
Motion meets Attention: Video Motion Prompts

Appendix A. Related Work

Below, we review closely related work on motion extraction, attention mechanisms, prompts,
and adapter layers for video processing. We also highlight the significant di!erences between
our work and these studies.

Motion. Optical flow computed between consecutive video frames is a widely used sec-
ondary input for video processing (Simonyan and Zisserman, 2014; Carreira and Zisserman,
2018; Wang and Koniusz, 2024), complementing the use of conventional videos (Wang et al.,
2018, 2021). Dynamic images, which record spatio-temporal information in a single frame,
were introduced in (Bilen et al., 2016). A channel sampling method that combines the R,
G, or B channels of consecutive frames into a single frame for better motion capture was
proposed in (Kim et al., 2022). Recently, Taylor videos have been introduced to capture
dominant motions in videos for action recognition (Wang et al., 2024).

Unlike these approaches, our motion prompts are (i) lightweight, with only two extra
learnable parameters, (ii) dependent on motions guided by frame di!erencing maps, and
(iii) driven by attention mechanisms that highlight the spatio-temporal motion regions over
time.

Attention. To improve feature representations, attention mechanisms capture the rela-
tionships between tokens. Attention mechanisms have been e”ciently incorporated into
transformers, including self-attention (Vaswani et al., 2017; Dosovitskiy et al., 2021) and
cross-attention (Lin et al., 2021; Hashiguchi and Tamaki, 2022; Chen et al., 2021; Wei et al.,
2020; Wang and Koniusz, 2023), among others.

Our attention mechanism, however, di!ers from traditional approaches. It is lightweight
and does not require the learning of attention matrices. We use a sequence of frame di!er-
encing maps to record video dynamics, along with a newly introduced regularization term,
to learn spatio-temporally smooth attention maps. Consequently, our attention mechanism
is motion-dependent rather than dataset-dependent. Furthermore, compared to existing
works, we use an activation function as power normalization to modulate motions, with
learnable slope and shift parameters for controlling motion strengths and thresholding.
This makes our attention mechanism more transparent and interpretable.

Prompt. Prompt engineering has gained significant interest with advancements in image
and video processing. Representative works include the use of prompt templates (Radford
et al., 2021), textual prompts for video content description (Hu et al., 2022), incorporating
video features into language models as prompts (Yang et al., 2022), and learnable continuous
prompt vectors as virtual tokens (Ju et al., 2022). Visual prompts include methods such as
visual prompt tuning (Jia et al., 2022), fine-grained visual prompting (Yang et al., 2024),
among others.

To the best of our knowledge, none of these works consider using a sequence of refined
motions as motion prompts to enhance video processing tasks. Our motion prompts are
defined as a sequence of video frames with highlighted spatio-temporally smooth motion
regions per frame. Our motion prompts are learnable and form a plug-and-play motion
prompt layer. They are optimized using the original loss function.

Adapter. There are several layers and mechanisms in neural networks that can be consid-
ered as adapters between the data input and the model itself. Embedding layers, commonly
used in NLP and recommendation systems, convert categorical data or tokens into dense

Chen Wang Koniusz Gedeon

vectors of fixed size (Hrinchuk et al., 2019; Wu et al., 2019). Positional encoding, used in
transformer models, adds positional information to input embeddings to retain the order of
elements in sequences (Vaswani et al., 2017; Dosovitskiy et al., 2021). Normalization layers,
such as Batch Normalization and Layer Normalization, stabilize and accelerate training by
normalizing input data (Io!e and Szegedy, 2015; Ba et al., 2016). Adapter layers, often used
in fine-tuning pre-trained models, add task-specific layers between existing layers to adapt
pre-trained models to new tasks (Lee et al., 2020; Ding et al., 2022). These adapter layers
and mechanisms serve as intermediaries that process and transform input data, making it
compatible with the model architecture. This enhances the model’s ability to learn from
and make predictions on the input data e!ectively.

Our motion prompt layer functions as an adapter as well, bridging the gap between
‘blind motion extraction’ and motion prompt-guided motion extraction.

Appendix B. Preliminary

Below, we refer to the preliminary works used in the paper.

Activation function. Activation functions such as Sigmoid, Tanh, ReLU, and Softmax
are among the most popular and commonly used in neural networks. These functions can
be either linear or non-linear, depending on their formulation and the context in which they
are applied. A review of activation functions in deep learning can be found in (Nwankpa
et al., 2018; Dubey et al., 2022). A logistic function is a common S-shaped (sigmoid) curve
with the equation:

f(x) =
L

1 + e→a(x→b)
(8)

where L is the carrying capacity, a is the logistic growth rate (the steepness of the curve),
and b is the point at which the output transitions from below L/2 to above L/2. For values
of x much less than b, f(x) is close to 0 (or the lower bound), and for values of x much
greater than b, f(x) is close to L (or the upper bound). This characteristic makes b act as
a kind of threshold in the Sigmoid function. The standard logistic function is when L = 1,
a = 1, and b = 0.

Both the Sigmoid and Softmax functions introduce non-linearity; however, the Softmax
function additionally provides a means to interpret the neural network’s output as proba-
bilities. In attention mechanisms, the Softmax function is applied to a set of scores (often
called attention scores or logits) to produce a probability distribution over the elements in
the sequence. This ensures that the importance (attention) weights sum to 1.

A mathematical view of attention. The Vision Transformer (ViT) applies the attention
mechanism to image processing by first dividing an image into n patches and then treating
these patches as input tokens X → Rn↑d. The self-attention mechanism involves three
main components: query Q, key K and value V matrices, which are computed as linear
projections of the input matrix X. The self-attention scores are then computed as the
scaled dot-product of the query and key matrices, and the resulting attention matrix is

Motion meets Attention: Video Motion Prompts

then used to weight the value matrix. The mechanism can be described as follows:

A = softmax

(
QK↓
↑
dk

)
, (9)

Z = AV , (10)

where A → Rn↑n is the attention matrix representing the attention weights, and Z → Rn↑dk

is the output of the self-attention layer. Q = XWQ, K = XWK , and V = XW V .
WQ

,WK
,W V

→ Rd↑dk are learned projection matrices. In practice, multi-head attention
is used to allow the model to jointly attend to information from di!erent representation
subspaces at di!erent positions. This mechanism enables the ViT to e!ectively capture the
relationships between di!erent parts of an image (Dosovitskiy et al., 2021). In our work,
we design a lightweight attention mechanism to highlight the motions of interest from a
sequence of frame di!erencing maps.

Power normalization family. Power Normalization (PN) is used to adjust the power or
amplitude of signals to a standard or desired level. It is commonly used in signal and image
processing, as well as in statistical methods such as non-linear pooling of features (Jégou
et al., 2009; Koniusz and Zhang, 2021) and optical flow correction (Wang and Koniusz,
2024). We apply power normalizing functions to enhance or reduce motions in a sequence of
frame di!erencing maps. A review of well-behaved PN functions such as Gamma, MaxExp,
AsinhE (Arcsin hyperbolic function) and SigmE (Logistic a.k.a. Sigmoid functions) can be
found in (Koniusz and Zhang, 2021).

Appendix C. Boundedness and Di!erentiability

Below we proof the boundedness and di!erentiability for both a(m) and b(n).

Boundedness. The hyperbolic tangent function tanh(m) has a range of (↓1, 1). There-
fore, ω |tanh(m)| has a range of (0,ω). Adding a positive constant ε > 0, the range of
ω |tanh(m)|+ ε is (ε,ω+ ε). Thus, a(m), which is ω

ε|tanh(m)|+ϑ
, ranges from ω

ε+ϑ
to ω

ϑ
. This

means a(m) is bounded between ω

ε+ϑ
and ω

ϑ
.

Similarly, tanh(n) has a range of (↓1, 1) and b(n) = ϑ tanh(n) has a range of (↓ϑ, ϑ).
This means b(n) is bounded.
Di!erentiability. To show di!erentiability, we compute the derivative of a(m) with

respect to m: a
↔(m) = ↓

ωg
→(m)

[g(m)]2 , where g(m) = ω |tanh(m)| + ε. The derivative of the

hyperbolic tangent function is tanh↔(m) = 1 ↓ tanh2(m). The derivative of | tanh(m)|
is generally given by d

dm
| tanh(m)| = sgn(tanh(m)) · tanh↔(m) = sgn(tanh(m)) · (1 ↓

tanh2(m)). Therefore, g↔(m) is: g
↔(m) = ω · sgn(tanh(m)) · (1 ↓ tanh2(m)). Thus, the

derivative of a(m) is: a
↔(m) = ↓

ω·ε·sgn(tanh(m))·(1→tanh2(m))
(ε|tanh(m)|+ϑ)2 , where sgn(tanh(m)) is the

sign function, which is 1 for tanh(m) ↔ 0 and ↓1 for tanh(m) < 0.
Similarly, we compute the derivative of b(n) with respect to n: b

↔(n) = ϑ · tanh↔(n) =
ϑ · (1 ↓ tanh2(n)). Since tanh(n) is di!erentiable, b(n) is also di!erentiable, and its
derivative is given by: b↔(n) = ϑ · (1↓ tanh2(n)).

Chen Wang Koniusz Gedeon

Appendix D. Parameter Constraints and Sensitivity Analysis

In this section, we explore the relationships among ϖ, ω and ϑ. We then present a sensitivity
analysis of how these parameters a!ect our power normalization function, and illustrate the
selection process for these parameters.
Constraints on ϖ, ω, and ϑ. Given the function f(D) = 1

1+e
↑
(

ω
ε| tanh(m)|+ϑ

)
(D↑ϖ tanh(n))

, we

need to ensure that f(D) has a minimum value of 0 and a maximum value of 1 over the
interval [↓1, 1]. For simplicity, assume 0 < ϑ < 1, ϖ > 0 and ω > 0.

To satisfy f(1) ↗ 1:

(
ϖ

ω| tanh(m)|+ ε

)
(1↓ ϑ tanh(n)) ↘ +≃

(
ϖ

ω| tanh(m)|+ ε

)
(1↓ ϑ tanh(n)) ⇐ 1 (11)

In the worst-case scenario where | tanh(m)| = 1 and tanh(n) = 1, it follows:

(
ϖ

ω + ε

)
(1↓ ϑ) ⇐ 1

ϖ(1↓ ϑ) ⇐ ω + ε

ϖ ⇐
ω + ε

1↓ ϑ
(12)

To ensure f(↓1) ↗ 0:

(
ϖ

ω| tanh(m)|+ ε

)
(↓1↓ ϑ tanh(n)) ↘ ↓≃

(
ϖ

ω| tanh(m)|+ ε

)
(↓1↓ ϑ tanh(n)) ⇒ ↓1 (13)

In the worst-case scenario where | tanh(m)| = 0 and tanh(n) = ↓1, it follows:

ϖ

ε
· (↓1 + ϑ) ⇒ ↓1

ϖ(↓1 + ϑ) ⇒ ↓ε

ϖ ⇐
↓ε

↓1 + ϑ
(14)

From Eq. (12) and (14), to ensure a practical and feasible relationship between ϖ, ω,
and ϑ, we derive:

ϖ ⇐ max

{
ω + ε

1↓ ϑ
,

↓ε

↓1 + ϑ

}

ϖ = k ·max

{
ω + ε

1↓ ϑ
,

↓ε

↓1 + ϑ

}
(15)

where k ⇐ 1 is a constant ensuring that ϖ is su”ciently large.

Motion meets Attention: Video Motion Prompts

Sensitivity analysis on ϖ, ω, and ϑ. In this section, we analyze the sensitivity of the
function f(D) with respect to the parameters ϖ, ω, and ϑ. Given the function f(D) =

1

1+e
↑
(

ω
ε| tanh(m)|+ϑ

)
(D↑ϖ tanh(n))

, we compute the partial derivatives to understand how small

changes in these parameters a!ect the value of f(D). First, let g(D) =
(

ω

ε| tanh(m)|+ϑ

)
(D↓

ϑ tanh(n)), we calculate the partial derivative of f(D) with respect to ϖ:

ϱf(D)

ϱϖ
=

ϱ

ϱϖ

(
1

1 + e→g(D)

)
,

ϱf(D)

ϱϖ
=

e
→g(D)

(
1 + e→g(D)

)2 ·
ϱg(D)

ϱϖ

Now, calculate ϖg(D)
ϖω

:

ϱg(D)

ϱϖ
=

D ↓ ϑ tanh(n)

ω| tanh(m)|+ ε

Thus,
ϱf(D)

ϱϖ
=

e
→g(D)

(
1 + e→g(D)

)2 ·
D ↓ ϑ tanh(n)

ω| tanh(m)|+ ε
(16)

Similarly, we calculate the partial derivative of f(D) with respect to ω and ϑ:

ϱf(D)

ϱω
=

e
→g(D)

(
1 + e→g(D)

)2 ·

(
↓
ϖ(D ↓ ϑ tanh(n))| tanh(m)|

(ω| tanh(m)|+ ε)2

)
(17)

ϱf(D)

ϱϑ
=

e
→g(D)

(
1 + e→g(D)

)2 ·

(
↓

ϖ tanh(n)

ω| tanh(m)|+ ε

)
(18)

The parameter ϖ scales the exponent inside the Sigmoid function of f(D), defined as
g(D). Increasing ϖ steepens the curve of f(D), causing it to approach 1 more rapidly for
positive D ↓ ϑ tanh(n), and approach 0 more rapidly for negative D ↓ ϑ tanh(n). Con-
versely, ϖ makes f(D) change more gradually. Note that while ϖ a!ects how quickly f(D)
transitions from 0 to 1, it does not directly alter the learning process of m and n. However,
the steepness can indirectly a!ect the gradients during optimization. The parameter ω af-
fects the sensitivity of f(D) by influencing the denominator inside g(D). As ω increases,
the term ω| tanh(m)|+ε in the denominator increases, making g(D) smaller. Consequently,
f(D) changes more gradually. Decreasing ω makes the denominator smaller, causing g(D)
to increase and thereby making f(D) transition more sharply. Similar to ϖ, ω a!ects the
sensitivity of f(D) but does not directly control the learning of m and n. The parameter
ϑ controls the horizontal shift of f(D). Increasing ϑ shifts g(D) to the right by increasing
ϑ tanh(n), thereby reducing f(D) for a given D. Conversely, decreasing ϑ shifts g(D) to
the left, increasing f(D) for a given D. Therefore, ϑ adjusts the position at which f(D)
transitions from 0 to 1, a!ecting the predictions but not directly influencing the learning
process of m and n.

Below we show the derivatives with respect to m and n:

Chen Wang Koniusz Gedeon

ϱf(D)

ϱm
=

e
→g(D)

(
1 + e→g(D)

)2 ·
ϖω tanh↔(m) · (D ↓ ϑ tanh(n))

(ω| tanh(m)|+ ε)2
(19)

ϱf(D)

ϱn
=

e
→g(D)

(
1 + e→g(D)

)2 ·
↓ϖϑ · tanh↔(n)

ω| tanh(m)|+ ε
(20)

While ϖ, ω and ϑ play crucial roles in shaping f(D) and its behavior, their impact
on the learning of m and n is indirect. The learning process for m and n depends more
directly on how well f(D) fits the video data and the gradients of m and n with respect
to the loss function. Therefore, while tuning ϖ, ω and ϑ is important for optimizing f(D),
their influence on the learnability of m and n is secondary to the fitting and optimization
process itself.
Parameter selection and analysis. Considering the constraints (Eq. (15)), sensitivity
analysis (Eq. (16) – (20)) and optimisation (Eq. (7) as the loss function), we simply choose
ω = 0.45 and ϑ = 0.6 (small constant ε = 0.1 as in the main paper):

ϖ = k ·max

{
0.45 + 0.1

1↓ 0.6
,

↓0.1

↓1 + 0.6

}

= k ·max{1.375, 0.25}

= 1.375k (21)

We set ϖ = 5 (k ↗ 3.6).

The roles of ϖ, ω, and ϑ. We now provide a detailed analysis of the selected ϖ, ω,
and ϑ values. With ϖ = 5 and ω = 0.45 in our power normalization function (Eq. (3)):
if the learnable | tanh(m)| = 0, the slope a(m) (Eq. (2)) becomes the steepest, leading
to significant changes around the learnable shift b(n); conversely, if | tanh(m)| = 1, the
slope is the most gentle. This pair of parameters allows flexible adjustment of the slope,
which defines the strength of motion modulation, through the learnable and well-bounded
| tanh(m)|, resulting in a wide slope range from 9.09 to 50 (see Fig. 3 (b)).
On the other hand, parameter ϑ = 0.6 controls the maximum shift for the threshold
(Eq. (2), and also see Fig. 3 (c)). The learnable tanh(n), ranging from -1 to 1, determines
the degree (e.g ., tanh(n) = 1 indicates a maximum rightward shift of 0.6) and the direction
(e.g ., positive for right, negative for left) of shift.
The roles of the tanh function. Therefore, the tanh(·) function in our power normal-
ization achieves several objectives: (i) it bounds the parameter search space of slope and
shift between -1 and 1, allowing for free learning of m and n, (ii) it e!ectively adjusts the
strengths of motion modulation in slope, where | tanh(·)| = 0 indicates the steepest slope
and 1 indicates the gentlest slope, (iii) it controls the direction of shift based on the sign of
tanh(·), where a negative value indicates a left shift and a positive value indicates a right
shift, and (iv) it adapts the threshold for motion modulation based on data properties,
e.g ., frame di!erencing maps, are also range from -1 and 1, allowing the shift to consider
both positive and negative motions.

Motion meets Attention: Video Motion Prompts

Table 2: Variant study of fine-tuning on MPII Cooking 2 using a TimeSformer model pre-
trained on Kinetics-600. We evaluate model variants, including pretrained and
baseline (finetuned without VMPs) models, with and without the use of VMPs.
This setup explores all potential fine-tuning combinations. ✁ and ✂ denote fine-
tuning and frozen states, respectively. ‘✁Baseline’ denotes a second round of
fine-tuning. We highlight improvements in red. Fig. 7 shows insightful compar-
isons of VMPs-based finetuning models across various layers of TimeSformer.

Pretrained
VMPs +

Baseline
VMPs + VMPs + VMPs +

✂Pretrained ✁Pretrained ✂Baseline ✁Baseline

Top-1 36.6 37.1↗0.5 50.6 56.6↗6.0 56.2↗5.6 57.1↗6.5

Top-5 66.9 66.2↘0.7 81.8 84.4↗2.6 84.3↗2.5 83.7↗1.9

We notice that this set of parameters gives reasonably good performance on both generic
and fine-grained action recognition datasets, so we use it for evaluations across various action
recognition datasets and model architectures.

Appendix E. Additional Visualisations & Discussions

E.1. Exploring the Impact of Video Motion Prompts (VMPs)

The impact of VMPs on fine-tuning. We explore four sets of experiments using
Eq. (7) as the loss function: (i) [VMPs+✂Pretrained] freezing the Kinetics-600 pretrained
model and training only our motion prompt layer, (ii) [VMPs+✁Pretrained] finetuning the
Kinetics-600 pretrained model, including the motion prompt layer, (iii) [VMPs+✂Baseline]
freezing the finetuned baseline model and training only our motion prompt layer, and (iv)
[VMPs+✁Baseline] end-to-end finetuning of the finetuned baseline model, including the
motion prompt layer. We choose MPII Cooking 2 and use TimeSformer as the backbone.

The evaluations are summarized in Table 2. We observe that using VMPs outperforms
[Pretrained] by 0.5% in terms of Top-1 accuracy. We also observe that fine-tuning the
Kinetics-600 pretrained model with VMPs ([VMPs+✁Pretrained]), freezing the baseline
model weights while training only the VMPs ([VMPs+✂Baseline]), and performing a second
round of fine-tuning on the baseline model with VMPs ([VMPs+✁Baseline]) outperformed
the baseline model (finetuned on MPII Cooking 2 without VMPs) by 6%, 5.6%, and 6.5%,
respectively. We include an intriguing plot (Fig. 7) that compares per-layer weight similarity
among these models, showing the e!ects of VMP-based finetuning across various layers
and/or blocks of TimeSformer.

VMPs in the context of various pretrained models. Table 3 presents the results.
The SSv2 pretrained model achieved the best results after being fine-tuned on the MPII
Cooking 2 dataset. However, fine-tuning with the motion prompt layer significantly boosts
performance for both Top-1 and Top-5 accuracy, particularly for models with lower baseline
performance. Notably, the model pretrained on the Kinetics-600 dataset exhibits the most
significant improvement (a 6% increase in top-1 accuracy) when fine-tuning with the motion

Chen Wang Koniusz Gedeon

Table 3: Evaluations of TimeSformer pretrained on di!erent datasets for fine-tuning, with
and without the motion prompt layer, on MPII Cooking 2. We highlight improve-
ments in red.

Model
HowTo100M SSv2 Kinetics-400 Kinetics-600

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

TimeSformer 50.4 82.2 53.7 81.4 50.0 79.4 50.6 81.8
+VMPs 54.5 ↗4.1 82.5 ↗0.3 55.6 ↗1.9 83.7 ↗2.3 55.2 ↗5.2 82.5 ↗3.1 56.6 ↗6.0 84.4 ↗2.6

Table 4: Cross-dataset evaluation with and without video motion prompts. Both top-1 and
top-5 performance are reported, with improvements highlighted in red.

FineGym to MPII MPII to FineGym

Baseline +VMPs Baseline +VMPs

Top-1 34.1 34.3↗0.2 47.2 46.5↘0.7

Top-5 63.0 64.1↗1.1 84.3 82.6↘1.7

prompt layer. Overall, consistent improvements are observed across all pretrained models
with the addition of the motion prompt layer.
Evaluating VMPs across di!erent datasets. We evaluate the generalizability of fine-
tuned TimeSformer+VMPs models on MPII-cooking 2 and FineGym datasets using unseen
videos in Table 4. For the model finetuned on MPII-cooking 2, we use FineGym as the test
set, training only the final fully connected (FC) layer for 5 epochs while keeping the other
layer weights frozen. We also perform the evaluation in the reverse scenario.

As shown in the table, the model trained on a moving camera scene and then adapted to
a static camera scene (FineGym to MPII) demonstrates improved performance, with Top-1
and Top-5 accuracy being 0.24% and 1.15% higher, respectively.

Interestingly, when the model is trained on a static camera scene and then adapted to
an unseen moving camera scene (MPII to FineGym), performance slightly decreases, with
Top-1 and Top-5 accuracy being 0.71% and 1.78% lower, respectively. This is likely due to
the di”culty in adapting learned attention mechanisms from static camera videos to moving
camera scenarios.
Analyzing VMPs in model fine-tuning through per-layer weight similarity. We
choose TimeSformer pretrained on Kinetics-600 as our backbone. We use cosine similarity
to compare the per-layer weights between the baseline model (pretrained on Kinetics-600
and then finetuned on MPII Cooking 2) and each model variant finetuned with our VMPs.
The purpose of this comparison is to assess the e!ects of our VMPs on model finetuning
across di!erent layers of the backbone network.

We conduct a detailed analysis on four pairs of experiments: (i) pretrained on Kinetics-
600 vs. model finetuned on MPII Cooking 2 (baseline, no VMPs), (ii) baseline vs. finetuned
with our VMPs, (iii) baseline vs. end-to-end finetuning of the finetuned baseline model with
our VMPs (a second round of VMP-based finetuning), and (iv) finetuned with our VMPs

Motion meets Attention: Video Motion Prompts

Figure 7: Roles of VMPs in model finetuning via per-layer weight similarity comparison.
We use TimeSformer pretrained on Kinetics-600 as the backbone, and finetuned
on MPII Cooking 2 with or without VMPs. The vertical axis shows the similarity
scores, ranging from 0 to 1, with higher scores indicating greater similarity be-
tween model weights. The horizontal axis displays the names of the backbone’s
layers. Note that the final projection layer has been removed to better display the
other layers. We use cosine similarity to evaluate the vectorized per-layer weights
across di!erent experimental setups: (i) (blue color) pretrained on Kinetics-600
vs. MPII Cooking 2 finetuned (baseline, no VMPs), (ii) (orange color) baseline
vs. finetuned with VMPs, (iii) (green color) baseline vs. end-to-end VMP-based
finetuning of the baseline model, and (iv) (red color) finetuned with VMPs vs.
second-round VMP-based finetuning. Our VMP-based finetuning demonstrates
significant e!ects across di!erent aspects of model architecture. Firstly, it a!ects
the weights of attention projection layers, using only two learnable parameters to
subtly enhance focus. Secondly, VMPs impact FC layers dedicated to temporal
information embedding, enriching the video processing task with nuanced motion
cues. Thirdly, they a!ect initial layers such as tokens and time embeddings, act-
ing as a adapter to refine the focus on motion and enhance the embeddings of
motion-guided tokens and temporal concepts. These findings show the e!ective-
ness of VMPs in optimizing model for action recognition tasks.

Chen Wang Koniusz Gedeon

Figure 8: Roles of VMPs in model finetuning via per-layer weight similarity comparison.
We use X3D pretrained on Kinetics-600 as the backbone and finetune it on Fin-
eGym, MPII Cooking 2 (MPII), and HMDB-51 split 1 (HMDB-s1). We measure
the per-layer weight similarity between baseline model (no VMPs) and model
finetuned with our VMPs per dataset. The vertical axis depicts similarity scores
ranging from 0 to 1, where higher scores indicate greater similarity between model
weights. The horizontal axis lists the names of X3D’s layers. Note that the fi-
nal projection layer has been removed to better display the other layers. Our
VMP-based finetuning demonstrates significant e!ects across di!erent layers of
X3D. We observe that on HMDB-s1, both the baseline and the models finetuned
with VMPs show high similarities in weights between pairs of layers compared
to FineGym and MPII. This di!erence arises because FineGym and MPII are
designed for fine-grained action recognition, whereas Kinetics-600 shares similar
action types with HMDB-s1, hence minor adjustments in weights are reasonable.
Interestingly, our VMPs notably influence the temporal modeling blocks of X3D.
These findings highlight the e!ectiveness of VMPs in optimizing model for 3D
CNN-based action recognition.

Motion meets Attention: Video Motion Prompts

Figure 9: Roles of VMPs in model finetuning via per-layer weight similarity comparison.
We use SlowFast pretrained on Kinetics-600 as the backbone and finetune it on
FineGym, MPII Cooking 2 (MPII), and HMDB-51 split 1 (HMDB-s1). We mea-
sure the per-layer weight similarity between baseline model (no VMPs) and model
finetuned with our VMPs per dataset. We explore three variants: adding VMPs
to (i) the slow stream only (s), (ii) the fast stream only (f), and (iii) both the slow
and fast streams (s&f). The vertical axis depicts similarity scores ranging from 0
to 1, where higher scores indicate greater similarity between model weights. The
horizontal axis lists the names of SlowFast’s layers. Note that the final projec-
tion layer has been removed to better display the other layers. Our VMP-based
finetuning demonstrates significant e!ects across di!erent layers of SlowFast. We
observe that on HMDB-s1, both the baseline and the models finetuned with VMPs
show high similarities in weights between pairs of layers compared to FineGym
and MPII. This di!erence arises because FineGym and MPII are designed for
fine-grained action recognition, whereas Kinetics-600 shares similar action types
with HMDB-s1, hence minor adjustments in weights are reasonable. Interest-
ingly, our VMPs notably influence the temporal modeling blocks of SlowFast.
These findings highlight the e!ectiveness of VMPs in optimizing model for 3D
CNN-based action recognition.

Chen Wang Koniusz Gedeon

Table 5: Evaluation of the VMPs layer’s e!ectiveness under various video degradation con-
ditions, including salt-and-pepper noise and reduced resolution from compression.
This table presents the performance of the TimeSformer model pretrained on
Kinetics-600, comparing scenarios with and without the motion prompt layer in
both static and moving camera settings. The results show the improvements in
action recognition performance facilitated by our motion prompts in the presence
of degraded video quality.

Origin Pepper-salt noise Compression
Baseline +VMPs Baseline +VMPs Baseline +VMPs

FineGym
Top-1 83.6 84.4↗0.8 83.1 83.1 79.7 80.5↗0.8

Top-5 98.7 98.5↘0.2 98.4 98.3↘0.1 97.7 97.6↘0.1

MPII
Top-1 50.6 56.6↗6.0 51.2 53.2↗2.0 48.1 52.8↗4.7

Top-5 81.8 84.4↗2.6 82.0 83.5↗1.5 78.6 80.1↗1.5

vs. a second round of finetuning with VMPs. Fig. 7 summarizes our results. Table 2 in the
main paper presents the quantitative results on variant study of finetuning.

Interestingly, we observe that our VMP-based finetuning: (i) influences the weights of each
attention projection layer. It is worth noting that our VMPs only consist of two learnable
parameters and subtly adjust the attention mechanism to enhance focus. (ii) impacts
the weights of FC layers used for embedding temporal information. This highlights how
our VMPs enrich the video processing task with nuanced motion cues. (iii) a!ects initial
layers such as tokens and time embeddings. This demonstrates that our VMPs act as an
adapter, refining not only the input video data’s focus on motion but also the embeddings
of motion-guided tokens and temporal concepts.

We also observe that the similarity measures for the layer weights between the model
finetuned with VMPs and the variant of a second round of finetuning with VMPs are
higher than those of the other three experiments. Notably, both the model finetuned with
VMPs and the second round of finetuning with VMPs achieve superior performance. This
indicates that models tuned with VMPs tend to show very similar learned weights per layer,
as evidenced by significantly higher similarities compared to the other three experiments.

Fig. 8 and 9 present additional plots on all three action recognition datasets using X3D
and SlowFast backbones. We also observed that our VMPs influence the temporal modeling
blocks in these 3D CNN-based architectures.
VMPs in addressing extreme variations in video quality and camera movements.
We evaluate the e!ectiveness of the VMPs layer under various conditions by synthesizing
low-quality videos in two distinct ways. First, we introduce salt-and-pepper noise, with a
probability of 0.01 for each pixel to display either salt or pepper characteristics. Second, we
apply a compression algorithm that reduces the original video quality by half, then upsample
it back to the original input size to reduce resolution. This dual approach allows us to assess
the performance enhancements provided by the VMPs layer in handling di!erent types of
video degradation.

Motion meets Attention: Video Motion Prompts

Figure 10: Action recognition performance comparison on selected object-centric actions
from the MPII Cooking 2 dataset, with and without the use of video motion
prompts (VMPs). The figure illustrates the improvement in accuracy for ac-
tions such as cut dice, gather, and slice, particularly when combining motion
information with object silhouettes and appearances.

We finetune the TimeSformer pretrained on Kinetics-600 with and without our motion
prompt layer. The model without the motion prompt layer serves as the baseline. Below, we
present experimental results and analysis regarding video quality and camera movements.
Table 5 summarizes the results. We observe that our video motion prompts lead to improved
performance in both static and moving camera scenes, even in the presence of low-resolution
and noisy videos.

Our video motion prompts are computed based on the frame di!erencing maps; there-
fore, (i) color variations, such as dark and bright pixels, (ii) video quality, and (iii) camera
movements can a!ect the quality of the motion prompts. Our future work will focus on
exploring the use of motion prompts at the patch level. For instance, we plan to divide
video frames into equal-sized image patches and apply motion prompts to each patch indi-
vidually. Additionally, we will investigate integrating our motion prompts as intermediate
layers within the network to modulate feature maps or feature vectors. This approach aims
to address issues related to extreme variations in videos and camera movements.

VMPs in understanding visual and motion concepts. Video models rely on both
spatial information, such as textures and foreground objects, and temporal information,
including motion and evolving dynamics over time. Motion alone is often insu”cient for

Chen Wang Koniusz Gedeon

Table 6: Performance evaluation of action recognition tasks involving specific objects from
the MPII Cooking 2 dataset. This table presents the accuracy of the TimeSformer
model pretrained on Kinetics-600 and fine-tuned on MPII Cooking 2, comparing
results with and without the integration of VMPs. The accuracy in the third
column reflects the proportion of correctly classified videos per action class, while
the last column summarizes overall performance across the entire test set. Results
indicate that the combination of motion and object information enhances action
recognition for actions such as cut dice, gather, and slice.

Action Model Sample acc. Total acc.

cut dice
Baseline 0.0 18.9
+VMPs 6.0 27.3

gather
Baseline 11.1 29.6
+VMPs 33.3 44.0

slice
Baseline 7.7 6.9
+VMPs 53.9 17.2

wash
Baseline 100.0 71.7
+VMPs 100.0 78.7

tasks such as action recognition and is unlikely to perform well independently. Typically,
motion occurs alongside object silhouettes and appearances; thus, combining both motion
and object information can enhance performance.

To validate the correlation between motion and object, we select a subset of four actions
involving specific objects from the MPII Cooking 2 dataset. We use the TimeSformer
backbone pretrained on Kinetics-600 and fine-tuned on MPII Cooking 2, evaluating both
with and without VMPs. Each subset focuses on a specific object across the selected
actions. Below, we present our experimental results. The accuracy in the third column is
calculated as the ratio of the total number of correctly classified videos (across all selected
object categories) to the total number of sampled videos per action class. The last column
displays the overall performance on the entire test set for these actions.

Fig. 10 shows the performance on a subset of test samples. We observe that, for the
selected objects, using VMPs generally improves performance on actions such as cut dice,
gather and slice.

Table 6 shows that combining both motion and object information leads to improved
action recognition performance.

E.2. Analysis of Regularization, Complexity, and Motion Modulation

The role of regularization in static and moving camera scenarios. We examine the
e!ects of applying a regularization term on models fine-tuned on both static and moving
camera datasets in Table 7. In static camera settings (MPII Cooking 2), smaller regulariza-
tion values (ς) generally result in better performance, with the highest accuracy observed
when ς = 0. However, for moving camera scenarios (FineGym), larger ς values improve

Motion meets Attention: Video Motion Prompts

Table 7: E!ects of ς in the regularization term on (left) MPII Cooking 2 (static camera) and
(right) FineGym (moving camera). We experiment with two backbones (TimeS-
former and SlowFast), with the top performance highlighted in bold.

0 0.1 0.5 1 2

TimeSformer 56.6 56.2 55.7 55.6 55.6
SlowFast (slow-only) 55.5 53.2 53.5 52.9 -
SlowFast (fast-only) 53.1 53.1 55.2 52.8 -
SlowFast (slow&fast) 54.4 54.3 56.8 53.6 -

0 0.5 2.0 2.5 5

TimeSformer 81.9 83.4 84.1 84.4 83.3
SlowFast (slow-only) 89.3 88.2 88.3 88.6 89.7
SlowFast (fast-only) 89.6 90.3 90.3 90.0 90.2
SlowFast (slow&fast) 89.7 88.5 90.1 88.6 88.7

performance by smoothing attention maps, addressing temporal discontinuities caused by
continuous changes in camera viewpoint while tracking moving subjects.

In the static camera scenario (MPII Cooking 2), the regularization term appears to
have a limited impact, with the models achieving optimal performance at smaller ς values.
Specifically, TimeSformer performs best when no regularization is applied (ς = 0), and for
the SlowFast variants, moderate values of ς tend to decrease performance.

Conversely, in the moving camera scenario (FineGym), the regularization term becomes
more important. Larger ς values contribute to smoothing the attention maps, which is
crucial in videos where the camera continuously changes its viewpoint. This helps miti-
gate temporal discontinuity, leading to improved performance. For instance, TimeSformer
reaches its peak performance at ς = 2.5, while SlowFast (slow-only) and SlowFast (fast-
only) also benefit from higher regularization values, showing the importance of adjusting
the regularization term according to the nature of the video data.

Computational complexity analysis. The computational cost for generating the frame
di!erencing map is O(H ⇑ W), where H and W represent the frame height and width,
respectively. The learnable PN acts element-wise on the frame di!erencing map, resulting
in a computational complexity of O(H ⇑ W) as well. The element-wise multiplication
between the generated attention map and the original frame also incurs a cost of O(H⇑W).
Therefore, the total computational cost of the motion prompt layer remains O(H ⇑ W).
Table 8 summarizes our results.

Attention maps and motion prompts. Below we show more visualisations of motion
prompts and attention maps on MPII Cooking 2 and HMDB-51.

We notice that in MPII Cooking 2, the background is lighter orange, indicating lower
attention scores (Fig. 12, 13 and 14). In contrast, in HMDB-51 (Fig. 15 and 16), the
background is much darker red, indicating higher attention scores due to the videos being
captured by moving cameras.

Additionally, we observe that in HMDB-51, the attention maps and motion prompts
with and without the regularization term are very similar (Fig. 15 and 16). This behavior
is likely because (i) the learned slope and shift parameters for both cases are very close, (ii)
the optimal regularization penalty parameter ς is small (0 vs. 0.001), and (iii) HMDB-51
is a noisy dataset where camera motions are often more significant than human motions.

Chen Wang Koniusz Gedeon

Table 8: Computational costs with and without the use of the motion prompt layer (eval-
uated on HMDB-51 split 1). The experiments are conducted with a batch size
of 8, and the reported times (in seconds) reflect the processing time per batch.
Each experiment is run 10 times, and we report the mean and standard deviation.
The results show that the motion prompt layer adds a negligible computational
overhead, as seen in the ‘Extra’ columns.

Model
Training Testing

Forward Extra Backward Extra Forward Extra

SlowFast 0.028±0.023 0.269±0.027 0.005±0.027
+VMPs (slow-only) 0.029±0.037 +0.001 0.271±0.017 +0.002 0.005±0.019 +0.000
+VMPs (fast-only) 0.030±0.022 +0.002 0.290±0.023 +0.021 0.009±0.018 +0.004
+VMPs (slow&fast) 0.030±0.023 +0.002 0.293±0.017 +0.024 0.011±0.021 +0.006
C2D 0.007±0.009 0.076±0.005 0.003±0.016
+VMPs 0.008±0.011 +0.001 0.079±0.007 +0.003 0.004±0.012 +0.001
I3D 0.007±0.010 0.106±0.004 0.003±0.019
+VMPs 0.008±0.011 +0.001 0.121±0.008 +0.015 0.005±0.013 +0.002
X3D 0.019±0.015 0.178±0.005 0.023±0.009
+VMPs 0.020±0.014 +0.001 0.179±0.005 +0.001 0.024±0.009 +0.001
TimeSformer 0.141±0.011 0.253±0.001 0.010±0.020
+VMPs 0.161±0.011 +0.020 0.255±0.001 +0.002 0.011±0.019 +0.001

We also observe that the attention maps show several interesting patterns: they (i) high-
light the motion regions in the current frame, (ii) capture potential movements from the
previous frame, and (iii) attend to background scenes a!ected by camera motions. These
observations indicate that our attention maps, guided by only two learnable parameters,
e!ectively highlight visual contents of interest while capturing dynamics over short periods
of time.
In static camera scenes, such as MPII Cooking 2, the attention mechanism highlights
motion regions, particularly the hand regions, which are central to cooking activities. In
contrast, for moving camera scenes where the viewpoint continuously changes to track
subjects, as in HMDB-51 and FineGym, the attention tends to highlight the background.
Interestingly, we observe that our motion prompt layer also focuses on the silhouettes of
human subjects and the boundaries of objects in these dynamic camera scenes.

Per-class accuracy on MPII Cooking 2. Fig. 11 shows the per-class accuracy compar-
ison between the baseline model (pre-trained on Kinetics-600 and then finetuned on MPII
Cooking 2 without VMPs) and our VMP-enhanced model on MPII Cooking 2. We use
TimeSformer as the backbone. As shown in the figure, integrating our VMPs results in
improvements in the accuracy of 34 fine-grained actions (out of a total of 67 actions). The
model enhanced with VMPs is able to classify actions that are previously challenging for the
baseline model (e.g ., with 0 accuracy), such as read, rip open, and test temperature. Fur-
thermore, The model finetuned with VMPs also outperforms the baseline model on actions
like open, peel, push down, slice, stir, take apart, and taste by a large margin.

Motion meets Attention: Video Motion Prompts

Figure 11: Per-class accuracy comparison is conducted between the baseline model (pre-
trained on Kinetics-600 and then finetuned on MPII Cooking 2, without VMPs)
and our VMP-enhanced model on MPII Cooking 2, using TimeSformer as the
backbone. The integration of our VMPs results in improvements across 34 fine-
grained actions out of a total of 67. Notably, with our VMPs, the model achieves
accuracies for actions previously classified with 0 accuracy in the baseline model,
such as read, rip open, and test temperature.

Figure 12: E!ects of the regularization term. We use the arrange action from MPII Cooking
2 for visualization. The first two rows show motion prompts and attention maps
without regularization (ς = 0, learned a = 23.45 and b = 0.03). The last two
rows show results with regularization (ς = 2, learned a = 10.90 and b = 0.08).
Regularization removes unnecessary motion details, resulting in smoother and
cleaner attention maps.

Chen Wang Koniusz Gedeon

Figure 13: E!ects of the regularization term. We use the shake action from MPII Cooking
2 for visualization. The first two rows show motion prompts and attention maps
without regularization. The last two rows show results with regularization.

Figure 14: E!ects of the regularization term. We use the throw in garbage action from
MPII Cooking 2 for visualization. The first two rows show motion prompts and
attention maps without regularization. The last two rows show results with
regularization.

Motion meets Attention: Video Motion Prompts

Figure 15: E!ects of the regularization term. We use the pour action from HMDB-51
for visualization. The first two rows show motion prompts and attention maps
without regularization (ς=0, learned a=20.32 and b=↓0.36). The last two rows
show results with regularization (ς=0.001, learned a=21.70 and b=↓0.39). We
observe that in HMDB-51, the attention maps and motion prompts with and
without the regularization term are very similar. This behavior is likely because
(i) the learned slope and shift parameters for both cases are very close, (ii) the
optimal penalty parameter ς is small (0 vs. 0.001), and (iii) HMDB-51 is a noisy
dataset where camera motions are often more significant than human motions.

Figure 16: E!ects of the regularization term. We use the pushup action from HMDB-51
for visualization. The first two rows show motion prompts and attention maps
without regularization. The last two rows show results with regularization.

Chen Wang Koniusz Gedeon

(a) Action run from HMDB-51.

(b) Action situp from HMDB-51.

(c) Action push down from MPII Cooking 2.

(d) Action whip from MPII Cooking 2.

(e) Action (Balance Beam) leap forward with leg change from FineGym.

(f) Action (Uneven Bar) giant circle backward from FineGym.

(g) Anomaly explosion from UCF-Crime.

(h) Anomaly fighting from UCF-Crime.

Figure 17: We compare existing PN with our PN on motion modulation. The first two
columns show consecutive video frames, and the third column displays 3D surface
plots of frame di!erencing maps. Columns 4-7 show attention outputs in both
attention maps and 3D surface plots for Gamma, MaxExp, SigmE, and AsinhE.
The final column shows our PN’s outputs, which capture various motions across
di!erent video types. For UCF-Crime, we apply the slope and shift learned from
MPII Cooking 2, as both are captured by static cameras.

Motion meets Attention: Video Motion Prompts

(a) Action run from HMDB-51.

(b) Action situp from HMDB-51.

(c) Action push down from MPII Cooking 2.

(d) Action whip from MPII Cooking 2.

(e) Action (Balance Beam) leap forward with leg change from FineGym.

(f) Action (Uneven Bar) giant circle backward from FineGym.

(g) Anomaly explosion from UCF-Crime.

(h) Anomaly fighting from UCF-Crime.

Figure 18: Visualizations include original consecutive frames (first two columns), frame dif-
ferencing maps (third column), pairs of attention maps and motion prompts for
Gamma, MaxExp, SigmE, and AsinhE (fourth to eleventh columns). The last
two columns display our attention maps and motion prompts. Our attention
maps (i) depict clear motion regions, (ii) highlight motions of interest and/or
contextual environments relevant to the motions, and our motion prompts cap-
ture rich motion patterns. Existing PN functions only focus on motions, often
capture noisy patterns and without emphasizing contexts.

Chen Wang Koniusz Gedeon

Comparison of PN functions on motion modulation. Our qualitative results in
Fig. 17. We notice that for static cameras, such as in MPII Cooking 2, our PN function
focuses on motion regions, and captures more fine-grained motion patterns compared to
other PN functions, which tend to capture more noisy motions.

For moving cameras, such as those in HMDB-51 and FineGym, our PN function captures
the background context while the bright regions highlight the motions of interest. This is
reasonable as most motions are relevant to surrounding objects and contexts. We apply
our learned slope and shift parameters from MPII Cooking 2 to the UCF-Crime dataset, as
both are captured by static cameras. Interestingly, our PN function is able to highlight the
contextual environment while emphasizing the anomaly motion regions. This demonstrates
that our motion prompt layer, equipped with our new PN function, is motion-dependent,
attention-driven and generalizable to di!erent video types, including anomaly detection
videos.

Fig. 18 compares visualizations of attention maps and motion prompts generated by var-
ious PN functions, including ours. As shown in the figure, existing PN functions typically
focus on motions, often capturing noisy patterns and frequently disregarding the contextual
environment in which the motion occurs. In contrast, our PN function captures both mo-
tions of interest and relevant contexts. For instance, anomalies are largely contextual, and
our PN function e!ectively captures both the motions and their surrounding environments.

	Introduction
	Approach
	Learnable Power Normalization
	Motion Prompt Layer: An Adapter

	Experiment
	Setup
	Evaluation

	Conclusion
	Related Work
	Preliminary
	Boundedness and Differentiability
	Parameter Constraints and Sensitivity Analysis
	Additional Visualisations & Discussions
	Exploring the Impact of Video Motion Prompts (VMPs)
	Analysis of Regularization, Complexity, and Motion Modulation

