
Under review as a conference paper at ICLR 2021

SVMAX: A FEATURE EMBEDDING REGULARIZER

APPENDIX

Anonymous authors
Paper under double-blind review

The following appendix sections A and B extend their corresponding sections in the main paper. For
instance, the extended-approach appendix A extends the approach section in the main paper.

A APPENDIX: EXTENDED APPROACH

This section presents the lower and upper bounds of N-pair and angular losses. Then, analyze a
theoretical corner case for SVMax.

A.1 N-PAIR AND ANGULAR LOSSES

Lower and Upper Bounds of Ranking Losses: The N-pair and angular losses are bounded when
their feature embeddings are L2-normalized. These bounds depend on the number of negative sam-
ples inside the training mini-batch B. Each mini-batch contains a single positive pair of samples
per class, {a, p}, with all remaining samples, n, representing negative samples of that class. a, p, n
denote the anchor, positive and negative samples, respectively. This gives |n| = b− 2 as the number
of negative samples w.r.t. a mini-batch of size b. Both losses also use an inner product to quantify
similarity between feature embeddings, i.e., ∈ [−1, 1], allowing us to find our bounds. Equation A1
shows the N-pair loss (NPL) formulation:

NPL = − log
exp(bacbpc)

exp(bacbpc) +
∑
n∈B exp(bacbnc)

, (A1)

where each n is a negative sample, a is the anchor, and p is the positive sample inside the mini-
batch B. b•c is the embedding function (encoder). Thus, the lower and upper bounds for the L2-
normalized N-pair loss are the following:

[L,U]NPL = [log (e2 + |n|)− 2, log (e2|n|+ 1)]. (A2)

Equations A3 and A4 show the angular loss (AL) formulation:

AL = log

[
1 +

∑
n∈B

exp(fa,p,n)

]
(A3)

s.t. fa,p,n = 4 tan2 α(bac+ bpc)T bnc − 2(1 + tan2 α)bacT bpc, (A4)

where, again, each n is a negative sample, a is the anchor, p is the positive sample inside the mini-
batch B, and b•c is the embedding function (encoder). The parameter α is a hyperparameter chosen
before training and is thus a fixed value. As such, the lower and upper bounds for L2-normalized
fa,p,n are:

[L,U]fa,p,n
=
[
−10 tan2 α− 2, 6 tan2 α− 2

]
. (A5)

We use α = 45◦ in all our experiments. This gives tanα = 1, [L,U]fa,p,n ∈ [−12, 4] and our
angular loss bounds as:

[L,U]AL =
[
log (e−12|n|+ 1), log (e4|n|+ 1)

]
. (A6)

A.2 SVMAX CORNER CASE

Theoretically, the mean singular value sµ can reach its upper bound for a mini-batch, even if the
feature embedding is not perfectly uniform. During training, each mini-batch contains p different

1

Under review as a conference paper at ICLR 2021

Figure A1: The feature embeddings of two independent mini-batches with p = 4 (Left) and p = 8
(Right) classes on the 2D unit circle. Different colors denote different classes. The mean singular
value sµ is maximum if (1) samples from the same class have zero standard deviation and (2) the p
sampled classes are distributed perfectly in the embedding space.

CUB-200-2011 Stanford CARS196 Stanford Online Products

Query Top 1 Top 2 Top 3 Query Top 1 Top 2 Top 3 Query Top 1 Top 2 Top 3

Figure A2: Qualitative retrieval evaluation using three datasets: CUB-200-2011, Stanford
CARS196, and Stanford Online Products. For a given query image, the three nearest neighbors
are depicted. Green and red outlines denote class match and mismatch, respectively

classes and l different samples per class, i.e., the batch size b = p × l. The sampled classes p in
a mini-batch is smaller than the number of total classes C in the dataset, i.e., p < C. If (1) the
sampled p classes are perfectly distributed in the feature embedding and (2) the l samples for each
class have zero standard deviation, the mean singular value equals the upper bound (sµ = U) even
if the feature embedding for the whole dataset is not uniform. Figure A1 illustrates this scenario.

In practice, this will never happen during training because (1) the feature embedding dimension is
large enough (e.g., d = 128), (2) samples in the training mini-batches are randomly sampled, and
(3) samples are independent across mini-batches. This corner case is omitted from the main paper
because it undermines the paper’s flow and clarity.

B APPENDIX: EXTENDED EXPERIMENTS

This section provides further quantitative evaluations for SVMax when b ≥ d. Then, we evaluate the
performance of SVMax on small mini-batches, i.e., b < d. Finally, we evaluate the computational
complexity of SVMax empirically. The supplementary video vividly shows how SVMax speeds
convergence on the MNIST dataset.

Evaluation Metrics: For quantitative evaluation, we leverage the Recall@K metric and Normal-
ized Mutual Info (NMI) on the test split. The NMI score evaluates the quality of cluster alignments.
NMI = I(Ω,C)√

H(Ω)H(C)
, where Ω = {ω1, .., ωn}, is the ground-truth clustering, while C = {c1, ...cn}

is a clustering assignment for the learned embedding. I(•, •) and H(•) denote mutual information
and entropy, respectively. We use K-means to compute C.

Quantitative Evaluation: In the main paper, SVMax is evaluated quantitatively using GoogLeNet.
Figures A3 and A4 present quantitative evaluation using ResNet50 on CUB-200-2011 and Stanford
CARS196, respectively. Figure A2 presents a qualitative retrieval evaluation using the three datasets.

Our evaluation hyperparameters (e.g., learning rate and batch size) do not favor a particular ranking
loss. The ideal hyperparameters depend on the ranking loss and other factors such as the dataset

2

Under review as a conference paper at ICLR 2021

0.0001 0.001 0.01

30

40

50
R

@
1

Angular

0.0001 0.001 0.01

30

40

N-pair

0.0001 0.001 0.01

40

45

50

Triplet

0.0001 0.001 0.01

30

40

50

Contrastive

Vanilla Spread-out SVMax

Figure A3: Quantitative evaluation on CUB-200-2011 using ResNet50. The X axis denotes the
learning rate lr and the Y-axis denotes recall@1 performance.

0.0001 0.001 0.01

40

50

R
@

1

Angular

0.0001 0.001 0.01
30

40

50

60

N-Pair

0.0001 0.001 0.01
30

40

50

60

Triplet

0.0001 0.001 0.01
30

40

50

60

Contrastive

Vanilla Spread-out SVMax

Figure A4: Quantitative evaluation on Stanford CARS196 using ResNet50.

size, batch size, and the network architecture. The hyperparameters in the main paper are incon-
sistent with the N-pair loss because this loss assumes an un-normalized embedding. In table A1,
we evaluate SVMax with the un-normalized embedding of three datasets. We leverage both the
unbound SVMax (UN SVMax) in equation A7 and the bounded SVMax (SVMax) in equation A8.
Surprisingly, the bounded SVMax, which assumes an L2-normalized embedding, achieves compet-
itive performance on the un-normalized embedding. It is important to note that while N-pair loss
assumes an un-normalized embedding, N-pair loss regularizes the L2-norm of the embedding vec-
tors to be small. Table A1 shows that the spread-out regularizer degenerates severely, while SVMax
remains resilient. The spread-out regularizer requires an L2-normalized embedding while SVMax
does not. In these experiments, the unbound SVMax uses λ = 0.01 while the bounded SVMax uses
λ = 1.

LNN = Lr − λ
1

d

d∑
i=1

si = Lr − λsµ, (A7)

LNN = Lr + λ exp(
U − sµ
U − L

). (A8)

Figures A5 and A6 present a quantitative evaluation with various embedding dimensions. We use
batch sizes b = {288, 72} and embedding dimensions d = {256, 64}. In this experiment, we
employ a MobileNetV2 Sandler et al. (2018) to fit our neural network on a 24GB GPU. The N-pair
and angular loss evaluations are dropped in Figure A6 because these losses assume a single pair of
anchor-positive per class. The CARS196, with 98 training classes, is too small to provide 144 = 288

2
anchor-positive pairs.

In the main paper, we discuss two factors that contribute to model collapse in retrieval networks:
learning rate and dataset intra-class variations. However, additional factors can also contribute.
For instance, the likelihood of model collapse decreases as the mini-batch size b increases. In the
early training stages, a large learning rate will induce a noisy gradient. A large training mini-batch
mitigates this noisy gradient and learns a better feature embedding.

3

Under review as a conference paper at ICLR 2021

Table A1: Quantitative evaluation using N-pair loss without L2-normalization on three datasets and
GoogLeNet with batch size b = 144, embedding dimension d = 128 and multiple learning rates
lr = {0.01, 0.001, 0.0001}. 4R@1 column indicates the R@1 improvement margin relative to the
vanilla ranking loss.

lr = 0.01 lr = 0.001 lr = 0.0001

Method NMI R@1 R@8 4R@1 NMI R@1 R@8 4R@1 NMI R@1 R@8 4R@1

N-pair on CUB-200-2011

Vanilla 0.560 46.08 79.09 - 0.553 44.24 78.12 - 0.555 45.32 78.71 -
Spread-out degenerate (Trn loss =¿ nan) - 0.560 45.80 78.66 1.55 0.537 42.67 77.16 −2.65
UN SVMax (Ours) 0.563 45.80 79.73 −0.29 0.553 44.90 78.58 0.66 0.555 44.97 78.80 −0.35
SVMax (Ours) 0.561 46.27 79.86 0.19 0.563 46.40 79.69 2.16 0.563 45.70 79.27 0.37

N-pair on Stanford CARS196

Vanilla 0.606 65.49 90.32 - 0.5983 64.92 90.00 - 0.480 44.13 79.77 -
Spread-out degenerate (Trn loss =¿ nan) - 0.109 2.58 14.07 −62.34 0.393 31.53 67.85 −12.59
UN SVMax (Ours) 0.606 65.45 90.87 −0.04 0.592 64.92 90.08 0 0.481 44.25 79.93 0.12
SVMax (Ours) 0.611 69.72 92.15 4.23 0.601 67.31 91.33 2.39 0.492 48.73 83.18 4.60

N-pair on Stanford Online Products

Vanilla 0.897 74.54 87.92 - 0.884 69.34 84.46 - 0.863 59.68 76.42 -
Spread-out degenerate (Trn loss =¿ nan) - 0.877 64.23 80.34 −5.11 0.858 56.50 73.15 −3.18
UN SVMax (Ours) 0.897 74.82 88.30 0.28 0.883 69.30 84.49 −0.05 0.864 59.69 76.43 0.01
SVMax (Ours) 0.895 74.44 87.91 −0.10 0.882 69.52 84.62 0.17 0.864 59.93 76.73 0.26

0.0001 0.001 0.01

50

60

70

R
@

1

Angular d=256

0.0001 0.001 0.01

20

40

60

N-pair d=256

0.0001 0.001 0.01
60

65

70

Triplet d=256

0.0001 0.001 0.01

20

40

60

Contrastive d=256

0.0001 0.001 0.01
60

62

64

66

R
@

1

Angular d=64

0.0001 0.001 0.01

20

40

60

N-pair d=64

0.0001 0.001 0.01
50

60

70

Triplet d=64

0.0001 0.001 0.01
20

30

40

50

60

Contrastive d=64

Vanilla Spread-out SVMax

Figure A5: Quantitative evaluation on Stanford Online Products using various embedding dimen-
sions d = {256, 64} to demonstrate the stability of our hyperparameter.

B.1 SVMAX WITH SMALL BATCHES

In the main paper, we assumed b ≥ d to deliver a rigorous mathematical foundation for SVMax. In
this section, we present an empirical evidence to support SVMax when b < d.

When b < d, there will be b singular values, instead of d. The lower and upper bounds of SVMax,
per mini-batch, become [L,U] = [

√
b
b ,
√

b×d
max(b,d)

√
b
b]. It is possible that SVMax will utilize only b

dimensions of the feature embedding space. We argue against this possibility using a toy example.
Consider the following two mini-batches (m1,m2) ∈ R3×d

m1 =

[m11
m12
m13

]
=

[
1 0 0 0 .. 0
0 1 0 0 .. 0
0 0 1 0 .. 0

]
,m2 =

[m21
m22
m23

]
=

[
1 0 0 0 .. 0
0 1 0 0 .. 0
0 0 1 0 .. 0

]
,

where the mini-batch size b = 3. Each individual mini-batch utilizes only the first three dimen-
sions, i.e., rank(m1) = rank(m2) = 3. While all other dimensions [4, d] contain zeros, the
maximum mean singular value is feasible with only the first three dimensions. However, due to the

4

Under review as a conference paper at ICLR 2021

0.0001 0.001 0.01
30

40

50

60

R
@

1

Triplet b=288,d=256

0.0001 0.001 0.01

20

40

60

Triplet b=288, d=64

0.0001 0.001 0.01

20

40

60

Triplet b=72, d=64

0.0001 0.001 0.01
30

40

50

Contrastive b=288, d=256

0.0001 0.001 0.01

20

40

60

Contrastive b=288, d=64

0.0001 0.001 0.01

20

40

60

Contrastive b=72, d=64

Vanilla Spread-out SVMax

Figure A6: Quantitative evaluation on Stanford CARS196 using MobileNet, various embedding
dimensions d = {256, 64}, and batch sizes b = {288, 72} to demonstrate the stability of our hyper-
parameter. λ = 1 and 0.1 for contrastive and triplet loss, respectively.

0.0001 0.001 0.01

30

35

40

R
@

1

Angular

0.0001 0.001 0.01

20

30

40

N-pair

0.0001 0.001 0.01

30

35

40

45

Triplet

0.0001 0.001 0.01

25

30

35

40

Contrastive

Vanilla Spread-out SVMax

Figure A7: Quantitative evaluation on CUB-200-2011 using GoogLeNet with b = 72 and d =
128, i.e., b < d.

random sampling procedure, a future mini-batch m3 will contain elements from both m1 and m2.
For instance, m3 = [m11 m21 m22]T will have a rank(m3) = 2. For the mini-batch m3, the mean
singular value is not maximum. To maximize sµ, one feasible solution is to keep utilizing only the
first three dimensions. However, this solution is like tossing a coin N times and expecting N heads.
It is a feasible solution but unlikely.

Figure A7 presents a quantitative evaluation using CUB-200 on GoogLeNet with b = 72 and d =
128. Similarly, Figure A8 presents a quantitative evaluation using Stanford Online Products. SVMax
consistently outperforms the vanilla and spread-out baselines even when b < d.

Finally, Figure A9 depicts the mean singular value on the test split of CUB-200. We train our
network using (1) contrastive loss with and without SVMax, and (2) different mini-batch sizes b =
{72, 144}. We fix the embedding dimension d = 128 to study the batch size’s impact, i.e., b < d
versus b ≥ d. The test split of CUB-200 has 5924 test images. Thus, the upper bound of the
mean singular value U =

√
b×d

max(b,d)

√
b
d = 6.80, where b = 5924 and d = 128 for the whole test

split. After training our network, the actual mean singular value sµ = 5.64 with batch size b = 72,
and sµ = 5.81 with b = 144. These mean singular values significantly outperform their vanilla
contrastive loss counterparts (sµ = 1.9). Compared to b = 144, sµ is smaller when using the mini-
batch size b = 72. At a mini-batch level, SVMax spreads the feature embedding across d = 128
dimensions when b = 144, while SVMax spreads the feature embedding across d = 72 dimensions
when b = 72. Yet, the comparable sµ (5.64 versus 5.81) emphasizes that SVMax supports b < d.

5

Under review as a conference paper at ICLR 2021

0.0001 0.001 0.01

55

60

65
R

@
1

Angular

0.0001 0.001 0.01

20

40

60

N-pair

0.0001 0.001 0.01

50

60

70

Triplet

0.0001 0.001 0.01

20

40

60

Contrastive

Vanilla Spread-out SVMax

Figure A8: Quantitative evaluation on Stanford Online Products using GoogLeNet with b = 72 and
d = 128, i.e., b < d.

72 144

2

4

6

Max sµ

1.9 1.9

5.64 5.81

Batch Size

M
ea

n
Si

ng
ul

ar
V

al
ue

(s
µ
)

Vanila
SVMax

Figure A9: The mean singular values sµ for networks trained with an embedding dimension d =
128. The X and Y-axes denote the mini-batch size b and the sµ of the feature embedding of CUB-
200’s test split. The feature embedding is learned using a contrastive loss with and without SVMax.
The horizontal red line denotes the upper bound on sµ. Compared to b = 144, the mean singular
value sµ, with SVMax and b = 72, decreases marginally. Thus, the SVMax still promotes a uniform
feature embedding even when b < d.

With respect to GANs, if the batch-size limitation is set aside, the following points are worth noting:
(I) Image-synthesis GANs have bounded outputs [0, 255]; White images will not fool the discrim-
inator. Thus, sµ remains bounded but with different bounds from those presented in the approach
section in the main manuscript. (II) Alain & Bengio (2016) (§3.4) address practical concerns when
working with high dimensional features. (III) GANs have synthesized not only high quality images,
but also feature embeddings Zhu et al. (2018).

B.2 SVMAX COMPUTATIONAL COMPLEXITY

We compute the singular values sµ using TensorFlow (TF) tf.linalg.svd. This function runs
on the GPU. We did not notice any computational overhead or numerical instability during train-
ing. Figure A10 (Left) provides a timing analysis of the TF function using square matrices. For
a typical mini-batch size (b < 256), the function takes around 0.01 seconds. This speed depends
on the GPU specification and recent GPUs would perform faster. Figure A10 (Right) provides a
timing analysis for the mini-batch training time using MobileNet. The overhead added by SVMax is
minimal compared to the overhead of performing gradient descent on a deep network. We conclude
that for a reasonable batch size b and embedding dimension d, SVMax adds minimal computational
complexity to the training process.

6

Under review as a conference paper at ICLR 2021

200 400 600 800 1,000

0

5 · 10−2

0.1

Batch-Size

Ti
m

e
(S

ec
s)

TitanXP-12 GB GPU
P6000-24GB GPU

b=72,d=64 b=144,d=128 b=288,d=256

0.5

1

1.5

2

Batch size b and embedding dimension d

Ti
m

e
pe

rm
in

i-
ba

tc
h

(S
ec

s)

Vanilla SVMax

Figure A10: (Left) Timing analysis for the Tensorflow (TF) tf.linalg.svd function. The x-
axis denotes the batch size b, and the y-axis denotes the running time in seconds. We time this TF
function using two different GPUs on two different machines. (Right) Timing analysis for a mini-
batch training time using MobileNet. The x-axis denotes both the batch size b and the embedding
dimension d. The y-axis denotes the batch training time in seconds.

7

Under review as a conference paper at ICLR 2021

REFERENCES

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes. arXiv
preprint arXiv:1610.01644, 2016.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In CVPR, 2018.

Yizhe Zhu, Mohamed Elhoseiny, Bingchen Liu, Xi Peng, and Ahmed Elgammal. A generative adversarial
approach for zero-shot learning from noisy texts. In CVPR, 2018.

8

	Appendix: Extended Approach
	N-pair and Angular Losses
	SVMax Corner Case

	Appendix: Extended Experiments
	SVMax with Small Batches
	SVMax Computational Complexity

