
Under review as a conference paper at ICLR 2023

A MINIMALITY OF CHEAP TALK MDPS

A.1 PROOF OF PROPOSITION 1

Proposition 1. For any Cheap Talk MDP hS,A,P,R, �,M, f,J i, the policy of a tabular Victim

initialised uniformly along M is independent from its Adversary.

Proof. In a Cheap Talk MDP hS,A,P,R, �,M, f,J i, a tabular Victim arbitrarily orders states
as {s1, . . . , sd} and messages as {m1, . . . ,mk}, where d = |S| and k = |M|, and stores policies
⇡t(· | si,mj) at time t of the learning process for all i 2 [d], j 2 [k]. The argument follows
identically for value functions. Assuming uniform initialisation along the M axis means that

⇡0(· | si,mj) = ⇡0(· | si,mj0)
for all j, j0 2 [k]. Now consider any two Adversaries f, g and their influence on two copies of the
same Victim V,W with respective policies ⇡,�. The only states encountered in the environment are
of the form (s, f(s)) and (s, g(s)) respectively, so Victims only update the corresponding policies

⇡t(· | si, f(si)) and �t(· | si, g(si)) .
We prove by induction that these quantities are equal for all t. The base case holds by uniform
initialisation along M; assume the claim holds for all fixed 0  t  T . The Victims update their
policies at time T + 1 according to the same learning rule, as a function of the transitions and returns
under current and past policies ⇡t and �t respectively. Transitions take the form (s, f(s), a, s0, f(s0))
for V and (s, g(s), a, s0, g(s)) for W , which have identical probabilities and returns because

⇡t(a | si, f(si)) = �t(a | si, g(si)) ;
P(s0, f(s0) | s, f(s), a) = P(s0, g(s0) | s, g(s), a) ;

R(s, f(s), a) = R(s, g(s), a)
by inductive assumption and independence of P,R from M. This implies that the Victims’ policies
⇡T (· | si, f(si)) = �T (· | si, g(si)) are updated identically to

⇡T+1(· | si, f(si)) = �T+1(· | si, g(si))
as required to complete induction. Note that this would not necessarily hold in non-tabular settings,
where updating parameters ✓ of the function approximator for some state (si, f(si)) may alter the
policy on some other state (sj , f(sj)). It now follows that trajectories ⌧ = (sk, f(sk), ak)k for V
and ! = (sk, g(sk), ak)k for W have identical probabilities and hence produce identical returns

E⌧⇠⇡t [R(⌧)] = E!⇠�t [R(!)]
at any timestep t of the learning process, concluding independence from Adversaries.

A.2 PROOF OF PROPOSITION 2

Proposition 2. A Victim which is guaranteed to converge to optimal policies in MDPs will also

converge to optimal policies in Cheap Talk MDPs, with an expected return equal to the optimal return

for the corresponding no-channel MDP.

Proof. By assumption, the Victim is guaranteed to converge to an optimal policy ⇡̄ in any given Cheap
Talk MDP hS,A,P,R,M, f,J , �i, since a Cheap Talk MDP is itself an MDP with an augmented
state space S⇥M and augmented transition/reward functions that are defined to be independent from
M. Now ⇡̄ naturally induces a policy ⇡ on the no-channel MDP, given by ⇡(· | s) := ⇡̄(· | s, f(s)),
and in particular Q(s, a) = Q̄(s, f(s), a) by independence of transitions and rewards from M.
Optimality of ⇡ follows directly from the Bellman equation

Q(s, a) = Q̄(s, f(s), a) = Es0⇠P(·|s,a),r⇠R(·|s,a)


r + �max

a02A
Q̄(s0, f(s0), a0)

�

= Es0⇠P(·|s,a),r⇠R(·|s,a)


r + �max

a02A
Q(s0, a0)

�
.

Now trajectories ⌧̄ = (sk, f(sk), ak)k and ⌧ = (sk, ak)k have identical probability and return under
⇡ and ⇡̄ respectively, so the Victim has expected return

E⌧̄⇠⇡̄ [R(⌧̄)] = E⌧⇠⇡ [R(⌧)]
which is the optimal expected return of the original no-channel MDP.

12

Under review as a conference paper at ICLR 2023

A.3 FURTHER INFORMAL DISCUSSION

Consider a Cheap Talk MDP hS,A,P,R, �,M, f,J i. For a fixed training / testing run of the Victim
on the MDP, the Adversary outputs a message f(s) at each step according to a fixed deterministic
function f : S ! M. Below we elaborate informally on the claims that Adversaries cannot (1)
occlude the ground truth, (2) influence the environment dynamics / reward functions, (3) see the
Victim’s actions or parameters, (4) inject stochasticity, or (5) introduce non-stationarity.

(1) The message is appended to the state s and the Victim acts with full visibility of the ground
truth (state) s according to its policy: a ⇠ ⇡(· | s, f(s)).

(2) The transition and reward functions P,R are defined to be independent from M. Formally we
have P(· | s,m, a) = P(· | s,m0, a) for all m,m0 2 M (similarly for R), so the Adversary’s
choice of message m = f(s) cannot influence P or R.

(3) f : S ! M is defined as a function of S only, so the Adversary cannot condition its policy
based on the Victim’s actions or parameters (i.e. it cannot see or influence them).

(4) f is a deterministic function, so ⇡(· | s, f(s)) is a distribution only on actions A. The transition
and reward functions are independent from f , so they are distributions only on state-action pairs
S ⇥A. It follows that the Adversary injects no further stochasticity into the MDP.

(5) f is static for a fixed training / testing run, so st = st0 implies f(st) = f(st0) for all timesteps
t, t0 in the run. It follows that any given Victim policy ⇡ is stationary, namely ⇡(· | st, f(st)) =
⇡(· | st0 , f(st0)) for all st = st0 . Since P and R are stationary (as defined by a standard MDP)
and independent from M, their stationarity is also preserved.

Finally, we discuss the possibility of further weakening components of a Cheap Talk MDP, and
conclude that all such variants (A-E) bring no advantage or reduce to regular MDPs.

(A) Removing the channel M or the policy f : S ! M would result in the Victim being completely
independent from the Adversary, so no adversarial influence could be exerted whatsoever.

(B) Restricting the capacity of M to a certain number of bits would further restrict an Adversary’s
range of influence, so one could say that the truly minimum-viable setting is to impose a set of
size |M| = 1. However, cheap talk is still cheap talk when varying capacity, and there is no
reason to arbitrarily restrict the size to 1 if we are to apply our setting to complex environments
likely requiring more than a single bit of communication to witness interesting results.

(C) Not allowing Adversaries to see states, namely removing S as inputs to f , yields a function
f : {0} ! M which always outputs the same messagef(0) = m 2 M. This is equivalent to the
previous restriction of imposing a set M of size 1, since in this case any function f : S ! M
would have to output the unique element f(s) = m for all input states s.

(D) The Adversary must have some objective function J in order for an adversarial setting to make
sense – removing it would remove the Adversary’s reason to exist, since it would have no
incentive to learn parameters that influence the Victim according to some goal.

(E) Restricting the function class of objectives J is a valid minimisation of the setting, but simply
restricts our interest in the setting itself. The setting should at the very least allow for adversarial
objectives of the form J = ±J , as we consider in the train-time setting. In test-time, our aim is
to show how Adversaries can exert arbitrary control over Victims despite cheap talk restrictions,
and we therefore consider more general objective functions.

13

Under review as a conference paper at ICLR 2023

B PSEUDOCODE

Algorithm 2 Test-time ACT
1: Initialize train-time ACT parameters �
2: Initialize test-time ACT parameters
3: for m = 0 to M do

4: Sample �n ⇠ �+ �✏n where ✏1, ..., ✏N ⇠ N (0, I)
5: Sample n ⇠ + �✏n where ✏1, ..., ✏N ⇠ N (0, I)
6: for n = 0 to N do

7: Initialize policy params ✓
8: rewards = []
9: for e = 0 to E do

10: s = env.reset()
11: while not done do

12: m = f�n(s)
13: s̄ = [s, m]
14: a ⇠ ⇡✓(· | s̄)
15: r, s = env.step(a)
16: end while

17: Update ✓ using PPO to maximise J
18: end for

19: for i = 0 to I do

20: s = env.reset()
21: while not done do

22: m = f n(s)
23: s̄ = [s, m]
24: a ⇠ ⇡✓(· | s̄)
25: r, s, done = env.step(a)
26: rSt = RS(s, a)
27: rewards.append(rSt)
28: end while

29: end for

30: end for

31: Update � using ES to maximise J
32: Update using ES to maximise J
33: end for

14

Under review as a conference paper at ICLR 2023

Algorithm 3 Test-time Oracle PPO ACT
1: Initialize train-time ACT parameters �
2: Obtain trained �, ✓ from Algorithm 2
3: Initialize test-time ACT parameters ⇤

4: for i = 0 to I do

5: s = env.reset()
6: while not done do

7: m ⇠ ⇡ ⇤(· | s)
8: s̄ = [s, m]
9: a ⇠ ⇡✓(· | s̄)

10: r, s, done = env.step(a)
11: rSt = RS(s, a)
12: rewards.append(rSt)
13: end while

14: Update ⇤ using PPO to maximise J
15: end for

15

Under review as a conference paper at ICLR 2023

Algorithm 4 Test-time Random Shaper
1: Initialize train-time ACT parameters �random
2: Initialize policy params ✓
3: rewards = []
4: for e = 0 to E do

5: s = env.reset()
6: while not done do

7: m = f�random(s)
8: s̄ = [s, m]
9: a ⇠ ⇡✓(· | s̄)

10: r, s = env.step(a)
11: end while

12: Update ✓ using PPO to maximise J
13: end for

14: Initialize test-time ACT parameters ⇤

15: for i = 0 to I do

16: s = env.reset()
17: while not done do

18: m ⇠ ⇡ ⇤(· | s)
19: s̄ = [s, m]
20: a ⇠ ⇡✓(· | s̄)
21: r, s = env.step(a)
22: rSt = RS(s, a)
23: rewards.append(rSt)
24: end while

25: Update ⇤ using PPO to maximise J
26: end for

16

Under review as a conference paper at ICLR 2023

C ABLATIONS

(a) (b)

Figure 7: (a) Ablations on the different number of cheap talk dimensions for the Adversary in
Cartpole. We find that for a low-dimensional environment like Cartpole, the Adversary does not
achieve much marginal improvement from increasing the number of channels, suggesting that there
may be some limit to the amount that it can harm performance. (b) Comparing the ally with an
Adversary that outputs pre-trained logits in Cartpole. We find that the allied ACT still performs
better, implying that it is outputting features that are more useful than logits from a pre-trained policy.
Error bars denote the standard error across 10 seeds of a Victim trained against a single meta-trained
Adversary.

17

Under review as a conference paper at ICLR 2023

D PENDULUM ABLATION

Figure 8: Interestingly, it seems like random network features improved performance in Pendulum.
To make sure this was not due to network initialisation effects, we ran an ablation where we removed
the cheap talk channel. It achieves about the same performance as a channel with zeros, which implies
that the performance difference is not due to network initialisation.

18

Under review as a conference paper at ICLR 2023

E HYPERPARAMETER DETAILS

We report the hyperparameter values used for each environment in our experiments.

Table 1: Important parameters for the Cartpole environment

Parameter Value
State Size 4
message Size 2
Number of Environments 4
Maximum Grad Norm 0.5
Number of Updates 32
Update Period 256
Outer Discount Factor � 0.99
Number of Epochs per Update 16
PPO Clipping ✏ 0.2
General Advantage Estimation � 0.95
Critic Coefficient 0.5
Entropy Coefficient 0.01
Learning Rate 0.005
Population Size 1024
Number of Generations 2049
Outer Agent (OA) Hidden Layers 2
OA Size of Hidden Layers 64
OA Hidden Activation Function ReLU
OA Output Activation Function Tanh
Inner Agent (IA) Actor Hidden Layers 2
IA Size of Actor Hidden Layers 32
IA Number of Critic Hidden Layers 2
IA Size of Critic Hidden Layers 32
IA Activation Function Tanh
Number of Rollouts 4

19

Under review as a conference paper at ICLR 2023

Table 2: Important parameters for the Pendulum environment

Parameter Value
State Size 3
message Size 2
Number of Environments 16
Maximum Grad Norm 0.5
Number of Updates 128
Update Period 256
Outer Discount Factor � 0.95
Number of Epochs per Update 16
PPO Clipping ✏ 0.2
General Advantage Estimation � 0.95
Critic Coefficient 0.5
Entropy Coefficient 0.005
Learning Rate 0.02
Population Size 768
Number of Generations 2049
Outer Agent (OA) Hidden Layers 2
OA Size of Hidden Layers 64
OA Hidden Activation Function ReLU
OA Output Activation Function Tanh
Inner Agent (IA) Actor Hidden Layers 1
IA Size of Actor Hidden Layers 32
IA Number of Critic Hidden Layers 1
IA Size of Critic Hidden Layers 32
IA Activation Function Tanh
Number of Rollouts 4

Table 3: Important parameters for the Reacher environment

Parameter Value
State Size 10
message Size 4
Number of Environments 32
Maximum Grad Norm 0.5
Number of Updates 256
Update Period 128
Outer Discount Factor � 0.99
Number of Epochs per Update 10
PPO Clipping ✏ 0.2
General Advantage Estimation � 0.95
Critic Coefficient 0.5
Entropy Coefficient 0.0005
Learning Rate 0.004
Population Size 128
Number of Generations 2049
Outer Agent (OA) Hidden Layers 2
OA Size of Hidden Layers 64
OA Hidden Activation Function ReLU
OA Output Activation Function Tanh
Inner Agent (IA) Actor Hidden Layers 2
IA Size of Actor Hidden Layers 128
IA Number of Critic Hidden Layers 2
IA Size of Critic Hidden Layers 128
IA Activation Function ReLU
Number of Rollouts 4

20

Under review as a conference paper at ICLR 2023

Table 4: Important parameters for the Minatar environments

Parameter Value
State Size 400
message Size 32
Number of Environments 64
Maximum Grad Norm 0.5
Number of Updates 1024
Update Period 256
Outer Discount Factor � 0.99
Number of Epochs per Update 32
PPO Clipping ✏ 0.2
General Advantage Estimation � 0.95
Critic Coefficient 0.5
Entropy Coefficient 0.01
Learning Rate 3e-4
Population Size 128
Number of Generations 256
Outer Agent (OA) Hidden Layers 2
OA Size of Hidden Layers 64
OA Hidden Activation Function ReLU
OA Output Activation Function Tanh
Inner Agent (IA) Actor Hidden Layers 2
IA Size of Actor Hidden Layers 256
IA Number of Critic Hidden Layers 2
IA Size of Critic Hidden Layers 256
IA Activation Function ReLU
Number of Rollouts 1

21

