Published as a conference paper at ICLR 2021

WHAT MATTERS FOR ON-PoOLICY DEEP ACTOR-
CRITIC METHODS? A LARGE-SCALE STUDY

Marcin Andrychowicz, Anton Raichuk, Piotr Stanczyk, Manu Orsini,
Sertan Girgin, Raphaél Marinier, Léonard Hussenot, Matthieu Geist,
Olivier Pietquin, Marcin Michalski, Sylvain Gelly, Olivier Bachem

Google Research, Brain Team

ABSTRACT

In recent years, reinforcement learning (RL) has been successfully applied to many
different continuous control tasks. While RL algorithms are often conceptually
simple, their state-of-the-art implementations take numerous low- and high-level
design decisions that strongly affect the performance of the resulting agents. Those
choices are usually not extensively discussed in the literature, leading to discrepancy
between published descriptions of algorithms and their implementations. This
makes it hard to attribute progress in RL and slows down overall progress [27]].
As a step towards filling that gap, we implement >50 such “choices” in a unified
on-policy deep actor-critic framework, allowing us to investigate their impact in
a large-scale empirical study. We train over 250’000 agents in five continuous
control environments of different complexity and provide insights and practical
recommendations for the training of on-policy deep actor-critic RL agents.

1 INTRODUCTION

Deep reinforcement learning (RL) has seen increased interest in recent years due to its ability to
have neural-network-based agents learn to act in environments through interactions. For continuous
control tasks, on-policy algorithms such as REINFORCE [2], TRPO [[10]], A3C [[14]], PPO [17] and
off-policy algorithms such as DDPG [[13] and SAC [21]] have enabled successful applications such as
quadrupedal locomotion [20], self-driving [30] or dexterous in-hand manipulation [20} 25| |32]].

Many of these papers investigate in depth different algorithmic ideas, for example different loss
functions and learning paradigms. Yet, it is less visible that behind successful experiments in deep RL
there are complicated code bases that contain a large number of low- and high-level design decisions
that are usually not discussed in research papers. While one may assume that such “choices” do not
matter, there is evidence that they are in fact crucial for or even driving good performance [27].

While there are open-source implementations available that can be used by practitioners, this is still
unsatisfactory: Research publications often contain one-to-one comparisons of different algorithmic
ideas based on implementations in different code bases. This makes it impossible to assess whether
improvements are due to the underlying algorithmic idea or due to the implementation. In fact, it is
hard to assess the performance of high-level algorithmic ideas without an understanding of lower-level
choices as performance may strongly depend on the tuning of hyperparameters and implementation-
level details. Overall, this makes it hard to attribute progress in reinforcement learning and slows
down further research [|15] 22} 27].

Our contributions. Our key goal in this paper is to investigate such lower level choices in depth
and to understand their impact on final agent performance. Hence, as our key contributions, we
(1) implement >50 choices in a unified on-policy deep actor-critic implementation', (2) conducted
a large-scale (more than 250’000 agents trained) experimental study that covers different aspects
of the training process, and (3) analyze the experimental results to provide practical insights and
recommendations for the training of on-policy deep actor-critic RL agents.

!The implementation is available at ht tps: //github.com/google-research/seed_rl!

https://github.com/google-research/seed_rl

Published as a conference paper at ICLR 2021

Most surprising finding. While many of our experimental findings confirm common RL practices,
some of them are quite surprising, e.g. the policy initialization scheme significantly influences the
performance while it is rarely even mentioned in RL publications. In particular, we have found that
initializing the network so that the initial action distribution has zero mean, a rather low standard
deviation and is independent of the observation significantly improves the training speed (Sec. [3.2).

Paper outline. The rest of of this paper is structured as follows: We describe our experimental setup
and performance metrics used in Sec.[2] Then, in Sec. [3] we present and analyse the experimental
results and finish with related work in Sec.d]and conclusions in Sec.[5| The appendices contain the
detailed description of all design choices we experiment with (App. [B), default hyperparameters
(App. [C) and the raw experimental results (App. [D]- [K).

2 STUDY DESIGN

Considered setting. In this paper, we consider the setting of on-policy deep actor-critic reinforce-
ment learning for continuous control. We define on-policy learning in the following loose sense:
We consider policy iteration algorithms that iterate between generating experience using the current
policy and using that experience to improve the policy. This is the standard modus operandi of
algorithms usually considered on-policy such as PPO [[17]. However, we note that algorithms often
perform several model updates and thus may operate technically on off-policy data within a single
policy improvement iteration. As benchmark environments, we consider five widely used continuous
control environments from OpenAl Gym [12] of varying complexity: Hopper-vl, Walker2d-vl1,
HalfCheetah-v1, Ant-v1, and Humanoid-v1 2.

Unified on-policy deep actor-critic gradient algorithm. We took the following approach to create
a highly configurable unified on-policy deep actor-critic gradient algorithm with as many choices as
possible:

1. We researched prior work and popular code bases to make a list of commonly used choices,
i.e., different loss functions (both for value functions and policies), architectural choices such
as initialization methods, heuristic tricks such as gradient clipping and all their corresponding
hyperparameters.

2. Based on this, we implemented a single, unified on-policy deep actor-critic agent and correspond-
ing training protocol starting from the SEED RL code base [28]. Whenever we were faced with
implementation decisions that required us to take decisions that could not be clearly motivated or
had alternative solutions, we further added such decisions as additional choices.

3. We verified that when all choices are selected as in the PPO implementation from OpenAl
baselines, we obtain similar performance as reported in the PPO paper [17]. We chose PPO
because it is probably the most commonly used on-policy deep actor-critic RL algorithm at the
moment.

The resulting agent implementation is detailed in Appendix [B] The key property is that the implemen-
tation exposes all choices as configuration options in an unified manner. For convenience, we mark
each of the choice in this paper with a number (e.g., and a fixed name (e.g. num_envs (d1]))
that can be easily used to find a description of the choice in Appendix

Difficulty of investigating choices. The primary goal of this paper is to understand how the
different choices affect the final performance of an agent and to derive recommendations for these
choices. There are two key reasons why this is challenging:

First, we are mainly interested in insights on choices for good hyperparameter configurations. Yet, if
all choices are sampled randomly, the performance is very bad and little (if any) training progress is
made. This may be explained by the presence of sub-optimal settings (e.g., hyperparameters of the
wrong scale) that prohibit learning at all. If there are many choices, the probability of such failure
increases exponentially.

?1t has been noticed that the version of the Mujoco physics simulator [5] can slightly influence the behaviour
of some of the environments —https://github.com/openai/gym/issues/1541. We used Mujoco
2.0 in our experiments.

https://github.com/openai/gym/issues/1541

Published as a conference paper at ICLR 2021

Second, many choices may have strong interactions with other related choices, for example the
learning rate and the minibatch size. This means that such choices need to be tuned together and
experiments where only a single choice is varied but interacting choices are kept fixed may lead to
misleading conclusions.

Basic experimental design. To address these issues, we design a series of experiments as follows:
We create groups of choices around thematic groups where we suspect interactions between different
choices, for example we group together all choices related to neural network architecture. We also
include Adam learning rate (J24) in all of the groups as we suspect that it may interact
with many other choices.

Then, in each experiment, we train a large number of models where we randomly sample the choices
within the corresponding group 3. All other settings (for choices not in the group) are set to settings
of a competitive base configuration (detailed in Appendix [C)) that is close to the default PPOv2
configuration* scaled up to 256 parallel environments. This has two effects: First, it ensures that our
set of trained models contains good models (as verified by performance statistics in the corresponding
results). Second, it guarantees that we have models that have different combinations of potentially
interacting choices.

We consider two different analyses for each choice (e.g, for advantage_estimator (dg)):

Conditional 95th percentile: For each potential value of that choice (e.g., advantage_estimator

(qg) =N-Step), we look at the performance distribution of sampled configurations with that value.
We report the 95th percentile of the performance as well as a confidence interval based on a binomial
approximation >. Intuitively, this corresponds to a robust estimate of the performance one can expect
if all other choices in the group were tuned with random search and a limited budget of roughly 20
hyperparameter configurations.

Distribution of choice within top 5% configurations. We further consider for each choice the
distribution of values among the top 5% configurations trained in that experiment. The reasoning is
as follows: By design of the experiment, values for each choice are distributed uniformly at random.
Thus, if certain values are over-represented in the top models, this indicates that the specific choice is
important in guaranteeing good performance.

Performance measures. We employ the following way to compute performance: For each choice
configuration, we train 3 models with independent random seeds where each model is trained for
one million (Hopper, HalfCheetah, Walker2d) or two million environment steps (Ant, Humanoid).
We evaluate trained policies every hundred thousand steps by freezing the policy and computing the
average undiscounted episode return of 100 episodes (with the stochastic policy). We then average
these score to obtain a single performance score of the seed which is proportional to the area under the
learning curve. This ensures we assign higher scores to agents that learn quickly. The performance
score of a hyperparameter configuration is finally set to the median performance score across the 3
seeds. This reduces the impact of training noise, i.e., that certain seeds of the same configuration may
train much better than others.

Robustness of results. While we take 3 random seeds to compute the performance measure for
a single choice configuration, it is important to note that all the experimental results reported in
this paper are based on more than 3 random seeds: The reported conditional 95th percentile and
distribution of choice within top 5% configurations are computed based upon the performance
of hundreds of choice configurations. Furthermore, we also report confidence intervals for the
conditional 95th percentile.

SExact details for the different experiments are provided in Appendices[ﬂ- [El

4https://github.com/openai/baselines/blob/master/baselines/ppo2/
defaults.py

>We compute confidence intervals with a significance level of o = 5% as follows: We find 4; = icdf (%)

and i, = icdf (1 — %) where icdf is the inverse cumulative density function of a binomial distribution with

p = 0.95 (as we consider the 95th percentile) and the number of draws equals the number of samples. We then
report the 4;th and 75 th highest scores as the confidence interval.

https://github.com/openai/baselines/blob/master/baselines/ppo2/defaults.py
https://github.com/openai/baselines/blob/master/baselines/ppo2/defaults.py

Published as a conference paper at ICLR 2021

3 EXPERIMENTS

We run experiments for eight thematic groups: Policy Losses (Sec. [3.1)), Networks architecture
(Sec. , Normalization and clipping (Sec.[3.3)), Advantage Estimation (Sec.[3.4), Training setup
(Sec. @ Timesteps handling (Sec.[3.6), Optimizers (Sec.[3.7), and Regularization (Sec.[3.8). For
each group, we provide a full experimental design and full experimental plots in Appendices [D|-
so that the reader can draw their own conclusions from the experimental results. Moreover, the raw
data from all training runs and a script used to generate all plots for this paper can be found online®.
In the following sections, we provide short descriptions of the experiments, our interpretation of the
results, as well as practical recommendations for agent training for continuous control.

3.1 POLICY LOSSES (BASED ON THE RESULTS IN APPENDIX [DJ])

Study description. We investigate different policy losses (JI4): vanilla policy gradient (PG), V-
trace [[19]], PPO [[17], AWR [33], V-MPO’ [34] and the limiting case of AWR (8 — 0) and V-MPO
(e, — 0) which we call Repeat Positive Advantages (RPA) as it is equivalent to the negative log-
probability of actions with positive advantages. See App.[B.3|for a detailed description of the different

losses. We further sweep the hyperparameters of each of the losses (15} d19), the
learning rate ((f24)) and the number of passes over the data (d3).

The goal of this study is to better understand the importance of the policy loss function in the on-policy
deep actor-critic setting considered in this paper. The goal is not to provide a general statement that
one of the losses is better than the others as some of them were specifically designed for other settings
(e.g., the V-trace loss is targeted at near-on-policy data in a distributed setting).

s, _HOPPEr-v1 3000Humanoid-vl Walker2d-v1 HalfCheetah-v1 Ant-v1
I | 1000 1 2500 1 |
1500 1 25004 1200 | |
1250 4 800 1000 2000 4
2000 |
1000 1 600 | | 800 1500 1
1500
7501 | | 400 1 6007 1000 {
500 { [11 V 10004 | 400 . !
250 4 500 . 2004 . 2004 500 4
0 0 o 0 o
B Bl B Bl > 5

Figure 1: Comparison of different policy losses (.

Interpretation. Fig. [I] shows the 95-th percentile of the average policy score during training for
different policy losses ({14). We observe that PPO performs better than the other losses on 4 out of
5 environments and is one of the top performing losses on HalfCheetah. As we randomly sample the
loss specific hyperparameters in this analysis, one might argue that our approach favours choices that
are not too sensitive to hyperparameters. At the same time, there might be losses that are sensitive
to their hyperparameters but for which good settings may be easily found. Fig. [5]shows that even
if we condition on choosing the optimal loss hyperparameters for each loss®, PPO still outperforms
the other losses on the two hardest tasks — Humanoid and Ant’ and is one of the top performing
losses on the other 3 tasks. Moreover, we show the empirical cumulative density functions of agent
performance conditioned on the policy loss used in Fig. 4]

Perhaps unsurprisingly, PG and V-trace perform worse on all tasks. This is likely caused by their
inability to handle data that becomes off-policy in one iteration, either due to multiple passes (3]

Shttps://github.com/google—-research/seed rl/blob/master/mujoco/what
matters_in_on_policy_rl.ipynb

"We used the V-MPO policy loss without the decoupled KL constraint as we investigate the effects of
different policy regularizers separately in Sec.

8 AWR loss has two hyperparameters — the temperature (3 (and the weight clipping coefficient wpax
(d17). We only condition on § which is more important.

“These two tasks were not included in the original PPO paper [[17]] so the hyperparameters we use were not
tuned for them.

https://github.com/google-research/seed_rl/blob/master/mujoco/what_matters_in_on_policy_rl.ipynb
https://github.com/google-research/seed_rl/blob/master/mujoco/what_matters_in_on_policy_rl.ipynb

Published as a conference paper at ICLR 2021

over experience (which can be seen in Fig.[T4) or a large experience buffer (d2) in relation to the
batch size (d4). While V-Trace contains an off-policy correction, it was designed for “slightly”
off-policy experience arising in ansynchronous, distributed setups and becomes more and more biased
as experience becomes more off-policy. Overall, these results show that trust-region optimization
(preventing the current policy from diverging too much from the behavioral one) which is present in
all the other policy losses is crucial for good sample complexity.

For PPO and its clipping threshold e (J16)), we further observe that ¢ = 0.2 and € = 0.3 perform
reasonably well in all environments but that lower (¢ = 0.1) or higher (¢ = 0.5) values give better
performance on some of the environments (See Fig.[T0]and Fig.[32).

Recommendation. Use the PPO policy loss. Start with the clipping threshold set to 0.25 but also try
lower and higher values if possible.

3.2 NETWORKS ARCHITECTURE (BASED ON THE RESULTS IN APPENDIX [E])

Study description. We investigate the impact of differences in the policy and value function neural
network architectures. We consider choices related to the network structure and size (47}
d52), activation functions (J55), and initialization of network weights (5 6]
d58). We further include choices related to the standard deviation of actions (d59]
and transformations of sampled actions (d63)).

Interpretation. Separate value and policy networks (CJ47)) appear to lead to better performance on
four out of five environments (Fig. [I3). To avoid analyzing the other choices based on bad models,
we thus focus for the rest of this experiment only on agents with separate value and policy networks.
Regarding network sizes, the optimal width of the policy MLP depends on the complexity of the
environment (Fig. [I8) and too low or too high values can cause significant drop in performance while
for the value function there seems to be no downside in using wider networks (Fig. 21I). Moreover,
on some environments it is beneficial to make the value network wider than the policy one, e.g. on
HalfCheetah the best results are achieved with 16 — 32 units per layer in the policy network and 256
in the value network. Two hidden layers appear to work well for policy (Fig. 22) and value networks
(Fig. @) in all tested environments. As for activation functions, we observe that t anh activations
perform best and relu worst. (Fig.[30).

Interestingly, the initial policy appears to have a surprisingly high impact on the training performance.
The key recipe is to initialize the policy at the beginning of training so that the action distribution is
centered around 0'° regardless of the observation and has a rather small standard deviation. This can
be achieved by initializing the policy MLP with smaller weights in the last layer (d57] Fig.[24} this
alone boosts the performance on Humanoid by 66%) so that the initial action distribution is almost
independent of the observation and by introducing an offset in the standard deviation of actions (d61).
Fig.[2]shows that the performance is very sensitive to the initial action standard deviation with 0.5
performing best on all environments except Hopper where higher values perform better.

Hopper-vl Humanoid-v1 Walker2d-v1 HalfCheetah-v1 Ant-v1

| 3000 - |

1400 |

1200 | 2500 | | 2500 4 2500 |

600
1000 2000 4 | 2000 4 2000

| 800 | 3000 | 3000 [

800 1500 400 1500 I 1500
600
1000 1000 4 1 1000

400 200
200 500 500 500
0 0 0 0 0

S Qe < < 1 o Qe < =
- Y S o A N o o

- S = S = S <o
s o N S o N S o N

Figure 2: Comparison of different initial standard deviations of actions (.
Fig. compares two approaches to transform unbounded sampled actions into the bounded [—1, 1]

domain expected by the environment (J6 3): clipping and applying a t anh function. tanh performs
slightly better overall (in particular it improves the performance on HalfCheetah by 30%). Comparing

10All environments expect normalized actions in [—1,1].

Published as a conference paper at ICLR 2021

Fig.[I7)and Fig. 2] suggests that the difference might be mostly caused by the decreased magnitude of

initial actions'!.

Other choices appear to be less important: The scale of the last layer initialization matters much less
for the value MLP ((58)) than for the policy MLP (Fig.[T9). Apart from the last layer scaling, the
network initialization scheme (d56)) does not matter too much (Fig. 27). Only he_normal and
he_uniform [7] appear to be suboptimal choices with the other options performing very similarly.
There also appears to be no clear benefits if the standard deviation of the policy is learned for each
state (i.e. outputted by the policy network) or once globally for all states (5 9] Fig.[23). For the
transformation of policy output into action standard deviation (d60)), softplus and exponentiation
perform very similarly'? (Fig. . Finally, the minimum action standard deviation (J62)) seems to
matter little, if it is not set too large (Fig. 30).

Recommendation. Initialize the last policy layer with 100x smaller weights. Use softplus to
transform network output into action standard deviation and add a (negative) offset to its input to
decrease the initial standard deviation of actions. Tune this offset if possible. Use t anh both as the
activation function (if the networks are not too deep) and to transform the samples from the normal
distribution to the bounded action space. Use a wide value MLP (no layers shared with the policy)
but tune the policy width (it might need to be narrower than the value MLP).

3.3 NORMALIZATION AND CLIPPING (BASED ON THE RESULTS IN APPENDIX

Study description. We investigate the impact of different normalization techniques: observation
normalization (64)), value function normalization (6 6)), per-minibatch advantage normalization

(d67), as well as gradient (d68)) and observation (d65) clipping.

Interpretation. Input normalization (d64) is crucial for good performance on all environments apart
from Hopper (Fig. [33). Quite surprisingly, value function normalization (d66)) also influences the
performance very strongly — it is crucial for good performance on HalfCheetah and Humanoid,
helps slightly on Hopper and Ant and significantly hurts the performance on Walker2d (Fig.[37). We
are not sure why the value function scale matters that much but suspect that it affects the performance
by changing the speed of the value function fitting.'* In contrast to observation and value function
normalization, per-minibatch advantage normalization (J67) seems not to affect the performance
too much (Fig. . Similarly, we have found little evidence that clipping normalized'* observations
(d65) helps (Fig. [38) but it might be worth using if there is a risk of extremely high observations due
to simulator divergence. Finally, gradient clipping (d68)) provides a small performance boost with
the exact clipping threshold making little difference (Fig. [34).

Recommendation. Always use observation normalization and check if value function normalization
improves performance. Gradient clipping might slightly help but is of secondary importance.

3.4 ADVANTAGE ESTIMATION (BASED ON THE RESULTS IN APPENDIX [G))

Study description. We compare the most commonly used advantage estimators ((f6): N-step [3]],
GAE [9] and V-trace [19] and their hyperparameters (7] ddl d10). We also experiment
with applying PPO-style pessimistic clipping (d13) to the value loss (present in the original PPO
implementation but not mentioned in the PPO paper [17]) and using Huber loss [1] instead of MSE
for value learning (11} I2). Moreover, we varied the number of parallel environments used (1)
as it changes the length of the experience fragments collected in each step.

Interpretation. GAE and V-trace appear to perform better than N-step returns (Fig. #4]and 40) which
indicates that it is beneficial to combine the value estimators from multiple timesteps. We have not

"t anh can also potentially perform better with entropy regularization (not used in this experiment) as it
bounds the maximum possible policy entropy.

2We noticed that some of the training runs with exponentiation resulted in NaNs but clipping the exponent
solves this issue (See Sec. for the details).

'3 Another explanation could be the interaction between the value function normalization and PPO-style value
clipping (J13). We have, however, disabled the value clipping in this experiment to avoid this interaction. The
disabling of the value clipping could also explain why our conclusions are different from [27] where a form of
value normalization improved the performance on Walker.

“We only applied clipping if input normalization was enabled.

Published as a conference paper at ICLR 2021

found a significant performance difference between GAE and V-trace in our experiments. A = 0.9
(d8l d9) performed well regardless of whether GAE (Fig. 3] or V-trace (Fig.[49) was used on all
tasks but tuning this value per environment may lead to modest performance gains. We have found
that PPO-style value loss clipping (hurts the performance regardless of the clipping threshold'?
(Fig.[#3). Similarly, the Huber loss (d11I)) performed worse than MSE in all environments (Fig. @2)
regardless of the value of the threshold (JL12)) used (Fig. A8).

Recommendation. Use GAE with A\ = 0.9 but neither Huber loss nor PPO-style value loss clipping.

3.5 TRAINING SETUP (BASED ON THE RESULTS IN APPENDIX [H)

Study description. We investigate choices related to the data collection and minibatch handling:
the number of parallel environments used (JI)), the number of transitions gathered in each iteration
(d2), the number of passes over the data (3], minibatch size (CJ4)) and how the data is split into
minibatches (d5).

For the last choice, in addition to standard choices, we also consider a new small modification of
the original PPO approach: The original PPO implementation splits the data in each policy iteration
step into individual transitions and then randomly assigns them to minibatches (J5)). This makes it
impossible to compute advantages as the temporal structure is broken. Therefore, the advantages are
computed once at the beginning of each policy iteration step and then used in minibatch policy and
value function optimization. This results in higher diversity of data in each minibatch at the cost of
using slightly stale advantage estimations. As a remedy to this problem, we propose to recompute the
advantages at the beginning of each pass over the data instead of just once per iteration.

Results. Unsurprisingly, going over the experience multiple times appears to be crucial for good sam-
ple complexity (Fig.[54). Often, this is computationally cheap due to the simple models considered,
in particular on machines with accelerators such as GPUs and TPUs. As we increase the number of
parallel environments (dI)), performance decreases sharply on some of the environments (Fig. [53).
This is likely caused by shortened experience chunks (See Sec. [B.I] for the detailed description
of the data collection process) and earlier value bootstrapping. Despite that, training with more
environments usually leads to faster training in wall-clock time if enough CPU cores are available.
Increasing the batch size (dJ4)) does not appear to hurt the sample complexity in the range we tested
(Fig. which suggests that it should be increased for faster iteration speed. On the other hand, the
number of transitions gathered in each iteration (d2)) influences the performance quite significantly
(Fig.[52). Finally, we compare different ways to handle minibatches (See App. [B.T|for the detailed
description of different variants) in Fig.[53]and [58] The plots suggest that stale advantages can in fact
hurt performance and that recomputing them at the beginning of each pass at least partially mitigates
the problem and performs best among all variants.

Recommendation. Go over experience multiple times. Shuffle individual transitions before assigning
them to minibatches and recompute advantages once per data pass (See App. for the details).
For faster wall-clock time training use many parallel environments and increase the batch size (both
might hurt the sample complexity). Tune the number of transitions in each iteration ((f2)) if possible.

3.6 TIMESTEPS HANDLING (BASED ON THE RESULTS IN APPENDIX

Study description. We investigate choices related to the handling of timesteps: discount fac-
tor'® (, frame skip (, and how episode termination due to timestep limits are handled (.
The latter relates to a technical difficulty explained in App.[B.4] where one assumes for the algorithm
an infinite time horizon but then trains using a finite time horizon [16].

Interpretation. Fig. [60]shows that the performance depends heavily on the discount factor (d20)
with v = 0.99 performing reasonably well in all environments. Skipping every other frame (J2 1)
improves the performance on 2 out of 5 environments (Fig. [6I). Proper handling of episodes
abandoned due to the timestep limit seems not to affect the performance (d22] Fig. [62) which

I5This is consistent with prior work [27].
SWhile the discount factor is sometimes treated as a part of the environment, we assume that the real goal is
to maximize undiscounted returns and the discount factor is a part of the algorithm which makes learning easier.

Published as a conference paper at ICLR 2021

is probably caused by the fact that the timestep limit is quite high (1000 transitions) in all the
environments we considered.

Recommendation. Discount factor + is one of the most important hyperparameters and should be
tuned per environment (start with v = 0.99). Try frame skip if possible. There is no need to handle
environments step limits in a special way for large step limits.

3.7 OPTIMIZERS (BASED ON THE RESULTS IN APPENDIX

Study description. We investigate two gradient-based optimizers commonly used in RL: (J23)) —

Adam (8] and RMSprop — as well as their hyperparameters (02 4]
and a linear learning rate decay schedule (d31).

Interpretation. The differences in performance between the optimizers (d23)) appear to be rather
small with no optimizer consistently outperforming the other across environments (Fig. [66). Unsur-
prisingly, the learning rate influences the performance very strongly (Fig.[69) with the default value
of 0.0003 for Adam ((24)) performing well on all tasks. Fig. [67]shows that Adam works better with
momentum (d2 6). For RMSprop, momentum (Cf27)) makes less difference (Fig. but our results
suggest that it might slightly improve performance’’. Whether the centered or uncentered version of
RMSprop is used (30)) makes no difference (Fig. and similarly we did not find any difference
between different values of the e coefficients (428} Fig.[68and[72)). Linearly decaying the
learning rate to O increases the performance on 4 out of 5 tasks but the gains are very small apart
from Ant, where it leads to 15% higher scores (Fig. [65).

Recommendation. Use Adam [8]] optimizer with momentum $; = 0.9 and a tuned learning rate
(0.0003 is a safe default). Linearly decaying the learning rate may slightly improve performance but
is of secondary importance.

3.8 REGULARIZATION (BASED ON THE RESULTS IN APPENDIX [K])

Study description. We investigate different policy regularizers (J32), which can have either the
form of a penalty (d33] e.g. bonus for higher entropy) or a soft constraint (434] e.g. entropy should
not be lower than some threshold) which is enforced with a Lagrange multiplier. In particular, we
consider the following regularization terms: entropy (440} d46), the Kullback—Leibler divergence
(KL) between a reference N'(0, 1) action distribution and the current policy (and the KL
divergence and reverse KL divergence between the current policy and the behavioral one (d35}

d42)), as well as the “decoupled” KL divergence from [[18] 34] (d38] d45).

Interpretation. We do not find evidence that regularization helps significantly on our environments
with the exception of HalfCheetah on which all constraints (especially the entropy constraint) help
(Fig.[76]and [77). However, the performance boost is largely independent on the constraint threshold
(Fig.|83] [84] 871 [89] [00] and OT)) which suggests that the effect is caused by the initial high strength
of the penalty (before it gets adjusted) and not by the desired constraint. While it is surprising that
regularization does not help at all (apart from HalfCheetah), we conjecture that regularization might
be less important in our experiments because: (1) the PPO policy loss already enforces the trust region
which makes KL penalties or constraints redundant; and (2) the careful policy initialization (See
Sec.[3.2) is enough to guarantee good exploration making the entropy bonus or constraint redundant.

4 RELATED WORK

Islam et al. [15] and Henderson et al. [22] point out reproducibility issues in RL including the
performance differences between different code bases, the importance of hyperparameter tuning
and the high level of stochasticity due to random seeds. Tucker et al. [26] showed that the gains,
which had been attributed to one of the recently proposed policy gradients improvements, were,
in fact, caused by the implementation details. The most closely related work to ours is probably
Engstrom et al. [27] where the authors investigate code-level improvements in the PPO [17] code
base and conclude that they are responsible for the most of the performance difference between PPO

Importantly, switching from no momentum to momentum 0.9 increases the RMSprop step size by approxi-
mately 10x and requires an appropriate adjustment to the learning rate (Fig. .

Published as a conference paper at ICLR 2021

and TRPO [10]. Our work is also similar to other large-scale studies done in other fields of Deep
Learning, e.g. model-based RL [31]], GANs [24]], NLP [35], disentangled representations [23|] and
convolution network architectures [36].

5 CONCLUSIONS

In this paper, we investigated the importance of a broad set of high- and low-level choices that need
to be made when designing and implementing on-policy deep actor-critic RL algorithms. Based on
more than 250’000 experiments in five continuous control environments, we evaluate the impact of
different choices and provide practical recommendations. One of the surprising insights is that the
initial action distribution plays an important role in agent performance. We expect this to be a fruitful
avenue for future research.

REFERENCES

[1] Peter J Huber. “Robust estimation of a location parameter”. In: Breakthroughs in statistics. Springer,
1992, pp. 492-518.

[2] Ronald J Williams. “Simple statistical gradient-following algorithms for connectionist reinforcement
learning”. In: Machine learning 8.3-4 (1992), pp. 229-256.

[3] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning. Vol. 135. MIT press
Cambridge, 1998.

[4] Brian D Ziebart. “Modeling purposeful adaptive behavior with the principle of maximum causal entropy”.
In: (2010).

[5] Emanuel Todorov, Tom Erez, and Yuval Tassa. “Mujoco: A physics engine for model-based control”. In:
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 2012, pp. 5026-5033.

[6] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”. In: arXiv preprint
arXiv:1312.5602 (2013).

[7]1 Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level performance on imagenet
classification”. In: Proceedings of the IEEE international conference on computer vision. 2015, pp. 1026—
1034.

[8] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In: 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings. 2015. URL: http://arxiv.org/abs/1412.6980.

[9] John Schulman et al. “High-dimensional continuous control using generalized advantage estimation”. In:
arXiv preprint arXiv:1506.02438 (2015).

[10] John Schulman et al. “Trust region policy optimization™. In: International conference on machine
learning. 2015, pp. 1889-1897.

[11] Martin Abadi et al. “Tensorflow: A system for large-scale machine learning”. In: 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16). 2016, pp. 265-283.

[12] Greg Brockman et al. “Openai gym”. In: arXiv preprint arXiv:1606.01540 (2016).

[13] Timothy P Lillicrap et al. “Continuous control with deep reinforcement learning”. In: International
Conference on Learning Representations. 2016.

[14] Volodymyr Mnih et al. “Asynchronous methods for deep reinforcement learning”. In: International
conference on machine learning. 2016, pp. 1928-1937.

[15] Riashat Islam et al. “Reproducibility of benchmarked deep reinforcement learning tasks for continuous
control”. In: arXiv preprint arXiv:1708.04133 (2017).

[16] Fabio Pardo et al. “Time limits in reinforcement learning”. In: arXiv preprint arXiv:1712.00378 (2017).

[17] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint arXiv:1707.06347
(2017).

[18] Abbas Abdolmaleki et al. “Maximum a posteriori policy optimisation”. In: arXiv preprint
arXiv:1806.06920 (2018).

[19] Lasse Espeholt et al. “IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner
Architectures”. In: International Conference on Machine Learning. 2018, pp. 1406-1415.

[20] Tuomas Haarnoja et al. “Soft actor-critic algorithms and applications”. In: arXiv preprint
arXiv:1812.05905 (2018).

[21] Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning
with a Stochastic Actor”. In: International Conference on Machine Learning. 2018, pp. 1861-1870.

http://arxiv.org/abs/1412.6980

Published as a conference paper at ICLR 2021

(22]
(23]
(24]
[25]
[26]
(27]
(28]
(29]
(30]
(31]
(32]
(33]
(34]
(35]

(36]

Peter Henderson et al. “Deep reinforcement learning that matters”. In: Thirty-Second AAAI Conference
on Artificial Intelligence. 2018.

Francesco Locatello et al. “Challenging common assumptions in the unsupervised learning of disentan-
gled representations”. In: arXiv preprint arXiv:1811.12359 (2018).

Mario Lucic et al. “Are gans created equal? a large-scale study”. In: Advances in neural information
processing systems. 2018, pp. 700-709.

M Andrychowicz OpenAl et al. “Learning dexterous in-hand manipulation”. In: arXiv preprint
arXiv:1808.00177 (2018).

George Tucker et al. “The mirage of action-dependent baselines in reinforcement learning”. In: arXiv
preprint arXiv:1802.10031 (2018).

Logan Engstrom et al. “Implementation Matters in Deep RL: A Case Study on PPO and TRPO”. In:
International Conference on Learning Representations. 2019.

Lasse Espeholt et al. “SEED RL: Scalable and Efficient Deep-RL with Accelerated Central Inference”.
In: arXiv preprint arXiv:1910.06591 (2019).

Michael Janner et al. “When to trust your model: Model-based policy optimization”. In: Advances in
Neural Information Processing Systems. 2019, pp. 12498-12509.

Alex Kendall et al. “Learning to drive in a day”. In: 2019 International Conference on Robotics and
Automation (ICRA). IEEE. 2019, pp. 8248-8254.

Eric Langlois et al. “Benchmarking model-based reinforcement learning”. In: arXiv preprint
arXiv:1907.02057 (2019).

Ilge OpenAl et al. “Solving Rubik’s Cube with a Robot Hand”. In: arXiv preprint arXiv:1910.07113
(2019).

Xue Bin Peng et al. “Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement
Learning”. In: arXiv preprint arXiv:1910.00177 (2019).

H Francis Song et al. “V-MPO: On-Policy Maximum a Posteriori Policy Optimization for Discrete and
Continuous Control”. In: arXiv preprint arXiv:1909.12238 (2019).

Jared Kaplan et al. “Scaling laws for neural language models”. In: arXiv preprint arXiv:2001.08361
(2020).

Ilija Radosavovic et al. “Designing Network Design Spaces”. In: arXiv preprint arXiv:2003.13678
(2020).

10

Published as a conference paper at ICLR 2021

A REINFORCEMENT LEARNING BACKGROUND

We consider the standard reinforcement learning formalism consisting of an agent interacting with an environment.
To simplify the exposition we assume in this section that the environment is fully observable. An environment
is described by a set of states S, a set of actions .4, a distribution of initial states p(so), a reward function
r: 8 x A — R, transition probabilities p(s¢+1]|st, at) (¢ is a timestep index explained later), termination
probabilities T'(s¢, at) and a discount factor v € [0, 1].

A policy 7 is a mapping from state to a distribution over actions. Every episode starts by sampling an initial state
so. At every timestep ¢ the agent produces an action based on the current state: as ~ m(+|s¢). In turn, the agent
receives a reward 7, = r(s¢, a;) and the environment’s state is updated. With probability T'(s¢, a¢) the episode
is terminated, and otherwise the new environments state s;+1 is sampled from p(-|s¢, a¢). The discounted sum
of future rewards, also referred to as the return, is defined as Ry = Y ;- +*~tr;. The agent’s goal is to find the
policy m which maximizes the expected return E-[Ro|so], where the expectation is taken over the initial state
distribution, the policy, and environment transitions accordingly to the dynamics specified above. The Q-function
or action-value function of a given policy is defined as Q" (s¢, ar) = Ex[Ry|s¢, a:], while the V-function or
state-value function is defined as V™ (s;) = Ex[Ry|s¢]. The value A" (s¢, ar) = Q™ (s¢, ar) — V™ (s¢) is called
the advantage and tells whether the action a; is better or worse than an average action the policy 7 takes in the
state sg¢.

In practice, the policies and value functions are going to be represented as neural networks. In particular, RL
algorithms we consider maintain two neural networks: one representing the current policy 7 and a value network
which approximates the value function of the current policy V ~ V™.

B LiIST OF INVESTIGATED CHOICES

In this section we list all algorithmic choices which we consider in our experiments. See Sec.[A]for a very brief
introduction to RL and the notation we use in this section.

B.1 DATA COLLECTION AND OPTIMIZATION LOOP

RL algorithms interleave running the current policy in the environment with policy and value function networks
optimization. In particular, we create num_envs (d1l|) environments [14]. In each iteration, we run all envi-
ronments synchronously sampling actions from the current policy until we have gathered iteration_size
(d2)) transitions total (this means that we have num_envs ({I)) experience fragments, each consisting
of iteration_size (J2) / num_envs (dI) transitions). Then, we perform num_epochs (d3)
epochs of minibatch updates where in each epoch we split the data into minibatches of size batch_size
(d4)) , and performing gradient-based optimization [[I7]. Going over collected experience multiple times means
that it is not strictly an on-policy RL algorithm but it may increase the sample complexity of the algorithm at the
cost of more computationally expensive optimization step.

We consider four different variants of the above scheme (choice d5):

e Fixed trajectories: Each minibatch consists of full experience fragments and in each epoch we go
over exactly the same minibatches in the same order.

e shuffle trajectories: Like Fixed trajectories but we randomly assign full experience
fragments to minibatches in each epoch.

e shuffle transitions: We break experience fragments into individual transitions and assign them ran-
domly to minibatches in each epoch. This makes the estimation of advantages impossible in each minibatch
(most of the advantage estimators use future states, See App. [B.2) so we precompute all advantages at the
beginning of each iteration using full experience fragments. This approach leads to higher diversity of data
in each minibatch at the price of somewhat stale advantage estimations. The original PPO implementation
from OpenAl Baselines'® works this way but this is not mentioned in the PPO paper [[17].

e Shuffle transitions (recompute advantages): Like Shuffle transitions but we
recompute advantages at the beginning of each epoch.

B.2 ADVANTAGE ESTIMATION

Let V be an approximator of the value function of some policy, i.e. V =~ V™. We experimented with the three
most commonly used advantage estimators in on-policy deep actor-critic RL (choice d6):

¥https://github.com/openai/baselines/tree/master/baselines/ppo2

11

https://github.com/openai/baselines/tree/master/baselines/ppo2

Published as a conference paper at ICLR 2021

e N-step return [3] is defined as

tEN-1
VD = 3 i 4 NV (sen) & VT ().
i=t
The parameter N (choice controls the bias—variance tradeoff of the estimator with bigger values resulting

in an estimator closer to empirical returns and having less bias and more variance. Given N-step returns we
can estimate advantages as follows:

AiN) = ‘A/;(N) — V(St) ~ Aﬁ(st, at).

e Generalized Advantage Estimator, GAE()) [9] is a method that combines multi-step returns in the
following way:
‘A/tGAE _ (1 _)\) Z AN*I‘A/t(N) ~ Vﬂ(St),
N>0

where 0 < A < 1 is a hyperparameter (choice controlling the bias—variance trade-off. Using this, we
can estimate advantages with:

ASAE _ PN () e AT (s, ar).

It is possible to compute the values of this estimator for all states encountered in an episode in linear time [9].

e V-trace()\, ¢, p) [19] is an extension of GAE which introduces truncated importance sampling weights to
account for the fact that the current policy might be slightly different from the policy which generated the
experience. It is parameterized by A (choice J9) which serves the same role as in GAE and two parameters
¢ and p which are truncation thresholds for two different types of importance weights. See [19] for the
detailed description of the V-trace estimator. All experiments in the original paper [19] use ¢ = p = 1.
Similarly, we only consider the case ¢ = p, i.e., we consider a single choice V-Trace advantage ¢, p

(d1a) .

The value network is trained by fitting one of the returns described above with an MSE (quadratic) or a Huber
[[1]] loss (choice 11). Huber loss is a quadratic around zero up to some threshold (choice d12)) at which point it
becomes a linear function.

The original PPO implementation [[17]] uses an additional pessimistic clipping in the value loss function. See
[27] for the description of this technique. It is parameterized by a clipping threshold (choice JI3).

B.3 POLICY LOSSES

Let 7 denote the policy being optimized, and i the behavioral policy, i.e. the policy which generated the
experience. Moreover, let AT and A#" be some estimators of the advantage at timestep ¢ for the policies 7 and .

We consider optimizing the policy with the following policy losses (choice T4):

e Policy Gradients (PG) [2] with advantages: Ly = —log ﬂ(at|st).4§r. It can be shown that if A7
estimators are unbiased, then V¢ Lz is an unbiased estimator of the gradient of the policy performance
assuming that experience was generated by the current policy 7.

%, p) is a truncated importance weight, sg

is the stop_gradient operator'® and j is a hyperparameter (choice Ol VoLP_. ... is an unbiased

estimator of the gradient of the policy performance if 5 = oo regardless of the behavioural policy .

e Proximal Policy Optimization (PPO) [17]:

. [m(aclse) 22 <7T(at|5t) 1) Aw]
L = —min | ——=< A7, cli —F, —, 1+¢e) A7 |,
wlacs) P (aclse) T+e '

o V-trace [19]: £7_.,... = sg(p:)Loc, where p, = min(

where € is a hyperparameter?! This loss encourages the policy to take actions which are better than
average (have positive advantage) while clipping discourages bigger changes to the policy by limiting how
much can be gained by changing the policy on a particular data point.

PIdentity function with gradient zero.

2 Assuming that advantage estimators are unbiased and p(as|s;) > O for all pairs (s;,a;) for which
m(at|se) > 0.

*IThe original PPO paper used 1 — ¢ instead 1/(1 -+ ¢) as the lower bound for the clipping. Both variants are
used in practice and we have decided to use 1/(1 + €) as it is more symmetric.

12

Published as a conference paper at ICLR 2021

o Advantage-Weighted Regression (AWR) [33]:
L5 = —logm(au|s) min (exp(Af /B), wrax) -

It can be shown that for wn.x = oo (choice it corresponds to an approximate optimization of the
policy 7 under a constraint of the form KL(||) < € where the KL bound € depends on the exponentiation
temperature 3 (choice I8)). Notice that in contrast to previous policy losses, AWR uses estimates of the
advantages for the behavioral policy (A4") and not the current one (A]). AWR was proposed mostly as an
off-policy RL algorithm.

e On-Policy Maximum a Posteriori Policy Optimization (V-MPO) [34]: This policy loss is the same as
AWR with the following differences: (1) exponentiation is replaced with the softmax operator and there
is no clipping with wnax; (2) only samples with the top half advantages in each batch are used; (3) the
temperature [is treated as a Lagrange multiplier and adjusted automatically to keep a constraint on how
much the weights (i.e. softmax outputs) diverge from a uniform distribution with the constraint threshold
€ being a hyperparameter (choice . (4) A soft constraint on KL(p||7) is added. In our experiments,
we did not treat this constraint as a part of the V-MPO policy loss as policy regularization is considered
separately (See Sec.[B.6).

o Repeat Positive Advantages (RPA): Lzon = — log m(ae|s:)[Ar > 0]22A This is a new loss we introduce
in this paper. We choose this loss because it is the limiting case of AWR and V-MPO. In particular, Efv’ﬂ‘{’ ma
converges to wWnaxLzea for § — 0 and for e — 0 V-MPO converges to RPA with [A; > 0] replaced by only
taking the top half advantages in each batch? (the two conditions become even more similar if advantage
normalization is used, See Sec.[B.9).

B.4 HANDLING OF TIMESTEPS

The most important hyperparameter controlling how timesteps are handled is the discount factor ~y (choice J20).
Moreover, we consider the so-called frame skip®* (choice . Frame skip equal to n means that we modify
the environment by repeating each action outputted by the policy n times (unless the episode has terminated
in the meantime) and sum the received rewards. When using frame skip, we also adjust the discount factor
appropriately, i.e. we discount with " instead of ~.

Many reinforcement learning environments (including the ones we use in our experiments) have step limits
which means that an episode is terminated after some fixed number of steps (assuming it was not terminated
earlier for some other reason). Moreover, the number of remaining environment steps is not included in policy
observations which makes the environments non-Markovian and can potentially make learning harder [[16].
We consider two ways to handle such abandoned episodes. We either treat the final transition as any other
terminal transition, e.g. the value target for the last state is equal to the final reward, or we take the fact that
we do not know what would happen if the episode was not terminated into account. In the latter case, we set
the advantage for the final state to zero and its value target to the current value function. This also influences
the value targets for prior states as the value targets are computed recursively [9} [19]]. We denote this choice by
Handle abandoned? (d22).

B.5 OPTIMIZERS

We experiment with two most commonly used gradient-based optimizers in RL (choice d23): Adam [{] and
RMSProp.? You can find the description of the optimizers and their hyperparameters in the original publications.
For both optimizers, we sweep the learning rate (choices d24]and d25), momentum (choices d26]and and
the e parameters added for numerical stability (choice (28|and J29). Moreover, for RMSProp we consider both
centered and uncentered versions (choice (30)). For their remaining hyperparameters, we use the default values
from TensorFlow [11]], i.e. B2 = 0.999 for Adam and p = 0.1 for RMSProp. Finally, we allow a linear learning
rate schedule via the hyperparameter Learning rate decay (J31)) which defines the terminal learning
rate as a fraction of the initial learning rate (i.e., 0.0 correspond to a decay to zero whereas 1.0 corresponds to no
decay).

B.6 POLICY REGULARIZATION

‘We consider three different modes for regularization (choice d32):

22[P] denotes the Iverson bracket, i.e. [P] = 1 if P is true and [P] = 0 otherwise.

BFor € — 0, we have 3 — oo which results in softmax(A¥/8) — 1.

2*While not too common in continuous control, this technique is standard in RL for Atari [6].

BRMSProp was proposed by Geoffrey Hinton in one of his Coursera lectures: |http://www.cs)
toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

13

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Published as a conference paper at ICLR 2021

No regularization: We apply no regularization.

Penalty: we apply a regularizer R with fixed strength, i.e., we add to the loss the term R for some fixed
coefficient o which is a hyperparameter.

Constraint: We impose a soft constraint of the form R < e on the value of the regularizer where € is
a hyperparameter. This can be achieved by treating o as a Lagrange multiplier. In this case, we optimize
the value of o > 0 together with the networks parameter by adding to the loss the term « - sg(e — R),
where sg in the stop_gradient operator. In practice, we use the following parametrization o =
exp(c - p) where p is a trainable parameter (initialized with 0) and c is a coefficient controlling how fast « is
adjusted (we use ¢ = 10 in all experiments). After each gradient step, we clip the value of p to the range
[log(107°)/10, log(10°)/10] to avoid extremely small and large values.

We consider a number of different policy regularizers both for penalty (choice J33)) and constraint regularization

(choice J34):

Entropy H(7(+|s)) — it encourages the policy to try diverse actions [4].

KL(u(-|s)||mw(-|s)) — the Kullback—Leibler divergence between the behavioral and the current policy [|10]
prevents the probability of taking a given action from decreasing too rapidly.

KL(7(+|s)]|u(:|s)) — similar to the previous one but prevents too rapid increase of probabilities.

KL(ref(-|s)||m(-|s)) where ref is some reference distribution. We use ref = A(0, 1) in all experiments.
This kind of regularization encourages the policy to try all possible actions.

Decoupled KL((+|s)||7(|s)). For Gaussian distributions we can split KL (g (+|s)||7(+|s)) into a term which
depends on the change in the mean of the distribution and another one which depends on the change in
the standard deviation: KL(u(:|s)||7(+|s)) = KL(u(:])[|C(:]s)) + KL(C(+]s)||w(-|s)) where ((+|s) is a
Gaussian distribution with same mean as p(-|s) and the same standard deviation as 7(+|s). Therefore,
instead of using KL(u(+|s)||7(+]s)) directly, we can use two separate regularizers, KL(u(+|s)||¢(¢]s)) and
KL(C(:|8)||m(-|s)), with different strengths. The soft constraint version of this regularizer in used in V-
MPO? [34] with the threshold on KL(u(:|s)||¢(+|s)) being orders of magnitude lower than the one on

KL(CC[s)lm(-]s))-

While one could add any linear combination of the above terms to the loss, we have decided to only use a
single regularizer in each experiment. Overall, all these combinations of regularization modes and different
hyperparameters lead to the choices detailed in Table[T]

Table 1: Choices pertaining to regularization.

Choice Name

Regularization type

Regularizer (in case of penalty)

Regularizer (in case of constraint)

Threshold for KL(u||m)

Threshold for KL(mw||u)

Threshold for KL(refl|m)

Threshold for mean in decoupled KL(pl|w)

Threshold for std in decoupled KL(u||7)

Threshold for entropy H(w)

Regularizer coefficient for KL(u||m)

Regularizer coefficient for KL(7||p)

Regularizer coefficient for KL(ref||n)

Regularizer coefficient for mean in decoupled KL(pl||m)
Regularizer coefficient for std in decoupled KL(pl|m)
Regularizer coefficient for entropy

B.7 NEURAL NETWORK ARCHITECTURE

We use multilayer perceptrons (MLPs) to represent policies and value functions. We either use separate networks
for the policy and value function, or use a single network with two linear heads, one for the policy and one for

%The current arXiv version of the V-MPO paper [34] incorrectly uses the standard deviation of the old policy

instead of the new one in the definition of KL(u(-|s)||w(+|s)) which leads to a slightly different decomposition.
We do not expect this to make any difference in practice.

14

Published as a conference paper at ICLR 2021

the value function (choice (f47). We consider different widths for the shared MLP (choice ([48)), the policy MLP
(choice and the value MLP (choice as well as different depths for the shared MLP (choice d5I),
the policy MLP (choice and the value MLP (choice d53). If we use the shared MLP, we further add a
hyperparameter Baseline cost (shared) (Q54) thatrescales the contribution of the value loss to the
full objective function. This is important in this case as the shared layers of the MLP affect the loss terms related
to both the policy and the value function. We further consider different activation functions (choice and
different neural network initializers (choice J56)). For the initialization of both the last layer in the policy MLP
/ the policy head (choice and the last layer in the value MLP / the value head (choice d58)), we further
consider a hyperparameter that rescales the network weights of these layers after initialization.

B.8 ACTION DISTRIBUTION PARAMETERIZATION

A policy is a mapping from states to distributions of actions. In practice, a parametric distribution is chosen and
the policy output is treated as the distribution parameters. The vast majority of RL applications in continuous
control use a Gaussian distribution to represent the action distribution and this is also the approach we take.

This, however, still leaves a few decisions which need to be make in the implementation:

e Should the standard deviation of actions be a part of the network output (used e.g. in [21]]) or should it be
independent of inputs like in [[17] (choice ? In the latter case, the standard deviation is still learnable
but it is the same for each state.

e Gaussian distributions are parameterized with a mean and a standard deviation which has to be non-negative.
What function should be used to transform network outputs which can be negative into the standard deviation
(choice ? We consider exponentiation27 (used e.g. in [|17]) and the sof tplus?® function (used e. g.
in [29]).

e What should be the initial standard deviation of the action distribution (choice d61))? We can control it by
adding some fixed value to the input to the function computing the standard deviation (e.g. softplus).

o Should we add a small value to the standard deviation to avoid very low values (choice ([62)?

e Most continuous control environments expect actions from a bounded range (often [—1, 1]) but the com-
monly used Gaussian distribution can produce values of an arbitrary magnitude. We consider two approaches
to handle this (choice J63)): The easiest solution is to just clip the action to the allowed range when sending
it to the environment (used e.g. in [17]]). Another approach is to apply the tanh function to the distribution
to bound the range of actions (used e.g. in [25]]). This additional transformation changes the density of
actions — if action w is parameterized as u = tanh(z), where x is a sample from a Gaussian distribution
with probability density function py, than the density of u is log p,, (u) = log pg(x) — log tanh’(x), where
x = tanh ™! (u). This additional log tanh’(z) term does not affect policy losses because they only use
Vo logpu(u) = Vglogpe(z). Similarly, this term does not affect the KL divergences which may be
used for regularization (See Sec. [B-6) because the KL divergence has a form of the difference of two
log-probabilities on the same sample and the two log tanh’ (z) terms cancel out.”> The only place where the
log tanh’(z) term affects the policy gradient computation and should be included is the entropy regular-
ization as H(U) = —E,, log p.(u) = E;[— log pg(x) + log tanh’(x)]. This additional log tanh’(z) term
penalizies the policy for taking extreme actions which prevents tanh saturation and the loss of the gradient.
Moreover, it prevents the action entropy from becoming unbounded.

To sum up, we parameterize the actions distribution as
Tu(N (s, Tp(wp + cp) +¢€p)),

where

e 1, is a part of the policy network output,

e 1, is either a part of the policy network output or a separate learnable parameter (one per action dimension),

e ¢, (62) is a hyperparameter controlling minimal standard deviation,

o 7, (is a standard deviation transformation (R — Rx>),

e T, (d63) is an action transformation (R — [—1, 1]),

® ¢, is a constant controlling the initial standard deviation and computed as ¢, = T, L(i, — €,) where i, is
the desired initial standard deviation (J&I).

2"For numerical stability, we clip the exponent to the range [—15, 15]. Notice that due to clipping this function
has zero derivative outside of the range [—15, 15] which is undesirable. Therefore, we use a “custom gradient”
for the clipping function, namely we assume that it has derivative equal 1 everywhere.

Bsoftplus(z) = log(e” 4 1)

PRL(Uy, Us) = Eye v, logUs(u) — log Uz (u) = Eze x, (log Xi1(z) — logtanh’(z)) — (log Xa(x) —
log tanh’(z)) = Ex x, log X1 (x) — log Xo(x) = KL(X1 || X2).

15

Published as a conference paper at ICLR 2021

B.9 DATA NORMALIZATION AND CLIPPING

While it is not always mentioned in RL publications, many RL implementations perform different types of data
normalization. In particular, we consider the following:

e Observation normalization (choice . If enabled, we keep the empirical mean o,, and standard deviation
o0, of each observation coordinate (based on all observations seen so far) and normalize observations by
subtracting the empirical mean and dividing by max(0,, 10~°). This results in all neural networks inputs
having approximately zero mean and standard deviation equal to one. Moreover, we optionally clip the
normalized observations to the range [—omax, omax] where onax is a hyperparameter (choice .

e Value function normalization (choice . Similarly to observations, we also maintain the empirical
mean v, and standard deviation v, of value function targets (See Sec.[B.2). The value function network
predicts normalized targets (V — v,,)/ max(v,, 10~®) and its outputs are denormalized accordingly to
obtain predicted values: V= Uy + Vour max(v,,, 10_6) where V. is the value network output.

e Per minibatch advantage normalization (choice . We normalize advantages in each minibatch by
subtracting their mean and dividing by their standard deviation for the policy loss.

e Gradient clipping (choice J68)). We rescale the gradient before feeding it to the optimizer so that its L2
norm does not exceed the desired threshold.

16

Published as a conference paper at ICLR 2021

C DEFAULT SETTINGS FOR EXPERIMENTS

Table 2] shows the default configuration used for all the experiments in this paper. We only list sub-choices that
are active (e.g. we use the PPO loss so we do not list hyperparameters associated with different policy losses).

Table 2: Default settings used in experiments.

Name Default value
num_envs 256
iteration_size 2048
num_epochs 10
batch_size 64
batch_mode Shuffle transitions
advantage_estimator GAE
GAE A 0.95
Value function loss MSE
PPO-style value clipping € 0.2
Policy loss PPO
PPO € 0.2
Discount factor v 0.99
Frame skip 1
Handle abandoned? False
Optimizer Adam
Adam learning rate 3e-4
Adam momentum 0.9
Adam € le-7
Learning rate decay 0.0
Regularization type None
Shared MLPs? Shared
Policy MLP width 64
Value MLP width 64
Policy MLP depth 2
Value MLP depth 2
Activation tanh
Initializer Orthogonal with gain 1.41
Last policy layer scaling 0.01
Last value layer scaling 1.0
Global standard deviation? True
Standard deviation transformation T, safe_exp
Initial standard deviation i, 1.0
Action transformation Ty clip
Minimum standard deviation ¢, le-3
Input normalization Average
Input clipping 10.0
Value function normalization Average
Per minibatch advantage normalization False
Gradient clipping 0.5

17

Published as a conference paper at ICLR 2021

D EXPERIMENT PorLIcy LOSSES

D.1 DESIGN

For each of the 5 environments, we sampled 2000 choice configurations where we sampled the following choices
independently and uniformly from the following ranges:

e num_epochs (d3): {1, 3,10}
e Policy loss (dL4)): {AWR, PG, PPO, RPA, V-MPO, V-Trace}
— For the case “Policy loss () = AWR?”, we further sampled the sub-choices:
* AWR [() : {0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3}
* AWR wmax (L7): {1.1,1.2,1.3, 1.5}
— For the case “Policy loss ((I4)) =PPO”, we further sampled the sub-choices:
* pPO e (dLe): {0.1,0.2,0.3,0.5}
— For the case “Policy loss () = V-MPO”, we further sampled the sub-choices:
* V-MPO €, (JL9)): {0.0001,0.0003,0.001,0.003, 0.01, 0.03, 0.1, 0.3, 1.0}
— For the case “Policy loss () = V-Trace”, we further sampled the sub-choices:
* V-Trace loss p (d15): {1.0,1.2,1.5,2.0}
e Adam learning rate (dZ24): {3e-05,0.0001, 0.0003, 0.001, 0.003}

All the other choices were set to the default values as described in Appendix [C]

For each of the sampled choice configurations, we train 3 agents with different random seeds and compute the
performance metric as described in Section[2}

D.2 RESULTS

We report aggregate statistics of the experiment in Table|z| as well as training curves in Figure |3} For each of the
investigated choices in this experiment, we further provide a per-choice analysis in Figures

Table 3: Performance quantiles across choice configurations.

Ant-vl HalfCheetah-vl Hopper-vl Humanoid-vl Walker2d-vl

90th percentile 1490 994 1103 1224 459
95th percentile 1727 1080 1297 1630 565
99th percentile 2290 1363 1621 2611 869
Max 2862 2048 1901 3435 1351

Hopper-v1 Humanoid-v1 Walker2d-v1 HalfCheetah-v1 Ant-vl

" — overall mean ™| — overall mean ™| — overall mean s —— Overall mean — Overall mean
top 10% mean top 10% mean . top 10% mean top 10% mean - top 10% mean
top 5% mean “ top 5% mean 0 top 5% mean o top 5% mean top 5% mean
top 1% mean top 1% mean o top 1% mean top 1% mean top 1% mean

Figure 3: Training curves.

18

Published as a conference paper at ICLR 2021

Hopper-v (max=1901) Humanoid-vl (max=3435) Walker2d-v1 (max=1351) HalfCheetah-v1 (max=2048) Ant-v1 (max=2862)

Figure 4: Empirical cumulative density functions of agent performance conditioned on different
values of Policy loss (d14|) . The x axis denotes performance rescaled so that 0 corresponds
to a random policy and 1 to the best found configuration, and the y axis denotes the quantile.

Hopper-vl Humanoid-vl Walker2d-v1

3500

3000

2500

2000

1500

1000

HalfCheetah-v1

Figure 5: Comparison of 95th percentile of the performance of different policy losses conditioned on
their hyperparameters.

Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl Ant-vl Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl _Ant-vl
1200 o5

all
1000
2000 05
2000 08 os
” os
- s 1000 e o1
w30 o »
o1
100 1500 " o1
1500 -
100, o3
130 0 03 03 03 o
03
o
100 o0 1000
02
02 0z 02
L ” 70 0z
s0. - 0z
. o0 w0 o1
20 o o1 o1 o o
a0 250 200 20
o o o —— o —— o o —— oo L ELF oo 00 o0 o0 oo LB

§ 8 88 8 2

Figure 6: Analysis of choice num_epochs (d3|) : 95th percentile of performance scores condi-
tioned on choice (left) and distribution of choices in top 5% of configurations (right).

Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl Ant-vl Hopper-vl Humanoid-vl Walker2d-v1l HalfCheetah-vl _Ant-vl all

2000 03
1600 1000 2500, or o8

- 1200 o3 ozs os o3
1400 ” o os N 030

2000

1200 2000, o 0s o s 020 o4 o
1000 o 0. 1500 o

1500 o - 020 015 03 03
. o 03
. - 0 1000 03 o o0 02 02
. o 0z 0 o1
- 500 o oo so0- " . o a0s o1 o

o o o o o 00 00 000 000 o0 o0

$ERigy gfRify §RREfF §PREgi §PREf: SEREg] gTefpl gfrdigf oefedpl Cefedgp U efeigf

—
=
—

vawo

Figure 7: Analysis of choice Policy loss () : 95th percentile of performance scores
conditioned on choice (left) and distribution of choices in top 5% of configurations (right).

19

Published as a conference paper at ICLR 2021

Hopper-vl mooHumanoid-\/l Walker2d-vl HalfCheetah-vl Ant-vl Hopper-vl Humanoid-vl Walker2d-vl nr-g?lfcheetah-vl Ant-vl all
0. 040 030
0 wo o 040 s 030
o 1150, . 0 1750 - 03s 030 .
- 1500 - o 1500 o 030 o4 0zs o
EY 1250 20 0. 250 s 02s . o2 o2
- 1000, - o 1000 o 0z - 015 -
0 70 . 300 0 o 015 0z
010 o0 010
) 500 100 200 so0- ox 010
o1 005
™ =0 0 100 50 005 aos 005 oo
ol ol ol ol ot oo B ol B o M o [o (o

Figure 8: Analysis of choice V-Trace loss p (dL5) : 95th percentile of performance scores
conditioned on sub-choice (left) and distribution of sub-choices in top 5% of configurations (right).

Hopper-v1 [id-v1l Valker2d-vl HalfCheetah-vl Ant-vl Hopper-vl + id-vl Walker2d-vl HalfCheetah-vl _Ant-vl
oo | 2500 - 1200 o » . .
1400 0s
1200 2000 o
| 02 03 04 o -
1000 00
1500
oo 03
a0 0 02 0z 0z
P 2000 . .
P o1 o o1 o1
o . o1
o o o o 00 o0l o0 "

Figure 9: Analysis of choice Adam learning rate (d24) : 95th percentile of performance
scores conditioned on choice (left) and distribution of choices in top 5% of configurations (right).

Hopper-vl F id-vl Walker2d-vl HalfCheetah-vl Ant-v1 n7Hopper—vl Humanoid-vl Walker2d-v1 HalfCheetah-v1 Ant-vl all
o

3500, o0 o
200 s 03 as0
w50 1200 06 0zs
| 3000, 10 2500 05 035
- | o
2500 1500 oo o5 o4 030 020
1250 o
0. 1250 0s oz 025
200 03
015
1000, 1500 03
o 1000 0 015 020
" 1500
k& 50 02 o1s 010
1000, wo. o 02 o 010
0 s00 010
o1 00s
s00 o1
50 500, 20 o 01 005 o
o o o o o 00 00 00 000 000 000

Figure 10: Analysis of choice PPO € () : 95th percentile of performance scores conditioned on
sub-choice (left) and distribution of sub-choices in top 5% of configurations (right).

Hopper-vl F i Valker2d-v: HalfCheetah-vl Ant-vl Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-vl Ant-vl all

0 |
- o |
| 000 - |
0 1000, 750 o 920 o0
bad 500-
- 0.05- 0.8 0.05-

Figure 11: Analysis of choice V-MPO ¢, () : 95th percentile of performance scores condi-
tioned on sub-choice (left) and distribution of sub-choices in top 5% of configurations (right).

Hopper-vl F i Walker2d-vl HalfCheetah-vl Ant-vl Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-v% Ant-vl . all
1600 150 0 o 035 03 .
. . 030
=IME™E I
1000, . 0. 1000 | 1500 o - , 020 . .
0. w0 e | s 015 oss
o oo . o 2000 o1 015 010
) o0 010 010
- 50 - o . o0 om0
20 50 100 200 005 0os 0os 005

Figure 12: Analysis of choice AWR [(d18|): 95th percentile of performance scores conditioned
on sub-choice (left) and distribution of sub-choices in top 5% of configurations (right).

20

Published as a conference paper at ICLR 2021

Hopper-vl

Figure 13:

Humanoid-vl Walker2d-vl HalfCheetah-vl = Antvl Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-vl _ Ant-vl all
. o 030 o3 040 o o 025
oo 03
1500 700 200, 030 03
1200 o2 025 030 020
1250 w0 . ™ 030
1500 o 020 028
1000 - o 0z 015
0. 020
“ 05 0z 015
750 - “ 1000 o1 . . s
010 010
500, - o oa0 010 a0
so0 005
=0 100 200 aos 005 o 005 oo
L arar e Lo e L ar e L e R e T E T E A T R A R EE]

Analysis of choice AWR wyax (L7)) : 95th percentile of performance scores conditioned

on sub-choice (left) and distribution of sub-choices in top 5% of configurations (right).

21

Published as a conference paper at ICLR 2021

Hopper-vl Humanoid-v1 Walker2d-vl HalfCheetah-vl Ant-v1
16001 17501 800 1400] 2000
]] 1750 4
1400 15004 700 1200 50

1200 4 600 - 1500 4
1250 1000 4

1000 4 500 4 1250 4
&« 1000 800 4

2 800 400 1 1000 {

600 750 4 3004 6004 750 4

4004 500 200 4 400 1 500 A

2004 2504 100 4 2001 250 4

"
s
-
-
i

Hopper-vl Humanoid-v1 Walker2d-v1l HalfCheetah-v1 Ant-v1
700 R 250 | 500 80 1
500
600 4004 704
200 A
] 1 60
500 400 300
200 50 4
400 300 150
4 100 404
3001 2001 1001 01 30 {
200 4 ~100 A 201
1 50 4
100 100 -200 104
o 0 o —3001 . . o
Hopper-vl Humanoid-v1 Walker2d-v1l HalfCheetah-vl Ant-v1
1800 3500 4 3000
1200]
1600 I 2000
3000 4] 2500 4
1400 4 | 1000 4 1750
] 2500 1500]
1200 8004 2000
© 1000 2000 12501
& 600 4 1000 4 15001
8004 1500 1
600 2004 750 1000
1000
400 4 5001
] 200 500
200 500 00 250 1
o o0 o 04 o
Hopper-vl Humanoid-v1 Walker2d-vl HalfCheetah-v1 Ant-v1
14004 1000 { 1400

2000 4

1200 4 2000 q

1750 1 1200 4
800 -

1000 4 1500 1000

B 1500
< 800 50 6004 800 1
1000

600 - 4004 600 1000 4

750

400 400
500 200 500 1
200 1 250 200 1

"
w“
-
“
-

Hopper-vl Humanoid-v1l Walker2d-vl HalfCheetah-v1 Ant-v1
2000 {

1600 17504 1750 4

800 1750 1
1500 4 1500

1500 4

12501 600 1 12504 12504

1000 1000 4 1000 4

750 4 400 750 4 750 4

5001 5001 500 4

200
250

250 4 2501

V-MPO

2oe e
N B O ® O N B
© o © © © © ©
o © © © & © © ©°
o
:
o
o
o

Hopper-vl Humanoid-v1 Walker2d-v1 HalfCheetah-v1 Ant-v1
800 | 1750 4001 7001 20004
700 15004 350 600 1750 4
4 300 4 J 1500 4
600 1250 500
® 500 4 2509 1250 4
@ 1000 A 400 1
= 400 4 200 4 1000 4
> 750 4 300 4
300 0 150 4 750
200 { 5001 1001 2001 500 {
100 4 250 50 4 100 250 4
0- 0- 0- 0- 0
- " o - m o - m) - m o - m o
2 = 2 = =

22

Published as a conference paper at ICLR 2021

E EXPERIMENT NETWORKS ARCHITECTURE

E.1 DESIGN

For each of the 5 environments, we sampled 4000 choice configurations where we sampled the following choices
independently and uniformly from the following ranges:

e Action transformation Ty (): {clip, tanh}

e Last value layer scaling (d58): {0.001,0.01,0.1, 1.0}

e Global standard deviation? (): {False, True}

e Last policy layer scaling (): {0.001, 0.01, 0.1, 1.0}

e Standard deviation transformation T, (): {exp, softplus}
e Initial standard deviation 4, (J61): {0.1,0.5,1.0,2.0}

Initializer () : {Glorot normal, Glorot uniform, He normal, He uniform, LeCun normal, LeCun
uniform, Orthogonal, Orthogonal(gain=1.41)}

Shared MLPs? (d47) : {separate, shared}
— For the case “Shared MLPs? () = separate”, we further sampled the sub-choices:
* Policy MLP width (d49)): {16, 32, 64, 128,256, 512}
* Policy MLP depth (d52): {1,2,4, 8}
* Value MLP width (d50): {16, 32, 64, 128, 256, 512}
* Value MLP depth (): {1,2,4,8}
— For the case “Shared MLPs? () = shared”, we further sampled the sub-choices:
* Shared MLP width (J48): {16, 32, 64, 128,256, 512}
* Shared MLP depth (d51)): {1,2,4,8)}
* Baseline cost (shared) (): {0.001, 0.1, 1.0, 10.0, 100.0}
e Minimum standard deviation €, (): {0.0,0.01, 0.1}
e Adam learning rate (d24): {3e-05,0.0001, 0.0003, 0.001}
e Activation (d55): {ELU, Leaky ReLU, ReLU, Sigmoid, Swish, Tanh}

All the other choices were set to the default values as described in Appendix[C]

For each of the sampled choice configurations, we train 3 agents with different random seeds and compute the
performance metric as described in Section[2}

After running the experiment described above we noticed (Fig. [T3) that separate policy and value function
networks (d4 7)) perform better and we have rerun the experiment with only this variant present.

Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-v1 Ant-v1 Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-v1 Ant-vl all
o o6 o5

. 3 888§ & %

. % & 8 & %
EEEEEEEE

Figure 15: Analysis of choice Shared MLPs? () : 95th percentile of performance scores
conditioned on choice (left) and distribution of choices in top 5% of configurations (right).

E.2 RESULTS

We report aggregate statistics of the experiment in Table] as well as training curves in Figure For each of
the investigated choices in this experiment, we further provide a per-choice analysis in Figures

23

Published as a conference paper at ICLR 2021

Table 4: Performance quantiles across choice configurations.

Ant-vl HalfCheetah-vl Hopper-vl Humanoid-vl Walker2d-v1

90th percentile 2098 1513 1133 1817 528
95th percentile 2494 2120 1349 2382 637
99th percentile 3138 3031 1582 3202 934
Max 4112 4358 1875 3987 1265

Hopper-v1 Humanoid-v1 Walker2d-vi HalfCheetah-vi Antvi
"] — overall mean “1 — Overall mean 20| — Overall mean "] — overall mean ™| — overall mean
top 10% mean . top 10% mean top 10% mean . top 10% mean . top 10% mean
| — top 5% mean ~— top 5% mean | = top5% mean ~— top 5% mean ~— top 5% mean
top 1% mean o top 1% mean - top l%y o top 1% mean o top 1% mean

Figure 16: Training curves.

Hopper-vl Humanoid-vl Walker2d-vl Halfcheetan vl Ant-vl Hopper-vl Humanold vl Walker2d-vl Ha\fcheetah vl _Ant-vl all

2500 2

15
1000, X
s00. 5

Figure 17: Analysis of choice Action transformation T, () : 95th percentile of per-
formance scores conditioned on choice (left) and distribution of choices in top 5% of configurations
(right).

a§§§§§§§
£
. % % 0808 508 3

. 8 & 8§ &
§ 8§ § § &8

il TN BN e EEEIEN
[A N A LI LI

Hopper-vl L i Walker2d-v: Halfcheetah-lm Ant-vl Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-v1 Ant-vl o200 all
oo 2000 - o200
i T I T YO Y
- 1 LY |

1000 - | s o

o o o | 00

o 200 0 -

1000-

w0 20

20 00 10 * o

Sy iary o r Y iRissz “smisssz “smzsssz 0 "™aizsss ““amzsss "aszmrs U smzsss U smzsss U mnzsRs

Figure 18: Analysis of choice Policy MLP width () : 95th percentile of performance
scores conditioned on choice (left) and distribution of choices in top 5% of configurations (right).

Hopper-vl F id-vl Walker2d-vl HalfCheetah-v1 Ant-vl Hopper-vl Humanold vl Walker2d-v1 HalfCheetah-v1 Ant-vl all

TETETETE e

Figure 19: Analysis of choice Last value layer scaling () : 95th percentile of per-
formance scores conditioned on choice (left) and distribution of choices in top 5% of configurations

(right).

§ 8 88 8 8 %
EEEEEEEE

S B I B
§ 8 & 8 §

24

Published as a conference paper at ICLR 2021

Hopper-vl

F B EEENE]
=
. ¢ & B %%
=3
.8 ¥ 58883
=
. 8 & &8 &
=
=

Figure 20:

Hopper-vl

EEEEEENE

LEEETE

Figure 21:

Hopper-vl

Humanoid-vl Walker2d-v1
0o

Halfcheetah vl
3000

Ant-vl

Hopper-v1l Humanond vl Walker2d-vl HaIfCheetah v1

03
o0 03
030

030
o025
025
025
o0 o
020
o1s o
01
o0
o010 o
o0s 005 008
o000 o000 000

Ant-vl all

0
03

Analysis of choice Value MLP depth () : 95th percentile of performance scores
conditioned on choice (left) and distribution of choices in top 5% of configurations (right).

Humanoid-v1l MWaIkeer-vl

HalfCheetah-v1
3000,

Ant-vl

Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-vl _Ant-vl all
0200 oz o200 0200
020
ous o oas ous
oz
o150 o150 o150
o 018
o o1s ozs ous
0100
o100 oo o o100
o015 o1 oo aors
o050 ans oo o o0 o050
o025 oazs oozs
o000 o 000 000 o000
ERIZRR ARIZER ARIZER =RIZEZ R3RRY =R3ERE

Analysis of choice Value MLP width () : 95th percentile of performance scores
conditioned on choice (left) and distribution of choices in top 5% of configurations (right).

, id-vl Walker2d-vl

EEEEEEN

Figure 22: Analysis of choice Policy MLP depth () : 95th percentile

¥ 8 588 8

=

100

. 8 § 8§ 0% E

HalfCheetah-vl

2500
200
1500,
1000,

Ant-vl

=

Hopper-vl Humanold vl Walker2d-v1 HalfCheetah-v1l Ant-vl all

0 035 035
o3
030 030
02 .
025 0zs
o 0zs
020 020
o1
015 015
o5
o 010 010
o0s 008 a0s 005

of performance

scores conditioned on choice (left) and distribution of choices in top 5% of configurations (right).

Hopper-vl

EEEEEEN]

Figure 23:

(right).

Hopper-vl

Humanoid-vl Walker2d-vl

HalfCheetah-vl

Ant-vl

Analysis of choice Global
performance scores conditioned on choice (left) and distribution of choices in top 5% of configurations

Humanoid-vl Walker2d-v1
2500 oo
P
2000
o0
1500 o
0
100
20
500
10
M T
FHEEEE] FEIEIE]

Halfcheetah vl

standard deviation?

Ant-vl

— |

Hopper-vl 1 Walker2d-v1 HalfCheetah-vl Ant-vl all

o
o o
os
os -
o
o o
o o o
o3 03 o5 03 03
02 02 02 02 - 02
o o o o " o
3 2 : : '] 3 3

() : 95th percentile of

Ant-vl all

er-vl Humanoid-vl Walker2d-vl HaIfChee&ah vl
o 03 030
030 0zs 030 025
02 0zs
025 020 oz 00
o 020
o 020
s - 015 015
o 015
010 010
o o010 o 010
005 0o 005 005 oo 005
000 000 om 0o oo 0.

;
=
—

o0

o001
o001

oon

Figure 24: Analysis of choice Last policy layer scaling () : 95th percentile of
performance scores conditioned on choice (left) and distribution of choices in top 5% of configurations

(right).

25

Published as a conference paper at ICLR 2021

Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-v1 Ant-vl Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-vl Ant-vl all

B 2500 e 2500 o o5 ” o0s- ~
1200 a0 2000 0s

2000 2000 o 04 o o
1000- 500 04 o4
o0 1500- 0. o 1500- o 03 o 03 o3

0

s - 300- 1000- oo 0 02 02 oz 02 o2
- 20

500- 00 500. 01 o o1 s 01 L
200 20

o ° o o o 00 00 00 00 00 00

oo
softlus
softlus
softlus
sonpis.

P
sotius

Figure 25: Analysis of choice Standard deviation transformation 7, () : 95th
percentile of performance scores conditioned on choice (left) and distribution of choices in top 5% of
configurations (right).

Hopper-vl id-vl Walker2d-vl HalfCheetah-vl Ant-vl Hopper-vl Humanoid-vlu\sl\lalkeer-vl HalfCheetah-v1 Ant-vl all

3000, 0. 0 03 05 a0 o
| 030-

- o0 | | - 250 I | o030 o 03 ”5
2500 0e 025

o o o0 s 025 03 o

000 200,
. 1500 0 o 1500 020 020 -
oas o 015

. 200 1000 -~ 015 o

00 | 20 o o 010 010
0. o 100 = oo 005 o 005 oo os 005
o o o o o o000 000 000 000

3008
3008
3008

Figure 26: Analysis of choice Adam learning rate () : 95th percentile of performance
scores conditioned on choice (left) and distribution of choices in top 5% of configurations (right).

Hopper-vl Humanoid-vl alker2d-vl HalfCheetah-vl Ant-vl Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl _ Ant-vl all
. 3000 o 2500 o . ours 0as
0. x
- it N
. 2000
1000 200, on ous 010
000 500 o 010
1500 o100 008
e 1500 o 1500 . 008
oors 006
o - oo 1000 . o 006
w0 200 o oo o050 o0
20 = 100 . o o0 oo oo 00z
o 1

i i i i i

Figure 27: Analysis of choice Initializer () : 95th percentile of performance scores
conditioned on choice (left) and distribution of choices in top 5% of configurations (right).

Hopper-vl id-v1 Walker2d-vl HalfCheetah-v1 Ant-vl Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-vl Ant-vl all
05 040 o1
s . oo . o6
- | | | o 0 o
1200 250 7o 2500 2500 o4 o3 o
- | 0 s
1000 2000, | 2000 200, o2 o 0zs o4 03
0. o
=0 1500 - 1500 1500 020 o
0z 03 02
o . , 02 ors
1000 02
- - 1000 N . -
o1 o o
o 500 . s00 so0- wes o1 o
o 3 3 o o o0 00 000 00 00 00

Figure 28: Analysis of choice Initial standard deviation i, () : 95th percentile of
performance scores conditioned on choice (left) and distribution of choices in top 5% of configurations
(right).

26

Published as a conference paper at ICLR 2021

Hopper-vl Humanoid-vl Walker2d-vl mI;!alfcheetah-vl Ant-vl Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-v1 Ant-vl all
10 700 035 038 040 03
e 2500 o 03 o
1200 o 0. 030 030 050
. 030 o0 030
1000 0. 00, 025 025 . oz
1500 02 0zs
. 1500 “o. 1500 o o o 020 020 o
o o 00 1000 - 015 o015 o 015 0 o
w 20 o o 010 030 oo a0
w0 500 so
0 100 005 005 008 005 008 005
e— — — — e [e B e R e i S e o BT e R
HEERE HEERE HEERE s 3 3 s 3 3 BN BN BN BN BEERE] BEERE]

Figure 29: Analysis of choice Minimum standard deviation €, (J62|) :95th percentile of
performance scores conditioned on choice (left) and distribution of choices in top 5% of configurations
(right).

Hopper-vl Humanoid-v: Walker2d-vl HalfCheetah-vl Ant-vl Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl Ant-vl all
o on
0 | |
200, | | a0 020 .
ane: 025 020 0.:20-
1500 oo o0 - 01 o1s 0 -
e 1000- om0 o0 o10 1o o
s00 00 005 008 005 0.08- 005 005

Figure 30: Analysis of choice Activation (d55|) : 95th percentile of performance scores condi-
tioned on choice (left) and distribution of choices in top 5% of configurations (right).

27

Published as a conference paper at ICLR 2021

F EXPERIMENT NORMALIZATION AND CLIPPING

F.1 DESIGN

For each of the 5 environments, we sampled 2000 choice configurations where we sampled the following choices
independently and uniformly from the following ranges:

e PPO € (JId): {0.1,0.2,0.3,0.5}

e Input normalization (d&4)): {Average, None}

— For the case “Input normalization () = Average”, we further sampled the sub-choices:
* Input clipping (d&9): {1.0,2.0,5.0,10.0, None}

e Gradient clipping (d68)): {0.5, 1.0, 2.0, 5.0, None}

e Per minibatch advantage normalization (): {False, True}
e Adam learning rate (d24): {3e-05,0.0001, 0.0003, 0.001}

e Value function normalization (): {Average, None}

All the other choices were set to the default values as described in Appendix[C]

For each of the sampled choice configurations, we train 3 agents with different random seeds and compute the
performance metric as described in Section[2]

F.2 RESULTS

We report aggregate statistics of the experiment in Table[5]as well as training curves in Figure For each of
the investigated choices in this experiment, we further provide a per-choice analysis in Figures

Table 5: Performance quantiles across choice configurations.

Ant-vl HalfCheetah-vl Hopper-vl Humanoid-vl Walker2d-v1

90th percentile 2058 1265 1533 1649 1143
95th percentile 2287 1716 1662 2165 1564
99th percentile 2662 2465 1809 3100 2031
Max 3333 3515 2074 3482 2371

top 5% mean - top 5% mean =

bz

0. = top 5% mean top 5% mean
top 1% mean top 1% mean top 1% m ~ - top 1% m
.
o / o o o >
e I U K L I R = -
o —— Overall mean -
/ top 10% mean o -
- top 5% mean e .
top 1% mean N o .

Figure 31: Training curves.

Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl Ant-vl Hopper-vl . id-vl Walker2d-vl HalfCheetah-vl _ Ant-vl all
030
L |

s §FF §OYo§

000 000

Figure 32: Analysis of choice PPO € () : 95th percentile of performance scores conditioned on
choice (left) and distribution of choices in top 5% of configurations (right).

28

Published as a conference paper at ICLR 2021

Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl Ant-vl

2000, -
2500 5o, -
1400 2500
1500 2000 |
1200,
200 150 1500,
1500 1000-
aco- L o0
750 2000
00 1000,
wo. o 500, 0
o 20
° ° o o o

None

Hopper -v1 Humanold vl Walker2d-v1 HalfCheetah-v1 Ant-vl all

o8
o8 o
o4 o8 o8 o7
03 06 06 o8
o4 o4 oa
02 04 o
- 0 0 02 02 02
o1

Figure 33: Analysis of choice Input normalization () : 95th percentile of performance
scores conditioned on choice (left) and distribution of choices in top 5% of configurations (right).

Hopper-vl Humanmd vl Walker2d-vl HalfCheetah-vl Ant-vl

50, 2500 |
- - (| = |
100 2000
1250
2000, 1250 1500
1000 3500
1500 00
1000
0 o 500
50 50
o o o o o

Hopper-vl 1 Walker2d-vl HalfCheetah-vl Ant-vl all

ours ors

o150 oas0

oazs 25

o100 o100
oors oors

oozs o025

o000

Figure 34: Analysis of choice Gradient clipping () : 95th percentile of performance
scores conditioned on choice (left) and distribution of choices in top 5% of configurations (right).

Hopper-vl Humanoid-vl Walker2d-v1

300 5o,
1600.
1500,
100 200
1200 1250
1000. 1500 1000,
o 750,
1000.
0.
500
o s00.
- 250,
° o o

HalfCheetah-v1 Ant-vl
2050 2500,

5o
1500,

150

]

Hopper-vl H 1 Walker2d-vl HalfCheetah-vl Ant-vl all

o6
o5
05 05 o
05
0s
o1 o o1 04
o1
o o o o3
03
02 02 0z o2
0 02
01 I o1 I o o
o0 00 00 00 00 00
'] < < T ¥ 3

FE F H H

Figure 35: Analysis of choice Per minibatch advantage normalization (d67):
95th percentile of performance scores conditioned on choice (left) and distribution of choices in top

5% of configurations (right).

Hopper-vl Humanoid-vl

1500,

2500

200
1000,

1500,
50,

1000,
500
250 500

Figure 36:

Walker2d-vl HalfCheetah-vl Ant-vl

sy EEEEE
. 8 § § %
. 3 & 8 % ¢

00001
00003,
o001
00003
o001
3005
00001
00003,
00
3005
00001
00003
3605,
o000
00003,
o0

Analysis of choice Adam

learning rate (d24):

Hopper-vl Humanoid-vl Walkerzd v1 HalfCheetah-: vl

o o4
o4 08 05
03 L 04
03
04
s 02 02 03
02 o
0 o1 o1
o1
00 00 o0 00 00

Ant-vl all

o5
00001
00003
00003
2 osI

95th percentile of performance

scores conditioned on choice (left) and distribution of choices in top 5% of configurations (right).

Hopper-vl Humanoid-vl

w750, 3000
1500 2500
1250
200
1000-
s00-
° °

Walker2d-vl Ant-vl

HalfCheetah-vl
2500
200
s

RN
. & B F %

Figure 37: Analysis of choice Value function normalization

Hopper-vl Humanoid-vl Walker2d-v1 tjg\fcheetah-vl Ant-vl all

07 10 o o5
o6
os o6
05 0 03
os 05
04
03
03
03 0 e 03
02
02 02 02
02 02
o1 o o1 o1
[3] H H H
i H

Average

() : 95th percentile of

performance scores conditioned on choice (left) and distribution of choices in top 5% of configurations

(right).

29

Published as a conference paper at ICLR 2021

Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl Ant-vl Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl _Ant-vl all
o0 030
e 2000 oo 2500 030 o
1500 2500 o - 030 . 0as
2500, o oz
1250 . 200 o - 025 o 020
- 150 - o o 020 020 s 015
750 e 1000 o o o 015 01s
. 1000 oo o0 o0 o o om0 o
- 0. 0 500 o0s o0s oo 005 005 005
R R [ararar e [ararar e b wr v v o b b s farw L ey fr e b w
EEEEN EEEEN EEEEY EEEEN EEEEN EEE RN EERET EEERY EEERY EEERN EEERY

Figure 38: Analysis of choice Input clipping (d65): 95th percentile of performance scores
conditioned on sub-choice (left) and distribution of sub-choices in top 5% of configurations (right).

30

Published as a conference paper at ICLR 2021

G EXPERIMENT ADVANTAGE ESTIMATION

G.1 DESIGN

For each of the 5 environments, we sampled 4000 choice configurations where we sampled the following choices
independently and uniformly from the following ranges:

e num_envs (): {64, 128, 256}
e Value function loss (JII)): {Huber, MSE}

— For the case “Value function loss (dl1|) =Huber”, we further sampled the sub-choices:
* Huber delta (): {0.001, 0.01, 0.1, 1.0}
e PPO-style value clipping € () : {0.001, 0.01, 0.1, 1.0, None }
e advantage_estimator (C@): {GAE, N-step, V-Trace}
— For the case “advantage_estimator (C@) = GAE”, we further sampled the sub-choices:
* GAE A (d8): {0.8,0.9,0.95,0.99}
— For the case “advantage_estimator (C@) = N-step”, we further sampled the sub-choices:
* N-step N (d7): {1, 3, 10, 1000000}
— For the case “advantage_estimator (q§|) = V-Trace”, we further sampled the sub-choices:
* V-Trace advantage A (CE): {0.8,0.9,0.95,0.99, 1.0}
* V-Trace advantage ¢, p (JI0): {1.0, 1.2, 1.5,2.0}

e Adam learning rate () : {3e-05, 0.0001, 0.0003, 0.001, 0.003}

All the other choices were set to the default values as described in Appendix@

For each of the sampled choice configurations, we train 3 agents with different random seeds and compute the
performance metric as described in Section[2}

G.2 RESULTS

We report aggregate statistics of the experiment in Table[f]as well as training curves in Figure For each of
the investigated choices in this experiment, we further provide a per-choice analysis in Figures

Table 6: Performance quantiles across choice configurations.

Ant-vl HalfCheetah-vl Hopper-vl Humanoid-vl Walker2d-v1

90th percentile 1705 1128 1626 1922 947
95th percentile 2114 1535 1777 2374 1185
99th percentile 2781 2631 2001 3013 1697
Max 3775 3613 2215 3564 2309

Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-v1 Ant-vl

top 5% mean o top 5% mean . top 5% mean
top 1% mean

_——
—— Overall mean

top 10% mean
top 5% mean e
. top 1% mean /

m: T xt/m

Figure 39: Training curves.

31

Published as a conference paper at ICLR 2021

Hopper-vl Humanoid-v1 Walker2d-v1

Ant-vl

Figure 40: Comparison of 95th percentile of the performance of different advantage estimators
conditioned on their hyperparameters.

Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl Ant-vl Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl _Ant-vl all
2000 1600 o
2500 o3
w0 10 w0 o . 0 o 03 oa
1500, 2000, 1200 1500 e 0s e o 030
0zs ozs oz 03
1250 1000 50 1500
1000 - 00 1000 - o " o o
750 1000 o 0 2000 0z o1 o a1s 015 o
oz 010 X
500 - w0 500 . R 010 x 010 .
30 20 50 005 o1 aos 00s
— 3 o o o 00 000 00 000 000 o0

R R R RN R FEER)

_

Figure 41: Analysis of choice num_envs (d1)) : 95th percentile of performance scores conditioned
on choice (left) and distribution of choices in top 5% of configurations (right).

Hopper-vl Humanoid-v1 Walker2d-vl HalfCheetah-vl Ant-vl Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl ~_Antvl all
10 2500 o o7
1750 2500 1200 1750- or o8 o5 0 06
1500- 1500 2000 06 o5 s
1250 - o 1250 o5 o 04 o o
150 o1
- 1500- o0 1000 04 o o 03 o
L 03 o3 03
0 . o 100 o . N
500 o0 500 02 02 02 02
250 = 200° 250. * 01 o1 o1 o o1 o1
o o o o o M M o0 18 o0 18 o0 1 a0

Figure 42: Analysis of choice Value function loss () : 95th percentile of performance
scores conditioned on choice (left) and distribution of choices in top 5% of configurations (right).

Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl Ant-vl Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-v1 Ant-vl all
e . 2500 2500 0a 040
100 " 035 ot ~ h 03
200 2000
1200 . 03 o - 030
0
1000 1500 1500 025 02
0

- 02 o2 0 0 0z

o o0 1000 o1 02 01

w0 - . 0 o o . o 010

0 008 a0s
3 o o 00 000 00 001 a0 000

§332¢ §s332 ¢ §gss2¢ gss=g gss=i §§;:§ §§55§ §§55§ §§::§ gg::g gg::g

EEEEEEE
. 8 § 8§ 0§08

Figure 43: Analysis of choice PPO-style value clipping € () : 95th percentile of
performance scores conditioned on choice (left) and distribution of choices in top 5% of configurations
(right).

32

Published as a conference paper at ICLR 2021

Hopper-vl
w0
1500-
150
1000

Humanoid-vl Walker2d-vl HalfCheetah-vl Ant-vl Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl _Ant-vl all
250 . w0 e o1 o5 oss o os
- w290 1500 w000 030
1000- 1250 . 03 o3 ozs o I
1500 0 1000 03 .
o 0z 02 o 02
1000 b 70 0 o1s
- . 00 N o1 oo o o1
50 o
200 50 o0s
o — o — o — o — oolB B, I — ool — oo BB, [=1 o1 -
RS I RS I RS R H H H £ H H EE H g H

Figure 44: Analysis of choice advantage_estimator (dEl) : 95th percentile of performance
scores conditioned on choice (left) and distribution of choices in top 5% of configurations (right).

Hopper-vl

1 Walker2d-vl

alfCheetah-vl Ant-vl Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl Ant-vl all
0

i H
2500 o
2000, 06 035
| 2000 s 2000 00
w0 [o o 0 00
1500 000 . 03
- - | .
0 030 o
10 2000 | 50 2000 023 0 0 03
0z
020
o0 1000 020 o020
1500 1500 o3 om0
02 0
. 730 1000, 015 oss 01
1000 200 02 a0
. so0 - o . om0 .
w0 0 .
250 500 250 o005 o0s. 005 s
o o o o o om 0 00 00 0 00

Figure 45: Analysis of choice GAE A () : 95th percentile of performance scores conditioned on
sub-choice (left) and distribution of sub-choices in top 5% of configurations (right).

Hopper-vl Humanoid-v1 Walker2d-vl HalfCheetah-vl Ant-vl Hopper-vl ~Humanoid-vl Walker2d-vl HalfCheetah-vl _ Ant-vl all
2000 o - . 000 o8 06 s
w30 os o o

2500 10 2500 05 .
1500 o 2000 - " o6 .
130, 2000 . 05 -
e 100 0 03
100, 1500 . o4 03
0 - P 1000 1000 o 03 . " 02
500 o 02
500 300 o o o
250 o 20 1 " o
o
B panar R S [anar e S riia I iz R e e Ereree: P
IZE R IR R R R IR R R IR R R IR R R iggss igg3s iggss i

Figure 46: Analysis of choice Adam learning rate () : 95th percentile of performance
scores conditioned on choice (left) and distribution of choices in top 5% of configurations (right).

Hopper-vl

Figure 47

Humanoid-vl Walker2d-vl HalfCheetah-vl Ant-v1 Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl _Ant-vl all
2500 o6
2500 o o o8 035
1200 o5
o 2000 “ o o os 030
1000 2000
2000 o o o1 o » 025
w0 e 1500 ot
1500 o - o3 . 020
wo 03
1000 015
1000 R 0
o " . 2 02 02 o
. - 500, so0 . o1 o1 o1 o w05
o B o o oo ML ot ol ol o i
“es g EEENEIF “ne g “ne g 28 LN) Tes g EEEN] EEEN] EEEN]
H H H H H H g g g g

: Analysis of choice N-step N () : 95th percentile of performance scores conditioned

on sub-choice (left) and distribution of sub-choices in top 5% of configurations (right).

Hopper-vl

o001
o
o1

. 2 g g BEEGE
. 3§ B & B &

Humanoid-vl Walker2d-vl HalfCheetah-vl Ant-vl Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl _Ant-vl all
2500 - o8 038, 038 os
oo 04
. 2000 oo . . o 030 -
100, oas 028 .
800- - o o3 o 020 020 o
015 “
P 1000 100 . 0 o1s o
. 010 010
500- 500. 01 o1 o1 o1
0. 005 0,05
- e o s o s o s 0T & o b P -5 0 PEEEE) 0T E % i E n e
HEEKE] HEEE] FEIEE] §33 2 HEEE HEEE HEEE HEEE §853 §853

Figure 48: Analysis of choice Huber delta (d12)) : 95th percentile of performance scores

condition

ed on sub-choice (left) and distribution of sub-choices in top 5% of configurations (right).

33

Published as a conference paper at ICLR 2021

Hopper-vl id-vl Walker2d-vl Lo alfCheetah-v1 Ant-vl Hopper-vl Humanoid—vlnay\lalkeﬂd—vl HalfCheetah-v1 Ant-vl all
2000, oo 1600, 3000 o 03 02
el b | - - - .
. - | -
1500 o 015 0s
1250, 2000, | 1000 | o o3 015
o o w .
1000 2000 010
. - . N “
-
R R R ey R R b e gy far gy o e R E & oo e R = & far war ey o e = = &

Figure 49: Analysis of choice V-Trace advantage A (9] : 95th percentile of performance
scores conditioned on sub-choice (left) and distribution of sub-choices in top 5% of configurations
(right).

o0 Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl Ant-vl Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-v1 Ant-vl all
3000 w0 2500, 0 030
150 o 030 03 025 o
25 1500 0zs
1500 2000 o0 0 o 030 025
1250 020 o
1250 00 0 - 025 .
1000 1500 1500 s
020 2
o 1500 o s o 018 o
750 . 1000 1000 o 010
1000 o0 . 010 010
o 50 o om0
. bl 250 - o 005 o005 o 008 005 005
[ararers [ararer: [ararer: [ararar: L R e TR L Y A R]

Figure 50: Analysis of choice V-Trace advantage c, p () : 95th percentile of perfor-
mance scores conditioned on sub-choice (left) and distribution of sub-choices in top 5% of configura-
tions (right).

34

Published as a conference paper at ICLR 2021

H EXPERIMENT TRAINING SETUP

H.1 DESIGN

For each of the 5 environments, we sampled 2000 choice configurations where we sampled the following choices
independently and uniformly from the following ranges:
e iteration_size () 1 {512, 1024, 2048, 4096}

e batch_mode (d5)): {Fixed trajectories, Shuffle trajectories, Shuffle
transitions, Shuffle transitions (recompute advantages) }

e num_epochs (d3): {1, 3, 10}

e num_envs (dI): {64, 128,256}

e Adam learning rate (): {3e-05, 0.0001, 0.0003, 0.001, 0.003}
e batch_size (d4): {64, 128,256}

All the other choices were set to the default values as described in Appendix [C}

For each of the sampled choice configurations, we train 3 agents with different random seeds and compute the
performance metric as described in Section 2]

H.2 RESULTS

We report aggregate statistics of the experiment in Table [7]as well as training curves in Figure For each of
the investigated choices in this experiment, we further provide a per-choice analysis in Figures

Table 7: Performance quantiles across choice configurations.

Ant-vl HalfCheetah-vl Hopper-vl Humanoid-vl Walker2d-v1

90th percentile 2203 1316 1695 2310 1190
95th percentile 2484 1673 1853 2655 1431
99th percentile 2907 2665 2060 3014 1844
Max 3563 3693 2434 3502 2426

Hopper-v1 Humanoid-v1 Walker2d-v1 HalfCheetah-vi Antvi
| — Overall mean ™| — overall mean

top 10% mean . top 10% mean
s —— top 5% mean ~—— top 5% mean
top 1% mean - top 1% mean

—— Overall mean

top 10% mean
~—— top 5% mean
top 1% mean

top 10% mean
wof —— top 5% mean
top 1% mean

—— Overall mean
top 10% mean

~—— top 5% mean .
top 1% mean

g

Figure 51: Training curves.

Hopper-vl Humanoid-vl Walker2d-vl ml;ialfcheetah-vl o Ant-v1 D‘)Hcipper-vl Humanoid-vlu‘yValkeer-vl HalfCheetah-v1l Ant-vl all

200
1000

. 8 8§ § 0¥ %
SEEEEEEE

Figure 52: Analysis of choice iteration_size () : 95th percentile of performance scores
conditioned on choice (left) and distribution of choices in top 5% of configurations (right).

35

Published as a conference paper at ICLR 2021

Hopper-vl id-v1

200 | |

Walker2d-vl HalfCheetah-v1 Ant-vl

ool) o|ople |
T 0

i
{

Figure 53: Analysis of choice batch_mode

Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-vl Ant-vl all
os o 03s 030 o3
030
o 00
os ozs ozs
0zs
ozs 0zs
020 020 .
o3 o 020
o1s o1 015
0 ors o1s
o 010 o 010 820
o0s oos aos oo 0os

Foced trsectories

() : 95th percentile of performance scores condi-

tioned on choice (left) and distribution of choices in top 5% of configurations (right).

Hopper-vl id-vl Walker2d-vl HalfCheetah-v1 oo, ANEVL

3000-
200, | 1600
730. 2500. 1200, 2000. 2500, |
1500 1200
1250 1000,
70 1000, 2000
0 s0o-
s00- s00.
° o o o

. B 888

Figure 54: Analysis of choice num_epochs

Y-wpper-vl ul;lumanoid-vl Walker2d-v1 HalfCheetah-vl Ant-vl all

05 05 05
0z 02 02
o1 o1 01
o0 o0 00

() : 95th percentile of performance scores condi-

tioned on choice (left) and distribution of choices in top 5% of configurations (right).

Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl

200 1600 2000 2500
130 2000 1200, 1520 o0
1250 1000

1500 1500
50 1000 1000,
s0o- S0

s00- 500,
250

° 3 ° 3 3 ° 2 °

Figure 55:

Ant-vl

—]

. 3588

Hopper-vl H 1 Walker2d-v1 HalfCheetah-vl Ant-vl all

06 o4 o6 040
o4 o
035 03
05 o
030 030
04 o 03 03
025 02
o020 03
03 0 020 -
02 02 01
o0 o1 o0 01
o1 o1
005 005

Analysis of choice num_envs (1)) : 95th percentile of performance scores conditioned

on choice (left) and distribution of choices in top 5% of configurations (right).

Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl

Ant-vl

150,

3008

EEEEEEEE]
EEEEE
NEEEEE

Figure 56: Analysis of choice Adam

Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-v1 Ant-vl
o

o 05 03
05
05 030
o5 o
o o0 o 02
03
020
0 03 01
02 015
02 02 02
o0
o1
o1
o1 o1 I 005

fiiis

learning rate (24 : 95th percentile of performance

scores conditioned on choice (left) and distribution of choices in top 5% of configurations (right).

Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl Ant-vl

200 1500 2000, |

2500

wso. 2500 0 5o
o0 200, 1500, 2000

1250 000. 150,
1500,

1000, 1500 1000
750 1000 750 1000,

s0o- 500,
500 500,

250 250
° - ° - - o o

. ¥ 888

Hopper-vl + Ant-vl all

-
-
-
-

1 Walker2d-v1 HalfCheetah-v1
040 o

Figure 57: Analysis of choice batch_size (CEl) : 95th percentile of performance scores condi-
tioned on choice (left) and distribution of choices in top 5% of configurations (right).

36

Published as a conference paper at ICLR 2021

Hopper-vl id-v1l Walker2d-vl HalfCheetah-vl Ant-vl Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-v1 Ant-vl all
: I - = o6 os 035 - oso
2900 | 2500 - | o | | | 030 ” -
. il 2000 os e o 030 .
1500 1500 0zs 0zs
1250 o0 o4 o2 o 0zs
1500 oz 020
100 03 s 020
- 1000- 750 - 2000 02 o1s 01 s
0z 010
- 0 - 500 s00 . o " o o

H H
§ §
H H
H H

H

Figure 58: Analysis of choice batch_mode () : 95th percentile of performance scores con-
ditioned on choice (left) and distribution of choices in top 5% of configurations(right). In order
to obtain narrower confidence intervals in this experiment we only sweep batch_mode (d5)),
num_envs () ,Adam learning rate () .

37

Published as a conference paper at ICLR 2021

I EXPERIMENT TIME

I.1 DESIGN

For each of the 5 environments, we sampled 2000 choice configurations where we sampled the following choices
independently and uniformly from the following ranges:

e Discount factor 7y () : {0.95,0.97, 0.99, 0.999}
e Frame skip (d2I):{1,2,5}
e Handle abandoned? () : {False, True}
e Adam learning rate (d24): {3e-05,0.0001, 0.0003, 0.001}
All the other choices were set to the default values as described in Appendix@
For each of the sampled choice configurations, we train 3 agents with different random seeds and compute the

performance metric as described in Section[2}

1.2 RESULTS

We report aggregate statistics of the experiment in Table[8]as well as training curves in Figure For each of
the investigated choices in this experiment, we further provide a per-choice analysis in Figures

Table 8: Performance quantiles across choice configurations.

Ant-vl HalfCheetah-vl Hopper-vl Humanoid-vl Walker2d-v1

90th percentile 1462 1063 1243 1431 761
95th percentile 1654 1235 1675 2158 810
99th percentile 2220 1423 2204 2769 974
Max 2833 1918 2434 3106 1431

- % B § § §

Figure 59: Training curves.

Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-v1 Ant-vl Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-vl _Ant-vl all
1000 10 06 o

0 | o

ftsf itif itig

Figure 60: Analysis of choice Discount factor v (d20) : 95th percentile of performance
scores conditioned on choice (left) and distribution of choices in top 5% of configurations (right).

38

Published as a conference paper at ICLR 2021

Hopper-vl id-v1 Walker2d-vl HalfCheetah-v1 Ant-vl Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-vl Ant-vl all
I . sieo 10 o5 10
000 500 0. 200 o8
120 e 05 e
os
1500 - o e 1500 0s o1 o6
. 05 o6
1500 - o -
000 0 o
1000 “ o3 e .
500 20 - o0
500
20 o1
3 L L S L S L S e e el ar e el e

Figure 61: Analysis of choice Frame skip () : 95th percentile of performance scores condi-
tioned on choice (left) and distribution of choices in top 5% of configurations (right).

Hopper-v1l Humanoid-vl ~ Walker2d-vl HalfCheetah-vl Ant-vl Hopper-vl id-vl Walker2d-v1 HalfCheetah-vl _ Ant-vl all
2500

150, a0 o0 7 s 05 06 o o5 o5

. 2000 0 . 1500 - .
00 250

150 - .

1000 o 1000. 03 03 03 3
w0 . .

750 1000 300 7 02 o, 02

a0 02

500 . 500

o 50 - " - o1 o o o

o o o o o

H H H H] : I 3 3 3 §

Figure 62: Analysis of choice Handle abandoned? () : 95th percentile of performance
scores conditioned on choice (left) and distribution of choices in top 5% of configurations (right).

Hopper-v1l Humanoid-vl Walker2d-vl HalfCheetah-vl Ant-v1 Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-v1 Ant-vl all
1000 Lo ot o6 - o
2000, 2500 o 200, o
. o 08 o6 N oo
500 - 1000 1500 N K
1500 0. o
1000 1000 :
1000 o “ 0z 03 02 o
2
w0
o 500 200 seo . o o E o1
20 N o o1
I e e e e ol o lem B L s ool o0 oolm
$88¢8 i8¢ i8¢ i8¢ 1888 $88é sggd ig8d i88d g8d i88d

Figure 63: Analysis of choice Adam learning rate (24 : 95th percentile of performance
scores conditioned on choice (left) and distribution of choices in top 5% of configurations (right).

39

Published as a conference paper at ICLR 2021

J EXPERIMENT OPTIMIZERS

J.1 DESIGN

For each of the 5 environments, we sampled 2000 choice configurations where we sampled the following choices
independently and uniformly from the following ranges:

e Learning rate decay (d3I)): {0.0, 1.0}
e Optimizer (d23): {Adam, RMSProp}
— For the case “Optimizer (d23)) = Adam”, we further sampled the sub-choices:
* Adam momentum (): {0.0,0.9}
* pdam € (28] : {1e-09, 1e-08, 1e-07, 1e-06, 1e-05, 0.0001}
* pAdam learning rate (d24)): {3e-05,0.0001, 0.0003, 0.001}
— For the case “Optimizer () = RMSProp”, we further sampled the sub-choices:
* RMSProp centered? (J30): {False, True}
* RMSProp momentum (d27): {0.0,0.9}
* RMSProp € (d29)): {1e-09, 1e-08, 1e-07, 1e-06, 1e-05, 0.0001}
* RMSProp learning rate (d25): {3e-05,0.0001, 0.0003, 0.001}

All the other choices were set to the default values as described in Appendix [C}

For each of the sampled choice configurations, we train 3 agents with different random seeds and compute the
performance metric as described in Section 2]

J.2 RESULTS

We report aggregate statistics of the experiment in Table[0]as well as training curves in Figure For each of
the investigated choices in this experiment, we further provide a per-choice analysis in Figures

Table 9: Performance quantiles across choice configurations.

Ant-vl HalfCheetah-vl Hopper-vl Humanoid-vl Walker2d-v1

90th percentile 2180 1085 1675 2549 712
95th percentile 2388 1124 1728 2726 797
99th percentile 2699 1520 1826 2976 1079
Max 2953 2532 1959 3332 1453

top 10% mean top 10% mean top 10% mean . top 10% mean
top 5% mean - top 5% mean top 5% mean top 5% mean
top 1% mean top 1% mean e top 1% mean - top 1% mean

o —— Overall mean e
top 10% mean . s -
o top 5% mean e ’
§ top 1% mean - .) L

Figure 64: Training curves.

40

Published as a conference paper at ICLR 2021

Hopper-vl Humanoid-v1 Walker2d-vl HalfCheetah-vl Ant-vl Hopper-vl Humanoid-v1 u\ﬁNaIkeer-vl Fqiéa\fcheetah-vl Ant-v1 all
w0 . o o6 o6 . e
1500- w500 1000 os 05 os o2 o7 05
1so. 2000 P, w00 - e e o1 o as -
1000 1500 o5
1500 - o o 03 o2 o 01 03
100, . 000 0z 02 02 02 03 o2
P
a0 02
o 500 20 500 ox o o1 o1 . o1
K w— K L e L e L e T T T - T wr- S war

Figure 65: Analysis of choice Learning rate decay () : 95th percentile of performance
scores conditioned on choice (left) and distribution of choices in top 5% of configurations (right).

Hopper-vl ol id-vl Walker2d-vl HalfCheetah-vl Ant-vl Hopper-vl H id-vl Walker2d-v1 HalfCheetah-vl _ Ant-vl all
0. ., | 1200 | 2500- | o o 0 s o6 05
50 o i o o o
2000 05 . oa
1250 2000 . o5 o
00 04 04 04
1000 1500 o4 0 03
1500 .
. 03 03 0
750, 1000, o3 02 02
2000 00 0z 0 02 02
200
. 500 200 s o1 o1 o1 o o1 o
o o o o o o 00 o0 o0 00 00
]]] s s : f s f s I I 5
H H 3 H 2 H 2 H 2 H L i 8 8 8 8 i

Figure 66: Analysis of choice Optimizer () : 95th percentile of performance scores condi-
tioned on choice (left) and distribution of choices in top 5% of configurations (right).

Hopper-vl id-v1 Walker2d-vl HalfCheetah-v1 Ant-vl Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-vl _Ant-vl all
50 ' | 1000 200 ’ 250 | - .
250 os o - 06 o3
500 - o - 2000 0s os o4 ”
1250 00 o4 o5 .
. 1500 o4 o4 o 03
- e 0 s o o
0 o 1000 03 o3
- 1000 wo. 0 02 . . 02 .
. 0. 0 20 s o1 o1 o o1 o ot
s - s — s — s — s — T e TR S e T e TR S

Figure 67: Analysis of choice Adam momentum (d26]) : 95th percentile of performance scores
conditioned on sub-choice (left) and distribution of sub-choices in top 5% of configurations (right).

Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl Ant-v1 Hopper-vl nyumanoid-vl Walker2d-v1 HalfCheetah-v1 Ant-v1 all
025

3000, oo
1000.

0.

0.

200.

o

FEEE]

Figure 68: Analysis of choice Adam ¢ () : 95th percentile of performance scores conditioned
on sub-choice (left) and distribution of sub-choices in top 5% of configurations (right).

Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl Ant-vl Hopper-vl id-vl Walker2d-vl HalfCheetah-vl _ Ant-vl all

16 o8
1200
1000,
0.
200,

Figure 69: Analysis of choice Adam learning rate (d24) : 95th percentile of performance
scores conditioned on sub-choice (left) and distribution of sub-choices in top 5% of configurations

(right).

. 3§ 8 8 %% B
. 8 8 8 8 B

o001
00003
I
00003
I
3005
o001
00003
oo
2005
oo
w03
. § 8 & 8 8
2005
o001
o003
oot
o5
0001
00003
oon
o
0001
00003
o5
o001
o003
3005
oo
seasI

41

Published as a conference paper at ICLR 2021

Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl Ant-vl Hopper-vl + id-vl Walker2d-v1 HalfCheetah-vl Ant-vl all
3000
w0 - 1200 2500 | o . os o o3 o5
1500- 2500 os
00 1000 04 o4 a
1250 - o e 0 © 04
o 0s
1000, . 0 1500 N - 03 03 o o
50 o “
1000 200 oo oz 02 o o oz 02
w0,
- - - oo s00 o o o1 o1 o1 o1
o 3 o o o oo o0 00 o0 o0 o0

Figure 70: Analysis of choice RMSProp centered? (J30) : 95th percentile of performance
scores conditioned on sub-choice (left) and distribution of sub-choices in top 5% of configurations
(right).

Hopper-vl F id-vl Walker2d-v1 HalfCheetah-vl Ant-vl Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-v1 Ant-vl all

150 . o0 o6 s 06 ,
| o - o I . o B

1500, 250 L os os e
1250 2000 o e o e ot 04 os o+
1000 . 1500 . o - oa o

w0 o

1000 oo 0z oz o 02 02

50 - o 02
- 500 20 500 01 o1 o1 o1 o o1

s — s — s — s — s — I e TR ST e TN e B e TR S

Figure 71: Analysis of choice RMSProp momentum () : 95th percentile of performance
scores conditioned on sub-choice (left) and distribution of sub-choices in top 5% of configurations
(right).

Hopper-vl id-v1 Walker2d-vl HalfCheetah-v1 Ant-vl Hopper-vl uHumanoid-vl Walker2d-v1 HalfCheetah-v1 Ant-vl all
- :
23 NI I Qe | 1600 | 030 025 02
o 14 - e T .
2500 o 020 020
ol L] e
1000 - 1000 o 01 01
1500- o0 800 e 015, o8 oso
50 o o 02 o o1
o0 1000- oo 010 o010
o 01 005 005 005
250- - 200 200 o0 005 008

Figure 72: Analysis of choice RMSProp € () : 95th percentile of performance scores condi-
tioned on sub-choice (left) and distribution of sub-choices in top 5% of configurations (right).

Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl Ant-vl Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-vl _Ant-vl all
w0 o0 040 05 03 03 .
1000 . 06
1500 - w0 e 0 o a0 030 03
1200 os
1250 2000 o azs 028 030
2000 w0 1000
025 0 04 025
oo o 1500 020 oa0
s0- e o - 0 020
’ o w0 o 02 015
1000 1000 . . 018
o - w0 o0 a10 010 o
=0 0 20 - o0s aos 005 o oo
e s 2 = L e ar bar arar e Lar wrar L aar e T T T T R T A]
$8¢8¢8 i8¢8¢ i8¢88 i8¢8¢ i8¢8¢8 2888 $88¢8 $88¢8 $8g8 s88¢8 i8¢8¢8

Figure 73: Analysis of choice RMSProp learning rate (d25]): 95th percentile of perfor-
mance scores conditioned on sub-choice (left) and distribution of sub-choices in top 5% of configura-
tions (right).

42

Published as a conference paper at ICLR 2021

Hopper-vl Humanoid-v1 Walker2d-v1 HalfCheetah-v1 Ant-v1
1200
1750 4 \ | 3000 |
1000 2000 2500 4
1500 25004 |
2000 4
1250 A 800]
20004 | 1500
< 10001 600 1500 4
1500 1000 A
750 4 .
1000 4004 1000 A
500 A
500 A
250 4 500 . 200 A 500 A
0- 0- 0- 0- 0-
Hopper-vl Humanoid-v1 Walker2d-v1l HalfCheetah-v1 Ant-vl
1600 3000 {
17301 ! 3000 e 1400
1500 1000 4 2500 1
2500 12004
1250 4 8004 | 2000 4
2000 4 1000
© 1000 4 1500 A
=] 600 1 8001
1500
750 1 00 600 1000 A
500 1 1000 2001
500 A
250 A 500 . 200 200 A
04 —
0- 0- 0- 0- T
n oo oM o n oo Mmoo n oo oM o n o oM o n oo o o
o o (=3 o o (=3 (=3 o o o (=3 o o (=3 (=3 o o o o (=3
¢ 8 8 2 ¢ 8 8 2 ¢ 8 8 g ¢ 8 8 g ¢ 8 8 g
I > S I > S " > S I > S m 2 2 o
o o o o o =} o o o o

Figure 74: 95th percentile of performance scores conditioned on RMSProp momentum
() (rows) and RMSProp learning rate (25| (bars).

43

Published as a conference paper at ICLR 2021

K EXPERIMENT REGULARIZERS

K.1 DESIGN

For each of the 5 environments, we sampled 4000 choice configurations where we sampled the following choices
independently and uniformly from the following ranges:

e Regularization type (d32]: {Constraint, No regularization, Penalty}

— For the case “Regularization type () = Constraint”, we further sampled the sub-choices:
* Regularizer (in case of constraint) (d34): {KL(p||m), KL(7||u),
KL(ref||n), decoupled KL(u||7), entropy}
o For the case “Regularizer (in case of constraint) (J34) =KL(p||r)”, we
further sampled the sub-choices:
— Threshold for KL(u||r) (d35): {0.005,0.01,0.02,0.04, 0.08}
o For the case “Regularizer (in case of constraint) (J34) =KL(x||n)”, we
further sampled the sub-choices:
— Threshold for KL(w||p) (d36): {0.005,0.01,0.02,0.04, 0.08}
o For the case “Regularizer (in case of constraint) (J34) = KL(ref||r)”,
we further sampled the sub-choices:
- Threshold for KL(ref||r) (d37): {10.0,20.0,40.0, 80.0, 160.0}
o For the case “Regularizer (in case of constraint) (d34)) = decoupled
KL(u||m)”, we further sampled the sub-choices:
— Threshold for mean in decoupled KL(u||m) (): {0.005, 0.01, 0.02,
0.04, 0.08}
- Threshold for std in decoupled KL(p||w) (d39): {5e-05, 0.000125,
0.00025, 0.0005, 0.001, 0.002, 0.004}
¢ For the case “Reqularizer (in case of constraint) (d34) =entropy”, we fur-
ther sampled the sub-choices:
— Threshold for entropy H(w) (): {0.0, -5.0, -10.0, -15.0}
— For the case “Regularization type (d32|) =Penalty”, we further sampled the sub-choices:
* Regularizer (in case of penalty) (d33): {KL(u||r), KL(7||pn), KL(ref]||r), de-
coupled KL(u||7), entropy}
o For the case “Regularizer (in case of penalty) (d33) =KL(y|lr)”, we fur-
ther sampled the sub-choices:
— Regularizer coefficient for KL(ul|w) (): {0.003, 0.01, 0.03, 0.1, 0.3,
1.0}
o For the case “Regularizer (in case of penalty) (d33)) =KL(7||n)”, we fur-
ther sampled the sub-choices:
- Regularizer coefficient for KL(x||u) (d42): {0.003,0.01,0.03,0.1,0.3,
1.0}
o For the case “Regularizer (in case of penalty) (d33)) = KL(refl||w)”, we
further sampled the sub-choices:
— Regularizer coefficient for KL(refl||w) (d43): {3e-06, le-05, 3e-05,
0.0001, 0.0003, 0.001}
o For the case “Regularizer (in case of penalty) (d33) = decoupled
KL(p||7)”, we further sampled the sub-choices:
— Regularizer coefficient for mean in decoupled KL(u||lw) (d44):
{0.003, 0.01, 0.03, 0.1, 0.3, 1.0}
— Regularizer coefficient for std in decoupled KL(p||w) (d45):
{0.1, 0.3, 1.0, 3.0, 10.0, 30.0, 100.0, 300.0}
¢ For the case “Regularizer (in case of penalty) (d33]) =entropy”, we further
sampled the sub-choices:
- Regularizer coefficient for entropy (C46)): {le-05, 3e-05, 0.0001,
0.0003, 0.001, 0.003}

e Adam learning rate (d24): {3e-05,0.0001, 0.0003, 0.001, 0.003}

All the other choices were set to the default values as described in Appendix@

For each of the sampled choice configurations, we train 3 agents with different random seeds and compute the
performance metric as described in Section 2]

44

Published as a conference paper at ICLR 2021

K.2 RESULTS

We report aggregate statistics of the experiment in Table[T0]as well as training curves in Figure For each of
the investigated choices in this experiment, we further provide a per-choice analysis in Figures

Table 10: Performance quantiles across choice configurations.

Ant-vl HalfCheetah-vl Hopper-vl Humanoid-vl Walker2d-v1

90th percentile 2158 1477 1639 2624 705
95th percentile 2600 1870 1707 2832 814
99th percentile 2956 2413 1812 3071 1016
Max 3202 3156 1979 3348 1597

— Overall mean — Overall mean swo] — Overall mean 1 — Overall mean

s top 10% mean top 10% mean top 10% mean top 10% mean
—— top 5% mean | — top 5% mean | —— top 5% mean 1 —— top 5% mean

o top 1% mean - top 1% mean top 1% mean top 1% mean

— overall mean | - -

top 10% mean - . . .
~—— top 5% mean e _

top 1% mean — o o) o

Figure 75: Training curves.

Hopper-vl Humanoid-vl Walker2d-v1
| 3000 1000
50 \ | |

I |l

1250 2000

1500

1000

Mo requiarization

No requiarization

H

HalfCheetah-v1 Ant-vl

3000

2500
2500 |

N |

1500

1000

Noregulaization

Figure 76: Comparison of 95th percentile of the performance of different regularization approaches
conditioned on their type.

45

Published as a conference paper at ICLR 2021

Hopper-v1 Humanoid-vl ~ Walker2d-vl HalfCheetah-vl Antvl Hopper-vl id-vl Walker2d-vl HalfCheetah-vl _Ant-vl all
. - . .
0
™ 20 o o o
1500 2500 2500 0 035
os
= 2000 00- 1500 2000 03 03 05 0
Jooo. o4 02
- o o os
150 w0 1000 02 03 o0z s o0
o 10 . o o5
- 200 500 01 o1 o 0.10
250, s00- o o1 o o1 vos
o o o

Figure 77: Analysis of choice Regul
scores conditioned on choice (left) an

penaiy
pensiy

arization type (d32]) : 95th percentile of performance
d distribution of choices in top 5% of configurations (right).

Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-v1 oo Ant-vl Hopper-vl Humanoid-vlu\!l\lalkerzd-vl HalfCheetah-vl Ant-vl s all
05
50, 3000 o o030 030
0. 5o 030 028 030
1500 2500 o o0 o0 o
1500 025 025
1250 - . | 2000, . 020
- 1250 o 020 o 020
e 1000 e o1 o1 s o -
0 o . 02
1000 010
1000 o0 o0
0. - 010 010
20 o0
0 0 20 500 o0 005 005 oo 005
o oL oL
: z
ERE ERE]

]
H

Figure 78: Analysis of choice Regu

g
H

larizer (in case of penalty) (d33): 95th per-

centile of performance scores conditioned on sub-choice (left) and distribution of sub-choices in top

5% of configurations (right).

Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl
w0 . 2000
1500- w0
2500 o
120 1500
200 o 1250
1000
1500 1000
750 o
. 1000
500
20
250 50 250

Figure 79: Analysis of choice Regul

Ant-vl Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl _ Ant-vl all
ot 05 05 030
2000 030 .
2500 o 0s 0s 025 0z
04
200 025 0z o0
0 0
o
1500 o 015 013
1000 010 “ o0
o0
so0- 0o o o 005 o1 005

arizer coefficient for KL(ref||mr) (d43)) :95th

percentile of performance scores conditioned on sub-choice (left) and distribution of sub-choices in

top 5% of configurations (right).

Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl
w0 3000 1000 0
1500 2500 0. 200,
10
2000
0 1500
1000
1500
70 w0 1000
1000
500
20 50
50 500
L e g L e g Lar e e Lar arar ey
IEEEE R SRR fgget

Figure 80: Analysis of choice Adam

Ant-vl Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-v1 Ant-vl s all
000 o1 o v
250, o6 o8 os 0 e o
o5 o4
w0 o6 o o 03
. 0s 0 o1
03 04 o oa 02
1000 02
0z 02
02 02 o1
e Eszs M Fzezs “Tg TIE I racE T Iiin “iiiis “uiiit
EEEE] T LI T EEE R T I I T T E R T FEE R FEET

learning rate ({24 : 95th percentile of performance

scores conditioned on choice (left) and distribution of choices in top 5% of configurations (right).

46

Published as a conference paper at ICLR 2021

Hopper-vl Walker2d-v: HalfCheetah-vl Ant-vl
w1l -
o S = g | - .
- B -

o - 1. o™
- -

.

250- 500 o 00 500-

Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-v1 Ant-vl all

03 035 030 o3

035 o3 03 02 0a

om0 o025 02 020

020

o 020 020 o

o0 ot
o015 o1 02

015 . 030

o0 . o .

008 005 005

Figure 81: Analysis of choice Regularizer coefficient for entropy () : 95th
percentile of performance scores conditioned on sub-choice (left) and distribution of sub-choices in

top 5% of configurations (right).

Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl Ant-vl
3000 3000
S o .
2500 2500
1500 0o
200
1250 2000, 2000
o
1000 1500 1500 1500
70 w0
1000 1000 1000
500
500 0 500 500

Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-v1 Ant-vl all
035
. a0 035 - 035 030
030 030
- 0s . 0zs
om0 o oz 020
020
0z 3 0z
o o5 015
018 015
02
o0s 005 . o os 005

Figure 82: Analysis of choice Regularizer (in case of constraint) () : 95th
percentile of performance scores conditioned on sub-choice (left) and distribution of sub-choices in

top 5% of configurations (right).

Hopper-vl id-vl Walker2d-vl HalfCheetah-v1 Ant-vl
1501 e b o 000 2000. |
. - - “lall o]
o - 1. .
e 600 1500 1500
1000, 400 1000 1000
-
250 - 200 500- 500-
e % % % L w1 b w1 R e L wrwr

Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-Vln Ant-vl all
o s 05 0s0 s
- 03 035 05
e 030
030 030
o0 04 0zs
025 0 025
o - . o 020
o1 02 015
o1s 01s 0
ot o 010 o0
o o
005 005 005 005
e e g ™iaaa Maczc "Zoes “Iaaaz "™azaco

Figure 83: Analysis of choice Threshold for entropy H(w) (d40) : 95th percentile of
performance scores conditioned on sub-choice (left) and distribution of sub-choices in top 5% of

configurations (right).

Hopper-vl ; id-vl Valker2d-vl HalfCheetah-vl Ant-vl

wsol |] L o - . 000

o o | I - | o o |
w0 2000 - 2000

1000 o - |

o 150 - 1500

. 1000 o 1000

250 00 e . seo

e e e e e

Figure 84: Analysis of choice Threshold for

Hopper-vl “};Iumanoid-vl alker2d-v1 HalfCheetah-v1 Ant-vl . all
035 o 03 . -
o3 s 030 e . .
o2 030 0z - .
020 o0 o © o
oz
020
o1s oas 02 o 01s
o0 o 010 . 0z a0
005 oo 0os o1 005

KL(p|/w) (d335): 95th percentile of perfor-

mance scores conditioned on sub-choice (left) and distribution of sub-choices in top 5% of configura-

tions (right).

47

Published as a conference paper at ICLR 2021

Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl Ant-vl
* 1200
w0
2500 200, 200,
1500 1000
1000 1500 o
o 1000 1000
- w0
00 o0
250 = o

o002
0003

Figure 85: Analysis of choice Regularizer coefficient for mean

o, Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-vl _Ant-vl all
o7 05
0 00
o o 05 5
025 s 04 020 o
020
o o4 01 015 o
o 0a o
02 010 oz
010 02 010
005 o o o o 005

in decoupled

KL(p||w) (f44]): 95th percentile of performance scores conditioned on sub-choice (left) and
distribution of sub-choices in top 5% of configurations (right).

Hopper-vl ; Valker2d-v: HalfCheetah-vl Ant-vl
ool | | \ e
. 2000 200
sl | | -
Ll - |
- - AR [T YA
1000 w0
- se0-
250 = o

Hopper-v Humanoid-vl Walker2d-v1 HalfCheetah-vl Ant-vl all
o200 .
o2 o6 025
ous 020
o150 020 o o
ous oz b os
o1s o1
o100 o1

oors

0050

o025

02
| | o0s o 005 ||I

Figure 86: Analysis of choice Reqgularizer coefficient for std in decoupled
KL(p||w) (d45]): 95th percentile of performance scores conditioned on sub-choice (left) and
distribution of sub-choices in top 5% of configurations (right).

Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-v1 Ant-vl
- 000 1000 o
50 2000
2500 2500
1500 -
1250 200, 00 200
o 1500 - o 1500
o s00-
- 50 0 so0-

Figure 87: Analysis of choice Threshold for

,,Hopper-vl

o020 025
o015 o020

0w
005 oo

KL(7||n) (36)

,Humanoid-vl Walker2d-v1 HalfCheetah-v1

Ant-vl all

030 040 o
0zs oz
0z oz

025
015 020 03

015
oo o0

010
005 005

: 95th percentile of perfor-

mance scores conditioned on sub-choice (left) and distribution of sub-choices in top 5% of configura-

tions (right).

Hopper-vl Humanoid-v: Valker2d-v: HalfCheetah-vl Ant-vl
2000, 2000 2500
2000
w0 | ' | 1200
| 2500
1500 . 2000 | 2500
o a0 |
o 1500 |
1000 1500- o L s
o | | | 100
1000 o 1000
500
. 500 200 s00-
3 3 o o o

oona

Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-v1 Ant-vl all
03s 03s
040 o 040 03
o . s 030 030 .
o0 030 0zs 0zs -
025 025 o o
o 020
o5 o o1 015
o1 015
o om0 o om0 om0 o0
o0 0os 005 005 005 005
e e ey ery: ey ey

Figure 88: Analysis of choice Regularizer coefficient for KL(w||p) (d42]): 95th
percentile of performance scores conditioned on sub-choice (left) and distribution of sub-choices in

top 5% of configurations (right).

48

Published as a conference paper at ICLR 2021

Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl Ant-vl a0 Hopper-vl ur;lumanoid-vl Walker2d-v1 HalfCheetah-vl = Ant-vl all
3000 i 043 s o6
1600 035
50 3000, 200 o 040 040
10 2500 025 05 030
1500 2500 - 035 03
1250 e o 200, 020 030 030 0s ozs
2000 1000 02
025 025
e . o e 1500 o1 o 03 o
750 o . s 015
1000 1000 o 015 015 02
e o 010 om0 om0
500
. 50 - 500 005 - s - o .
L e L e L e ar e Lar arar e ar Lar - ar e e ey Rar s R e rrree -
§3338 gssis gssis gs83¢ §383¢ EEE R 83538 R g5538 g5538 g5538

Figure 89: Analysis of choice Threshold for mean in decoupled KL(u||w) (d38):
95th percentile of performance scores conditioned on sub-choice (left) and distribution of sub-choices
in top 5% of configurations (right).

Hopper-vl Humanoid-vl Walker2d-v1 Halfcheetah-vlm Ant-vl 422 HopPPEr-vl - Humanoid-vl

Walker2d-vl HalfCheetah-vl _Ant-vl all

ga

oa

0200

oars

o150

o125

0100

oors

o050

o025

o000

Figure 90: Analysis of choice Threshold for std in decoupled KL(p||r) (d39):
95th percentile of performance scores conditioned on sub-choice (left) and distribution of sub-choices
in top 5% of configurations (right).

Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl Ant-vl Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl _ Ant-vl all
2000
B 03 035 o5
. 2500 200 000 - o0 - .
035 030 ™
o 2000 e o o4 04 025
2000 030 025 02
30 o 2000 . o 00
1500 om0 om0 o
1 &0 1500, e 020 s
o . - - o1s 01s 0 .
o e 010 010 o0
500 010
500 200 0 500- o o 005
250 oos 00s ™
TR e se g e I TrTrEE b o ar wr o i o s A arary A wrararary b arary b ey O Tece ke arary
IR EEE $2§8§ 22§28 28388 EREEE] ERERE EREEE ERERE EREEE ERERE ERERE

Figure 91: Analysis of choice Threshold for KL(ref||r) (d37): 95th percentile of per-
formance scores conditioned on sub-choice (left) and distribution of sub-choices in top 5% of
configurations (right).

Hopper-vl Humanoid-vl Walker2d-vl HalfCheetah-vl Ant-vl Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-vl _Ant-vl all
0s 0s0 03
1750. - 200 3000- o5 0200
2000 04 035 030
e 2000 2500 04 0478
2500 o4 e 030 -
e s 2000 03 0
. 2000 1500 03 - ois .
1500 . 020
1500 o 0z 015
= 1000 oz 02 oo 015
w0 1000. 1000 010
200 o o1 o o1 0.050 030
0 e = 0.025 005 008
g ane larrr v Arrwers hrwwwrws lar vy i e eres i rrEryy i rreryy i g far ey e Eaamg
FEEEEE] FEEEEE] FEEEEE] FEEEEE] FEEEEE] FEEEER] 238323 FEEEEE] EEEEEE] FEFEEE FEFEEE

Figure 92: Analysis of choice Regularizer coefficient for KL(u[|m) (d41)): 95th
percentile of performance scores conditioned on sub-choice (left) and distribution of sub-choices in
top 5% of configurations (right).

49

	Introduction
	Study design
	Experiments
	Policy losses (based on the results in Appendix D)
	Networks architecture (based on the results in Appendix E)
	Normalization and clipping (based on the results in Appendix F)
	Advantage Estimation (based on the results in Appendix G)
	Training setup (based on the results in Appendix H)
	Timesteps handling (based on the results in Appendix I)
	Optimizers (based on the results in Appendix J)
	Regularization (based on the results in Appendix K)

	Related Work
	Conclusions
	Reinforcement Learning Background
	List of Investigated Choices
	Data collection and optimization loop
	Advantage estimation
	Policy losses
	Handling of timesteps
	Optimizers
	Policy regularization
	Neural network architecture
	Action distribution parameterization
	Data normalization and clipping

	Default settings for experiments
	Experiment Policy Losses
	Design
	Results

	Experiment Networks architecture
	Design
	Results

	Experiment Normalization and clipping
	Design
	Results

	Experiment Advantage Estimation
	Design
	Results

	Experiment Training setup
	Design
	Results

	Experiment Time
	Design
	Results

	Experiment Optimizers
	Design
	Results

	Experiment Regularizers
	Design
	Results

