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ABSTRACT

Many metric learning tasks, such as triplet learning, nearest neighbor retrieval, and
visualization, are treated primarily as embedding tasks where the ultimate metric
is some variant of the Euclidean distance (e.g., cosine or Mahalanobis), and the
algorithm must learn to embed points into the pre-chosen space. The study of
non-Euclidean geometries is often not explored, which we believe is due to a lack
of tools for learning non-Euclidean measures of distance. Recent work has shown
that Bregman divergences can be learned from data, opening a promising approach
to learning asymmetric distances. We propose a new approach to learning arbitrary
Bergman divergences in a differentiable manner via input convex neural networks
and show that it overcomes significant limitations of previous works. We also
demonstrate that our method more faithfully learns divergences over a set of both
new and previously studied tasks, including asymmetric regression, ranking, and
clustering. Our tests further extend to known asymmetric, but non-Bregman tasks,
where our method still performs competitively despite misspecification, showing
the general utility of our approach for asymmetric learning.

1 INTRODUCTION

Learning a task-relevant metric among samples is a common application of machine learning, with
use in retrieval, clustering, and ranking. A classic example of retrieval is in visual recognition where,
given an object image, the system tries to identify the class based on an existing labeled dataset.
To do this, the model can learn a measure of similarity between pairs of images, assigning small
distances between images of the same object type. Given the broad successes of deep learning, there
has been a recent surge of interest in deep metric learning—using neural networks to automatically
learn these similarities (Hoffer & Ailon| |[2015; Huang et al., 2016} [Zhang et al., [2020).

The traditional approach to deep metric learning learns an embedding function over the input space
so that a simple distance measure between pairs of embeddings corresponds to task-relevant spatial
relations between the inputs. The embedding function f is computed by a neural network, which is
learned to encode those spatial relations. For example, we can use the basic Euclidean distance metric
to measure the distance between two samples x and y as || f(z) — f(y)||2. This distance is critical in
two ways. First, it is used to define the loss functions, such as triplet or contrastive loss, to dictate
how this distance should be used to capture task-relevant properties of the input space. Second, since
f is trained to optimize the loss function, the distance influences the learned embedding f.

This approach has limitations. When the underlying reference distance is asymmetric or does not
follow the triangle inequality, a standard metric cannot accurately capture the data. An important
example is clustering over probability distributions, where the standard k-means approach with
Euclidean distance is sub-optimal, leading to alternatives being used like the KL-divergence (Banerjee
et al.| 2003)). Other cases include textual entailment and learning graph distances which disobey the
triangle inequality.

Recent work has shown interest in learning an appropriate distance from the data instead of pre-
determining the final metric between embeddings (Cilingir et al., | 2020; |Pitis et al., 2020). A natural
class of distances that include common measures such as the squared Euclidean distance are the
Bregman divergences (Bregman), |1967). They are parametrized by a strictly convex function and
measure the distance between two points x and y as the first-order Taylor approximation error of the
function originating from y at z. The current best approach in Bregman learning is to approximate
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the convex function using the maximum of affine hyperplanes (Siahkamari et al., 20205 (Cilingir et al.
2020).

In this work we address significant limitations of previous approaches and present our solution, Neural
Bregman Divergences (NBD). Our core contributions are: (1) we demonstrate how to accurately
learn Bregman measures using input convex neural networks (§2); (2) we show that our method
substantially improves over previous Bregman learning approaches on divergence tasks, including
regression, ranking, and clustering (§4)); (3) we further study the performance of our method on
asymmetric tasks where the underlying metric is not known to be Bregman. Our method performs
competitively on such tasks (§3)); (4) we show that the previous deep Bregman learning approach
fails to learn on many tasks. As a result, we have the most effective method so far for learning neural
Bregman divergences across a range of tasks, providing foundation and tooling for better developing
and studying asymmetric distance learning.

2 NEURAL BREGMAN DIVERGENCE LEARNING

A Bregman divergence computes the divergence between two points z and y from a space X by
taking the first-order Taylor approximation of a generating function ¢. This generating function is
defined over X" and can be thought of as (re-)encoding points from X'. A proper and informative ¢
is incredibly important: different ¢ can capture different properties of the spaces over which they
are defined. Our aim in this paper is to learn Bregman divergences by providing a neural method for
learning informative functions ¢.

Definition 2.1. Let z,y € X, where X C R%. Given a continuously differentiable, strictly convex
¢ : X = R, the Bregman divergence parametrized by ¢ is

Dy(z,y) = ¢(z) = o(y) = (Vo(y), = — v), ey
where (-, -) represents the dot product and NV ¢(y) is the gradient of ¢ evaluated at y.

A properly defined ¢ can capture critical, inherent properties of the underlying space. By learning
¢ via Eq. (I), we aim to automatically learn these properties. For example, Bregman divergences
can capture asymmetrical relations: if X is the D-dimensional simplex representing D-dimensional
discrete probability distributions then ¢(z) = (x,logz) yields the KL divergence, Dy(z,y) =
>_qalog $4. On the other hand, if X' = R? and ¢ is the squared Lo norm (¢(y) = ||y||3), then

Dy(z,y) = ||z — y||3. Focusing on the hypothesis space of Bregman divergences is valuable due to
the fact that many core machine learning measures, including squared Euclidean, Kullback-Leibler,
and Ikura-Saito divergences, are special cases of Bregman divergences. While special cases of the
Bregman divergence are used today, and many general results have been proven over the space of
Bregman measures, less progress has been made in learning Bregman divergences.

2.1 PRIOR BREGMAN LEARNING APPROACHES

PBDL. Recent works have proposed ways to empirically learn the Bregman divergence that best
represents a dataset by focusing on a max-affine representation of ¢ (Siahkamari et al., [2020;
2022). Given a set of K affine hyperplanes of the form b z + z;, the convex function ¢ can be
given a lower-bound approximation as ¢(x) = max;(b; z + 2;). Given a dataset of m distance
constraints between pairs of samples D(z,,,) < D(z4, %), the parameters {b;, z; }5* can be
learned using convex optimization to minimize an objective function, e.g. a variant of the triplet
loss Ly (g, Tp, Tn) = Z;"zl max{0, 1 + D(zq,,p;) — D(Ta;, n,;)}. With some rewriting of the
objective, the problem can be solved with techniques such as ADMM. We have modified some of the
presentation for simplicity; refer to the original works for detail.

While effective on smaller datasets at learning a suitable divergence for ranking and clustering, this
approach has limitations when scaling up to the dataset sizes used in deep learning. It requires a fixed
set of triplets for training which limits the data size (whereas on-demand mining can generate O(n?)
triplets). Even though ADMM can be distributed (and the newest 2-block ADMM from |Siahkamari
et al.| (2022)) is an order of magnitude faster than the original), it does not scale as well as batch
gradient descent methods to large data. Moreover, it cannot be directly used for deep learning tasks,
as we cannot simultaneously learn an embedding with the divergence.

Deep-div. Following the max-affine approach, |Cilingir et al.| (2020) proposed the first deep learning
approach to learn ¢, where the base neural network is followed by a layer of K max-affine com-



Under review as a conference paper at ICLR 2023

ponents. Essentially, each max-affine component is a linear layer (or a shallow network), trained
via backpropagation. Recall that ¢(x) := max; (b x + 2;) and let ¢;(z) = b, = + z; for each 1. To
simplify the computation of dy(x,v), they make use of the following property.

Fact 2.1.1. Let i and j be the corresponding max-affine components for ¢(xz) and ¢(y). Then the
Bregman divergence between two points x and y is Dy(z,y) = ¢i(z) — ¢ ().

Thus for a given z, y, the components 7, j are updated by backpropagation. Observe that no matter
how large K is, ¢ is neither continuously differentiable nor strictly convex. As a result, this structure
is not reliably learned using gradient descent. We provide an example to illustrate this, which is
confirmed in our experiments (e.g. Table[3).

Example 2.2. Consider a Bregman regression problem learning D(x,y) from known targets d and
loss function L(x,y,d; ¢) = (Dy(x,y) — d)%. The gradient with respect to each parameter b is

For any max-affine slopes b;, b;, VyDy(x,y) are x and —ux respectively, while the others are 0. If
we are also learning an embedding f(x), then replace x with f(x) above, and furthermore for any
embedding parameter 0, we have VoDy(x,y) = (b; — b;) - Vo f(2).

From this we infer that when i = j no learning occurs. Furthermore, if any max-affine hyperplane [
is (nearly) dominated by the others over the domain of the inputs (that is, ¢;(x) < ¢(x) for (almost)
all x), that component never (rarely) gets updated, resulting in essentially ‘dead’ components.

Another implication is that dy(x, y) = 0 for any z, y located on the same maximal component. By
linearity there are at most K such regions, thus in classification or clustering with K classes the
run-time of Deep-div is forced to increase with K. Even still, its resolution is too low for more
fine-grained tasks such as regression unless K is very large. In practice, we observe issues when
training this method on complex tasks such as deep metric learning or regression.

Next we describe our new method, where we directly learn ¢ with a continuous convex neural
network, which has a number of advantages over the piecewise approach. Whereas each pass of
Deep-div requires an O(K) loop over the max-affine components, slowing training and inference,
our approach does not incur additional complexity beyond an additional backpropagation step. Our
approach is suited for both classification and regression tasks because it gives much finer resolution to
¢. This is further improved by selecting an activation function to make the learned ¢ strictly convex,
continuously differentiable, unlike the max-affine approximation. Empirically, we demonstrate that
our method converges consistently and more efficiently to lower error solutions.

2.2 REPRESENTING Dy VIA ¢ DIRECTLY

To represent ¢, we adopt the Input Convex Neural Network (ICNN) (Amos et al.|[2017). The ICNN
composes linear layers with non-negative weights W and affine functions with unconstrained
weights U with convex activation functions g(-). The composition of these three components for the
ith layer of an ICNN is given by Eq. (Z), with z; the 7’th layer’s input and z; 1 the output,

zig1 =9 Witz + Uiz + b;) . 2

By construction, the resulting neural network satisfies convexity. |(Chen et al.[|(2019) and Pitis et al.
(2020) have shown under specific conditions that ICNNs universally approximate convex functions.
Furthermore, with hidden layers, the representational power of an ICNN is exponentially greater than
that of a max-affine function (Thm. 2,|Chen et al.|(2019), giving much finer resolution over ¢.

Prior works on the ICNN have only tried piecewise linear activation functions such as the ReLU
variants for g(-) = max(z, 0); we instead use the Softplus activation g(x) = log(1 + exp(z)) which
lends the network smoothness and strict convexity. This is an important design choice as learning
V¢(y) involves the second derivatives, which for any piecewise activation is zero. This causes
vanishing gradients in the (V(y), z — y) term, restricting the capacity to learn.

Efficient Computation. In order to backpropagate a loss through the V¢(y) term in|l} we use
double backpropagation as in |Drucker & Le Cun| (1991). Normally computing the gradient of
Vé(y) would involve constructing the Hessian, with a resulting quadratic increase in computation
and memory use. Double backpropagation allows us to use automatic differentiation to efficiently
compute gradients with respect to the inputs, using the “Jacobian vector product” (Frostig et al.,
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2021)) operation that ensures (V¢(y), x — y) can be computed in the cost of evaluating ¢(y) one
additional time. Since there are already three calls to ¢, this is only a 25% increase in computational
overhead to backpropagate through Eq. (I), provided we have a learnable representation of ¢. This
functionality has been implemented in the PyTorch API (Paszke et al., 2017).

Because of this and the ability to vectorize the Bregman divergence over a pairwise matrix, our
method is significantly more computationally efficient than the prior approaches. In particular,
avoiding the O(K') max-affine computation of Deep-div cuts our training time in half (Table . We
show empirical timings, along with discussion, in Appendix

2.3 JOINT TRAINING

The original feature space is rarely ideal for computing the distance measures between samples.
Classical metric learning generally attempts to apply a linear transformation to the feature space in
order to apply a fixed distance function D(+, -) such as Euclidean distance (Jain et al., 2012; [Kulis
et al.,[2012). In deep metric learning, a neural network fy is used to embed the samples into a latent
space where the distance function is more useful (Musgrave et al.l 2020). In our approach, instead of
fixing the distance function, we also learn a Bregman divergence as the measure:

Dy(fo(x), fo(y)) = ¢(fo(2)) — (fo(y)) = (Vo(9), fo(x) = fol(y))

with ¢ evaluated as fy(y).

3)

Algorithm 1 Neural Bregman Divergence (NBD). Given

Note we now have two sets of param-
eters to learn: those associated with
¢ and the encoder (6). During train-
ing, they are simultaneously learned
through gradient descent, which in-
volves double-backpropagation as de-

data pairs (a;, b;), our approach (1) learns fy to featurize
a; and b;; (2) learns ¢ to compute a Bregman divergence
value ¢ between the featurized data points. The computed
Bregman divergence is trained via loss function ¢ to be close
to a target divergence value y;. If a target divergence value
isn’t available, an implicit loss function can be used.

scribed earlier. We summarize this
process in Alg.[T] The metric model
accepts two samples as input and es-
timates the divergence between them.
When the target divergence value is
available, the metric can be trained
using a regression loss function such
as mean square error. Otherwise, an
implicit comparison such as triplet or
contrastive loss can be used.

Require: Dataset of pairs and target distance, Loss function
L) R—>R

1: fo < arbitrary neural network as a feature extractor

2: ¢ < a ICNN network parameterized as by Eq.

3: for each data tuple (a;, b;) with label y; in dataset do
x <+ fo(a;) > Perform feature extraction
y < fo(bs)
rhs < (Vo(y), @ — y)
g < o(x) — d(y) — rhs
2(9,y;) . backward()

9: update parameters of ¢ and 6

10: return Jointly trained feature extractor fy and learned
Bregman Divergence ¢

> Use double backprop
> Empirical Bregman
> Compute gradients

A A

3 OTHER
RELATED WORK

In classic metric learning methods, a

linear or kernel transform on the ambient feature space is used, combined with a standard distance
function such as Euclidean or cosine distance. The linear case is equivalent to Mahalanobis distance
learning. Information on such approaches are in (Xing et al., [2002; |[Kulis et al., 2012} Jain et al.,
2012; |Kulis et al.}[2009). Bregman divergences generalize many standard distance measures and can
further introduce useful properties such as asymmetry. They have classically been used in machine
learning for clustering, by modifying the distance metric used in common algorithms such as kmeans
(Banerjee et al.,[2005; Wu et al.l 2009). One of the first methods to learn a Bregman divergence fits a
non-parametric kernel to give a local Mahalanobis metric. The coefficients for the data points are fitted
using subgradient descent (Wu et al., |2009). We described the more recent approaches earlier.

Recently [Pitis et al.| (2020) approached asymmetric distance learning by fitting a norm N with
modified neural networks which satisfy norm properties and using the induced distance metric
N(x — y). They introduce two versions that we include as baselines: one (Deepnorm) parametrizes
N with a modified ICNN that satisfies properties such as non-negativity and subadditivity. The second
(Widenorm) computes a nonlinear transformation of a set of Mahalanobis norms. By construction,
these metrics allow for asymmetry but still satisfy the triangle inequality.

On the other hand, the Bregman divergence does not necessarily obey the triangle inequality. This
is appealing for many situations, like image recognition where the triangle inequality may be too



Under review as a conference paper at ICLR 2023

Exponential Gaussian Multinomial
Model Purity Rand Index Purity Rand Index Purity Rand Index
NBD 0.735008 0.830003 0913905 0.938¢p03 0.921¢p92 0.939 01
Deep-div 0.665 0.12 0.788 0.08 0.867 0.12 0.910 0.07 0.876 0.08 0.919 0.04

Euclidean 0.365 0.02 0.615 0.02 0.782 0.11 0.869 0.05 0.846 0.09 0.900 0.05
Mahalanobis 0.452 0.05 0.697 0.02 0.908 0.06 0.935 0.03 0.894 0.06 0.926 0.03
PBDL 0.718 o8 0.830p9s 0.806 ¢.14 0.874 ¢.09 0.833 ¢.08 0.895 ¢.04

Table 1: We cluster data generated from a mixture of exponential, Gaussian, and multinomial
distributions. Learning the metric from data is superior to using a standard metric such as Euclidean.
Our approach NBD furthermore outperforms all other divergence learning methods. Means and
standard deviations are reported over 10 runs.

restrictive. As|Pitis et al.|(2020) discuss, imposing the triangle inequality on other applications, such
as language processing, is not obvious and needs further study.

4 DIVERGENCE LEARNING EXPERIMENTS

1 i h 1-
We conduct several experiments that val- =04 MAP AUC Puity Rand
idate our approach as an effective means .
of learning divergences across a number of Deep-div 0.281  0.645 0377  0.660

. Euclidean  0.301 0.666 0422 0.750
tasks. Over 44 comparisons, NBD outper- Mahalanobis  0.310  0.677  0.419  0.750

forms prior Bregman learning approaches NBD 0.316 0.682 0432 0.750
in all but three. In the first section §4.1] we PBDL 0.307  0.659 0.386 0.735
demonstrate that NBD .eﬁ‘ectively learns Deep-div 0804 0850 0869 0828
standard Bregman retrieval and cluster- Euclidean 0.611 0.666 0.633 0.568
ing benchmarks, outperforming the previ- balance Mahalanobis 0.822 0.854 0.851 0.761
ous Bregman methods PBDL and Deep- ¢3¢ NBD 0.887 0.915 0.898 0.872
div. In addition, we construct a Bregman PBDL 0.836  0.855 0872 0.814
regression task in §4.2) where the labels are Deep-div 0.787 0.757  0.852  0.750
known divergences over raw feature vec- Euclidean 0.681  0.589 0.704  0.523
tors, so that the only learning task is that of ¢3¢ I\N/Iglgﬂan‘)bis 8;% 8;323 ggg% 83?;
the divergence itself. Finally in §4.3we in- PBDL 0798 O7T5 0854 0750
vestigate the ability of our method to learn
the ground truth divergence while simulta- Deep-div 0945 0.967 0.811 0.820
neously learning to extract a needed repre- . . Euclidean —0.827 0.897  0.820  0.828
: .. iris Mahalanobis  0.946 0.973 0.884 0.879
sentation, training a sub-network’s parame- NBD 0.957 0.977 0909 0.902
ters 6 and our divergence ¢ jointly. This is PBDL 0.943 0.967 0.889 0.888
typified by the “BregMNIST” benchmark, Deep-div 0.648 0525 0.756 0.621
which combines learning the MNIST digits Euclidean 0.666 0.536 0.748  0.563
with the only supervisory signal being the  transfusion Mahalanobis  0.680  0.570  0.750  0.543
ground truth divergence between the digit NBD 0.695 0.603 0.756 0.600
values. Refer to the Appendix for detailed PBDL 0.637  0.504 0.748  0.622
training protocols and data generation pro-
cedures. Table 2: Across real datasets, a learned Bregman diver-
gence is superior to Euclidean or Mahalanobis metrics
4.1 BREGMAN for downstream ranking (MAP, AUC) and clustering
RANKING AND CLUSTERING (Purity, Rand Index) tasks. Our approach NBD consis-

Our first task expands the distributional tently outperforms prior Bregman learning approaches,
c]ustering experiments in Banerjee et al. Deep—div and PBDL, on most datasets. Due to Space
(2005)); [Cilingir et al (2020). The datasets constraint, see Appendix Table@]for standard deviations
consist of mixtures of N = 1000 points in and all datasets.

R0 from five clusters, where the multivari-

ate distribution given cluster identity is non-isotropic Gaussian, exponential, or multinomial. Given a
distance metric, we apply a generalized k-means algorithm to cluster the data points. While standard
metrics, such as L2-distance and KL-divergence, may be ideal for specific forms of data (e.g. isotropic
Gaussian and simplex data, respectively), our goal is to learn an appropriate metric directly from a
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separate labeled training set. In particular, because Bregman divergences are uniquely associated
with each member of the exponential family (Banerjee et al., 2005), our method is especially suited
for clustering data from a wide range of distributions which may not be known ahead of time. To
learn the metric from data, we apply triplet mining, including all triplets with non-zero loss (Hoffer &
Ailon, [2015). We use the same method to train all models except for the Euclidean baseline, which
requires no training, and PBDL where we directly use the authors’ Python code.

As shown in Table[I] our method NBD gives improved clustering over all distributions compared to
all baselines. In particular, standard k-means with Euclidean distance is clearly inadequate. While the
Mabhalanobis baseline shows significant improvement, it is only comparable to NBD in the Gaussian
case, where a matrix can be learned to scale the clusters to be isotropic. This task indicates the
importance of learning flexible divergences from data.

After demonstrating success in distributional clustering, we now apply our method to ranking and
clustering real data (Table E]), as first shown in|Siahkamari et al.| (2020). For the ranking tasks, the
test set is treated as queries for which the learned model retrieves items from the training set in order
of increasing divergence. The ranking is scored using mean average precision (MAP) and area under
ROC curve (AUC). Our method again outperforms the other Bregman learning methods in the large
majority of datasets and metrics. We emphasize that these are standard experiments from recent work,
on which our method proves superior.

4.2 DIVERGENCE REGRESSION

Euclidean Mabhalanobis xrlogzx KL
Correlation ~ None Med High None Med High None Med High None Med High
NBD 0.17 015 0.16 016 018 020 052 054 057 019 019 0.19
Deep-div 778 7.81 784 1792 1226 14.15 259 267 270 044 050 051

Deepnorm 356 397 415 7770 597 766 159 174 179 030 0.28 0.28
Widenorm 356 399 412 773 6.01 760 149 148 148 030 0.28 0.28
Mahalanobis  0.00 0.03 0.05 0.02 0.04 009 /45 167 172 023 022 022

Table 3: Regression test MAE when unused distractor features are correlated (None/Med/High) with
the true/used features. Best results in bold, second best in italics. NBD performs best on asymmetric
regression, and second-best to Mahalanobis on symmetric regression, where a Mahalanobis distance
is expected to fit perfectly.

As a confirmation that our method can faithfully represent Bregman divergences, we use simulated
data to demonstrate that our method efficiently learns divergences between pairs of inputs. We
generate pairs of 20-dim. vectors from a Normal distribution, with 10 informative features used to
compute the target divergence and 10 distractors. To be more challenging and realistic, we add various
levels of correlations among all features to make the informative features harder to separate.

The following target divergences are used: (1) squared Euclidean distance (symmetric); (2) squared
Mahalanobis distance (symmetric); (3) ¢(z) = xlogx (asymmetric); (4) KL-divergence (asym-
metric). In this task we compare our NBD with Deep-div and Mahalanobis, but we did not find a
regression option for PBDL in the authors’ code. Instead we add Deepnorm and Widenorm metrics
from [Pitis et al.|(2020) as alternative baselines which do not learn Bregman divergences.

The results of these experiments are in Table [3] with loss curves shown in Appendix Fig. @ In
the symmetric cases of the Euclidean and Mahalanobis ground-truth, our NBD method performs
nearly as well as using a Mahalanobis distance itself. This shows that our method is not losing
any representational capacity in being able to represent these standard measures. This is notably
not true for the prior approaches for asymmetric learning: Deepnorm, Widenorm, and Deep-div.
Notably, unlike in the clustering tasks, the piecewise representation of ¢ in Deep-div is unable to
accurately represent Bregman regression targets, as discussed earlier in In Fig.[AcJand Fig. id|
two asymmetric divergences are used, and our NBD approach performs better than all existing options.
Because these experiments isolate purely the issue of learning the divergence itself, we have strong
evidence that our approach is the most faithful to learning a known divergence from a supervisory
signal. Note that the Mahalanobis distance performed second best under all noise levels, meaning the
prior asymmetric methods were in fact less accurate at learning asymmetric measures than a purely
symmetric model.
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Figure 2: MSE (y-axis) after epochs of training (x-axis) on asymmetric BregMNIST (left) and
BregCIFAR (right). NBD performs best in both tasks. Symmetric case in Appendix.

4.3 CO-LEARNING AN EMBEDDING WITH A DIVERGENCE

Having shown that our method outperforms the prior Bregman learning approaches on shallow
clustering, classification, and regression, we introduce a more challenging task, BregMNIST, where a
neural embedding must be learned along with the divergence metric. The dataset consists of paired
MNIST images, with the target distance being a Bregman divergence between the digits shown in the
images. Example pairs are displayed in Fig. [T|for the asymmetrical Bregman divergence parametrized
by ¢(x) = (x + 1) log(z + 1).

We also make a harder version by substitut- )
ing MNIST with CIFAR10 with the same di-

vergence labels. In both cases the relation of

features to class label is arbitrary (that is, we CNN

impose an ordinal relation among labels that
does not exist in the data), meaning that the 4 .
embedding function must learn to effectively 3 5 ’“"g e -@-9
map image classes to the correct number used 0aT
to compute the divergence, while the metric
head must also learn to compute the target Breg-
man divergence. The results of the experiments Figure 1: Demonstration of the BregMNIST task.
(Fig. mirror our results in For both Nodes with the same color indicate weight shar-
BregMNIST and BregCIFAR NBD performs ing. Each image is embedded by a CNN, and the
best, while prior methods of learning asym- ground-truth divergence is computed from the digit
metric measures perform worse than the Maha- Vvalues of the input images. The embeddings of

lanobis distance. each image are given to NBD, and the loss is com-
puted from NBD’s output and the true divergence.
5 NON-BREGMAN LEARNING The CNN and NBD are learned jointly.

We have shown that our NBD method is the most effective among all available options when the
underlying ground-truth is from the class of Bregman divergences. In this section we will now explore
the effectiveness of our approach on tasks that are known to be non-Euclidean, but not necessarily
representable by a Bregman divergence. The purpose of these experiments is to show that NBD does
not depend on the underlying representation being a proper divergence in order to still be reasonably
effective, and that it is still more effective then the prior Deep-div approach to Bregman learning. This
is also of practical relevance to applications: just as the Euclidean metric was used for convenient
properties and simplicity, without belief that the underlying system was truly Euclidean, our NBD
may be valuable for developing more flexible methods that inherit the mathematical convenience of
Bregman divergences. Experimental protocols are detailed in the Appendix.

These tasks probe the efficacy of the closest Bregman approximation of the underlying divergence.
We therefore expect that our method will not surpass the state-of-the-art when the task is sufficiently
non-Bregman.
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5.1 DEEP METRIC LEARNING

. . CIFARIO STLI10 SVHN
We extend the ranking experiments from §4.1]

and the architecture of Fig. [I|to the deep metric NBD ) 95.6 95.0 96.9
learning setting where an embedding is learned Deep-div 93.3 923 96.0
alongside the divergence. We use a ResNet-18 qupnorm 95.0 95.0 96.9
as the base feature extractor and apply batch Wld?“"““ 95.6 95.1 96.9
triplet mining to learn Eq. [3]by minimizing the Euclidean 95.0 95.0 96.9

triplet loss.

Table 4: MAP@10 on deep metric learning, by
Most metrics perform comparably in this exper- replacing the standard Euclidean distance with a
iment, although Deep-div is consistently outper- metric co-learned with the embedding.
formed by the others. We observed that Deep-
div has higher variance, and depending on the initialization could learn well or not at all. This may
be due to ’dead* affine components discussed earlier. Fixing the Euclidean distance still appears
as effective as learning the final metric here. We hypothesize this is because the embedding space
of image datasets is well-behaved enough for a standard distance to accurately cluster images. In
the following experiments we will investigate tasks where, even after applying an arbitrary feature
extractor, a standard distance measure is no longer sufficient.

5.2 APPROXIMATE SEMANTIC DISTANCE

The next task involves learning symmetric distances that do not follow the triangle inequality. We
group the CIFAR10 classes into two categories: man-made and natural. Within each category we
select an arbitrary exemplar class (car and deer in our experiment). We then assign proxy distances
between classes to reflect semantic similarity: 0.5 within the same class, 2 between any non-exemplar
class and its category exemplar, and 8 between non-exemplar classes within a category. Pairs from
different categories are not compared. Besides disobeying the triangle inequality, the distance values
do not reflect any known divergence, and can be changed arbitrarily.

Like BregCIFAR, we present pairs of images to the model,  etric Same Unseen
which simultaneously adjusts a neural embedding and learn a

divergence function such that inter-class distances in the em- ~ NBD ) 0.04 3.52
bedding space match the target values. This task is harder than Deep-div 0.10 4.13
the previous ones because it is not sufficient to learn a separable Dejepnorm 1.23 4.18
embedding for each class; the embeddings must additionally be ~ Widenorm ) 1.39 4.50
arranged appropriately in a non-Euclidean space. The results in ~ Mahalanobis ~ 2.00 4.56

Table [5indicate our method effectively learns distances that do

not follow the triangle inequality. The Deep-div approach does Table 5: MSE (lower is better) for

second-best here due to the small space of valid outputs. The CIFAR10 category semantic dis-

other approaches by limitation adhere to the triangle inequality tance after 200 epochs. Our NBD

and do not perform as well. performs the best on learned and
previously unseen images.

5.3 OVERLAP DISTANCE

The overlap distance task presents pairs of the 0.3 NBD

same image or different images, but with differ- ‘[;ZZZ :zzz

ent crops taken out. A horizontal and vertical & Dosp-div

cut are chosen uniformly at random from each = 0.2 Mahalanobis
image. When the crops are based on the same %

image, the asymmetrical divergence measure be- = (.1 | MM
tween images X and Y is the percent intersec- ~—~—————————
tion area: D(X,Y) =1 — p‘(;?/‘ . Otherwise | | ‘ ‘ ‘ |
the divergence is 1. We use the INRIA Holidays 0 20 40 60 80 100

dataset (see Appendix [G). The results can be
found in Fig. 3] where we see NBD performs  Figure 3: MSE (y-axis) for predicting the overlap
the second best of all options. between two image embeddings learned jointly

) with the underlying CNN.
We observe that Widenorm performs better on

this task, especially during the initial learning process, due to the fact that it is permitted to violate the
positive definiteness property of norms: D(x, x) > 0. Thus the method learns to map a difference of
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3d 3dd octagon taxi traffic
Method Train Test Train Test Train Test Train Test Train Test
NBD 4.34 33.49 19.91 337.59 4.67 25.32 3.11 66.27 2.53 12.03
Deepnorm 4.97 22.44 3440 275.99 4.81 15.19 1.52 20.31 1.76 5.27

Mahalanobis 445 3090 2499 267.18 6.82 44.30 1.31 18.32 1.47 5.60
Deep-div 695.97 930.57 589.13 806.14 879.94 1046.08 489.80 625.16 399.14 618.94
Widenorm 449 2792 25776 253.65 5.17 23.46 1.18 16.20 1.44 5.21

Bregman-sqrt 594 2759 27770 266.25 8.62 40.18 1.57 19.02 1.63 5.23

Bregman-GS 450 3051 2378 26691 7.26 43.13 1.17 16.71 1.55 5.49

Table 6: Results of learning measures on the shortest-path task. Triangle-inequality preserving deep
and wide-norm are expected to perform best. Our NBD performs significantly better than previous
Bregman learning approach Deep-div, and can be competitive with the triangle-inequality preserving
methods. The gap between train and test loss shows the impact of triangle inequality helping to
avoid over-fitting the observed sub-graph used for training. Dataset and experiment details are in the
Appendix.

zero between embeddings to some intermediate distance with lower MSE. This can be problematic in
use cases where the definiteness is an important property.

5.4 SHORTEST PATH LENGTH

Our final task involves estimating the shortest path on a graph from one embedded node to another
based on their distances to and from a set of landmark nodes. This task inherently favors the Widenorm
and Deepnorm methods because they maintain the triangle inequality (i.e., no shortcuts allowed in
shortest path), and so are expected to perform better than NBD. We reproduce the experimental setup
of [Pitis et al| (2020) closely with details in Appendix [E]

The results for each method are shown in §5.4] which largely match our expectations. The triangle-
inequality preserving measures usually perform best, given the nature of the problem: any violation
of the triangle inequality means the distance measure is “taking a shortcut” through the graph search
space, and thus must be under-estimating the true distance to the target node. NBD and Deep-div, by
being restricted to the space of Bregman divergences, have no constraint that prevents violating the
triangle-inequality, and thus often under-estimate the true distances. Comparing the train and test
losses help to further assess this behavior, as the training pairs can be overfit to an extent. We see that
NBD effectively learns the asymmetric relationships between seen points despite underestimating the
distance to new points.

To further explore the degree to which the properties underlying Bregman divergences affect shortest
path length learning, we introduce two extensions to NBD. The first is a soft modification encouraging
the triangle inequality to be obeyed (Bregman-sqrt). The second has a hard constraint guaranteeing
the triangle inequality (Bregman-GS) and is defined as D‘jfb (z,y) = Dg(z,y) + Dy(y,z) + 3|z —

ylI3 + 31IVé(z) — Vo(y)||3 (Acharyya et al.l 2013). Results are included in with detail on the
extensions in the Appendix.

There is an inherent tradeoff between the two extensions as Bregman-sqrt can be asymmetric but
still does not require satisfying the triangle inequality, while Bregman-GS is symmetric but always
satisfies the triangle inequality. We see that these two modifications to NBD are highly competitive
with Deepnorm and Widenorm. Furthermore, the relative performance of each provides an indication
of whether asymmetry or triangle inequality is more crucial to modeling a given dataset. These
methods highlight that even when a given task is highly non-Bregman, NBD can be readily extended
to relax or strengthen various assumptions to better model the data.

6 CONCLUSION

To enable future asymmetric modeling research, we have developed the Neural Bregman Divergence
(NBD). NBD jointly learns a Bregman measure and a feature extracting neural network. We show
that NBD learns divergences directly or indirectly when trained jointly with a network, and that NBD
still learns effectively when the underlying metric is not a divergence, allowing effective use of our
tool across a wide spectrum but retaining the nice properties of Bregman divergences.
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A COMPUTATIONAL DISCUSSION

We measure timing information of NBD as well as the benchmarks used in our experiments for a
divergence learning task as in §4.2] The training time (forward and backward passes), inference time
(forward pass), and pairwise distance matrix computation are collected. While the pairwise distance
is not directly used in our experiments, it is commonly computed in metric learning applications such
as clustering and classification. The data dimension size N x D used here is characteristic of the size
of many metric learning experiments, where the /N x N pairwise distance matrix can be stored on
GPU memory, but the N x N x D tensor with embedding dimension D does not fit: the fast but
naive approach of flattening the matrix and passing as a N x N-length batch does not work.

The Mahalanobis method is naturally the fastest method and serves as a reasonable runtime lower
bound. This is because the distance can be expressed a simple composition of a norm with a linear
layer. The squared Euclidean norm can be simplified as D(z,y) = ||z + ||ly||2 — 2(x, y), which
can be efficiently computed. We can similarly compute the Bregman divergences. For example,
the squared Euclidean distance is equivalently written as D(z,y) = ||z/|3 — ||lvlI3 — 2y, 2 — v),
which is its Bregman divergence formulation. Though not necessary for our current experiments, the
pairwise distances for larger batch sizes for the Mahalanobis and NBD can be readily implemented in
PyKeOps [Charlier et al.|(2021). Thus the longer computational time for NBD can likely be attributed
to the increased cost of double backpropagation and the convex metric architecture.

Method Training Inference  Pairwise distance

NBD 0.73 (0.08)  0.10 (0.03) 0.52 (0.06)
Deep-div. 1.63(0.11) 0.12 (0.02) 0.59 (0.03)
Deepnorm  0.81 (0.07)  0.09 (0.02) 4.53 (0.03)
Widenorm  0.52 (0.04) 0.08 (0.02) 2.61 (0.03)

Mahalanobis  0.46 (0.03)  0.08 (0.02) 0.40 (0.03)

Table 7: Timing information for a divergence learning task as in with embedding dimension 20
and a batch size of 1000, comparing the methods used in our experiments. We compute the per-epoch
training time (forward and backward passes), inference time (forward pass), and pairwise distance
matrix computation. Results are averaged over 30 runs, with standard deviation in parentheses.

On the other hand, the Deepnorm cannot be vectorized in such manner, so pairwise distances need
to be computed on the order of O(N?) runtime, for example by further splitting the tensor into
smaller mini-batches. While the Widenorm is composed of Mahalanobis metrics (set to 32 in our
experiments) that can be vectorized, in our experiments the memory requirement was still too high,
also requiring looping over sub-batches. We use sub-batch size 200 in this analysis. We note that
the loop can be alternatively performed over the Mahalanobis components in Widenorm, but this
would still be slower than the standard Mahalanobis and NBD methods. Finally, the Deep-div method
efficiently computes pairwise distances, but its forward pass requires the input to be passed through a
set of K affine sub-networks via looping, increasing the computational time.

B FIGURES FOR BREGMAN REGRESSION TASK

C DATA GENERATION DETAILS

Distributional clustering. We sample 1000 points uniformly into 5 clusters, each with 10 feature
dimensions. To generate non-isotropic Gaussians we sample means uniformly in the hyper-box within
[—4, 4] for each coordinate. The variances are a random PSD matrix (scikit-learn make_spd_matrix)
added with 02T where 02 = 5. The reason for these values are because we aimed to have each mixture
task be similarly difficult (clusters not perfectly separable but also not too challenging). For the
multinomial task, we sampled 100 counts into the 10 feature dimensions. Each cluster’s underlying
probability distribution was sampled from Dirichlet([10, 10, ...,10]). Finally, the exponential case
are iid samples for each feature. The underlying cluster rates are sampled uniformly between [0.1,
10].

Regression noise features. To add correlation among features (both informative and distractors),
we generate covariance matrices with controlled condition number « while keeping the marginal
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Figure 4: Results when vectors with 10 real features and 10 distractor features are used to compute
different specific Bregman divergences. Mean absolute error is on the y-axis and number of training
epochs on the x-axis. The shaded region around each plot shows the standard deviation of the results.
Note in all cases our NBD has very low variance while effectively learning the target divergence.

distributions of each feature as z; ~ N(0,1). For the medium correlation task £ < 100, while for
high correlation « is between 250 and 500.

50000 pairs were generated with 20 features.

D EXPERIMENTAL PROCEDURE

In all metric learning tasks, we fit all models using triplet mining, with margin 0.2, and Adam
optimizer.

Distributional clustering. We used batch size 128, 200 epochs, le-3 learning rate for all models.
Here, and in all subsequent experiments, to train PBDL we used the authors’ provided Python code,
which uses the alternating direction method of multipliers (ADMM) technique. (They also provide
Matlab code using Gurobi.)

Bregman ranking. Since Deep-div and NBD are deep learning approaches, we use Adam to optimize
this problem instead of convex optimization solvers. To ensure convergence, we tune the learning
rate and number of epochs using gridsearch over a validation set separated from the training data. We
do the same for the Mahalanobis approach. A typical example of the parameters is batch size 256,
250 epochs, learning rate le-3.

Regression. We used 100 epochs of training with learning rate le-3, batch size 1000.

Deep regression experiments. For the remaining experiments which involve co-learning an embed-
ding, we use default hyperparameter settings to keep methods comparable, such as Adam optimizer,
learning rate le-3, batch size 128, embedding dimension 128, and 200 epochs. By deep regression,
we refer to tasks that have a continuous target, such as BregMNIST, overlap distance, and shortest
path.

For the MNIST/CIFAR tasks the embedding network consists of two/four convolutional layers
respectively followed by two fully-connected layers (more specific details follow).For the semantic
distance CIFAR task, we used a pretrained ResNet20 as the embedding without freezing any layers
for faster learning |He et al.| (2016). Results were robust to the embedding model chosen.

We replicated each training and reported means and standard deviations. For the Bregman benchmark
tasks we trained 20x, while for the deep learning/graph learning tasks we trained 5x. Learning curves
in the figures show mean and 95% confidence interval for the loss over each epoch. We used Quadro
RTX 6000 GPUs to train our models.

Deep metric learning. Finally, this refers to the triplet loss experiment with co-learning of embedding
and metric. For this we use the following settings: learning rate le-4, Adam optimizer, batch size
64, embedding dimension 32, 30 epochs. For all datasets that are 32x32, we resized to 224x224 and
used a pretrained ResNet18 as the base embedding model, which is then finetuned during training.
We used smaller learning rate and embedding/batch dimensions in keeping with the standard metric
learning protocol in Musgrave et al.|(2020) which we found gave more stable results.

We note that in [Cilingir et al.|(2020) they ran their Deep-div on a similar task and reported some
results better and some worse than our results with Deep-div. We note that there are differences
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Dataset ~ Asymmetric Dimension Edge weights Details
3d No 50x50x50 cubic grid uniform {0.01,0.02,...,1.00} edges wrap around
taxi No 25x25x25x25 (two objects on 2d grid) uniform {0.01,0.02,...,1.00} no wrap
3dd Yes 50x50x50 cubic grid uniform {0.01,0.02, .. .,1.00} gﬂi{);;i;ffiv‘;‘lfﬁ;

forward and reverse sampled from Normal
with mean from uniform {0.01,0.02,...,1.00}

forward and reverse sampled from Normal
with mean from uniform {0.01,0.02,...,1.00}

traffic Yes 100x100 2d grid no wrap

octagon Yes 100x100 2d grid, diagonals connected no wrap

Table 8: Details of the shortest-path datasets, the number of dimensions in the graph, and how the
edge weights in the graph are computed. These tasks were originally proposed by |Pitis et al.| (2020)
and favor asymmetric methods that maintain the triangle inequality.

in protocol, where they extensively tuned the training procedure with hyperparmater optimization,
whereas we selected default values to ensure robustness. However, we used a larger base extractor
with pretrained weights whereas they used a custom CNN. As a result differences in performance can
be expected. While our reported metric is MAP@ 10 and theirs was nearest neighbor accuracy, we
found both measures to be very close across our experiments.

E SHORTEST PATH DETAILS

Pitis et al.[(2020) introduced learning shortest path length in graphs as a task. The problem consists
of learning d(z, y) where x,y € V are a pair of nodes in a large weighted graph G = (V, £). For
each node, the predictive features consist of shortest distances from the node to a set of 32 landmark
nodes (and vice versa for asymmetric graphs). As this task requires predicting the distance from
one node to another, maintaining the triangle inequality has inherent advantages and is the correct
inductive bias for the task. We still find the task useful to elucidate the difference between NBD and
the prior Deep-div.

We reproduce the experimental setup of |Pitis et al.|(2020)) closely, collecting a 150K random subset of
pairs from the graph as the dataset, with true distances computed using A* search. While the original
work normalized distances to mean 50, we found that such large regression outputs were difficult to
learn. Instead we normalize to mean 1, which results in faster convergence of all methods. A 50K/10K
train-test split was used. The features are standardized with added noise sampled from A/ (0, 0.2), and
96 normal-distributed distractor features were included. For additional details refer to Appendix E of
Pitis et al.|(2020). However, their experimental detail and code was sufficient to only reproduce three
of the graph datasets (3d, taxi, 3dd). Therefore, we develop two additional asymmetric graphs (traffic
and octagon). The details of all the shortest-path graphs we use are provided in Table 8] Models were
trained for 50 epochs at learning rate 5e-5 and 50 epochs at 5e-6.

E.1 EXTENSIONS OF BREGMAN DIVERGENCE FOR THE TRIANGLE INEQUALITY

For the first we draw from mathematical literature demonstrating that metrics can be induced from
the square root of certain symmetrized Bregman divergences, depending on constraints on ¢ |Chen
et al.|(2008)). We learn the square root of the Bregman divergence to provide a soft inductive bias (as
an illustrative example, Euclidean distance is a metric but squared Euclidean distance is not).

For the second we introduce a modification of the Bregman divergence known as the Generalized
Symmetrized Bregman divergence. As shown by |Acharyya et al.|(2013)), the square root of such a

divergence is guaranteed to satisfy the triangle inequality. This divergence is defined as DZSb (z,y) =
Dy(z,y) + Dy(y,2) + zllz = yl3 + 3V (z) — Vo(y)ll3.

There is an inherent tradeoff between the two extensions as Bregman-sqrt can be asymmetric but
still does not require satisfying the triangle inequality, while Bregman-GS is symmetric but always
satisfies the triangle inequality.

F ADDITIONAL HYPERPARAMETER DETAILS

We followed the hyperparameter specifications for the Deepnorm and Widenorm results as stated
in Pitis et al.| (2020). The Widenorm used 32 components with size 32, concave activation size 5,
and max-average reduction. For the Deepnorm we used the neural metric version which gave the
strongest performance in their paper: 3 layers with dimension 128, MaxReL U pairwise activations,
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concave activation size 5, and max-average reduction. We adapt their PyTorch code from https:
//github.com/spitis/deepnorms, In the graph distance task, results show the same learning pattern (and
relative performances between models) but the overall error magnitudes that we obtain are rather
different than their reported results.

We re-implemented the Deep-div method following the description in [Cilingir et al.| (2020). The
number of affine sub-networks stated in their paper varied but was generally set to low values such as
10, for the purpose of matching the number of classes in their classification tasks. In their appendix
they experiment with increasing numbers of sub-networks and find best results at 50. For this
reason we set 50 for our experiments. Following their paper, we use small FNNs for the max-affine
components.

Our NBD uses a 2 hidden layer FICNN with width 128 for ¢». We found that our results are robust to
the depth and width of the FICNN.

G OVERLAP DETAILS

We use the INRIA Holidays dataset Jegou et al.|(2008]), which contains over 800 high-quality vacation
pictures contributed by the original authors. Many consecutive-numbered images (e.g. 129800.jpg,
129801.jpg, 129802.jpg) are retakes of the same scene, which would interfere with assigning zero
overlap to different images. To address this we only use images ending in 00.jpg, which are all
different scenes. This leaves 300 images, which we resize to 72x72 then apply a 64x64 center-crop.
The training set consists of 10, 000 pairs sampled with random crops each epoch from the first 200 of
the images, while the test set is a fixed set of 10, 000 pairs with crops drawn from the last 100. We
set a 25% chance for a given pair to come from different images and receive a divergence of 1. All
models were trained with batch size 128, Adam optimizer with learning rate Se-4, and embedding
dimension of 128. The embedding network consists of four 3x3 convolutional layers (32, 64, 128,
256 filters respectively) with 2x2 max pooling layers followed by two linear layers with hidden
dimension 256.

We compute overlap as the percent of non-intersecting area from the crops. We show this in

Fig.[5
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Figure 5: Demonstration of how the overlap distance is computed in our setup. Ground-truth distance
is the intersection of the shared images divided by the area of the first image.

H BREGMAN RANKING AND CLUSTERING STANDARD DEVIATIONS

Full version of Table |Zl Standard deviations in small font, means in regular font.

MAP AUC Purity Rand Index
Dataset Model
Deep-div 0.281 0.01 0.645 0.02 0.377 0.02 0.660 0.04
Euclidean 0.301 0.01 0.666 0.01 0.422 0.03 0.750 0.01
abalone Mahalanobis 0.310 0.01 0.677 0.01 0.419 0.02 0.750 0.01
NBD 0.316 901 0.682(9; 0.432403 0.750 0,01
PBDL 0.3070.01 0.659901 0.3860.02 0.735 .02
Deep—div 0.804 0.03 0.859 0.02 0.869 0.02 0.828 0.03

Euclidean 0.611 0.01 0.666 0.01 0.633 0.06 0.568 0.04
balance-scale Mahalanobis 0.822 591 0.854 901 0.851 .06 0.761 ¢.05

NBD 0.887p01 09153501 0.898302 0.87203
PBDL 0.836 002 0.8550p02 0872002 0.814 903
Deep-diV 0.787 0.01 0.757 0.01 0.852 0.04 0.750 0.04
Euclidean 0.681 0.00 0.589 0.00 0.704 0.02 0.523 0.03
car Mahalanobis 0.787 0.01 0.752 0.01 0.778 0.02 0.654 0.03
NBD 0.82000; 0.803,01 0.86000; 0.758 .02
PBDL 0.798 0.01 0.775 0.01 0.854 0.01 0.750 0.02
Deep-div 0.945 0.03 0.967 0.02 0.811 0.16 0.820 0.16
Euclidean 0.827 0.02 0.897 0.01 0.820 0.07 0.828 0.05
iris Mahalanobis 0.946 0.03 0.973 0.01 0.884 0.12 0.879 0.11
NBD 0.957 002 09770901 0.909410 0.902¢p
PBDL 0.943 0.03 0.967 0.02 0.889 0.14 0.888 0.13
Deep—div 0.648 0.01 0.525 0.02 0.756 0.03 0.621 0.04

Euclidean 0.666 0.01 0.536 0.01 0.748 0.03 0.563 0.04
transfusion Mahalanobis  0.680 g1 0.570 901  0.750 g.03 0.543 .05

NBD 0.695301 0.603p091 0.756 03 0.600 .04
PBDL 0.637001 0504901 0.748 003 0.622 (3
Deep-diV 0.983 0.02 0.987 0.01 0.953 0.08 0.947 0.08
Euclidean 0.844 0.02 0.884 0.02 0.902 0.07 0.887 0.06
wine Mahalanobis  0.949 902  0.970¢901 0.944 .19 0.940 .09
NBD 0.969 902 0980001 0960005 0.948 6
PBDL 0.978 902 0982901 0820014 0.823¢.12

Table 9: Across several real datasets, a learned Bregman divergence is superior to Euclidean or
Mahalanobis metrics for downstream ranking (MAP, AUC) and clustering (Purity, Rand Index) tasks.
Furthermore, our approach NBD consistently outperforms the prior Bregman learning approaches,
Deep-div and PBDL, on most datasets. MAP = mean average precision, AUC = area under curve

16



Under review as a conference paper at ICLR 2023

I FIGURE (BREGMNIST) INCLUDING SYMMETRIC CASE

1
10 3 — NBD
100 | \\_A"\w’ ] 6 — \ Deep-div
0o o \b Deepnorm
10 3 Widenorm
50 1 \\\Q&&‘ E \\‘A’W 5 Mahalanobis 4
i AANSEVIV ISR
T T T T T T T T T
0 20 40 0 20 40 0 20 40

(a) squared Euclidean distance.  (b) ¢(z) = (v + 1) log(z + 1) ©) ¢(z) = (z+ 1) log(xz + 1)
Figure 6: MSE (y-axis) after epochs of training (x-axis), where NBD performs best in the symmetric

(left) and asymmetric (center, right) Bregman learning tasks. Left, center are BregMNIST, right is
BregCIFAR. The same legend applies to all figures.
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