
Appendices: Self-Supervised Learning via
Maximum Entropy Coding

A Pseudocode of MEC

Algorithm 1 PyTorch-like pseudocode of MEC

# f: encoder consisting of a backbone and a projector
# mu: a constant related to m and d
# lamda: a hyperparameter determined by the distortion
# n: the order of Taylor expansion

for x in loader: # load a minibatch x with m samples
x1, x2 = aug(x), aug(x) # augmentation
z1, z2 = f(x1), f(x2) # l2 normalized embeddings: [m, d] each

loss = mec(z1, z2, mu, lamda, n)
loss.backward()
update(f) # optimizer update of f

# the loss of mec
def mec(z1, z2, mu, lamda, n):

c = lamda*mm(z1, z2.t()) # [m, m] batch-wise
# c = lamda*mm(z1.t(), z2) # [d, d] feature-wise
power = c
sum_p = zeros_like(power)
for k in range(1, n+1): # n>1 for symmetric nets

if k > 1 :
power = mm(power, c)

if (k + 1) % 2 == 0:
sum_p += power / k

else:
sum_p -= power / k

loss = -mu * trace(sum_p)
return loss

Notes: mm is matrix multiplication. t() is transpose.

B CIFAR-10 Experiments

In this section, we detail the setting of the preliminary experiment described in Figure 4 in the
main text. We train two models with different hyperparameters ϵ = 0.12 and ϵ = 0.01. After
training, we extract representations of the CIFAR-10 training set and employ T-SNE [71] to map
the representation to a two-dimensional space for visualization. Besides the hyperparameter ϵ, other
training configurations are kept identical and detailed below. Following the practice in [14], we do not
use blur augmentation, and adopt the CIFAR variant of ResNet-18 [33] as backbone, Specifically, we
remove the first max-pooling layer of ResNet-18, and set the kernel size of the first convolution layer
to 3. The last classification layer is also removed and we treat the features after global average pooling
as inputs to the projector, which is a two-layer MLP with BN [37] and ReLU [50] applied. The
dimension of the output representation is 2048. We use SGD optimizer with weight decay =0.0005,
momentum =0.9, and set the base learning rate to 0.03, which is linearly scaled with the batch size
of 256. The learning rate is scheduled to a cosine decay rate for 600 epochs.

C Implementation Details.

Data augmentations. We adopt the same set of data augmentations following the common practice
of previous methods [12, 29, 86, 14, 15], which is composed of geometric, color, and blurring
augmentations. The geometric augmentations include random cropping, resizing to 224× 224, and
random horizontal flipping. The color augmentations consist of a random sequence of brightness,

16



contrast, saturation, hue adjustments, and a grayscale conversion. The blurring augmentations
include Gaussian blurring and solarization. We use the same augmentation parameters as BYOL [29]
and Barlow Twins [86]. For each iteration, each image is augmented twice to generate two views
according to the above augmentation policy.

Architecture. We use a standard ResNet-50 network [33] without the final classification layer as
the backbone, which yields a feature with dimension of 2048. It is followed by a projector network,
which is a three-layer MLP with BN [37] and ReLU [50] applied, and each with 2048 output units.
A momentum encoder is utilized to stabilize the training and further improve the performance. We
turn one branch of the Siamese networks as online network and the other as target network, whose
parameters are an exponential moving average of the online parameters. For the asymmetric network
design, we append a two-layer MLP only to the online branch, and it has hidden dimension 512 and
output dimension 2048 with BN [37] and ReLU [50] applied to the first layer. The output embeddings
of the two branches are fed to the objective function for self-supervised pre-training. And after
pre-training, we only keep the encoder for downstream tasks.

Optimization. We use the SGD optimizer with a cosine decay learning rate schedule [46] and a
linear warm-up period of 10 epochs. The weight decay is 1.0 × 10−5 and the momentum is 0.9.
We set the base learning rate to 0.5, which is scaled linearly [28] with a batch size of 256 (i.e.,
LearningRate = 0.5×BatchSize/256). The exponential moving average parameter is increased from
0.996 to 1 with a cosine scheduler. We set the level of distortion ϵ2d = 0.06 and use a batch size of
1024. To enable large-batch and faster pre-training of 800 epochs, we adopt the LARS optimizer [84]
with a batch size of 4096 and set the base learning rate to 0.3 and weight decay to 1.5× 10−6. We
use the 800-epoch pre-trained model for downsteam tasks. To give an intuition of the computation
overhead of our method, it takes MEC 42 hours for 100-epoch pre-training on 8 V100 GPUs, while it
takes BYOL and Barlow Twins 45 and 48 hours on the same hardware.

Linear probing. We adopt the standard linear probing protocol [12, 14, 29, 86] and train a supervised
linear classifier on top of the frozen representation. We use the LARS optimizer [84] with a batch
size of 4096 and a cosine learning rate schedule over 100 epochs. The momentum is 0.9 and the
wight decay is set to 0. During training, the input images are augmented by taking a random crop,
resizing to 224× 224, and flipping horizontally. At test time, we resize the image to 256× 256 and
then center-crop it to a size of 224× 224.

Semi-supervised classification. We follow the semi-supervised learning protocol of [12, 86, 29] and
fine-tune the pre-trained model on the 1% and 10 % subset of ImageNet [17] training set, using the
same splits as in SimCLR [12]. We use the SGD optimizer with a batch size of 1024 and a momentum
of 0.9. And we set the weight decay to 0. We use a base learning rate of 0.05 and fine-tune the model
for 50 epochs. The data augmentations are the same as in linear probing.

Object detection and instance segmentation. We follow the common practice of previous meth-
ods [31, 13, 14, 86] and evaluate the transfer learning performance based on Detectron2 library [79].
We initialize the backbone ResNet-50 for Faster R-CNN [61] and Mask R-CNN [32] using our
pre-trained model. All Faster/Mask R-CNN models are with the C4-backbone. We fine-tune the
model end-to-end in the target datasets with a searched learning rate and keep all other parameters
the same as in Detectron2 library [79]. We use the VOC07+12 trainval set of 16K images for
training the Faster R-CNN model for 24K iterations using a batch size of 16 across 8 GPUs. The
initial learning rate is reduced by a factor of 10 after 18K and 22K iterations. We also train the model
using only the VOC07 trainval set of 5K images with smaller iterations according to the dataset
size. We report results on VOC07 test averaged over 5 runs. We train the Mask R-CNN model (1×
schedule) on the COCO 2017 train split and report results on the val split.

Object tracking. We further evaluate the generalization capability of the learned representations on
five video tasks, including single object tracking (SOT) [78], video object segmentation (VOS) [56],
multi-object tracking (MOT) [48], multi-object tracking and segmentation (MOTS) [73] and pose
tracking (PoseTrack) [1]. The datasets and metrics used for the above tasks are as follows:

Task SOT VOS MOT MOTS PoseTrack

Dataset OTB 2015 [78] DAVIS 2017 [56] MOT 16 [48] MOTS [73] PoseTrack 2017 [1]

Metrics AUC J -mean IDF1
HOTA

IDF1
HOTA

IDF1
ID-switch (IDs)
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All evaluations are based on the platform of UniTrack [76], where no additional fine-tuning is required.
UniTrack [76] consists of a single and task-agnostic appearance model, which is initialized using our
pre-trained model, and multiple heads to directly address different tasks without further training.

Details of Figure 1. In Figure 1 of the main paper, we make a comparison of transfer learning perfor-
mance on five image-based tasks and five video-based tasks. The image-based tasks include linear
probing (top-1 accuracy) with 800-epoch pre-trained models (LIN), semi-supervised classification
(top-1 accuracy) using 1% subset of training data (SEMI), object detection (AP) on VOC dataset
(VOC) and COCO dataset (COCO), instance segmentation (APmask) on COCO dataset (SEG). For
video-based tasks, we compute rankings in terms of AUC, J -mean, IDF-1, IDF-1 and IDF-1 for
SOT, VOS, MOT, PoseTracking, and MOTS, respectively.

D Additional Results
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Figure 6: Comparison of running time and relative approximation error between Equation (1) (origin)
and Equation (2) (approx.) for different number of samples in Z (dim). Left plot: first-order
approximation; Right plot: second-order approximation.

Approximation with low-order expansion. In Section 2.1 of the main paper, we make a comparison
between original Equation (1) and our approximation using four terms of Equation (2). In this section,
we provide additional comparisons using lower-order approximations. As can be seen in Figure 6,
the computation process of coding length function can be even faster (e.g., 0.11ms v.s. 35.48ms for
dim 2048) with first-order approximation. But we also notice that the relative approximation error
increases to 2.56%, while it is 0.22% and 0.07% for second-order and fourth-order approximation,
respectively. Such approximation errors may account for the reason of performance drop on linear
probing (Table 5e) and other downsteam tasks (Section 3.4).

Table 7: Comparison of linear probing results on ImageNet [17] with state-of-the-art methods. The
results are reported in their original papers. † indicates methods using a projector network with large
dimensions. ‡ indicates methods using multi-crop augmentation.

Method MEC‡ MEC† MEC BYOL [29] SimSiam [14] Barlow [86]† VICReg [5]† DINO [11]‡ UniGrad [66]†‡

epoch 800 800 800 1000 800 1000 1000 800 800

accuracy 75.5 75.1 74.5 74.3 71.3 73.2 73.2 75.3 75.5

Pre-training with additional strategies. In Section 3.2 of the main paper, we make a comparison
of linear probing results with different methods. And in Table 1, each method is pre-trained with
two 224 × 224 views for a fair comparison. We notice that there are multiple other strategies for
self-supervised pre-training, so we provide additional experiment results in Table 7 by incorporating
two widely used strategies, i.e., multi-crop augmentation [10, 11] and large projector network [86,
5, 66]. Multi-crop augmentation uses additional smaller crops as local views (six 96 × 96 views
following [10]). A larger projector network increases the dimension of each MLP layer (from 2048 to
8192 following [86, 5, 66]). We find these strategies can steadily improve the performance of MEC
at the cost of more computation overhead.

Transfer learning across different image domains. In the experiments (Section 3) of the main
paper, we have evaluated the transfer learning performance on a wide variety of image- and video-
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Table 8: Transfer learning to other classification tasks with ImageNet [17] pre-trained model. The
top-2 model for each datatset is bolded and the best model is underlined.

Method Food101 CIFAR10 CIFAR100 SUN397 Cars Aircraft VOC2007 DTD Pets Caltech-101 Flowers

Linear probing:

Supervised [12] 72.3 93.6 78.3 61.9 66.7 61.0 82.8 74.9 91.5 94.5 94.7

SimCLR [12] 68.4 90.6 71.6 58.8 50.3 50.3 80.5 74.5 83.6 90.3 91.2

BYOL [29] 75.3 91.3 78.4 62.2 67.8 60.6 82.5 75.5 90.4 94.2 96.1

MEC 75.6 92.1 78.4 62.7 67.2 61.5 82.7 75.8 90.9 94.6 96.0

Fine-tuned:

Random init [12] 86.9 95.9 80.2 53.6 91.4 85.9 67.3 64.8 81.5 72.6 92.0

Supervised [12] 88.3 97.5 86.4 64.3 92.1 86.0 85.0 74.6 92.1 93.3 97.6

SimCLR [12] 88.2 97.7 85.9 63.5 91.3 88.1 84.1 73.2 89.2 92.1 97.0

BYOL [29] 88.5 97.8 86.1 63.7 91.6 88.1 85.4 76.2 91.7 93.8 97.0

MEC 88.9 97.8 86.8 63.8 91.6 88.5 85.9 76.0 91.9 94.9 97.2

based downstream tasks. In this section, to further evaluate whether the learned representations can
generalize across different image domains, we transfer the pre-trained model to other classification
tasks by linear probing and fine-tuning on 11 datasets. The results in Table 8 demonstrate that MEC’s
representation is more generalizable and less biased compared to the supervised baseline and other
models pre-trained with specific pretext tasks, consistent with the observations in the main paper.

Table 9: Pre-training on Places365 and linear evaluation on Places365 and ImageNet dataset.
Method Places365 ImageNet

SimCLR [12] 53.0 56.5

BYOL [29] 53.2 58.5

MEC 53.8 59.9

Pre-training with different datasets. We perform self-supervised pre-training on Places365 [89]
dataset using the proposed method, and then linear evaluation is conducted on Places365 and
ImageNet dataset. We list the experiment results in Table 9. These results show that MEC can still
learn good representations when pre-trained on different kinds of datasets, and also achieve better
performance than previous methods.

E More Detailed Proofs

Proof of Equation (2). First, we rewrite Equation (1) by substituting µ = m+d
2 and λ = d

mϵ2 , and
then we can obtain the following simplified equation,

L = µ log det
(
Im + λZ⊤Z

)
. (5)

Next, we utilize the following identical equation [35],

det(exp(A)) = exp(Tr(A)), (6)

and then we take logarithm of the both side of the above equation, which gives,

log det(exp(A)) = Tr(A). (7)

Let A = log
(
Im + λZ⊤Z

)
, then we have,

log det
(
Im + λZ⊤Z

)
= Tr

(
log
(
Im + λZ⊤Z

))
. (8)

So Equation (5) can be reformulated as,

L = µ log det
(
Im + λZ⊤Z

)
= Tr

(
µ log

(
Im + λZ⊤Z

))
.

(9)

19



Finally, we apply Taylor series expansion to expand the logarithm of the matrix in the above equation,
and obtain Equation (2),

L = Tr

(
µ

∞∑
k=1

(−1)k+1

k

(
λZ⊤Z

)k)
, (10)

with convergence condition:
∥∥∥λZ⊤Z

∥∥∥
2
< 1.

Proof of convergence condition of Equation (3). To ensure the convergence of Equation (3), we
require,

∥C∥2 < 1, (11)

where C = λZ⊤
1 Z2 and λ = d

mϵ2 = 1
mϵ2d

. We note the inequality between matrix norms,

∥C∥2 ≤
√

∥C∥1∥C∥∞, (12)

which is a special case of Hölder’s inequality. Since 1-norm of matrix is simply the maximum
absolute column sum of the matrix, we have

∥C∥1 = max
1≤j≤m

m∑
i=1

|cij | . (13)

Note that the columns of Z1 and Z2 are ℓ2-normalized embeddings, so we have,

∥C∥1 = max
1≤j≤m

m∑
i=1

|cij | ≤ λm. (14)

Similarly, we can obtain,

∥C∥∞ = max
1≤i≤m

m∑
j=1

|cij | ≤ λm. (15)

Finally, we go back to Equation (12) and obtain,

∥C∥2 ≤
√
∥C∥1∥C∥∞ ≤ λm. (16)

To ensure that the convergence condition of Equation (11) can be strictly satisfied, we require,

λ <
1

m
, (17)

or we can equally set ϵ2d > 1 by adjusting the degree of distortion. Note that in the Section 2.2 of
the main paper, we simply set ϵ2d = d

m for d > m, which is the case of the preliminary experiments
on CIFAR-10 [41] (the feature dimension d = 2048 and the batch size m = 1024). In practice, we
empirically find that the Taylor expansion converges over a wide range of ϵd (see Figure 4(c) and
Table 5c).

Proof of Equation (4). Equation (4) is a direct result of Sylvester’s determinant identity, which states
that if A and B are matrices of sizes m× d and d×m, then we have,

det (Im +AB) = det (Id +BA) , (18)

and it can be proved by the following derivation,

det

(
I −B
A I

)
det

(
I B
0 I

)
= det

(
I −B
A I

)(
I B
0 I

)
= det

(
I 0
A AB + I

)
= det(Im +AB),

(19)

and we also have,

det

(
I B
0 I

)
det

(
I −B
A I

)
= det

(
I B
0 I

)(
I −B
A I

)
= det

(
I +BA 0

A I

)
= det(Id +BA).

(20)
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So Equation (18) is proved. Let A = λZ⊤
1 and B = Z2, and using the fact that the determinant

of the transpose of a square matrix is equal to the determinant of the matrix, then we can prove
Equation (4),

LMEC = −µ log det
(
Im + λZ⊤

1 Z2

)
︸ ︷︷ ︸

batch-wise

= −µ log det
(
Id + λZ1Z

⊤
2

)
︸ ︷︷ ︸

feature-wise

. (21)

Relation to SimSiam [14] and BYOL [29]. SimSiam [14] uses negative cosine similarity as loss
function. And it is equivalent to the mean squared error of ℓ2-normalized vectors, up to a scale of 2,
which is the loss used in BYOL [29]. We write the loss function of SimSiam [14] as the following
equation,

LSimSiam = −
m∑
i=1

zi1·zi2, (22)

where zi1 and zi2 are the embeddings of two views of the same image i. By taking Taylor expansion
(Equation (2)) of the left side of Equation (4), we obtain,

Ln=1
MEC = −Tr

(
µλZ⊤

1 Z2

)
= −µλ

m∑
i=1

zi1·zi2, (23)

which is equivalent to Equation (22) up to a scale of µλ. Since µλ is a constant and can be absorbed
by adjusting the learning rate during optimization, the objective function of SimSiam [14] and
BYOL [29] can be viewed as the first order expansion of the objective function of MEC.

Relation to Barlow Twins [86] and VICReg [5]. Barlow twins [86] aims to make the cross-
correlation matrix computed from twin embeddings as close to the identity matrix as possible, with
an invariance term and a redundancy reduction term. VICReg [5] follows the similar idea by using a
term that decorrelates each pair of variables along each branch of Siamese networks. The objective
function of Barlow twins [86] is as follows,

LBarlow =

d∑
i=1

(1−Cii)
2
+ λbarlow

d∑
i=1

d∑
j ̸=i

Cij
2, (24)

where C is the feature-wise cross-correlation matrix and λbarlow is a positve constant. By taking
Taylor expansion (Equation (2)) of the right side of Equation (4), we obtain,

Ln=2
MEC = −Tr

(
µλZ1Z

⊤
2 − µ

2

(
λZ1Z

⊤
2

)2)
= µ

d∑
i=1

(
−Cii +

1

2
Cii

2

)
+

µ

2

d∑
i=1

d∑
j ̸=i

Cij
2,

(25)

where C = λZ1Z
⊤
2 . And the above equations show that the objective function of Equation (24) can

be viewed as the second-order expansion of the objective function of MEC. We notice that Barlow
twins [86] uses batch normalization rather than ℓ2 normalization on the embeddings z, and we show
that these two kinds of normalization techniques have similar effects on both Barlow twins [86] and
our MEC:

method batch norm ℓ2 norm linear

Barlow Twins [86] ✓ 67.3
✓ 67.4

MEC ✓ 70.6
✓ 70.6

Relation to SimCLR [12] and MoCo [13]. SimCLR [12] and MoCo [13] are two typical contrastive
learning methods that aim to push negative pairs apart while pulling positive pairs together. And they
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use the following InfoNCE loss function [53],

LInfoNCE = −
m∑
i=1

(ci,i/τ) +

m∑
i=1

log

m∑
j ̸=i

(exp (ci,j/τ) + exp (ci,i/τ)) (26)

where τ is the temperature parameter. By taking Taylor expansion (Equation (2)) of the left side of
Equation (4), we obtain,

Ln=2
MEC = −Tr

(
µλZ⊤

1 Z2 −
µ

2

(
λZ⊤

1 Z2

)2)
(27)

We notice that although the above two equations do not take the exactly same forms, they have
similar effects on the learning process: the first term aims to model the invariance with respect to
data augmentations; and the second term aims to minimize the similarity between negative samples.

F Limitations and Future Work

The estimation of entropy from a finite set of high-dimensional vectors is itself a challenging problem
in the field of statistical learning. So in this work, as an exploration of the principle of maximum
entropy in self-supervised learning, we opt to exploit a computationally tractable surrogate for
the entropy of representations. In order to facilitate large-scale pre-training, we further leverage
Taylor series expansion to accelerate the computation process and we notice that more theoretical
investigation is needed for the empirical convergence of small distortion. Future work can seek a
more direct entropy estimator for maximum entropy coding. The proposed method aims to alleviate
the bias introduced by the specific pretext task, and we notice that the bias can also be introduced by
the designed data augmentations, which is a common problem in current self-supervised learning
methods. Future work may seek automated data augmentation strategies and further generalize the
proposed method to other modalities (e.g., audio, text).

G Broader Impact

As the first method that introduces the principle of maximum entropy into self-supervised learning,
the presented work may inspire more methods leveraging this principle towards learning generalizable
representations, which is the core of self-supervised learning. As we demonstrate in the experiments,
the proposed method positively contributes to a wide variety of vision tasks, such as image classifi-
cation, object detection and tracking. However, there is also a potential that the proposed method
has negative societal impacts for a particular use of the applications. The proposed method learns
representations from large-scale datatsets and the learned representations may reflect the data biases
inherent in the datasets.

H Licenses of Assets

CIFAR-10 [41] is subject to MIT license. VOC [25] data includes images obtained from the Flickr
website and use of these images is subject to the Flickr terms of use. COCO [44] is subject to the
Creative Commons Attribution 4.0 License. ImageNet [17] is subject to the licenses on the website2.

2https://www.image-net.org/download
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