 + t)

1
1−q + (1 − t)

1
1−q

2

⎞
⎠

1−q

− 1

q2q
.

(minimum achieved at µ = (1−t)
1

1−q −(1+t)
1

1−q

2((1+t)
1

1−q +(1−t)
1

1−q )
)

Similarly, for n > 2, plugging in Φ(t) = 1
q
(1 − tq) in Theorem 3 yields

Tcomp = inf
τ∈[ 1

n ,
1
2
]
{−τ

q

q
− inf
µ∈[−τ,τ]

{−1 + t
2q

(τ − µ)q − 1 − t
2q

(τ + µ)q}}

= inf
τ∈[ 1

n ,
1
2
]

τ q

q

⎛
⎝
(1 + t)

1
1−q + (1 − t)

1
1−q

2

⎞
⎠

1−q

− τ
q

q

(minimum achieved at µ = (1−t)
1

1−q −(1+t)
1

1−q

(1+t)
1

1−q +(1−t)
1

1−q
τ )

= 1

qnq
⎛
⎝
(1 + t)

1
1−q + (1 − t)

1
1−q

2

⎞
⎠

1−q

− 1

qnq
. (minimum achieved at τ = 1

n
)

Example: Φ(t) = 1 − t. For n = 2, plugging in Φ(t) = 1 − t in Theorem 3, gives

Tcomp = 1

2
− inf
µ∈[− 1

2 ,
1
2
]
{1 − t

2
(1

2
− µ) + 1 + t

2
(1

2
+ µ)} = 1

2
− 1 − t

2
= t

2
.

Similarly, for n > 2, plugging in Φ(t) = 1 − t in Theorem 3 yields

Tcomp = inf
τ∈[ 1

n ,
1
2
]
{(1 − τ) − inf

µ∈[−τ,τ]
{1 + t

2
(1 − τ + µ) + 1 − t

2
(1 − τ − µ)}}

= inf
τ∈[ 1

n ,
1
2
]
τ t (minimum achieved at µ = −τ )

= t

n
. (minimum achieved at τ = 1

n
)

Example: Φ(t) = (1 − t)2. For n = 2, plugging in Φ(t) = (1 − t)2 in Theorem 3, gives

Tcomp = 1

4
− inf
µ∈[− 1

2 ,
1
2
]
{1 − t

2
(1

2
− µ)

2

+ 1 + t
2

(1

2
+ µ)

2

} = 1

4
− 1 − t2

4
= t

2

4
.

Similarly, for n > 2, plugging in Φ(t) = (1 − t)2 in Theorem 3 yields

Tcomp = inf
τ∈[ 1

n ,
1
2
]
{(1 − τ)2 − inf

µ∈[−τ,τ]
{1 + t

2
(1 − τ + µ)2 + 1 − t

2
(1 − τ − µ)2}}

= inf
τ∈[ 1

n ,
1
2
]
{(1 − τ)2t2} (minimum achieved at µ = t(τ − 1))

= t
2

4
. (minimum achieved at τ = 1

2
)

D Proofs for constrained losses

Let ymax = argmaxy∈Y p(x, y) and h(x) = argmaxy∈Y h(x, y), where we choose the label with the
highest index under the natural ordering of labels as the tie-breaking strategy.
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D.1 Proof of H-consistency bounds with Tcstnd (Theorem 10)

Theorem 10 (H-consistency bound for constrained losses). Assume that H is symmetric and
complete. Assume that Tcstnd is convex. Then, for any hypothesis h ∈H and any distribution,

Tcstnd(R`0−1(h) −R∗
`0−1

(H) +M`0−1(H)) ≤ R`cstnd(h) −R∗
`cstnd(H) +M`cstnd(H)

with H-estimation error transformation for constrained losses defined on t ∈ [0,1] by Tcstnd(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

inf
τ≥0

sup
µ∈R

{ 1−t
2

[Φ(τ) −Φ(−τ + µ)] + 1+t
2

[Φ(−τ) −Φ(τ − µ)]} n = 2

inf
P ∈[ 1

n−1 ,1]
inf

τ1≥max{τ2,0}
sup
µ∈R

{ 2−P−t
2

[Φ(−τ2) −Φ(−τ1 + µ)] + 2−P+t
2

[Φ(−τ1) −Φ(−τ2 − µ)]} n > 2.

Furthermore, for any t ∈ [0,1], there exist a distribution D and a hypothesis h ∈ H such that
R`0−1(h) −R∗

`0−1
(H) +M`0−1(H) = t and R`cstnd(h) −R∗

`cstnd(H) +M`cstnd(H) = Tcstnd(t).

Proof. For the constrained loss `cstnd, the conditional `cstnd-risk can be expressed as follows:

C`cstnd(h,x) = ∑
y∈Y

p(x, y)`cstnd(h,x, y)

= ∑
y∈Y

p(x, y) ∑
y′≠y

Φ(−h(x, y′))

= ∑
y∈Y

Φ(−h(x, y)) ∑
y′≠y

p(x, y′)

= ∑
y∈Y

Φ(−h(x, y))(1 − p(x, y))

= Φ(−h(x, ymax))(1 − p(x, ymax)) +Φ(−h(x,h(x)))(1 − p(x,h(x)))
+ ∑
y∉{ymax,h(x)}

Φ(−h(x, y))(1 − p(x, y)).

For any h ∈H and x ∈ X, by the symmetry and completeness of H, we can always find a family of
hypotheses {hµ ∶ µ ∈ R} ⊂H such that hµ(x, ⋅) take the following values:

hµ(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(x, y) if y /∈ {ymax,h(x)}
h(x, ymax) + µ if y = h(x)
h(x,h(x)) − µ if y = ymax.

Note that the hypotheses hµ satisfies the constraint:

∑
y∈Y

hµ(x, y) = ∑
y∈Y

h(x, y) = 0, ∀µ ∈ R.

Let p1 = p(x, ymax), p2 = p(x,h(x)), τ1 = h(x,h(x)) and τ2 = h(x, ymax) to simplify the notation.
Then, by the definition of hµ, we have for any h ∈H and x ∈ X,

C`cstnd(h,x) − inf
µ∈R

C`cstnd(hµ, x)

= sup
µ∈R

{(1 − p1)[Φ(−τ2) −Φ(−τ1 + µ)] + (1 − p2)[Φ(−τ1) −Φ(−τ2 − µ)]}

= sup
µ∈R

{2 − P − p1 + p2

2
[Φ(−τ2) −Φ(−τ1 + µ)] +

2 − P + p1 − p2

2
[Φ(−τ1) −Φ(−τ2 − µ)]}

(P = p1 + p2 ∈ [ 1
n−1

,1])

= inf
P ∈[ 1

n−1 ,1]
inf

τ1≥max{τ2,0}
sup
µ∈R

{2 − P − p1 + p2

2
[Φ(−τ2) −Φ(−τ1 + µ)]

+ 2 − P + p1 − p2

2
[Φ(−τ1) −Φ(−τ2 − µ)]} (τ1 ≥ 0, τ2 ≤ τ1)

= Tcstnd(p1 − p2)
= Tcstnd(∆C`0−1,H(h,x)). (by Lemma 1)
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where for n = 2, an additional constraint τ1 + τ2 = 0 is imposed and the expression of Tcomp is
simplified. Since Tcstnd is convex, by Jensen’s inequality, we obtain for any hypothesis h ∈H and
any distribution,

Tcstnd(R`0−1(h) −R∗
`0−1

(H) +M`0−1(H))

= Tcstnd(E
X
[∆C`0−1,H(h,x)])

≤ E
X
[Tcstnd(∆C`0−1,H(h,x))]

≤ E
X
[∆C`cstnd,H(h,x)]

= R`cstnd(h) −R∗
`cstnd(H) +M`cstnd(H).

For the second part, we first consider n = 2. For any t ∈ [0,1], we consider the distribution that
concentrates on a singleton {x} and satisfies p(x,1) = 1+t

2
, p(x,2) = 1−t

2
. For any ε > 0, by the

definition of infimum, we can take h ∈H such that h(x,2) = τε ≥ 0 and satisfies

sup
µ∈R

{1 − t
2

[Φ(τε) −Φ(−τε + µ)] +
1 + t

2
[Φ(−τε) −Φ(τε − µ)]} < Tcstnd(t) + ε.

Then,

R`0−1(h) −R∗
`0−1

(H) +M`0−1(H) = R`0−1(h) −EX[C∗`0−1
(H, x)]

= C`0−1(h,x) − C∗`0−1
(H, x)

= t

and

Tcstnd(t) ≤ R`cstnd(h) −R∗
`cstnd(H) +M`cstnd(H)

= R`cstnd(h) −EX[C∗`cstnd(H, x)]
= C`cstnd(h,x) − C∗`cstnd(H, x)

= sup
µ∈R

{1 − t
2

[Φ(τε) −Φ(−τε + µ)] +
1 + t

2
[Φ(−τε) −Φ(τε − µ)]}

< Tcstnd(t) + ε.

By letting ε → 0, we conclude the proof. The proof for n > 2 directly extends from the case when
n = 2. Indeed, For any t ∈ [0,1], we consider the distribution that concentrates on a singleton {x}
and satisfies p(x,1) = 1+t

2
, p(x,2) = 1−t

2
, p(x, y) = 0, 3 ≤ y ≤ n. For any ε > 0, by the definition

of infimum, we can take h ∈ H such that h(x,1) = τ1,ε, h(x,2) = τ2,ε, h(x, y) = 0, 3 ≤ y ≤ n and
satisfies τ1,ε + τ2,ε = 0, and

inf
P ∈[ 1

n−1 ,1]
sup
µ∈R

{2 − P − t
2

[Φ(−τ2,ε) −Φ(−τ1,ε + µ)] +
2 − P + t

2
[Φ(−τ1,ε) −Φ(−τ2,ε − µ)]}

= sup
µ∈R

{1 − t
2

[Φ(−τ2,ε) −Φ(−τ1,ε + µ)] +
1 + t

2
[Φ(−τ1,ε) −Φ(−τ2,ε − µ)]}

< Tcstnd(t) + ε.

Then,

R`0−1(h) −R∗
`0−1

(H) +M`0−1(H) = t

and

Tcstnd(t) ≤ R`cstnd(h) −R∗
`cstnd(H) +M`cstnd(H) < Tcstnd(t) + ε.
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D.2 Characterization of Tcstnd (Theorem 11)

Theorem 11 (characterization of Tcstnd). Assume that Φ is convex, differentiable at zero and
Φ′(0) < 0. Then, Tcstnd can be expressed as follows:

Tcstnd(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Φ(0) − infµ∈R{ 1−t
2

Φ(µ) + 1+t
2

Φ(−µ)} n = 2

infτ≥0{(2 − 1
n−1

)Φ(−τ) − infµ∈R{
2−t− 1

n−1

2
Φ(−τ + µ) + 2+t− 1

n−1

2
Φ(−τ − µ)}} n > 2

≥ {Φ(0) − infµ∈R{ 1−t
2

Φ(µ) + 1+t
2

Φ(−µ)} n = 2

infτ≥0{2Φ(−τ) − infµ∈R{ 2−t
2

Φ(−τ + µ) + 2+t
2

Φ(−τ − µ)}} n > 2.

Proof. For n = 2, we have

Tcstnd(t) = inf
τ≥0

sup
µ∈R

{1 − t
2

[Φ(τ) −Φ(−τ + µ)] + 1 + t
2

[Φ(−τ) −Φ(τ − µ)]}

= inf
τ≥0

(1 − t
2

Φ(τ) + 1 + t
2

[Φ(−τ)]) − inf
µ∈R

{1 − t
2

Φ(−τ + µ) + 1 + t
2

Φ(τ − µ)}

= inf
τ≥0

(1 − t
2

Φ(τ) + 1 + t
2

[Φ(−τ)]) − inf
µ∈R

{1 − t
2

Φ(µ) + 1 + t
2

Φ(−µ)}

≥ inf
τ≥0

(Φ(0) −Φ′(0)tτ) − inf
µ∈R

{1 − t
2

Φ(µ) + 1 + t
2

Φ(−µ)} (Φ is convex)

= Φ(0) − inf
µ∈R

{1 − t
2

Φ(µ) + 1 + t
2

Φ(−µ)} (Φ′(0) < 0, tτ ≥ 0)

where the equality can be achieved by τ = 0.

For n > 2, we have

Tcstnd(t) = inf
P ∈[ 1

n−1 ,1]
inf

τ1≥max{τ2,0}
sup
µ∈R

F (P, τ1, τ2, µ)

where we let F (P, τ1, τ2, µ) = 2−P−t
2

[Φ(−τ2) −Φ(−τ1 + µ)] + 2−P+t
2

[Φ(−τ1) −Φ(−τ2 − µ)]. For
simplicity, we assume that Φ is differentiable. For general convex Φ, we can proceed by using left
and right derivatives, which are non-decreasing. Differentiate F with respect to µ, we have

∂F

∂µ
= P + t − 2

2
Φ′(−τ1 + µ) +

2 − P + t
2

Φ′(−τ2 − µ).

Using the fact that P ∈ [ 1
n−1

,1], t ∈ [0,1] and Φ′ is non-decreasing, we obtain that ∂F
∂µ

is non-
increasing. Furthermore, Φ′ is non-decreasing and non-positive, Φ is non-negative, we obtain that
Φ′(+∞) = 0. This implies that ∂F

∂µ
(+∞) ≤ 0 and ∂F

∂µ
(−∞) ≥ 0. Therefore, there exists µ0 ∈ R such

that
∂F

∂µ
(µ0) =

P + t − 2

2
Φ′(−τ1 + µ0) +

2 − P + t
2

Φ′(−τ2 − µ0) = 0

By taking µ = τ1 − τ2 and using the fact that Φ′(0) < 0, we have
∂F

∂µ
(τ1 − τ2) =

P + t − 2

2
Φ′(−τ2) +

2 − P + t
2

Φ′(−τ1) < 0.

Thus, since ∂F
∂µ

is non-increasing, we obtain µ0 < τ1 − τ2. Differentiate F with respect to τ2 at µ0,
we have

∂F

∂τ2
= P + t − 2

2
Φ′(−τ2) +

2 − P + t
2

Φ′(−τ2 − µ0).

Since Φ′ is non-decreasing, we obtain
∂F

∂τ2
≤ P + t − 2

2
Φ′(−τ2) +

2 − P + t
2

Φ′(−τ2 − τ1 + τ2) =
∂F

∂µ
(τ1 − τ2) < 0,

which implies that the infimum infτ1≥max{τ2,0} is achieved when τ2 = τ1. Differentiate F with respect
to P at µ0 and τ1 = τ2, by the convexity of Φ, we obtain

∂F

∂P
= Φ(−τ1 + µ0) −Φ(−τ1) −Φ(−τ1) +Φ(−τ1 − µ0) ≥ 0,
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which implies that the infimum infP ∈[ 1
n−1 ,1]

is achieved when P = 1
n−1

. Above all, we obtain

Tcstnd(t) = inf
τ≥0

sup
µ∈R

F( 1

n − 1
, τ, τ, µ)

= inf
τ≥0

{(2 − 1

n − 1
)Φ(−τ) − inf

µ∈R
{

2 − t − 1
n−1

2
Φ(−τ + µ) +

2 + t − 1
n−1

2
Φ(−τ − µ)}}

≥ inf
τ≥0

sup
µ∈R

F (0, τ, τ, µ)

= inf
τ≥0

{2Φ(−τ) − inf
µ∈R

{2 − t
2

Φ(−τ + µ) + 2 + t
2

Φ(−τ − µ)}}.

D.3 Computation of examples

Example: Φ(t) = Φexp(t) = e−t. For n = 2, plugging in Φ(t) = e−t in Theorem 11, gives

Tcomp = 1 − inf
µ∈R

{1 − t
2
e−µ + 1 + t

2
eµ}

= 1 −
√

1 − t2. (minimum achieved at µ = 1
2

log 1−t
1+t )

For n > 2, plugging in Φ(t) = e−t in Theorem 11 yields

Tcomp ≥ inf
τ≥0

{2eτ − inf
µ∈R

{2 − t
2
eτ−µ + 2 + t

2
eτ+µ}}

≥ 2 − inf
µ∈R

{2 − t
2
e−µ + 2 + t

2
eµ} (minimum achieved at τ = 0)

= 2 −
√

4 − t2. (minimum achieved at µ = 1
2

log 2−t
2+t )

Example: Φ(t) = Φhinge(t) = max{0,1 − t}. For n = 2, plugging in Φ(t) = max{0,1 − t} in
Theorem 11, gives

Tcomp = 1 − inf
µ∈R

{1 − t
2

max{0,1 − µ} + 1 + t
2

max{0,1 + µ}}

= t. (minimum achieved at µ = −1)

For n > 2, plugging in Φ(t) = max{0,1 − t} in Theorem 11 yields

Tcomp ≥ inf
τ≥0

{2 max{0,1 + τ} − inf
µ∈R

{2 − t
2

max{0,1 + τ − µ} + 2 + t
2

max{0,1 + τ + µ}}}

= 2 − inf
µ∈R

{2 − t
2

max{0,1 − µ} + 2 + t
2

max{0,1 + µ}} (minimum achieved at τ = 0)

= t. (minimum achieved at µ = −1)

Example: Φ(t) = Φsq−hinge(t) = (1 − t)21t≤1. For n = 2, plugging in Φ(t) = (1 − t)21t≤1 in
Theorem 11, gives

Tcomp = 1 − inf
µ∈R

{1 − t
2

(1 − µ)21µ≤1 +
1 + t

2
(1 + µ)21µ≥−1}

= t2. (minimum achieved at µ = −t)
For n > 2, plugging in Φ(t) = (1 − t)21t≤1 in Theorem 11 yields

Tcomp ≥ inf
τ≥0

{2(1 + τ)21τ≥−1 − inf
µ∈R

{2 − t
2

(1 + τ − µ)21−τ+µ≤1 +
2 + t

2
(1 + τ + µ)21τ+µ≥−1}}

≥ 2 − inf
µ∈R

{2 − t
2

(1 − µ)21µ≤1 +
2 + t

2
(1 + µ)21µ≥−1} (minimum achieved at τ = 0)

= t
2

2
. (minimum achieved at µ = − t

2
)
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Example: Φ(t) = Φsq(t) = (1 − t)2. For n = 2, plugging in Φ(t) = (1 − t)2 in Theorem 11, gives

Tcomp = 1 − inf
µ∈R

{1 − t
2

(1 − µ)2 + 1 + t
2

(1 + µ)2}

= t2. (minimum achieved at µ = −t)

For n > 2, plugging in Φ(t) = (1 − t)2 in Theorem 11 yields

Tcomp ≥ inf
τ≥0

{2(1 + τ)2 − inf
µ∈R

{2 − t
2

(1 + τ − µ)2 + 2 + t
2

(1 + τ + µ)2}}

≥ 2 − inf
µ∈R

{2 − t
2

(1 − µ)2 + 2 + t
2

(1 + µ)2} (minimum achieved at τ = 0)

= t
2

2
. (minimum achieved at µ = − t

2
)

E Extensions of comp-sum losses

E.1 Proof of H-consistency bounds with T
comp

(Theorem 5)

Theorem 5 (H-consistency bound for comp-sum losses). Assume that T
comp

is convex. Then, the
following inequality holds for any hypothesis h ∈H and any distribution:

T
comp(R`0−1(h) −R∗

`0−1
(H) +M`0−1(H)) ≤ R`comp(h) −R∗

`comp(H) +M`comp(H)

with T
comp

the H-estimation error transformation for comp-sum losses defined for all t ∈ [0,1] by
T

comp(t) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

inf
τ∈[0, 12 ]

sup
µ∈[smin−τ,1−τ−smin]

{ 1+t
2

[Φ(τ) −Φ(1 − τ − µ)] + 1−t
2

[Φ(1 − τ) −Φ(τ + µ)]} n = 2

inf
P ∈[ 1

n−1∨t,1]
inf

Smin≤τ2≤τ1≤Smax
τ1+τ2≤1

sup
µ∈C

{P+t
2

[Φ(τ2) −Φ(τ1 − µ)] + P−t
2

[Φ(τ1) −Φ(τ2 + µ)]} n > 2,

where C = [max{smin − τ2, τ1 − smax},min{smax − τ2, τ1 − smin}], smax = 1
1+(n−1)e−2 infx Λ(x) and

smin = 1
1+(n−1)e2 infx Λ(x) . Furthermore, for any t ∈ [0,1], there exist a distribution D and h ∈H such

that R`0−1(h) −R∗
`0−1

(H) +M`0−1(H) = t and R`comp(h) −R∗
`comp(H) +M`comp(H) = Tcomp(t).

Proof. For the comp-sum loss `comp, the conditional `comp-risk can be expressed as follows:

C`comp(h,x)
= ∑
y∈Y

p(x, y)`comp(h,x, y)

= ∑
y∈Y

p(x, y)Φ( eh(x,y)

∑y′∈Y eh(x,y′)
)

= ∑
y∈Y

p(x, y)Φ(Sh(x, y))

= p(x, ymax)Φ(Sh(x, ymax)) + p(x,h(x))Φ(Sh(x,h(x))) + ∑
y∉{ymax,h(x)}

p(x, y)Φ(Sh(x, y))

where we let Sh(x, y) = eh(x,y)

∑y′∈Y eh(x,y
′
)

for any y ∈ Y with the constraint that ∑y∈Y Sh(x, y) = 1. Note

that for any h ∈H,

1

1 + (n − 1)e2Λ(x) =
e−Λ(x)

e−Λ(x) + (n − 1)eΛ(x) ≤ Sh(x, y) ≤
eΛ(x)

eΛ(x) + (n − 1)e−Λ(x) =
1

1 + (n − 1)e−2Λ(x)

Therefore for any (x, y) ∈ X × Y, Sh(x, y) ∈ [Smin, Smax], where we let Smax = 1
1+(n−1)e−2Λ(x) and

Smin = 1
1+(n−1)e2Λ(x) . Furthermore, all values in [Smin, Smax] of Sh can be reached for some h ∈H.
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Observe that 0 ≤ Smax + Smin ≤ 1. Let ymax = argmaxy∈Y p(x, y), where we choose the label with
the highest index under the natural ordering of labels as the tie-breaking strategy. For any h ∈ H
such that h(x) ≠ ymax and x ∈ X, we can always find a family of hypotheses {hµ} ⊂ H such that
Sh,µ(x, ⋅) = ehµ(x,⋅)

∑y′∈Y ehµ(x,y
′
)

take the following values:

Sh,µ(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Sh(x, y) if y /∈ {ymax,h(x)}
Sh(x, ymax) + µ if y = h(x)
Sh(x,h(x)) − µ if y = ymax.

Note that Sh,µ satisfies the constraint:

∑
y∈Y

Sh,µ(x, y) = ∑
y∈Y

Sh(x, y) = 1.

Since Sh,µ(x, y) ∈ [Smin, Smax], we have the following constraints on µ:

Smin − Sh(x, ymax) ≤ µ ≤ Smax − Sh(x, ymax)
Sh(x,h(x)) − Smax ≤ µ ≤ Sh(x,h(x)) − Smin.

(7)

Let p1 = p(x, ymax), p2 = p(x,h(x)), τ1 = Sh(x,h(x)) and τ2 = Sh(x, ymax) to simplify the
notation. Let C = {µ ∈ R ∶ µ verify constraint (7)}. Since Sh(x,h(x))−Smax ≤ Smax−Sh(x, ymax)
and Smin − Sh(x, ymax) ≤ Sh(x,h(x)) − Smin, C is not an empty set and can be expressed as
C = [max{Smin − τ2, τ1 − Smax},min{Smax − τ2, τ1 − Smin}].
Then, by the definition of Sh,µ, we have for any h ∈H and x ∈ X,

C`comp(h,x) − inf
µ∈C

C`comp(hµ, x)

= sup
µ∈C

{p1[Φ(τ2) −Φ(τ1 − µ)] + p2[Φ(τ1) −Φ(τ2 + µ)]}

= sup
µ∈C

{P + p1 − p2

2
[Φ(τ2) −Φ(τ1 − µ)] +

P − p1 + p2

2
[Φ(τ1) −Φ(τ2 + µ)]}

(P = p1 + p2 ∈ [ 1
n−1

∨ p1 − p2,1])

≥ inf
P ∈[ 1

n−1∨p1−p2,1]
inf

Smin≤τ2≤τ1≤Smax
τ1+τ2≤1

sup
µ∈C

{P + p1 − p2

2
[Φ(τ2) −Φ(τ1 − µ)]

+ P − p1 + p2

2
[Φ(τ1) −Φ(τ2 + µ)]} (Smin ≤ τ2 ≤ τ1 ≤ Smax, τ1 + τ2 ≤ 1)

≥ inf
P ∈[ 1

n−1∨p1−p2,1]
inf

Smin≤τ2≤τ1≤Smax
τ1+τ2≤1

sup
µ∈C

{P + p1 − p2

2
[Φ(τ2) −Φ(τ1 − µ)]

+ P − p1 + p2

2
[Φ(τ1) −Φ(τ2 + µ)]} (Smin ≤ smin ≤ smax ≤ Smax)

= Tcomp(p1 − p2)
= Tcomp(∆C`0−1,H(h,x)), (by Lemma 1)

where C = [max{smin − τ2, τ1 − smax},min{smax − τ2, τ1 − smin}] ⊂ C, smax = 1
1+(n−1)e−2 infx Λ(x)

and smin = 1
1+(n−1)e2 infx Λ(x) . Note that for n = 2, an additional constraint τ1 + τ2 = 1 is imposed and

the expression can be simplified as

C`comp(h,x) − inf
µ∈C

C`comp(hµ, x)

≥ inf
τ∈[0, 12 ]

sup
µ∈[smin−τ,1−τ−smin]

{1 + p1 − p2

2
[Φ(τ) −Φ(1 − τ − µ)] + 1 − p1 + p2

2
[Φ(1 − τ) −Φ(τ + µ)]}

= Tcomp(p1 − p2)
= Tcomp(∆C`0−1,H(h,x)), (by Lemma 1)
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where we use the fact that smax+smin = 1 and P = 1 when n = 2. Since Tcomp is convex, by Jensen’s
inequality, we obtain for any hypothesis h ∈H and any distribution,

Tcomp(R`0−1(h) −R∗
`0−1

(H) +M`0−1(H))

= Tcomp(E
X
[∆C`0−1,H(h,x)])

≤ E
X
[Tcomp(∆C`0−1,H(h,x))]

≤ E
X
[∆C`comp,H(h,x)]

= R`comp(h) −R∗
`comp(H) +M`comp(H).

For the second part, we first consider n = 2. For any t ∈ [0,1], we consider the distribution that
concentrates on a singleton {x} and satisfies p(x,1) = 1+t

2
, p(x,2) = 1−t

2
. For any ε > 0, by the

definition of infimum, we can take h ∈H such that Sh(x,1) = τε ∈ [0, 1
2
] and satisfies

sup
µ∈[smin−τε,1−τε−smin]

{1 + t
2

[Φ(τε) −Φ(1 − τε − µ)] +
1 − t

2
[Φ(1 − τε) −Φ(τε + µ)]} < Tcomp(t) + ε.

Then,
R`0−1(h) −R∗

`0−1
(H) +M`0−1(H) = R`0−1(h) −EX[C∗`0−1

(H, x)]
= C`0−1(h,x) − C∗`0−1

(H, x)
= t

and
Tcomp(t) ≤ R`comp(h) −R∗

`comp(H) +M`comp(H)
= R`comp(h) −EX[C∗`comp(H, x)]
= C`comp(h,x) − C∗`comp(H, x)

= sup
µ∈[smin−τε,1−τε−smin]

{1 + t
2

[Φ(τε) −Φ(1 − τε − µ)] +
1 − t

2
[Φ(1 − τε) −Φ(τε + µ)]}

< Tcomp(t) + ε.
By letting ε → 0, we conclude the proof. The proof for n > 2 directly extends from the case when
n = 2. Indeed, For any t ∈ [0,1], we consider the distribution that concentrates on a singleton {x}
and satisfies p(x,1) = 1+t

2
, p(x,2) = 1−t

2
, p(x, y) = 0, 3 ≤ y ≤ n. For any ε > 0, by the definition of

infimum, we can take h ∈ H such that Sh(x,1) = τ1,ε, Sh(x,2) = τ2,ε and Sh(x, y) = 0, 3 ≤ y ≤ n
and satisfies τ1,ε + τ2,ε = 1, and

inf
P ∈[ 1

n−1∨t,1]
sup
µ∈C

{P + t
2

[Φ(τ2,ε) −Φ(τ1,ε − µ)] +
P − t

2
[Φ(τ1,ε) −Φ(τ2,ε + µ)]}

= sup
µ∈C

{1 + t
2

[Φ(τ2,ε) −Φ(τ1,ε − µ)] +
1 − t

2
[Φ(τ1,ε) −Φ(τ2,ε + µ)]}

< Tcomp(t) + ε.
Then,

R`0−1(h) −R∗
`0−1

(H) +M`0−1(H) = t
and

Tcomp(t) ≤ R`comp(h) −R∗
`comp(H) +M`comp(H) < Tcomp(t) + ε.

By letting ε→ 0, we conclude the proof.

E.2 Logistic loss

Theorem 6 (H-consistency bounds for logistic loss). For any h ∈H and any distribution, we have

R`0−1(h) −R∗
`0−1

(H) +M`0−1
(H) ≤ Ψ−1(R`log

(h) −R∗
`log

(H) +M`log
(H)),

where `log = − log( eh(x,y)

∑y′∈Y eh(x,y
′
)
) and Ψ(t) =

⎧⎪⎪⎨⎪⎪⎩

1+t
2

log(1 + t) + 1−t
2

log(1 − t) t ≤ smax−smin

smin+smax

t
2

log( smax

smin
) + log( 2

√
smaxsmin

smax+smin
) otherwise.
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Proof. For the multinomial logistic loss `log, plugging in Φ(t) = − log(t) in Theorem 5, gives T
comp

≥ inf
P ∈[ 1

n−1∨t,1]
inf

Smin≤τ2≤τ1≤Smax
τ1+τ2≤1

sup
µ∈C

{P + t
2

[− log(τ2) + log(τ1 − µ)] +
P − t

2
[− log(τ1) + log(τ2 + µ)]}

where C = [max{smin − τ2, τ1 − smax},min{smax − τ2, τ1 − smin}]. Here, we only compute the
expression for n > 2. The expression for n = 2 will lead to the same result since it can be viewed as
a special case of the expression for n > 2. By differentiating with respect to τ2 and P , we can see
that the infimum is achieved when τ1 = τ2 = smin+smax

2
and P = 1 modulo some elementary analysis.

Thus, T
comp

can be reformulated as

T
comp = sup

µ∈C
{1 + t

2
[− log(smin + smax

2
) + log(smin + smax

2
− µ)]

+ 1 − t
2

[− log(smin + smax

2
) + log(smin + smax

2
+ µ)]}

= − log(smin + smax

2
) + sup

µ∈C
g(µ)

where C = [ smin−smax

2
, smax−smin

2
] and g(µ) = 1+t

2
log( smin+smax

2
− µ) + 1−t

2
log( smin+smax

2
+ µ).

Since g is continuous, it attains its supremum over a compact set. Note that g is concave and
differentiable. In view of that, the maximum over the open set (−∞,+∞) can be obtained by setting
its gradient to zero. Differentiate g(µ) to optimize, we obtain

g(µ∗) = 0, µ∗ = − t(smin + smax)
2

.

Moreover, by the concavity, g(µ) is non-increasing when µ ≥ µ∗. Since smax − smin ≥ 0, we have

µ∗ ≤ 0 ≤ smax − smin

2
In view of the constraint C, if µ∗ ≥ smin−smax

2
, the maximum is achieved by µ = µ∗. Otherwise,

if µ∗ < smin−smax

2
, since g(µ) is non-increasing when µ ≥ µ∗, the maximum is achieved by µ =

smin−smax

2
. Since µ∗ ≥ smin−smax

2
is equivalent to t ≤ smax−smin

smin+smax
, the maximum can be expressed as

max
µ∈C

g(µ) = {g(µ
∗) t ≤ smax−smin

smin+smax

g( smin−smax

2
) otherwise

Computing the value of g at these points yields:

g(µ∗) = 1 + t
2

log
(1 + t)(smin + smax)

2
+ 1 − t

2
log

(1 − t)(smin + smax)
2

g(smin − smax

2
) = 1 + t

2
log(smax) +

1 − t
2

log(smin)

Then, if t ≤ smax−smin

smin+smax
, we obtain

T
comp = − log(smin + smax

2
) + 1 + t

2
log

(1 + t)(smin + smax)
2

+ 1 − t
2

log
(1 − t)(smin + smax)

2

= 1 + t
2

log(1 + t) + 1 − t
2

log(1 − t).
Otherwise, we obtain

T
comp = − log(smin + smax

2
) + 1 + t

2
log(smax) +

1 − t
2

log(smin)

= t

2
log(smax

smin
) + log(2

√
smaxsmin

smax + smin
).

Since T
comp

is convex, by Theorem 5, for any h ∈H and any distribution,

R`0−1(h) −R∗
`0−1

(H) +M`0−1
(H) ≤ Ψ−1(R`log

(h) −R∗
`log

(H) +M`log
(H)),

where

Ψ(t) =
⎧⎪⎪⎨⎪⎪⎩

1+t
2

log(1 + t) + 1−t
2

log(1 − t) t ≤ smax−smin

smin+smax

t
2

log( smax

smin
) + log( 2

√
smaxsmin

smax+smin
) otherwise.
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E.3 Sum exponential loss

Theorem 9 (H-consistency bounds for sum exponential loss). For any h ∈H and any distribution,

R`0−1(h) −R∗
`0−1

(H) +M`0−1
(H) ≤ Ψ−1(R`exp(h) −R∗

`exp
(H) +M`exp

(H))

where `exp = ∑y′≠y eh(x,y
′)−h(x,y) and Ψ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 −
√

1 − t2 t ≤ s2max−s
2
min

s2
min

+s2max

smax−smin

2smaxsmin
t − (smax−smin)2

2smaxsmin(smax+smin) otherwise.
.

Proof. For the sum exponential loss `exp, plugging in Φ(t) = 1
t
− 1 in Theorem 5, gives T

comp

≥ inf
P ∈[ 1

n−1∨t,1]
inf

Smin≤τ2≤τ1≤Smax
τ1+τ2≤1

sup
µ∈C

{P + t
2

[ 1

τ2
− 1

τ1 − µ
] + P − t

2
[ 1

τ1
− 1

τ2 + µ
]}

where C = [max{smin − τ2, τ1 − smax},min{smax − τ2, τ1 − smin}]. Here, we only compute the
expression for n > 2. The expression for n = 2 will lead to the same result since it can be viewed as
a special case of the expression for n > 2. By differentiating with respect to τ2 and P , we can see
that the infimum is achieved when τ1 = τ2 = smin+smax

2
and P = 1 modulo some elementary analysis.

Thus, T
comp

can be reformulated as

T
comp = sup

µ∈C
{1 + t

2
[ 2

smin + smax
− 2

smin + smax − 2µ
]

+ 1 − t
2

[ 2

smin + smax
− 2

smin + smax + 2µ
]}

= 2

smin + smax
+ sup
µ∈C

g(µ)

where C = [ smin−smax

2
, smax−smin

2
] and g(µ) = − 1+t

smin+smax−2µ
− 1−t
smin+smax+2µ

. Since g is continuous,
it attains its supremum over a compact set. Note that g is concave and differentiable. In view of
that, the maximum over the open set (−∞,+∞) can be obtained by setting its gradient to zero.
Differentiate g(µ) to optimize, we obtain

g(µ∗) = 0, µ∗ = smin + smax

2

√
1 − t −

√
1 + t√

1 + t +
√

1 − t
Moreover, by the concavity, g(µ) is non-increasing when µ ≥ µ∗. Since smax − smin ≥ 0, we have

µ∗ ≤ 0 ≤ smax − smin

2

In view of the constraint C, if µ∗ ≥ smin−smax

2
, the maximum is achieved by µ = µ∗. Otherwise,

if µ∗ < smin−smax

2
, since g(µ) is non-increasing when µ ≥ µ∗, the maximum is achieved by µ =

smin−smax

2
. Since µ∗ ≥ smin−smax

2
is equivalent to t ≤ s2max−s

2
min

s2
min

+s2max
, the maximum can be expressed as

max
µ∈C

g(µ) =
⎧⎪⎪⎨⎪⎪⎩

g(µ∗) t ≤ s2max−s
2
min

s2
min

+s2max

g( smin−smax

2
) otherwise

Computing the value of g at these points yields:

g(µ∗) = 1 −
√

1 − t2 − 2

smin + smax

g(smin − smax

2
) = − 1 + t

2smax
− 1 − t

2smin

Then, if t ≤ s2max−s
2
min

s2
min

+s2max
, we obtain

T
comp = 2

smin + smax
+ 1 −

√
1 − t2 − 2

smin + smax

= 1 −
√

1 − t2.
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Otherwise, we obtain

T
comp = 2

smin + smax
− 1 + t

2smax
− 1 − t

2smin

= smax − smin

2smaxsmin
t − (smax − smin)2

2smaxsmin(smax + smin)
.

Since T
comp

is convex, by Theorem 5, for any h ∈H and any distribution,

R`0−1(h) −R∗
`0−1

(H) +M`0−1
(H) ≤ Ψ−1(R`exp(h) −R∗

`exp
(H) +M`exp

(H)),

where

Ψ(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 −
√

1 − t2 t ≤ s2max−s
2
min

s2
min

+s2max

smax−smin

2smaxsmin
t − (smax−smin)2

2smaxsmin(smax+smin) otherwise.

E.4 Generalized cross-entropy loss

Theorem 16 (H-consistency bounds for generalized cross-entropy loss). For any h ∈H and any
distribution, we have

R`0−1(h) −R∗
`0−1

(H) +M`0−1
(H) ≤ Ψ−1(R`gce(h) −R∗

`gce
(H) +M`gce

(H)),

where Ψ(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
q
( smin+smax

2
)q

⎡⎢⎢⎢⎢⎣
( (1+t)

1
1−q +(1−t)

1
1−q

2
)

1−q

− 1

⎤⎥⎥⎥⎥⎦
t ≤ s1−qmax−s

1−q
min

s1−q
min

+s1−qmax

t
2q

(sqmax − sqmin) + 1
q
( s

q
min

+sqmax

2
− ( smin+smax

2
)q) otherwise.

and `gce =

1
q
[1 − ( eh(x,y)

∑y′∈Y eh(x,y
′
)
)
q

].

Proof. For generalized cross-entropy loss `gce, plugging Φ(t) = 1
q
(1 − tq) in Theorem 5, gives T

comp

≥ inf
P ∈[ 1

n−1∨t,1]
inf

Smin≤τ2≤τ1≤Smax
τ1+τ2≤1

sup
µ∈C

{P + t
2

[−1

q
(τ2)q +

1

q
(τ1 − µ)q] +

P − t
2

[−1

q
(τ1)q +

1

q
(τ2 + µ)q]}

where C = [max{smin − τ2, τ1 − smax},min{smax − τ2, τ1 − smin}]. Here, we only compute the
expression for n > 2. The expression for n = 2 will lead to the same result since it can be viewed as
a special case of the expression for n > 2. By differentiating with respect to τ2 and P , we can see
that the infimum is achieved when τ1 = τ2 = smin+smax

2
and P = 1 modulo some elementary analysis.

Thus, T
comp

can be reformulated as

T
comp = sup

µ∈C
{1 + t

2q
[−(smin + smax

2
)
q

+ (smin + smax

2
− µ)

q

]

+ 1 − t
2q

[−(smin + smax

2
)
q

+ (smin + smax

2
+ µ)

q

]}

= −1

q
(smin + smax

2
)
q

+ sup
µ∈C

g(µ)

where C = [ smin−smax

2
, smax−smin

2
] and g(µ) = 1+t

2q
( smin+smax

2
− µ)q + 1−t

2q
( smin+smax

2
+ µ)q. Since g

is continuous, it attains its supremum over a compact set. Note that g is concave and differentiable.
In view of that, the maximum over the open set (−∞,+∞) can be obtained by setting its gradient to
zero. Differentiate g(µ) to optimize, we obtain

g(µ∗) = 0, µ∗ = (1 − t) 1
1−q − (1 + t) 1

1−q

(1 + t) 1
1−q + (1 − t) 1

1−q

smin + smax

2
.
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Moreover, by the concavity, g(µ) is non-increasing when µ ≥ µ∗. Since smax − smin ≥ 0, we have

µ∗ ≤ 0 ≤ smax − smin

2

In view of the constraint C, if µ∗ ≥ smin−smax

2
, the maximum is achieved by µ = µ∗. Otherwise,

if µ∗ < smin−smax

2
, since g(µ) is non-increasing when µ ≥ µ∗, the maximum is achieved by µ =

smin−smax

2
. Since µ∗ ≥ smin−smax

2
is equivalent to t ≤ s1−qmax−s

1−q
min

s1−q
min

+s1−qmax
, the maximum can be expressed as

max
µ∈C

g(µ) =
⎧⎪⎪⎨⎪⎪⎩

g(µ∗) t ≤ s1−qmax−s
1−q
min

s1−q
min

+s1−qmax

g( smin−smax

2
) otherwise

Computing the value of g at these points yields:

g(µ∗) = 1

q
(smin + smax

2
)
q⎛
⎝
(1 + t)

1
1−q + (1 − t)

1
1−q

2

⎞
⎠

1−q

g(smin − smax

2
) = 1 + t

2q
(smax)q +

1 − t
2q

(smin)q

Then, if t ≤ s1−qmax−s
1−q
min

s1−q
min

+s1−qmax
, we obtain

T
comp = 1

q
(smin + smax

2
)
q⎛
⎝
(1 + t)

1
1−q + (1 − t)

1
1−q

2

⎞
⎠

1−q

− 1

q
(smin + smax

2
)
q

= 1

q
(smin + smax

2
)
q⎡⎢⎢⎢⎢⎣

⎛
⎝
(1 + t)

1
1−q + (1 − t)

1
1−q

2

⎞
⎠

1−q

− 1

⎤⎥⎥⎥⎥⎦
Otherwise, we obtain

T
comp = −1

q
(smin + smax

2
)
q

+ 1 + t
2q

(smax)q +
1 − t
2q

(smin)q

= t

2q
(sqmax − sqmin) +

1

q
(s

q
min + sqmax

2
− (smin + smax

2
)
q

)

Since T
comp

is convex, by Theorem 5, for any h ∈H and any distribution,

R`0−1(h) −R∗
`0−1

(H) +M`0−1
(H) ≤ Ψ−1(R`gce(h) −R∗

`gce
(H) +M`gce

(H)),
where

Ψ(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
q
( smin+smax

2
)q

⎡⎢⎢⎢⎢⎣
( (1+t)

1
1−q +(1−t)

1
1−q

2
)

1−q

− 1

⎤⎥⎥⎥⎥⎦
t ≤ s1−qmax−s

1−q
min

s1−q
min

+s1−qmax

t
2q

(sqmax − sqmin) + 1
q
( s

q
min

+sqmax

2
− ( smin+smax

2
)q) otherwise.

E.5 Mean absolute error loss

Theorem 17 (H-consistency bounds for mean absolute error loss). For any h ∈ H and any
distribution, we have

R`0−1(h) −R∗
`0−1

(H) +M`0−1
(H) ≤

2(R`mae(h) −R∗
`mae

(H) +M`mae
(H))

smax − smin
.

Proof. For mean absolute error loss `mae, plugging Φ(t) = 1 − t in Theorem 5, gives T
comp

≥ inf
P ∈[ 1

n−1∨t,1]
inf

Smin≤τ2≤τ1≤Smax
τ1+τ2≤1

sup
µ∈C

{P + t
2

[−(τ2) + (τ1 − µ)] +
P − t

2
[−(τ1) + (τ2 + µ)]}
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where C = [max{smin − τ2, τ1 − smax},min{smax − τ2, τ1 − smin}]. Here, we only compute the
expression for n > 2. The expression for n = 2 will lead to the same result since it can be viewed as
a special case of the expression for n > 2. By differentiating with respect to τ2 and P , we can see
that the infimum is achieved when τ1 = τ2 = smin+smax

2
and P = 1 modulo some elementary analysis.

Thus, T
comp

can be reformulated as

T
comp = sup

µ∈C
{1 + t

2
[−(smin + smax

2
) + (smin + smax

2
− µ)]

+ 1 − t
2

[−(smin + smax

2
) + (smin + smax

2
+ µ)]}

= sup
µ∈C

−tµ

where C = [ smin−smax

2
, smax−smin

2
]. Since −tµ is monotonically non-increasing, the maximum over

C can be achieved by

µ∗ = smin − smax

2
, T

comp = smax − smin

2
t.

Since T
comp

is convex, by Theorem 5, for any h ∈H and any distribution,

R`0−1(h) −R∗
`0−1

(H) +M`0−1
(H) ≤

2(R`mae(h) −R∗
`mae

(H) +M`mae
(H))

smax − smin
.

F Extensions of constrained losses

F.1 Proof of H-consistency bound with T
cstnd

(Theorem 12)

Theorem 12 (H-consistency bound for constrained losses). Assume that T
cstnd

is convex. Then,
the following inequality holds for any hypothesis h ∈H and any distribution:

T
cstnd(R`0−1(h) −R∗

`0−1
(H) +M`0−1(H)) ≤ R`cstnd(h) −R∗

`cstnd(H) +M`cstnd(H). (6)

with T
cstnd

the H-estimation error transformation for constrained losses defined for all t ∈ [0,1] by

T
cstnd(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

inf
τ≥0

sup
µ∈[τ−Λmin,τ+Λmin]

{ 1−t
2

[Φ(τ) −Φ(−τ + µ)] + 1+t
2

[Φ(−τ) −Φ(τ − µ)]} n = 2

inf
P ∈[ 1

n−1 ,1]
inf

τ1≥max{τ2,0}
sup
µ∈C

{ 2−P−t
2

[Φ(−τ2) −Φ(−τ1 + µ)] + 2−P+t
2

[Φ(−τ1) −Φ(−τ2 − µ)]} n > 2,

where C = [max{τ1,−τ2} −Λmin,min{τ1,−τ2} +Λmin] and Λmin = infx∈X Λ(x). Furthermore,
for any t ∈ [0,1], there exist a distribution D and a hypothesis h ∈H such that R`0−1(h)−R∗

`0−1
(H)+

M`0−1(H) = t and R`cstnd(h) −R∗
`cstnd(H) +M`cstnd(H) = Tcstnd(t).

Proof. For the constrained loss `cstnd, the conditional `cstnd-risk can be expressed as follows:

C`cstnd(h,x) = ∑
y∈Y

p(x, y)`cstnd(h,x, y)

= ∑
y∈Y

p(x, y) ∑
y′≠y

Φ(−h(x, y′))

= ∑
y∈Y

Φ(−h(x, y)) ∑
y′≠y

p(x, y′)

= ∑
y∈Y

Φ(−h(x, y))(1 − p(x, y))

= Φ(−h(x, ymax))(1 − p(x, ymax)) +Φ(−h(x,h(x)))(1 − p(x,h(x)))
+ ∑
y∉{ymax,h(x)}

Φ(−h(x, y))(1 − p(x, y)).
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For any h ∈H and x ∈ X, by the definition of H, we can always find a family of hypotheses {hµ} ⊂H
such that hµ(x, ⋅) take the following values:

hµ(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(x, y) if y /∈ {ymax,h(x)}
h(x, ymax) + µ if y = h(x)
h(x,h(x)) − µ if y = ymax.

Note that the hypotheses hµ satisfies the constraint:

∑
y∈Y

hµ(x, y) = ∑
y∈Y

h(x, y) = 0, ∀µ ∈ R.

Since hµ(x, y) ∈ [−Λ(x),Λ(x)], we have the following constraints on µ:
−Λ(x) − h(x, ymax) ≤ µ ≤ Λ(x) − h(x, ymax)
−Λ(x) + h(x,h(x)) ≤ µ ≤ Λ(x) + h(x,h(x).

Let p1 = p(x, ymax), p2 = p(x,h(x)), τ1 = h(x,h(x)) and τ2 = h(x, ymax) to simplify the notation.
Then, the constraint on µ can be expressed as

µ ∈ C, C = [max{τ1,−τ2} −Λ(x),min{τ1,−τ2} +Λ(x)]
Since max{τ1,−τ2} −min{τ1,−τ2} = ∣τ1 + τ2∣ ≤ ∣τ1∣ + ∣τ2∣ ≤ 2Λ(x), C is not an empty set. By the
definition of hµ, we have for any h ∈H and x ∈ X,

C`cstnd(h,x) − inf
µ∈C

C`cstnd(hµ, x)

= sup
µ∈C

{(1 − p1)[Φ(−τ2) −Φ(−τ1 + µ)] + (1 − p2)[Φ(−τ1) −Φ(−τ2 − µ)]}

= sup
µ∈C

{2 − P − p1 + p2

2
[Φ(−τ2) −Φ(−τ1 + µ)] +

2 − P + p1 − p2

2
[Φ(−τ1) −Φ(−τ2 − µ)]}

(P = p1 + p2 ∈ [ 1
n−1

,1])

= inf
P ∈[ 1

n−1 ,1]
inf

τ1≥max{τ2,0}
sup
µ∈C

{2 − P − p1 + p2

2
[Φ(−τ2) −Φ(−τ1 + µ)]

+ 2 − P + p1 − p2

2
[Φ(−τ1) −Φ(−τ2 − µ)]} (τ1 ≥ 0, τ2 ≤ τ1)

≥ inf
P ∈[ 1

n−1 ,1]
inf

τ1≥max{τ2,0}
sup
µ∈C

{2 − P − p1 + p2

2
[Φ(−τ2) −Φ(−τ1 + µ)]

+ 2 − P + p1 − p2

2
[Φ(−τ1) −Φ(−τ2 − µ)]}

(C = [max{τ1,−τ2} −Λmin,min{τ1,−τ2} +Λmin] ⊂ C since Λmin ≤ Λ(x))

= inf
P ∈[ 1

n−1 ,1]
inf

τ1≥max{τ2,0}
{2 − P − p1 + p2

2
Φ(−τ2) +

2 − P + p1 − p2

2
Φ(−τ1)

− inf
µ∈C

{2 − P − p1 + p2

2
Φ(−τ1 + µ) +

2 − P + p1 − p2

2
Φ(−τ2 − µ)}}

= Tcstnd(p1 − p2)
= Tcstnd(∆C`0−1,H(h,x)). (by Lemma 1)

Note that for n = 2, an additional constraint τ1 + τ2 = 1 is imposed and the expression can be
simplified as

C`cstnd(h,x) − inf
µ∈C

C`cstnd(hµ, x)

≥ inf
τ≥0

sup
µ∈[τ−Λmin,τ+Λmin]

{1 − p1 + p2

2
[Φ(τ) −Φ(−τ + µ)] + 1 + p1 − p2

2
[Φ(−τ) −Φ(τ − µ)]}

= Tcstnd(p1 − p2)
= Tcstnd(∆C`0−1,H(h,x)). (by Lemma 1)
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Since Tcstnd is convex, by Jensen’s inequality, we obtain for any hypothesis h ∈H and any distribu-
tion,

Tcstnd(R`0−1(h) −R∗
`0−1

(H) +M`0−1(H))

= Tcstnd(E
X
[∆C`0−1,H(h,x)])

≤ E
X
[Tcstnd(∆C`0−1,H(h,x))]

≤ E
X
[∆C`cstnd,H(h,x)]

= R`cstnd(h) −R∗
`cstnd(H) +M`cstnd(H).

Let n = 2. For any t ∈ [0,1], we consider the distribution that concentrates on a singleton {x} and
satisfies p(x,1) = 1+t

2
, p(x,2) = 1−t

2
. For any ε > 0, by the definition of infimum, we can take h ∈H

such that h(x,2) = τε ≥ 0 and satisfies

sup
µ∈[τε−Λmin,τε+Λmin]

{1 − t
2

[Φ(τε) −Φ(−τε + µ)] +
1 + t

2
[Φ(−τε) −Φ(τε − µ)]} < Tcstnd(t) + ε.

Then,
R`0−1(h) −R∗

`0−1
(H) +M`0−1(H) = R`0−1(h) −EX[C∗`0−1

(H, x)]
= C`0−1(h,x) − C∗`0−1

(H, x)
= t

and
Tcstnd(t) ≤ R`cstnd(h) −R∗

`cstnd(H) +M`cstnd(H)
= R`cstnd(h) −EX[C∗`cstnd(H, x)]
= C`cstnd(h,x) − C∗`cstnd(H, x)

= sup
µ∈[τε−Λmin,τε+Λmin]

{1 − t
2

[Φ(τε) −Φ(−τε + µ)] +
1 + t

2
[Φ(−τε) −Φ(τε − µ)]}

< Tcstnd(t) + ε.
By letting ε → 0, we conclude the proof. The proof for n > 2 directly extends from the case when
n = 2. Indeed, for any t ∈ [0,1], we consider the distribution that concentrates on a singleton {x}
and satisfies p(x,1) = 1+t

2
, p(x,2) = 1−t

2
, p(x, y) = 0,3 ≤ y ≤ n. For any ε > 0, by the definition

of infimum, we can take h ∈ H such that h(x,1) = τ1,ε, h(x,2) = τ2,ε, h(x,3) = 0, 3 ≤ y ≤ n and
satisfies τ1,ε + τ2,ε = 0, and

inf
P ∈[ 1

n−1 ,1]
sup
µ∈C

{2 − P − t
2

[Φ(−τ2,ε) −Φ(−τ1,ε + µ)] +
2 − P + t

2
[Φ(−τ1,ε) −Φ(−τ2,ε − µ)]}

= sup
µ∈C

{1 − t
2

[Φ(−τ2,ε) −Φ(−τ1,ε + µ)] +
1 + t

2
[Φ(−τ1,ε) −Φ(−τ2,ε − µ)]}

< Tcstnd(t) + ε.
Then,

R`0−1(h) −R∗
`0−1

(H) +M`0−1(H) = t
and

Tcstnd(t) ≤ R`cstnd(h) −R∗
`cstnd(H) +M`cstnd(H) < Tcstnd(t) + ε.

By letting ε→ 0, we conclude the proof.

F.2 Constrained exponential loss

Theorem 13 (H-consistency bounds for constrained exponential loss). Let Φ(t) = e−t. For any
h ∈H and any distribution,

R`0−1(h) −R∗
`0−1

(H) +M`0−1
(H) ≤ Ψ−1(R`cstnd(h) −R∗

`cstnd(H) +M`cstnd(H))

where Ψ(t) =
⎧⎪⎪⎨⎪⎪⎩

1 −
√

1 − t2 t ≤ e2Λmin−1
e2Λmin+1

t
2
(eΛmin − e−Λmin) + 2−eΛmin−e−Λmin

2
otherwise.

.
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Proof. For n = 2, plugging in Φ(t) = e−t in Theorem 12, gives

T
cstnd(t) = inf

τ≥0
sup

µ∈[τ−Λmin,τ+Λmin]
{1 − t

2
[e−τ − eτ−µ] + 1 + t

2
[eτ − e−τ+µ]}.

By differentiating with respect to τ , we can see that the infimum is achieved when τ = 0 modulo
some elementary analysis. Thus, T

cstnd
can be reformulated as

T
cstnd = sup

µ∈[−Λmin,Λmin]
{1 − t

2
[1 − e−µ] + 1 + t

2
[1 − eµ]}

= 1 + sup
µ∈[−Λmin,Λmin]

g(µ).

where g(µ) = − 1−t
2
e−µ − 1+t

2
eµ. Since g is continuous, it attains its supremum over a compact set.

Note that g is concave and differentiable. In view of that, the maximum over the open set (−∞,+∞)
can be obtained by setting its gradient to zero. Differentiate g(µ) to optimize, we obtain

g(µ∗) = 0, µ∗ = 1

2
log

1 − t
1 + t

Moreover, by the concavity, g(µ) is non-increasing when µ ≥ µ∗. Since µ∗ ≤ 0 and Λmin ≥ 0, we
have

µ∗ ≤ 0 ≤ Λmin

In view of the constraint, if µ∗ ≥ −Λmin, the maximum is achieved by µ = µ∗. Otherwise, if
µ∗ < −Λmin, since g(µ) is non-increasing when µ ≥ µ∗, the maximum is achieved by µ = −Λmin.
Since µ∗ ≥ −Λmin is equivalent to t ≤ e2Λmin−1

e2Λmin+1
, the maximum can be expressed as

max
µ∈[−Λmin,Λmin]

g(µ) = {g(µ
∗) t ≤ e2Λmin−1

e2Λmin+1

g(−Λmin) otherwise

Computing the value of g at these points yields:

g(µ∗) = −
√

1 − t2

g(−Λmin) = −
1 − t

2
eΛmin − 1 + t

2
e−Λmin .

Then, if t ≤ e2Λmin−1
e2Λmin+1

, we obtain

T
cstnd = 1 −

√
1 − t2.

Otherwise, we obtain

T
cstnd = 1 − 1 − t

2
eΛmin − 1 + t

2
e−Λmin

= t

2
(eΛmin − e−Λmin) + 2 − eΛmin − e−Λmin

2
.

For n > 2, plugging in Φ(t) = e−t in Theorem 12, gives

T
cstnd(t) = inf

P ∈[ 1
n−1 ,1]

inf
τ1≥max{τ2,0}

sup
µ∈C

{2 − P − t
2

[eτ2 − eτ1−µ] + 2 − P + t
2

[eτ1 − eτ2+µ]}.

where C = [max{τ1,−τ2} −Λmin,min{τ1,−τ2} +Λmin]. By differentiating with respect to τ2 and
P , we can see that the infimum is achieved when τ2 = τ1 = 0 and P = 1 modulo some elementary
analysis. Thus, T

cstnd
can be reformulated as

T
cstnd = sup

µ∈C
{1 − t

2
[1 − e−µ] + 1 + t

2
[1 − eµ]}

= 1 + sup
µ∈C

g(µ).

38



whereC = [−Λmin,Λmin] and g(µ) = − 1−t
2
e−µ− 1+t

2
eµ. Since g is continuous, it attains its supremum

over a compact set. Note that g is concave and differentiable. In view of that, the maximum over the
open set (−∞,+∞) can be obtained by setting its gradient to zero. Differentiate g(µ) to optimize,
we obtain

g(µ∗) = 0, µ∗ = 1

2
log

1 − t
1 + t

Moreover, by the concavity, g(µ) is non-increasing when µ ≥ µ∗. Since µ∗ ≤ 0 and Λmin ≥ 0, we
have

µ∗ ≤ 0 ≤ Λmin

In view of the constraint, if µ∗ ≥ −Λmin, the maximum is achieved by µ = µ∗. Otherwise, if
µ∗ < −Λmin, since g(µ) is non-increasing when µ ≥ µ∗, the maximum is achieved by µ = −Λmin.
Since µ∗ ≥ −Λmin is equivalent to t ≤ e2Λmin−1

e2Λmin+1
, the maximum can be expressed as

max
µ∈[−Λmin,Λmin]

g(µ) = {g(µ
∗) t ≤ e2Λmin−1

e2Λmin+1

g(−Λmin) otherwise

Computing the value of g at these points yields:

g(µ∗) = −
√

1 − t2

g(−Λmin) = −
1 − t

2
eΛmin − 1 + t

2
e−Λmin .

Then, if t ≤ e2Λmin−1
e2Λmin+1

, we obtain

T
cstnd = 1 −

√
1 − t2.

Otherwise, we obtain

T
cstnd = 1 − 1 − t

2
eΛmin − 1 + t

2
e−Λmin

= t

2
(eΛmin − e−Λmin) + 2 − eΛmin − e−Λmin

2
.

Since T
cstnd

is convex, by Theorem 12, for any h ∈H and any distribution,

R`0−1(h) −R∗
`0−1

(H) +M`0−1
(H) ≤ Ψ−1(R`cstnd(h) −R∗

`cstnd(H) +M`cstnd(H))
where

Ψ(t) =
⎧⎪⎪⎨⎪⎪⎩

1 −
√

1 − t2 t ≤ e2Λmin−1
e2Λmin+1

t
2
(eΛmin − e−Λmin) + 2−eΛmin−e−Λmin

2
otherwise.
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