
A Algorithm of Training and Sampling in Details452

We mostly follow the training and sampling procedures from [6] and show the detailed algorithms453

for training and sampling in the following.454

A.1 Training455

Algorithm 1 Training
1: Require a real-world driving dataset D, conditional diffusion model to train µ0

θ , transition function f , denoising steps K.
2: while not converge do
3: c,τ0

∼D
4: k ∼ {1, ...,K}
5: ϵ ∼ N(0,I)

6: Corrupt action trajectory τk
a =
√
ᾱkτ

0
a +
√
1 − ᾱkϵ with ᾱk = ∏

k
l=0 1 − βl

7: Get the corresponding state trajectory τk
s = f(s0,τ

k
a)

8: Use model to predict the uncorrupted trajectory τ̂0
a = µ0

θ(τ
k, k,c)

9: Get the predicted state trajectory τ̂0
= [τ̂0

a ; f(s0, τ̂
0
a)]

10: Take gradient step on ∇θ ∣∣τ
0
− τ̂0

∣∣
2

11: end while

Contrary to [6], which samples trajectories at the agent level, we opt for scene-level trajectory sam-456

pling, allowing the model to make joint predictions on all scene agents. The process is detailed457

in Algorithm 1. During each training iteration, the context c and the ground-truth trajectory τ 0
458

are sampled from a real-world driving dataset, and the denoising step k is uniformly selected from459

{1, . . . ,K}. We derive the noisy input τ k from τ 0 by initially corrupting the action trajectory via460

τ k
a =
√
ᾱkτ

0
a +
√
1 − ᾱkϵ, with ϵ ∼ N(0, I) and ᾱk = ∏k

l=0 1 − βl. Subsequently, the corresponding461

state is computed as τ k
s = f(s0,τ k

a). The diffusion model indirectly parameterizes µθ in eq. (2)462

by predicting the uncorrupted trajectory τ̂ 0 = [τ̂ 0
a ; f(s0, τ̂ 0

a)], where τ̂ 0
a = µ0

θ(τ k, k,c) is the net-463

work’s direct output (see [12, 13, 40]). We then use a simplified loss function to train the model as464

follows:465

L(θ) = Eϵ,k,τ0,c [∣∣τ 0 − τ̂ 0∣∣2] . (5)

A cosine variance schedule [13, 40] is utilized in the diffusion process, employing K = 100 diffusion466

steps.467

A.2 Sampling468

We show the guided sampling algorithm in Algorithm 2 which is directly from [6] as the notations469

and procedure remain the same. The key difference is that our diffusion model formulation and470

backbone models are all at scene-level rather than agent-level as in [6]. The scene-level formulation471

helps to improve scene-level realism and decrease failure rates as the agents’ interactions can be472

captured by the model inherently.473

Algorithm 2 Guided Sampling
1: Require conditional diffusion model µθ , transition function f , guide J , scale α, covariances Σk , diffusion steps K, inner gradient

descent steps W , number of actions to take before re-planning l.
2: while not done do
3: Observe state s0 and context c
4: Initialize trajectory τK

a ∼ N(0,I); τK
s = f(s0,τ

K
a); τ

K
= [τK

a ;τK
s]

5: for k =K, . . . ,1 do
6: µ ∶= τ̂ k−1

a = µθ(τ
k, k,c)

7: µ(0) = µ
8: for j = 1, . . . ,W do
9: µ(j) = µ(j−1) +α∇J(µ(j−1))
10: ∆µ = ∣µ(j) −µ(0)∣
11: ∆µ← clip(∆µ,−βk, βk)

12: µ(j) ← µ(0) +∆µ
13: end for
14: τk−1

a ∼ N(µ(M),Σk
); τk−1

s = f(s0,τ
k−1
a);

τk−1
= [τk−1

a ;τk−1
s]

15: end for
16: Execute first l actions of trajectory τ0

a

17: end while

12

Following [6, 12], the predicted mean is a weighted sum between the predicted clean action trajec-474

tory and the input action trajectory from last denoising step:475

τ̂ k−1
a = µθ(τ k, k,c) =

√
ᾱk−1βk

1 − ᾱk
τ̂ 0

a +
√
αk (1 − ᾱk−1)

1 − ᾱk
τ k
a (6)

The process of perturbing the predicted means from the diffusion model using gradients of a spec-476

ified objective is summarized in algorithm 2. Following [6], we use an iterative projected gradient477

descent with the Adam optimizer and filtration, i.e., we guide several samples from the diffusion478

model and choose the one with the best rule satisfaction based on J .479

B More Details on Architecture480

B.1 Detailed Architecture481

We show the detailed data flow of our proposed architecture in Figure A1. Its main difference with482

the simplified architecture shown in Figure 2 is that we show position encoding, rFFN, and the483

details of the guidance module explicitly.

denoising
step k

M M

Temporal
Attention

Row-wise
Feed

Forward

M

Noisy Actions States

add

repeat L times

Position
Encoding

M

Map

Agent-Agent
Interaction at

each timestep t

Guide action
using J

MM

Spatial
Attention

Map
Attention

Position
Encoding

Position
Encoding

Feed
Forward

Row-wise
Feed

Forward

Mweighted
add

sampled noise w/
variance

add

Test Time Only Guidance Step

dynamic

dynamic

Figure A1: Test time denoising step using multi-agent spatial-temporal transformer. ds, da, and dh represent
the dimensions of action, state, and latent for each vehicle per timestep.

484

B.2 Gated Attention485

Following [35], we use a variant of the original scaled dot-product attention block. In particular,486

we use a gating function to fuse the environmental features mt
i with the central agent’s features ht

i,487

enabling the block to have more control over the feature update. The resulting query, key, and value488

vectors of the social attention layer are taken as inputs to the block:489

αi
t = softmax(qi⊺

t√
dk
⋅ [{kij

t }j∈Ni
]) ,

mi
t = ∑

j∈Ni

αij
t v

ij
t ,

gi
t = sigmoid (Wgate [hi

t,m
i
t]) ,

ĥi
t = gi

t ⊙Wself hi
t + (1 − gi

t) ⊙mi
t,

(7)

whereNi is the set of agent i’s neighbors (all the agents except the agent itself within a certain social490

radius), Wgate and Wself are learnable matrices, and denotes element-wise product ⊙.491

13

C Qualitative Comparison under STL rules492

(a) CTG++ speed limit (0.037) (b) CTG speed limit (0.041)

Figure A2: Qualitative comparison between CTG++ and CTG under speed limit STL rule (the numbers in
parentheses represent rule violations). CTG++ achieves lower rule violation than CTG. Besides, CTG involves
collision between the blue vehicle and the green vehicle.

(a) CTG++ target speed (0.213) (b) CTG target speed (0.163)

Figure A3: Qualitative comparison between CTG++ and CTG under target speed STL rule (the numbers in
parentheses represent rule violations). Although CTG achieves a bit better target speed rule satisfaction, it
involves a vehicle collides with crossing vehicles and then goes off-road.

In this section, we show a few qualitative examples (Figure A2 - Figure A7) comparing CTG++ and493

the strongest baseline (in terms of rule satisfaction) under the STL rules. Overall, CTG++ generates494

realistic, rule-satisfying trajectories. The baseline method can usually also satisfy the rule. However,495

their trajectories usually sacrifice one or more of the following aspects: (1) the trajectories are curvy,496

unrealistic, (2) the trajectories involve off-road accidents, and (3) the agent interaction is sub-optimal497

leading to collision(s).498

14

(a) CTG++ no collision (0) (b) BITS+opt no collision (0)

Figure A4: Qualitative comparison between CTG++ and BITS+opt under no collision STL rule (the numbers
in parentheses represent rule violations). Both methods satisfies the rule perfectly as no collision happens.
However, BITS+opt have highly curvy, unrealistic trajectories as the cost of satisfying the rule.

(a) CTG++ no off-road (0) (b) CTG no off-road (0)

Figure A5: Qualitative comparison between CTG++ and CTG under no off-road STL rule (the numbers
in parentheses represent rule violations). Both methods satisfies the rule perfectly as no off-road happens.
However, CTG lead to multiple collisions among the pink vehicle and vehicles that are stationary.

D Hyperparameters499

D.1 Training Hyperparameters500

CTG++ is trained on a machine with Intel i9 12900 and NVIDIA GeForce RTX 3090. It takes501

approximately 10 hours to train CTG++ for 50K iterations. We use Adam optimizer with a learning502

rate of 1e-4.503

D.2 Pair Selection Criteria for GPT query based rules504

We choose two vehicles A and B in each scene such that they satisfy the following criteria:505

• Both have current speed larger than 2m/s.506

15

(a) CTG++ stop sign + no off-road (0, 0) (b) CTG stop sign + no off-road (0.732, 0)

Figure A6: Qualitative comparison between CTG++ and CTG under stop sign and no off-road STL rule (the
numbers in parentheses represent rules violations). Vehicles are supposed to stop within the marked bounding
boxes without going off-road. CTG++ satisfies both rules while CTG only satisfies the no off-road rule. Be-
sides, CTG involves a collision between the grey vehicle and the blue vehicle.

(a) CTG++ goal waypoint + target speed (0.991,
0.296)

(b) CTG goal waypoint + target speed (1.24, 0)

Figure A7: Qualitative comparison between CTG++ and CTG under goal waypoint + target speed STL rule
(the numbers in parentheses represent rules violations). Vehicles are supposed to reach the marked waypoints
with target speed (same speed as in the dataset). CTG++ satisfies both rules better than CTG. Besides, CTG
involves a collision between the two orange vehicles in the end.

• At 0s and 2s, the distance between A and B is within the range 10m to 30m.507

• At 0s and 2s, the orientation difference between a and b is smaller than 108 degrees (for508

GPT collision) and 36 degrees (for GPT keep distance).509

The criteria is a coarse-grained filtration for those pairs that are more likely to have keep distance /510

collision interactions in the original training dataset. If more than one pair in the scene satisfy the511

following criteria, we select the pair with smallest distance. If none of pairs in a scene satisfy the512

following criteria, we skip the scene. After the filtrations, out of the 100 validation scenes, we have513

50 scenes remained for GPT collision and 40 scenes for GPT keep distance.514

16

E Experiment Details515

E.1 Metrics of Rule Violation516

We provide the details for the metrics we use for measuring rule violation in this section. For all517

the metrics of rule violation, we average the metrics over all validation scenes. Besides, they are518

designed such that the smaller the better (i.e., rules are better satisfied).519

GPT Keep Distance. the following vehicle’s (in the chosen pair) average l2 distance deviation from520

the specified range.521

GPT Collision. if a collision happens between the two vehicles in the chosen pair.522

No Collision. collision rate of all vehicles in a scene.523

Speed Limit. average deviation from the speed limit of all vehicles in a scene.524

Target Speed. average deviation from the target speed of all vehicles in a scene.525

No Offroad. off-road rate of all vehicles in a scene. We consider a vehicle going off-road if its526

center goes off-road.527

Goal Waypoint. average vehicle’s smallest l2 distance deviation from the specified corresponding528

goal waypoints of all vehicles in a scene.529

Stop Sign. average smallest speed within the stop sign region of all vehicles in a scene.530

F Details of Language Interface531

In this section, we provide more details and limitation of our proposed language interface for traffic532

simulation.533

F.1 Details of Vehicle Indexing534

In practice, instead of using color for vehicles which is used in Figure 1 for better illustration pur-535

pose, we use indices according to the context from the driving dataset. The user can tell GPT4 the536

vehicles to control via their indices, e.g., ”vehicle 1 should collide with vehicle 2”.537

F.2 Details of Prompting538

In Figure 4, we provide an example of a pre-defined API function and a query-loss function pair. In539

our experiments, we additionally provide the following API functions:540

transform coord world to agent i. this function transform the predicted position and yaw from541

world coordinate to the agent i coordinate.542

select agent ind. this function returns the slice of x with index i.543

get current lane projection. this function returns the projection of each vehicle predicted trajec-544

tory on its current lane in agent-centric coordinate.545

get left lane projection. this function is similar to get current lane except it returns the left lane546

waypoints. If there is no left lane, the original trajectory will be returned.547

get right lane projection. this function is similar to get current lane except it returns the right lane548

waypoints. If there is no right lane, the original trajectory will be returned.549

In addition to the acceleration loss paired example shown in Figure 4, we provide another query-550

loss function pair example. ”Generate a loss class such that, vehicle 1 should always stay on the551

left side of vehicle 2.” The corresponding function penalize the cases when vehicle 1 not on the left552

size of vehicle 2. This function provides GPT4 a sense of the relationship between direction and the553

trajectories.554

17

We additionally specify the dimension of the input trajectory and the input and output of the expected555

loss function wrapped in a loss class such that GPT4 know which dimension of the trajectory to556

operate on when needed: ”The generated loss class should have a function: forward(x, data batch,557

agt mask). x is a tensor representing the current trajectory with shape (B, N, T, 6) where B is the558

number of vehicles (consisting of vehicle with index 0 to B-1), N is the number of samples for each559

vechile, T is the number of timesteps (each represents 0.1s), and 6 represents the (x, y, vel, yaw,560

acc, yawvel) in corresponding agent coordinate of each vehicle. data batch is a dictionary that can561

be used as parameter for relevant APIs. The function should return a loss for every sample of every562

vehicle with the shape (B, N) or return a loss for every sample with the shape (N).”563

F.3 Failure Cases564

The main limitation of the current language interface is on the complex interactions between the565

vehicles and the map. As we don’t explicitly pass the map information into the language interface, it566

cannot handle commands involving heavy interaction with the map. For example, ”vehicle A and B567

move to the rightmost lane one by one and then both turn right at the next intersection”. However, we568

believe if one provides more helper functions (especially those interacting with the map) and more569

relevant examples to the language interface, LLM can handle such more complicated commands.570

However, as the current work aims to provide preliminary results on the feasibility of text-to-traffic,571

we leave that for future work.572

18

	Algorithm of Training and Sampling in Details
	Training
	Sampling

	More Details on Architecture
	Detailed Architecture
	Gated Attention

	Qualitative Comparison under STL rules
	Hyperparameters
	Training Hyperparameters
	Pair Selection Criteria for GPT query based rules

	Experiment Details
	Metrics of Rule Violation

	Details of Language Interface
	Details of Vehicle Indexing
	Details of Prompting
	Failure Cases

