
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY

To ensure reproducibility, we will make the source code publicly available after acceptance.

APPENDIX

6 RELATED WORKS: SUPPLEMENT

In Hill et al. (2020), the author proposed incorporating an energy-based model (EBM) with Markov
Chain Monte Carlo (MCMC) sampling for adversarial purification. This method constitutes a
memoryless sampling trajectory that removes adversarial signals, while this sampling behavior
preserves image classes over long-run trajectories.

In Adaptive Denoising Purification (ADP) (Yoon et al. (2021)), the authors used the Noise Con-
ditional Score Network (NCSN) with Denoising Score Matching (DSM) as the purifier, but with
a deterministic short-run update rule for purification. This fixes the need for performing long-run
sampling in order to remove adversarial noise in Hill et al. (2020).

Guided Diffusion Model for Purification (GDMP) (Wang et al. (2022), Wu et al. (2022)) is proposed
to embed purification into the reverse diffusion process of a DDPM (Ho et al. (2020)). GDMP
submerges adversarial perturbations with gradually added Gaussian noises during the diffusion
process and removes both noises through a guided denoising process. By doing so, GDMP can
significantly reduce the perturbations raised by adversarial attacks and improve the robustness of
classification.

7 ADVERSARIAL ATTACKS

Two types of adversarial attacks are briefly introduced here.

White-box attack. The attacker knows all information about fϕ, including the model architecture,
parameters ϕ, training schedule, and so on. One of the most indicative white-box attacks is projected
gradient descent (PGD) (Madry et al. (2017)), a gradient-based attack. It produces adversarial
perturbation by projecting NN’s gradients on the clipping bound in an iterative manner. If the gradient
is correctly calculated, the loss would certainly be maximized, and the NN, especially for non-robust
NN, will be likely to return misclassified outputs.

Black-box attack. The attacker does not know all the information mentioned above in fϕ. Common
black box attack methods are roughly divided into two types: Query-base attack and Transfer-based
attack.

No matter white- or black-box attack is concerned, in order to make adversarial perturbation less
detectable, we will set a range of attack intensity, that is, adversarial perturbation is only allowed to
perturb within a given norm value. Usually ℓp-norm, denoted as ∥·∥p (p = 1, 2,∞), is used:

∥δ∥p :=

{
(
∑

i δ
p
i)

1/p
p = 1 or 2,

maxi |δi| p =∞.
(11)

In terms of intensity, we are accustomed to using ϵp to represent it. For example, it often uses
ϵ∞ = 8/255 to indicate that the intensity range of currently used δ is ∥δ∥∞ ≤ 8/255.

8 DIFFUSION MODELS: SUPPLEMENT

Diffusion models were inspired by the diffusion phenomena under nonequilibrium thermodynamics
in the physical world to design a framework that generates data by learning the reverse process of the
data being destroyed by Gaussian noise gradually.

In the literature, the diffusion model (Sohl-Dickstein et al. (2015)) is a type of generative model
(e.g., GAN and VAE). Conceptually, this generative process behaves like denoising. Given a data
point x0 ∼ q, where q denotes the (unknown) true data distribution, and a variance schedule

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

{βt}Tt=1, the forward diffusion process follows q(x1:T |x0) =
∏T

t=1 q(xt|xt−1), where q(xt|xt−1) =
N (xt;

√
1− βtxt−1, βtI), and the reverse diffusion process follows:

pθ(x0:T) = p(xT)

T∏
t=1

pθ(xt−1|xt), (12)

where pθ(xt−1|xt) ∼ N (xt−1;µθ(xt, t),Σθ(xt, t)), xT ∼ N (0, I), and µθ(xt, t) and Σθ(xt, t) de-
note the mean and covariance from the diffusion model parameterized by θ at time step t, respectively.

After that, there are several types of recently developed diffusion models, including score-based
diffusion (Song & Ermon (2019); Song et al. (2020)), guided-diffusion (Dhariwal & Nichol (2021)),
ILVR (Choi et al. (2021)), denoising diffusion probabilistic model (DDPM) (Ho et al. (2020)), and
DDA (Gao et al. (2023)).

Specifically, in guided diffusion (Dhariwal & Nichol (2021)), given a label y as the condition and Eq.
(12), the conditional reverse process is specified as:

pθ(x0, . . . , xT−1|xT , y) =

T∏
t=1

pθ(xt−1|xt, y). (13)

To solve Eq. (13), θ is decomposed into two terms as θ = φ ∪ ϕ to form separate models:
pθ(xt−1|xt, y) = Zpφ(xt−1|xt)pϕ(y|xt−1), (14)

where Z is a normalization constant. Guided-diffusion improves the model architecture by adding
attention head and adaptive group normalization, that is, adding time step and class embedding to each
residual block. At the same time, with reference to GAN-based conditional image synthesis, class
information is added during sampling and another classifier is used to improve the diffusion generator.
To be precise, the pre-trained diffusion model can be adjusted using the gradient of classifier to direct
the diffusion sampling process to any label.

Score-based diffusion (Song & Ermon (2019); Song et al. (2020)) generates samples by estimating
the gradients of unknown data distribution with score matching, followed by Langevin dynamics,
moving data points to areas with higher density of data distribution. In practice, the score network sθ
is trained to predict the true data distribution q as:

sθ(xt, t) ≈ ∇xt
log q(xt) = −

ϵθ(xt, t)√
1− ᾱt

, (15)

where ᾱt =
∏t

s=1(1− βs).

On the other hand, the conditional generation of the diffusion model has also received considerable
attention. In ILVR (Choi et al. (2021)), the author proposed a learning-free conditioning generation,
which is challenging in denoising diffusion probabilistic model (DDPM) (Ho et al. (2020)) due to
the stochasticity of the generative process. It leveraged a linear low-pass filtering operation ϕN as a
condition to guide the generative process in DDPM for generating high-quality images based on a
given reference image c at time t, termed ct, which can be obtained by the forward diffusion process
q. The update rules are derived as follows:

x′
t ∼ pθ(x

′
t|xt+1)

ct ∼ q(ct|c)
xt ← ϕN (ct)− x′

t − ϕN (x̂′
t), (16)

where the factor of downsampling and upsampling is denoted as N .

DDA (Gao et al. (2023)) also came up with a similar approach to resolve the domain adaptation
problem in the test-time scenario. The authors adapt the linear low-pass filtering operation ϕN in
ILVR (Choi et al. (2021)) as conditions, and their method also forces the sample xt to move in
the direction that decreases the distance between the low-pass filtered reference image ϕN (x0) and
low-pass filtered estimated reference image ϕN (x̂0). The update rule is specified as follows:

x̂0 ←
√

1

ᾱt
xt −

√
1

ᾱt
− 1 ϵθ(xt, t) (17)

xt ← x̂t − w∇xt
∥ϕN (x0)− ϕN (x̂0)∥2 , (18)

where N is the factor of downsampling and upsampling, and w is the step size.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 5: Intermediate Images generated from Fig. 2(c). From Top to Bottom: The images denote
clean image x, xp2 , xp1

t∗ , x̂p1 , xp2

t∗ , x̂p2 , and purified image x̂clean, respectively.

9 INTERMEDIATE IMAGES GENERATED FROM FIG. 2(C)

In Fig. 5, we show the images generated from each step in Fig. 2(c) for visual inspection.

10 ATTACK COST IN TIME COMPLEXITY: DETAILED ANALYSIS

In this section, we discuss the cost the attackers need to pay to defeat our proposed test-time
adversarial defense method. In particular, we focus on analyzing the time complexity of defeating the
diffusion-based purifiers presented in Sec. 3.2 and Sec. 3.3.

In DISCO (Ho & Vasconcelos (2022)), let Nd and Nc be defined as the number of parameters in
DISCO and its downstream classifier, respectively. In training time, the authors estimated that the
time complexity of defense/purification is O(Nd) and that of adaptive attack (i.e., designing an
adversarial example by knowing the whole model) isO(KNd+Nc), where K is the number of steps.
Hence, the ratio of attack-to-defense cost in training time is O(K +Nc/Nd) and the authors asserted
that the time complexity of defense is much less than that of attack since Nd < Nc. In testing time,
the time complexity of defense becomes O(KNd) (see green bars in Fig 10 of Ho & Vasconcelos
(2022)) while the other remains the same. Hence, the ratio of attack-to-defense cost in testing time
is O(1 + Nc/(KNd)), revealing that even Nc is larger than Nd, the time complexity for both the
attacker and defender can tie if K is large enough.

In DiffPure (Nie et al. (2022)), the authors argued that an adaptive attack on diffusion model by
traditional back-propagation would cause high memory cost. To overcome this issue, they instead
applied adjoint method (Li et al. (2020)) to efficiently estimate the gradient used for designing
adaptive adversarial perturbation under constant memory cost. From Table 1 in Li et al. (2020), it is
asserted that, under the tolerance ϵ = 1/T , the per-step time complexity scales as log2 T , where T is

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

the number of steps required during the reversed process. So, the time complexity of adjoint method
through the reverse diffusion process is O(T log2 T).

We, however, raise the concern that the presented time cost is likely to ignore one important fac-
tor: the number of parameters in a diffusion model, denoted as Ndm. Hence, in conservatively
speaking, the time complexity of adjoint method through the reverse process should be corrected as
O(NdmT log2 T).

Based on the above concerns, our estimations of the time complexity of adversarial attack and
proposed defense methods in testing time are described as follows. For the defense method described
in Sec. 3.2, since the baseline purifier gθ is reused in every step of the diffusion process, T is equal to
K (hereafter, we will use them interchangeably). So, the time complexity costs of adaptive attack and
our defense are derived asO(NdmT log2 T +TNd +Nc) and O(NdmT +NdT +Nc), respectively.
In practice, Ndm is usually much larger than Nd and Nc, so we haveO(NdmT log2 T+TNd+Nc) ≈
O(NdmT log2 T) and O(NdmT +NdT +Nc) ≈ O(NdmT), and the ratio of attack-to-defense cost
is O(log2 T). Moreover, if the attacker adopts the Expectation Over Time (EOT) operation with a
number of iterations, TEOT , the time cost of creating such an attack has to be additionally multiplied
by TEOT . For example, if T = 100 and TEOT = 20, the ratio theoretically approximates 133; i.e.,
the time cost of adaptive attack is around 133 times as big as that of defense.

For the defense method described in Sec. 3.3, since two diffusion paths should be maintained during
purification, the time complexity is simply doubled than the one in a single path (Sec. 3.2). It is
concluded that although the inference time of our proposed test-time defense methods is increased,
the increased cost also complicates the adaptive attacks as well.

Table 6 shows the time cost comparison between the reverse diffusion process (purification) and
adaptive attack (BPDA+20 EOT), implemented using the adjoint strategy in Sec. 3.4, under DiffPure
and our defense methods. Here, we do not consider the adaptive AutoAttack since the mechanism is
much more complex beyond the above analysis.

Methods Purification Time (sec.) Attack Time (sec.) Ratio

DiffPure (Nie et al. (2022)) 35.20±0.67 2508.56±116.06 71.27
Sec. 3.2 34.59±0.95 2504.14±112.61 72.39
Sec. 3.3 72.84±34.41 7517.03±1970.35 103.20

Table 6: Computational time cost comparison in five runs. This evaluation utilizes four testing images
with batch size two, running on one NVIDIA V100. The ratio is calculated as the average time
required for BPDA+20 EOT divided by that for reverse diffusion.

11 MORE EXPERIMENTAL RESULTS

In this section, we examine the robustness of our method using CIFAR-100 Krizhevsky et al. (2009)
and ImageNet Deng et al. (2009). Due to limited computation resources and budgets, some attacks
on these datasets are still running. We hope that in the near future, the results can be ready since they
are extremely eager for computation resources.

11.1 RESULTS ON CIFAR-100

We provide the robustness evaluation against adversarial attacks on CIFAR-100, as shown in Table
7 (cf. Tables 4 and 5 for CIFAR-10). Similarly, the experiments in the first block of Table 7 are
under the setting of non-adaptive attack, in which the attacker only knows the information of the
downstream classifier. We also excerpt the results of Rebuffi et al. (2021); Wang et al. (2023); Cui
et al. (2023) from RobustBench (Croce et al. (2021)) for more comparisons. The second block of
Table 7 shows the results obtained under the setting of adaptive attacks. Note that the results for
DiffPure (Nie et al. (2022)) are from Zhang et al. (2024). We can find that our methods are either
better than the prior works under BPDA+EOT or comparable with DiffPure under AutoAttack and
PGD-ℓ∞.

17

https://robustbench.github.io/

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Defense Methods Clean Acc (%) Robust Acc (%) Attacks

No defense 81.66 0 PGD-ℓ∞
Rebuffi et al. (Rebuffi et al. (2021)) 62.41 32.06 AutoAttack (Standard)

Wang et al. (Wang et al. (2023)) 72.58 38.83 AutoAttack (Standard)
Cui et al. (Cui et al. (2023)) 73.85 39.18 AutoAttack (Standard)
DiffPure (Nie et al. (2022)) 61.96±2.26 59.27±2.95 PGD-ℓ∞
DiffPure (Nie et al. (2022)) 61.98±2.47 61.19±2.87 AutoAttack (Standard)

Ours (Sec. 3.2) 61.71±2.49 60.21±1.82 PGD-ℓ∞
Ours (Sec. 3.2) 62.02±2.24 60.08±2.44 AutoAttack (Standard)

No defense 81.66 0 BPDA+EOT
DiffPure (Nie et al. (2022); Zhang et al. (2024)) 69.92 48.83 BPDA+EOT

Hill et al. (Hill et al. (2020))* 51.66 26.10 BPDA+EOT
ADP (σ = 0.1) (Yoon et al. (2021))* 60.66 39.72 BPDA+EOT

Ours (Sec. 3.3) 70.38±4.05 51.25±3.82 BPDA+EOT

Table 7: Robustness evaluation and comparison between our method and state-of-the-art methods.
Classifier: WRN-28-10. Testing dataset: CIFAR-100. Asterisk (*) indicates that the results were
excerpted from the papers. Boldface indicates the best performance for each attack.

11.2 RESULTS ON IMAGENET

We provide the robustness evaluation against non-adaptive PGD-ℓ∞ on ImageNet, as shown in Table
8. This experiment was conducted on a more advanced transformer-based classifier (Liu et al. (2022))
with ∥δ∥∞ ≤ 8/255 and ResNet-50 with ∥δ∥∞ ≤ 4/255. Our method proposed in Sec. 3.3 is
slightly better than DiffPure, while Our method proposed in Sec. 3.2 is comparable with DISCO,
which, however, needs additional data for training EDSR for purification.

Defense Methods Clean Acc (%) Robust Acc (%) Classifier Attack

DISCO (Ho & Vasconcelos (2022))* 72.64 66.32 ResNet-50 PGD-ℓ∞ (4/255)
Ours (Sec. 3.2) 69.32±12.18 68.12±12.13 ResNet-50 PGD-ℓ∞ (4/255)
Ours (Sec. 3.3) 67.55±11.73 66.54±12.15 ResNet-50 PGD-ℓ∞ (4/255)

DiffPure (Nie et al. (2022)) 75.13±11.67 73.11±11.76 SwinV2 (Liu et al. (2022)) PGD-ℓ∞ (8/255)
Ours (Sec. 3.2) 75.37±12.01 71.73±12.63 SwinV2 (Liu et al. (2022)) PGD-ℓ∞ (8/255)
Ours (Sec. 3.3) 75.38±12.78 73.20±11.27 SwinV2 (Liu et al. (2022)) PGD-ℓ∞ (8/255)

Table 8: Robustness comparison between our method and DISCO/DiffPure. Testing dataset: Ima-
geNet. Asterisk (*) indicates that the results were excerpted from the paper. Boldface indicates the
best performance for each attack.

12 ALGORITHM IN SEC. 3.3

Here, we describe the entire procedure of the proposed method in Sec. 3.3.

Algorithm 1 Diffusion Path Cleaning-based Purifier

Require: Purifier gθ, adversarial image xadv

Ensure: Purified image x̂clean

1: x← xadv

2: for repeated time from 1 . . . 2 do
3: xp1 ← x; xp2 ← x
4: j ← argmin

i∈{1,...,C}
Sε(x

p2 , xtar
i)

5: xp2 ← fCT (x
p2 , xtar

j)
6: xp1 ← gθ(x

p1); xp2 ← gθ(x
p2)

7: x← fCT (x
p2 , xp1)

8: end for
9: x̂clean ← x

10: return x̂clean

18

